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Abstract

Dark matter is an invisible type of matter believed to make up 85 % of the matter in the

universe, but it has not yet been identified by experiments. According to certain particle

physics theories, possible signatures of dark matter are so-called dark jets. They are the

dark matter equivalent to classic jets, i.e collimated streams of particles. These jets could

be produced from the proton-proton collisions at the Large Hadron Collider (LHC). The

ATLAS experiment at the LHC is currently searching for such jets.

There are two challenges in discovering dark jets. Firstly, the traces left in the detector by

dark jets are not well understood, so the best lead is to search for something anomalous.

Secondly, current data storage limitations force us to discard data and this reduces the

probability to register a dark jet.

Using machine learning techniques – or more specifically autoencoders – is a proposed so-

lution as autoencoders can perform compression and anomaly detection simultaneously.

This master’s thesis investigates the use of autoencoders for jet images, a two-dimensional

jet representation. A group of different autoencoders are trained separately to learn in-

herent structures in QCD jets (background, ordinary events). They are then used to

recognize boosted W-boson jets (signal, anomalous events) with a different signature.

The separation of boosted W-boson jets and QCD jets is a simplified version of the prob-

lem of separating possible dark jets from QCD jets.

The autoencoders were able to compress the background jet images threefold with an

error of less than 5 % for over 95 % of the data. However, for signal jet images the error

was found to be even smaller. This made anomaly detection impossible since the opposite

is required for the method to work. The difference between signal and background could

be too small for the simple autoencoders to distinguish.

Keywords: data compression, anomaly detection, jet image, autoencoder, dark matter,

machine learning, ATLAS, hadron jet, particle physics, high energy physics
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Chapter 1

Introduction

1.1 Background

Dark matter is one of the biggest mysteries in modern physics. We know that this invisible

type of matter should exist, but it has not been found yet [1]. One experiment where dark

matter particles could be created and detected is ATLAS, which is one of the four main

experiments at the world’s largest particle accelerator – the Large Hadron Collider (LHC)

at CERN in Switzerland [2]. At the LHC, bunches of protons are accelerated to extremely

high energies and then brought together to collide [3]. These high-energy collisions can

produce new particles that are then detected by ATLAS – some of which could be dark

matter [1].

Many possible signatures of dark matter are rare and buried in already known processes

(backgrounds). We cannot save the products of every proton-proton collision event as

the collision frequency is very high (up to 40 MHz) and the available storage space is

not sufficient. This means that we have to discard events – both dark matter signals and

background – which limits our sensitivity to these signals. If the data were to be com-

pressed without losing relevant information, then more collision events could be stored

with the available storage capacity [4].

However, another problem is that we do not yet know what the signature of dark matter

could look like in a detector. If we only search for signatures based on existing theories

of dark matter, we may miss interesting but not yet theorized dark matter candidates. If

we were able to look for something that is out of the ordinary – something anomalous –

we would be able to cast a wider net on dark matter.
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An autoencoder is a type of artificial neural network that can, through training, learn to

compress and decompress data. It learns to identify inherent patterns and structures of

the data and stores these in a lower dimensionality [4]. There is no universal autoencoder

architecture that can compress everything. Autoencoders can only compress data with a

certain structure that they have been previously trained on. This characteristic can be

utilized: If the autoencoder learns to compress ordinary collision signatures and then is

shown something different, it would fail at compressing it. The failure of the autoencoder

to compress anomalous events can be quantified, e.g through the reconstruction loss [5].

The reconstruction loss is the difference between the original and compressed quantities.

We can then detect anomalous events as those passing a certain reconstruction loss thresh-

old. This feature can be used to find interesting rare events for new physics – perhaps an

event that shows traces of dark matter.

1.2 Overall Objective

The overall objective of the thesis project is to test the ability of an autoencoder to

perform compression and anomaly detection, i.e distinguish differences between ordinary

and anomalous signatures, on certain types of physics processes. The data contains images

of jets, which are collimated streams of particles produced in proton-proton collisions.

Another objective is to produce well-documented and reproducible code that is accessible

for researchers of any level.

1.3 Research Questions

• Is the autoencoder able to compress and decompress images of jets?

• Is the autoencoder able to detect anomalies in images of jets?

1.4 Related Work

Deep Autoencoders for Data Compression in High Energy Physics [4] by Eric Wulff is a

proof-of-principle study of using machine learning for compression of ATLAS data. This

work successfully proved that autoencoders can be used to reduce the dimensionality of

jet data without a significant loss in performance. Wulff used two types of data: only the

kinematic properties of the jets (the four-momentum), and also most of the jet variables

available to ATLAS (27-dimensional jet data). The baton was then passed on to Erik

Wallin who in his bachelor’s thesis project Tests of Autoencoder Compression of Trig-
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ger Jets in the ATLAS Experiment [6] studied compression of 4-dimensional trigger-level

analysis (TLA)1 jet data and computing constraints, and compared it to another kind of

compression. Honey Gupta then worked on event-level data in Deep-compression for High

Energy Physics data [7] for Google Summer of Code 2020. Event-level data means that

it includes other objects than just jets, e.g. particles like electrons, muons and photons,

but only in terms of four-momentum.

There are two main works that are of interest for jet images: Jet-Images – Deep Learning

Edition [8] by de Oliveira, et.al. and Jet-Images: Computer Vision Inspired Techniques

for Jet Tagging [9] by Cogan, et.al. They introduce jet images as a tool for utilizing deep

learning and computer vision for tagging of jets.

1Trigger-level analysis is a technique where only a partial event is saved from the trigger, e.g only jets,
instead of the full detector information [6].
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Chapter 2

Theory and Experimental

Background

The purpose of this chapter is to give an overview of the underlying theory of the main

concepts in this thesis: dark matter, jets and autoencoders. The chapter begins with the

theory of the Standard Model and the origin of jets. Then, an introduction of dark matter

and proposed dark jets is given. The chapter then continues onto the experimental side

of particle physics and introduces the ATLAS Experiment at the Large Hadron Collider

(LHC) and its inner workings. This is necessary in order to understand the detection of

jets and how this can translate to a jet image. The chapter then switches to the field

of artificial neural networks, the theory of which autoencoders rely on. By utilizing au-

toencoders, compression and anomaly detection can be performed. This will be described

towards the end of the chapter.

For the sake of readability some words are bolded to guide the reader to explanations

of important concepts. The reader is assumed to have a basic understanding of special

relativity (see Appendix A).

2.1 Particle Physics

2.1.1 The Standard Model

The Standard Model (SM) is the current theoretical model that describes the funda-

mental components of the universe. According to the Standard Model, the components of

everything that exists can be reduced to two groups of particles: fermions and bosons. To

our knowledge, these are elementary particles, meaning that they have no substructure

and are the smallest constituents of matter [10].
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Fermions are particles with half-integer spin. For example, every atom in nature is made

out of a combination of two composite fermions – the proton and the neutron – and a

fermion called the electron. Fermions are then divided into two families: quarks and

leptons. In Table 2.1 is a list of the fermions in the Standard Model [10].

Table 2.1: Fermions in the Standard Model.

Quarks
Up (u) Charm (c) Top (t)

Down (d) Strange (s) Bottom (b)

Leptons
Electron (e) Muon (µ) Tauon (τ)

Electron neutrino (νe) Muon neutrino (νµ) Tau neutrino (ντ )

Table 2.2: Bosons in the Standard Model.

Force Electromagnetic Weak Strong

Boson Photon (γ) W±-boson, Z-boson Gluon (g)

Mechanism Higgs mechanism

Boson Higgs boson (H0)

Bosons are particles with integer spin and they include the force carriers for the funda-

mental forces. These are exchanged between particles during interactions. Each funda-

mental force has a corresponding boson. Table 2.2 contains a list of the bosons in the

Standard Model [10]. The Higgs boson differs from the other bosons as it is not connected

to a force. Instead it is connected to the Higgs mechanism. This mechanism explains why

bosons have mass.

Each particle has an antiparticle counterpart. An antiparticle is an associated particle

with the same mass but opposite charges, e.g the electron (e−) with negative charge and

its antiparticle the positron (e+) with positive charge. An antiparticle is denoted with a

bar, i.e if q is a quark then q̄ is an anti-quark [11].

The electromagnetic force acts between electrically charged particles. It is the force

that binds the electron to the atomic nucleus and it is the origin of e.g. visible light. The

theory of electromagnetic interactions is called Quantum Electrodynamics (QED).

The weak force is the force responsible for β-decay, which is the radioactive decay of

certain atoms. The strong force is what binds most matter together, for example the
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quarks in protons and nucleons in the nucleus. The theory of strong interactions is called

Quantum chromodynamics (QCD). In this thesis, QCD will be of special interest.

For more resources and information on the material in this chapter, see Ref. [10].

The strong force acts on particles with color charge, which is the QCD-equivalent of

electric charge in QED. Particles with color charge are quarks and gluons and they can be

red (r), green (g), blue (b) or anti-red (r̄), anti-green (ḡ) and anti-blue (b̄). Note that the

color charge is not the physical color of the particle. It is simply an inherent property like

mass or electric charge. The characteristics of color charges give the strong interaction

peculiar features like color confinement and asymptotic freedom [10].

Color confinement means that quarks are confined within so called colorless states.

Colorless can be seen as the QCD-equivalent of neutral electric charge. Confinement is

also why free quarks are never observed, since they are not colorless. Another consequence

of color confinement is that hadrons, which are compositions of quarks, can only exist

in certain configurations. The most common hadrons can either be mesons, a quark and

an anti-quark (qq̄), or baryons, three quarks bound together (qqq or q̄q̄q̄) [10].

Asymptotic freedom is the strength-distance behavior of the strong force. It is best

explained with a classic spring analogy. Consider a spring with each end representing

a quark. If the spring is barely extended from its relaxed state then the spring force is

small. When the extension of the spring is increased, then the spring force also increases.

If the force is strong enough, and in turn have enough potential energy, then the spring

snaps and two new ends appear. A similar behavior is seen between quarks. At short

distances, the strong force is weak. As distance increases, it becomes stronger. If quarks

are separated enough then it is more energetically favorable to create a quark-antiquark

pair. In high energy collisions (see more details in Section 2.2), there is enough energy

to keep stretching and breaking this spring – creating a stream of quark-antiquark pairs

(see Figure 2.1). These collimated streams of particles are called hadronic jets, or simply

just jets following the so-called hadronization of quarks. In Section 2.3, the discussion

about jets will continue.
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Figure 2.1: A schematic showing the production of a hadron jet using the spring metaphor.
© Wikimedia Commons User: Lokal Profil / CC-BY-SA-2.5.

The Standard Model is a successful model in many ways. It is consistent with most

experimental observations in particle physics and has been able to predict many new

particles so far. However, it fails to give an explanation to some cosmological problems

and fundamental phenomena like gravity. Physicists therefore expect to find phenomena

Beyond the Standard Model (BSM) and develop theories to e.g. explain the nature

of dark matter [10].

2.1.2 Dark Matter

The force that binds matter like stars, planets and gas into galaxies is gravity. However,

according to mass measurements, the observable mass in galaxies is incapable of generat-

ing the gravity needed to hold them together. The swiftly moving objects in the outskirts

of the galaxy should be torn away – but this is not what is observed. There must be

something else that holds the galaxies together [1].

Dark matter (DM) is a theorized type of matter that solves this discrepancy. It does

not interact with the electromagnetic force in any way – it neither absorbs, reflects or

emits light. That is why it is called dark matter. As a consequence, it is difficult to de-

tect. However, since it is massive it can infer a gravitational pull, thus generating enough

force to hold the galaxies together [1].

Finding dark matter is difficult, even though dark matter is everywhere and it is more

abundant than normal SM matter. Normal SM matter is believed to be only a small

fraction of the contents of the universe [1]. We have a large amount of evidence for the

existence of dark matter but we know very little about what it is. In fact, we know
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more about what it is not, than what it actually is. A review of the accumulated evi-

dence for dark matter can be found in Ref. [12] and the history of dark matter in Ref. [13].

In the Standard Model, there are several different elementary particles that make up mat-

ter. Quarks are combined into hadrons, that in turn can be combined into atomic nuclei.

Add more particles and we get atoms, chemical compounds and in the end we have hu-

mans, mountains, stars and galaxies. There is no reason to believe that dark matter would

not be equally complex. It is therefore plausible that dark matter particles are part of an

unobserved dark sector – a collection of new particles, forces and interactions – rather

than dark matter consisting of only one fundamental particle [14]. In some theories, this

dark sector includes a portal to the Standard Model, making it possible to see traces of

it in the SM world. This portal could be a new particle that interacts with both the DM

and SM sector, but with a weaker coupling to SM particles [15][16].

One theory is that the dark sector includes an interaction that resembles the strong

interaction in the Standard Model. With this in mind, a dark matter model can be

constructed with parallels to QCD. Confinement in the dark sector implies that dark

matter can be a composite object, e.g. dark hadrons [14][15]. An equivalent to asymptotic

freedom would suggest the possibility of hadronization and consequently dark jets [14].

However, the dark hadrons and jets are invisible to current detectors, unless they can

interact with SM particles. With the assumption that a portal exists to connect the SM

with the dark sector, we get a whole new dark category of different possible jet signatures.

2.2 The ATLAS Experiment

The Large Hadron Collider (LHC) [17] is the world’s largest particle accelerator. It

is 27 km in circumference and is situated at the CERN research facility on the border

of Switzerland and France. At the site, about 100 meters underground, there are two

separate beam pipes where protons travel close to the speed of light in opposite directions.

These beams intersect at four points around the ring where the protons are brought

together to collide [3] (see Figure 2.2). The products of each collision are referred to as a

collision event, or simply just an event. The protons that circulated in the most recent

data-taking run of the LHC have an energy of 6.5 TeV [3]. This means that there are 13

TeV of available center-of-mass energy to produce new particles per event [11].
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Figure 2.2: An overview of the experiments at the Large Hadron Collider (LHC).

Experiments are located at each collision point. One of them is ATLAS [18], a general-

purpose experiment with the goal of testing predictions of the Standard Model and dis-

cover new particles, for example the Higgs boson and dark matter [19]. Figure 2.3 is a

schematic of the ATLAS experiment. ATLAS is the largest detector by volume that has

ever been constructed at a particle collider [2].

Figure 2.3: A schematic of the ATLAS experiment. The image shows a side-by-side
size comparison of the experiment and a human. This image is provided by ATLAS
Experiment © 2021 CERN.
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2.2.1 The ATLAS Coordinate System

In the ATLAS coordinate system, the x-axis points towards the center of the LHC, the

y-axis points upwards and the z-axis is along the beam direction (see Figure 2.4). All axes

are orthogonal. The origin of the coordinate system is the collision point [18]. Normally,

the spherical coordinate system (radial distance R, polar angle θ, azimuthal angle φ)

is used instead of the Cartesian coordinate system (x, y, z). Often, the polar angle is

replaced by the pseudorapidity η, which is defined as [11]:

η = ln

[
tan

(
θ

2

)]
(2.1)

Figure 2.4: The ATLAS coordinate system. The position where a jet deposits energy can
be described in Cartesian (x, y, z) or spherical coordinates (R, θ, φ).

The xy-plane is referred to as the transverse plane. Often in particle physics, the

quantity transverse momentum pT is of interest. It is defined as the vector component

of the momentum in the transverse plane. The component is perpendicular to the beam

axis [18].

2.2.2 Detectors

The ATLAS detector is a multi-layer detector of concentric cylinder layers around the

collision point [2]. This design makes it possible to detect particles produced in the colli-

sion or produced via subsequent decays. Different particles interact with different layers

and they are identified based on where to in the detector they reach and how they leave

a mark [11]. Figure 2.5 shows an overview of different particle signatures per layer.
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The first layer is the tracking system. Here, the charged particles are observed and

their momentum is measured. Using computer algorithms we can reconstruct the path

they took and thus track them. From the curvature of the tracks and information about

the applied magnetic field in the chamber, their momentum can be deduced [10][11].

The second layer is the electromagnetic calorimeter which absorbs and detects charged

particles through the deposition of energy [10]. The third layer is the hadronic calorime-

ter which is similar to the electromagnetic calorimeter but is able to detect the longer

showers from neutral and charged hadrons. The calorimeters are divided into cells in a

grid structure. The high granularity allows for a precise detection of where the energy

was deposited [20].

The last and fourth layer is the muon spectrometer that identifies muons. Even though

muons are charged, they are not absorbed by the electromagnetic calorimeter due to their

penetration power [10].

Figure 2.5: Overview of different particle signatures per layer.

2.2.3 Data Selection at the LHC

Each second, about a billion collisions occur inside the detectors at the LHC [3]. This

produces a lot of data; up to 60 terabytes (TB) per second [21]. It is impossible to store

the entirety of the data produced. To circumvent this, ATLAS uses a trigger system that

filters the interesting data, which reduces the amount of data to be stored by several

orders of magnitude, from 109 to 103 [21].

The trigger system keeps the amount of recorded data manageable but it may inadver-
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tently discard interesting events. The challenge is to save enough data to ensure that the

rare new physics events are recorded, but still remain within the storage and processing

constraints. One idea is therefore to compress the data and use machine learning to do so.

Recently, this has been explored with autoencoders with promising results [4]. In Section

2.4.3 the discussion about autoencoders will continue.

2.3 Jets and Their Substructure

Apart from particles like electrons and photons, jets (see Section 2.1.1) are also detected

at ATLAS. Since the hadronization of quarks produces a collimated stream of particles,

the particles hit the detectors near each other and form clusters. These particle clusters

are grouped together into one particle-like object – a jet – with a clustering algorithm.

The energy assigned to the jet is the sum of the energy of the clustered particles. It is

important to note that there is no unique way to cluster jets, and therefore there is a level

of arbitrariness to whether a particle is contained within the jet or not. At the LHC, the

anti-kt algorithm [22] is almost always used to reconstruct jets [23]. More jet algorithms

can be found in Ref. [23].

Figure 2.6 shows an example of an event with two jets. In cases like this where the jets

are back-to-back, it is easy to resolve the two jets. However, there are examples where

the two jets are collimated. Depending on the details of the clustering algorithm, these

can be identified as one large jet containing two smaller jets. The two smaller jets are

called subjets of the larger jet [24]. N-subjettiness τN is a jet property that describes

to what degree the jet can be considered to consist of N subjets (due to the arbitrariness

of clustering) [25]. The leading subjet is the subjet with the largest transverse momen-

tum. The sub-leading subjet is the next in order [26].

If a TeV-scale particle produced in a proton-proton collision decays into lighter states,

e.g W-bosons (mW = 80.379 ± 0.012 GeV [27]), then due to the difference in mass the

W-boson will have a large transverse momentum [23]. The W-boson is said to be boosted.

The W-boson can in turn decay in different ways. The most common W-boson decay

mode is to hadrons [27], where the hadrons are produced through hadronization of the

two quarks in the decay W −→ qq̄. Because of the large boost of the W-boson, the

outgoing quarks will not have diverged significantly in relation to each other (small solid

angle) and will thus merge into one W-boson jet with two subjets (see Figure 2.7). This

type of jet is said to be a boosted jet [23].

12



Figure 2.6: A high-energy event with two jets at the ATLAS experiment. This image is
provided by ATLAS Experiment © 2015 CERN [28].

Depending on what produces the jets, they will have different internal structures. The

W-boson decays into a quark and an antiquark, leading to two jets, as previously men-

tioned. The energy is shared between these two jets in approximately equal fractions.

This leads to two hard cores (high transverse momentum pT ) of the jets measured in the

detector. W-jets generally have a two-prong structure. Another class of jets is QCD-jets.

Most commonly, they have a single hard core that is surrounded by a diffuse spread of

energy due to the radiation of soft gluons. They generally have a one-prong structure [23].
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QCD-jets and W-boson jets thus have different substructures and may be distinguished.

This is a simplified version of the problem of separating dark jets from standard model

QCD-jets. For dark jets there is no guarantee of such a distinct difference, but nonetheless

they may still be distinguishable by their substructure.

Figure 2.7: A schematic showing how increasing momentum merges two separate jets into
one jet with two subjets.

2.3.1 Jet Images

A jet (or any particle) from a proton-proton collision is most commonly represented as a

four-vector (see definition in Appendix A.2). In typical Cartesian coordinates and natural

units (see Appendix A.2.1) the dynamics of a jet is fully described by the four-momentum

(px, py, pz, E). However, in practice, using a four-vector on the form (pT , η, φ,m) is more

suitable. This is due to the fact that transverse momentum pT is invariant under Lorentz

transformations. The transformation from the Cartesian coordinate four-vector to the

new four-vector is: 

px = pT cos (φ)

py = pT sin (φ)

pz = pT sinh (η)

|p| = pT cosh (η)

(2.2)

In the past few years there have been promising results when using another representa-

tion of jets instead of the simple four-momentum, i.e jet images [8][9]. Jet images are

image representations of jets. A jet image can be seen as the unraveling of the cylindrical

calorimeter (see Figure 2.8) in terms of energy deposits. The pixel grid is a pixelation of

the calorimeter cell grid and the pixel intensity is set to be proportional to the energy

deposited in the cells. The location of the lit up pixels relates to where in the calorimeter

the jet left a mark. A typical jet image can be seen in Figure 2.8. Note that instead
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of using the azimuthal angle φ and polar angle θ, the polar angle is replaced with the

pseudorapidity η (see definition in Equation 2.1).

The advantage of using jet images over four-vectors is the fact that the images carry

information about the jet substructure. Figure 2.9 shows the jet images corresponding to

a boosted W-jet and a QCD-jet.

Figure 2.8: A typical jet image and how the unraveling generates it. This jet image is
already pre-proccessed according to the procedure described below. The jet image is from
Ref. [29]. Used with permission
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Figure 2.9: A schematic of a boosted W-jet and of a QCD-jet, and the corresponding jet
images. The open square shows the jet axis and the open circles the subjet axes of that
jet. Note that these jet images are not pre-processed. The image is from Ref. [25]. Used
with permission.

Pre-processing

This section will describe the pre-processing procedure from Jet-Images – Deep Learning

Edition by de Oliveira, et.al. [8] and Jet-Images: Computer Vision Inspired Techniques

for Jet Tagging by Cogan, et.al [9]. The process is analogous to the pre-processing of

images used in facial recognition.

1. Translation: In the translation step, the leading subjet is translated to the origin

(η, φ) = (0, 0), i.e the middle of the jet image. Note that it is the jet-energy centroid

that is translated to coincide with the origin.
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2. Rotation: Once translated, the jet is rotated around the origin so that the principal

axis [30] of the jet is vertical. By rotating every image, the stochasticity of particle

decay is removed. If the jet consists of two subjets (e.g as for boosted W-boson jets)

then the jet is rotated so that the subleading subjet is directly beneath the leading

subjet.

3. Re-pixelation: In the re-pixelation step, the pixel intensity is re-distributed among

the pixels. This is needed after translation and rotation if the new grid does not

line up with the original grid.

4. Reflection: In the reflection step, the image is flipped over the φ-axis (vertical

axis) so that the right side has the highest sum pixel intensity (if this is not already

the case).

The pre-processing procedure is essentially the alignment of features so that points of

interests are in the same relative pixel location for every image. The analogue of this to

facial recognition is the centering of eyes. After the alignment we have ensured that the

leading subjet is always in the middle, any subjet directly under and that the remaining

highest radiation is always on the right. The purpose of the pre-processing procedure is to

help an artificial neural network to train more efficiently [8][9]. Artificial neural networks

will be described in Section 2.4.

Pre-processing affects the physical quantities that the image represents. First, consider

the translation step. Translations in φ are rotations around the z-axis (beam axis). This

does not change the pixel intensity as it is a mere rotation of the transverse plane. Trans-

lations in η are rotations around the x-axis. This corresponds to Lorentz boosts along the

z-axis and as a consequence, such translations do not preserve pixel intensity. A simple

solution to this is to redefine the pixel intensity Ii to a Lorentz invariant quantity, e.g

from energy to transverse energy, i.e Ii = Ei −→ Ii = pT,i = Ei/ cosh (ηi). In the rotation

step, image mass is not preserved and there is no reported solution to this problem in

Ref. [8][9]. The image mass is maximally affected when the image is rotated π/2 [8].

However, the rotation step is reversible. The image could be de-rotated to retrieve the

original image mass. The reflection step does not impact the image mass. Note that the

initial pixelation of the calorimeter impacts the jet mass resolution. This has a much

larger degradation effect on the image mass than the rotation step [8].
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Retrieving Mass and Transverse Momentum

The invariant mass m of a particle (or a jet) is given by the energy-momentum relation:

m2 = E2 − |p|2 (2.3)

where E is the energy and p is the momentum of the particle. It is a Lorentz invariant

quantity. Using the definitions of px, py and pz from Equation 2.2, this relation becomes:

m2 = E2 − (|pT |2 + |pT sinh η|2) (2.4)

By taking a sum over each pixel i, the invariant mass of the jet image becomes:

m2(I) =

(∑
i

Ii cos ηi

)2

− p2T (I)−

(∑
i

Ii sinh (ηi)

)2

(2.5)

where Ii is the pixel intensity and ηi is the pseudorapidity for pixel i. Note that the pixel

intensity for pixel i is defined as Ii = Ei/ cosh ηi due to pre-processing. The equation for

transverse momentum pT can be expressed in terms of px and py, i.e p2T = p2x + p2y. The

equation for the transverse momentum of the jet image becomes:

p2T (I) =

(∑
i

Ii cos (φi)

)2

+

(∑
i

Ii sin (φi)

)2

(2.6)

where Ii is the pixel intensity and φi is the azimuthal angle for pixel i.

2.4 Artificial Neural Networks

Machine learning (ML) is the study of algorithms that seek to make computers learn

from experience. These algorithms are used in a variety of fields and applications, like

biological applications such as tumor detection and DNA sequencing, but also technical

applications such as facial recognition, credit scoring and weather forecasts [31]. The main

principle for each algorithm is to iteratively build a model from a predetermined set of

sample data, in order to make decisions and predictions on new data. One subcategory of

machine learning that is of particular interest in this thesis is artificial neural networks.

Artificial neural networks (ANNs) is a family of networks whose design is inspired

by biological neurons in terms of their structure, how they pass signals and how this

results in learning. Similarly to how the brain structure is a network of neurons that

transfer chemical signals between each other, an ANN is a network of connected nodes
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that send numerical signals forward [32]. When a neuron is exposed to external stimuli

that is strong enough, they are activated and pass the signal along to the connected neu-

rons. For an ANN, the nodes are activated according to a predefined rule that determines

their sensitivity. As biological organisms learn, the strength of the connections between

neurons change. In an ANN this corresponds to adjusting the weights between nodes [33].

The learning procedure will be explained more thoroughly in Section 2.4.1.

The simplest ANN is the perceptron, which is a single artificial neuron that consists of

only one node (see Figure 2.10). The node can be viewed as a black box to which one

feeds an input x, and according to an internal rule it outputs y. The relation between

input and output is given by the equation: [32]

y(x,ω) = f(
K∑
k=1

ωkxk) = f(ωTx) (2.7)

where f is the activation function and ω is a vector of weights ωk [32]. The weights

determine how much each input signal should affect the output signal [34]. Each input

node xk has a corresponding weight wk. The weighted sum of incoming signals is the

argument to the activation function. The activation function determines how strong

the input has to be in order to activate. The activation function can essentially be any

function but the general rule is that a larger input gives larger output [32]. In this thesis,

the activation function used is Leaky ReLU (see Figure 2.11) [4].

Figure 2.10: The perceptron. The argument of the activation function f is a weighted
sum of the inputs. The activation function then gives the output of the perceptron.

19



−4 −2 0 2 4

0

1

2

3

4

5

x

f
(x

)

f(x) = max(0.1x, x)

Figure 2.11: The activation function Leaky ReLU.

The perceptron is the basic element of any larger ANN. By connecting several perceptrons

in different structures one can build a powerful network that can solve many different

tasks. In fact, according to the universal approximation theorem [35], any continuous

function defined on a compact set can be approximated by a network of perceptrons. Such

networks are called multi-layer perceptrons (MLP). An MLP is defined as a network

of connected perceptrons with at least one layer in-between input and output [32]. An

example of an MLP can be seen in Figure 2.12. The first layer is called the input layer

and the last the output layer. The layers in-between are called hidden layers. This

specific network structure can be expressed as 4-8-6-3 where the numbers indicate how

many nodes are in each layer.
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Figure 2.12: An example of an MLP. The first layer is called the input layer and the last
the output layer. The layers in-between are called hidden layers. The network structure
can be expressed with the code 4-8-6-3.

2.4.1 Training

There are two fundamental categories of learning: supervised learning and unsupervised

learning. Supervised learning means that for each input we have a target, i.e what

we want the output to be. An input-target pair (xn, dn) is referred to as a pattern n.

When a network learns to perform a task in supervised learning it does so by training

on a data set, i.e a set of patterns, such that the output eventually equals the target

when fully trained. Unsupervised learning on the other hand has no targets. Instead,

the network learns inherent structures in the data [32]. As an example, consider a data

set containing images of dogs and cats. In the case of supervised learning, each image is

labeled with either dog or cat. In the case of unsupervised learning, the same data set is

used but there are no labels provided.

Training a network means finding the set of weights that give the smallest error. De-

pending on what type of task the network is performing, the error is defined differently.

The function defining the expression for error is called the loss function. In this thesis,

the commonly used mean-squared error (MSE) loss function E(ω) will be used:

E(ω) =
1

N

N∑
n=1

(yn − dn)2 (2.8)
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where N is the number of patterns, yn is the output of the n:th pattern and dn is the

target of that pattern [32].

The basic idea of the training algorithm is to, from a set of initial random weights,

iteratively adjust the weights until a loss function minimum is reached. After weight

initialization, the training algorithm takes a series of alternating feed-forward and back-

propagation steps. In a feed-forward step, a pattern from the data set is used as input,

which is then fed through the network to yield an output. This is done for each pattern

in the data set. After a feed-forward step follows a back-propagation step where the

gradient of the loss function ∇ωE is calculated. Then, according to an optimization

algorithm, the weights are updated in relation to that gradient. There is a variety of

weight optimization algorithms to choose from. The simplest is called gradient descent

and it is also the base for most advanced algorithms. In gradient descent, the weights are

adjusted by taking a step in weight space in the direction that minimizes loss, i.e −∇ωE

(see Figure 2.13). The step size is given by the learning rate α. [32] This gives the

weight update rule:

∆ωk = −α ∂E
∂ωk

(2.9)

Figure 2.13: Gradient descent with one single weight. The direction of the step in weight
space ∆ω is given by the derivative of the loss function. The goal is to reach the optimal
weight ωopt such that the loss is minimized.

Gradient descent is a rather successful algorithm considering its simplicity, but there are

some drawbacks that need to be addressed. For example, if the loss function reaches a

plateau then the gradient is small, which makes the steps small and as a consequence

it takes a long time to leave the region. This can reduce the convergence speed of the

algorithm substantially. Another example is the fact that you can get stuck in a local
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minimum since it has a zero gradient. This may stop the algorithm prematurely, before

we have found the optimal minimum [32]. In this thesis, the optimization algorithm called

Adam will be used. It is an improvement of gradient descent that for example tackles

the two issues mentioned [32]. For an in-depth description of Adam, the reader is advised

to delve into the paper Adam: A Method for Stochastic Optimization by P. Kingma et.

al where it was first introduced [36].

Another drawback with gradient descent is the fact that the entire data set is used to

calculate the gradient in each step. This can be a problem when the data set is large

since it requires more computing power. A solution to this is to divide the data into

mini-batches. The size of the mini-batch is referred to as the batch size [4]. When doing

this, the network calculates the gradient based on only one mini-batch at a time. This

speeds up the training [32]. After one mini-batch gradient descent step is performed we

say that the network has completed one iteration. When the network has gone through

all mini-batches once it has completed an epoch [34].

A hyperparameter is a parameter that has to be adjusted manually since it is not

learned during training [34]. Some hyperparameters have already been introduced, for

example learning rate and batch size. In general in machine learning there are a lot of

manually set variables – hyperparameters just being one of many – and they are all cou-

pled. Setting these variables is an art and for the lesser experienced it is often a guessing

game.

The 1cycle policy [37][38] is a proposed recipe that removes the task of manually set-

ting a learning rate. In its foundation, the 1cycle policy is a cyclical learning rate (CLR)

policy [39] where the learning rate cyclically varies throughout training instead of being

fixed. The 1cycle policy consists of only one cycle where the learning rate increases from

a small value to a high value, and then decreases back to the small value. After this cycle,

it continues to decrease even further for the remaining iterations. Figure 2.14 is shows

sketch of how the learning rate changes throughout training in the 1cycle policy.

To use the 1cycle policy, one has to specify the maximum learning rate. The minimum

learning rate is set as a fraction of the maximum learning rate. The final learning rate

is set to be several orders of magnitude smaller than that. Not only is the 1cycle policy

suitable for automatically setting the learning rate, it also greatly speeds up training [38].

The 1cycle policy will be used in this thesis to set the learning rate.
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Figure 2.14: A sketch of the learning rate as a function of epochs in the 1cycle policy.

2.4.2 Generalization

Generalization is the ability of a network to perform predictions on previously unseen

data. For example, a network that is trained to classify images of dogs is said to have the

ability to generalize if it can detect dogs in images it has not been exposed to before. A

network that has a low generalization performance is not a useful network [33].

To evaluate the generalization performance one usually has two separate data sets: train-

ing data and validation data. The training data is simply what the network is fed during

training. The validation data is new, previously unseen data. When this data is fed

to the network the generalization performance is given by the loss. If the loss is small

then the network generalizes well, and vice versa for a large loss. Note that the need for

a validation set does not necessarily mean that you need a completely new data set. A

simple way of acquiring validation data is to split the data set into two separate parts

and keep one hidden during training. The training data is usually 80 % of the original

data set and the validation the remaining 20 % [32].

Overfitting is when the model conforms too closely to the training set, causing the

network to deliver poor predictions of new data due to variance in data. Therefore,

overfitting causes a low generalization performance [32]. The probability of overfitting

increases with the number of nodes and layers in the architecture, and with the number

of iterations and epochs during training. A typical sign of overfitting is when the validation

loss starts to increase while the training loss continues to decrease (see Figure 2.15). When

this occurs the network learns to memorize the data set instead of learning structures.

The optimal place to stop training is when both reach a plateau (see Figure 2.15) [4].
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Figure 2.15: Sketch of training and validation loss as a function of training time. To the
left we have an example of overfitting and to the right we have optimal performance.

One approach of ensuring generalization is through regularization, which is a collection

of methods to avoid overfitting. As a general rule of thumb it is better to use a complex

architecture with regularization than a simple architecture without. The simplest form

of regularization is early stopping. As previously mentioned, training with too many

iterations and epochs can cause overfitting. Therefore, training is abruptly stopped when

the validation loss starts to increase. Regularization can also be done by restricting

weights, since there is a correlation between large weights and overfitting [33]. Weight

decay1 [40] is a regularizing method where, as training goes on, weights are forced to

decay exponentially according to:

ωt+1 = (1− λ)ωt − α∇f(ωt) (2.10)

where ωt represents the weights at training step t, λ is the weight decay rate, α the learning

rate and f(ωt) is the gradient of the loss function. Note that λ is a hyperparameter.

2.4.3 Autoencoders

An autoencoder is a type of artificial neural network that consists of an encoder, a latent

space and a decoder (see Figure 2.16). The encoder encodes the input to the latent space

and thus creates a new representation of the input. The decoder then decodes the latent

space representation back to the input format and outputs the reconstruction [4][41].

If the latent space has the same dimensions as the input data then the autoencoder is

faced with a trivial problem. This means that the network will just learn to copy the data

forward. However, if the autoencoder has a latent space bottleneck, then the autoencoder

is forced to learn a reduced representation of the data. The encoder may thus be effectively

1Not to be confused with L2-regularization which is often referred to as weight decay. For some
optimization algorithms they are equivalent but for Adam they are not [40].
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used for compression and the decoder for de-compression. The compressed representation

of the input data is the latent space representation [33].

Figure 2.16: An example of an autoencoder network structure and its components.

The architecture of an autoencoder network can vary greatly. The minimum requirement

is that the input and output layer have the same dimensions. A common architecture is

the butterfly design. This entails a network with an odd number of layers and a symmetry

plane along the bottleneck (see Figure 2.16) [32]. Deep autoencoders, i.e autoencoders

with many hidden layers, is preferable as it has been experimentally shown that they yield

better compression [42].

Autoencoders perform unsupervised learning as they do not need labeled data to func-

tion. However, since they create their own targets and labels, they can be seen as being

self-supervised. If the data inherently contains mostly linear correlations, then a linear

activation function is good enough. However, for more complex problems the autoencoder

needs a non-linear activation function, e.g Leaky ReLU (see Figure 2.11) [32].

Training an autoencoder is done precisely in the same manner as for an MLP. The loss

function used to train an autoencoder is:

E(ω) =
1

N

N∑
n=1

K∑
k=1

(yk(xn,ω)− xnk)2 (2.11)

where ω are the weights, N is the number of data points in the data set, K the number

of inputs, y the output and x the input [32]. Note that this is the same loss function as

MSE-loss (see Equation 2.8) but the targets are equal to the inputs.
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2.4.4 Anomaly Detection

An anomaly is a data point – or a group of data points – that differs from the majority

enough to suspect that it was generated from another mechanism [5]. Detection of such

anomalous data is useful in many applications; ranging from credit-card fraud, where the

anomaly could be abnormally large sums or many transactions, to medical diagnoses,

where an anomaly could be a sign of a disease. In order to detect an anomaly, one has

to first model what normal implies. Everything that does not conform to this model is

considered anomalous [43].

Anomaly detection, i.e identifying anomalies in data, can be done with an autoencoder,

with the assumption that what is classed as normal has a similar underlying structure.

When training on normal data, the autoencoder will learn to compress and decompress,

eventually with a small reconstruction loss. However, if the network later is fed anomalous

data it would give a significantly larger reconstruction loss since the structure is differ-

ent. The reconstruction loss can be considered an anomaly score. This can be converted

to a probability, i.e with what certainty is this data point anomalous. A more complex

continuation is to combine the autoencoder with a network used for binary classification.

This extension will classify each datapoint in the data set as either normal or anomalous

[5]. One can also just set a threshold value for the classification based on the anomaly

score.

A common metric for evaluating the classification accuracy is the confusion matrix. In

the case of supervised learning, each data point has a predicted class and a true class.

The true class is the correct classification and the predicted class is how the network

de facto classified the data. The confusion matrix is a table displaying the classification

performance in terms of true and predicted classes.

In the case of binary classification (class 1 = positive, class 2 = negative), the confusion

matrix is a 2 × 2 matrix. The matrix elements are: true positives (TP), false positives

(FP), false negatives (FN) and true negatives (TN) (see Figure 2.17). True positives are

the data points that were correctly predicted to be positive. Conversely, true negatives

are the correctly predicted negatives. False positives are falsely predicted positives.

False negative are falsely predicted negatives.
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Figure 2.17: A confusion matrix of a binary classification problem. It is a matrix of four
elements: true positives (TP), false positives (FP), false negatives (FN) and true negatives
(TN).

In the case of anomaly detection, a network is tasked to recognize anomalous data among

normal data. Suppose the data set contains 10 normal data points and 12 anomalous and

after feeding the data through the trained network, it predicts 8 data points as anomalous.

Of the 8 data points recognized as anomalous, 5 actually are anomalous (true positives),

while the other 3 are in fact normal data points (false positives). In total, 7 anomalous

data points were not found (false negatives), and 7 normal data points were correctly

predicted (true negatives).
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Chapter 3

Tools

A large portion of this thesis project is to continue the development of a Python pack-

age for compression of high energy physics data (especially jets) with autoencoders. The

package in question is open-source and available on GitHub. The main developers have

been Eric Wulff, Erik Wallin and Honey Gupta which have developed the package in re-

lation to their thesis work and project work [4][6][7].

The package relies heavily on the PyTorch and fast.ai [44][45] Python libraries. For

a list of the most important libraries used, see Table 3.1. After Gupta’s work, the devel-

opers of fast.ai did a from-scratch rewrite of the library. As a consequence, the entire

package had to be migrated to the new version. Migrating the essential code was the first

task of this thesis project.

Table 3.1: Summary of most important libraries used.

Library Version number

fast.ai 2.1.2

PyTorch 1.7.0

Pandas 1.1.4

matplotlib 3.3.2

NumPy 1.19.3

Jupyter Notebooks 1.0.0

To enable future developers to build upon this work and use the code, each developer has

to provide documentation to their code. Most of the scripts in the package are written in

Jupyter Notebooks [46]. This allows for the scripts to be divided into cells of code

where each cell can be run separately. It is possible to write headings and text to describe
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the different parts. With a well written documentation, the steep learning curve of having

to interpret someone else’s code is removed. It makes research accessible and allows for

larger collaborations between many different parties.

Previously, the package had only been developed for compression of HEP data. With

this thesis work, the functionality of working with compression of jet images was added

together with anomaly detection (as well as documentation). The code developed for this

project is divided into four notebooks:

• process jet images: Contains the pre-processing of the images. The .hdf5-file

is unpacked into a pandas dataframe. This dataframe is then packed into different

.pkl files. Among the .pkl-files there are e.g the validation and training set. The

notebook also contains visualization of the jet images and distributions, and an

optional truncation step.

• train jet images: Contains the code for training of networks and the definitions

of all network models and hyperparameters. The predictions from the model and the

model itself is saved to .pkl-files and a .pth-file respectively. The option of loading

a previously trained network model exists. All trained models in this thesis can be

found on GitHub page for the package. The notebook ends with calculations of

the MSE losses.

• anomaly jet images: Contains the anomaly detection related code. The predic-

tions from the training notebook are loaded and the optimal threshold is found.

Then the confusion matrix is calculated.

• analysis jet images: Includes the code for all plots in this thesis, e.g calculations

of m and pT from the jet images and plots of their distributions.

These notebooks will also be published on Zenodo.
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Chapter 4

Method

In this chapter the methodology of testing the autoencoder network with jet images will be

described. The first section describes the data set used. The networks are constructed with

similar hyperparameters but with different architectures. The common hyperparameters

will be described in the second section and the different architectures in the third section.

The third section also includes the general procedure for each network setup.

4.1 The Data

The data set used in this thesis is an artificially generated set of jet images. They were

generated using a Location Aware Generative Adversarial Network (LAGAN) that learnt

to mimic patterns from simulated high energy collisions and generate new similar data

[29]. An extensive description of the generation can be found in Learning Particle Physics

by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis by

de Oliveira, et al [29].

The data set contains 872 666 jet images of size 25×25 pixels (a pixel grid with ∆η×∆φ =

0.1 × 0.1 where η × φ ∈ [−1.25, 1.25] × [−1.25, 1.25]). Half of the images are jets from

high energy W-bosons (signal) and half are from quark- and gluon-initiated (QCD) jets

(background). In Figure 4.1 the average signal and background image is shown. Each

jet image also has a corresponding array of ten variables, calculated from the original jet.

Here, mainly the first four will be considered: coordinates η and φ, mass m and transverse

momentum pT (see Figure 4.2). The other variables are related to jet substructure. These

four variables will hereafter be referred to as the original variables. The distributions

of these variables for all jet images will be referred to as the original distributions.
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(a) Average signal jet image (b) Average background jet image

Figure 4.1: The average signal (a) and background (b) jet images in the data set.
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(a) Signal distributions (b) Background distributions

Figure 4.2: Signal and background distributions for mass m, transverse momentum pT ,
azimuthal angle φ and pseudorapidity η. These distributions are original distributions,
meaning that they are calculated from the original jet.

The images are already pre-processed according to the procedure described in Section

2.3.1. The pixel intensity is thereby given by the transverse momentum pT of the cell.

The mass and transverse momentum for each jet is in the range 60 GeV < mjet < 100 GeV

and 250 GeV < pT,jet < 300 GeV, respectively. Jet clustering was done with the anti-kt

algorithm with a radius of R = 1 and then re-clustered with R = 0.3 kt into subjets. The

images are sparse with about 10 % non-zero elements.
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Table 4.1: Summary of the jet image data set.

Number of images 872 666

Signal/background ratio 50/50

Image size 25× 25 pixels

Jet variables η, φ, m, pT

Pre-processed Yes

The data set is divided into two subsets: training data (80%) and validation data (20 %).

Note that for each network, only the jet images are used as input. The corresponding

jet variables are used for comparison purposes only. Using both the images and variables

on the same footing was tested but (as expected, due to the difference in pixels and jet

variables) it gave poor results. Since the network is only able to take a vector as input,

the images are reshaped from a 25× 25 matrix into 625× 1 vector.

4.2 Network Construction

The networks are constructed with a common set of hyperparameters but with different

architectures (number of layers and number of nodes per layer). The hyperparameters

are selected from Ref. [4].

Even though the architectures are different, all setups have the butterfly design. Due

to complex correlations in the data, the activation function used is Leaky ReLU (see

Figure 2.11) and the loss function used is the MSE loss function (see Equation 2.8). The

training is done by employing the optimization algorithm Adam where the learning rate

is set according to the 1cycle policy (see Section 2.4.1). In the implementation of the

1cycle policy in fast.ai, the maximum learning rate αmax is a user-set parameter. Here,

the maximum learning rate is set to the default value used in fast.ai, i.e 10−3. The

minimum and final learning rate are set to 1/25 and 1/105 of αmax. Both training and

validation data are divided into batches of 256 jet images. The training is done for 30

epochs. Empirically it was shown that this was sufficient to achieve convergence for each

network setup. A summary of the static network hyperparameters can be seen in Table

4.2.
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Table 4.2: Summary of the static network hyperparameters.

Activation function Leaky ReLu

Loss function MSE

Training algorithm Adam

Learning rate 1cycle policy

Weight decay 1e-6

Batch size 256

Number of epochs 30

Training/Validation ratio 80/20

The training was done on a MacBook Pro (2016) with a 2.9 GHz Dual-Core Intel Core pro-

cessor, 8 GB 2133 MHz LPDDR3 memory and Intel Iris Graphics 550 1536 MB integrated

graphics unit. No GPUs were utilized for training.

4.3 Approach

The main idea of this work is to feed jet images from the data set to networks with dif-

ferent architectures. We will start with the simplest setup and then increase the network

complexity step by step. An overview of the different setups used can be seen in Table 4.3.

The first setup is a trivial network. Since there is no bottleneck, no compression or

decompression will be done. This network should output a copy of the input. Then, we

move on to networks with bottlenecks. The second setup will use a network with a large

bottleneck and the third and last with a smaller bottle neck. The actual bottleneck sizes

are chosen arbitrarily, leaving a more systematic study for future work.

Table 4.3: Summary of setups. The numbers indicate how many nodes are in each layer.
The bottleneck size is given by the middle layer.

Type Network architecture

Setup 1 No bottleneck 625-625-625-625-625

Setup 2 Large bottleneck 625-300-200-300-625

Setup 3 Smaller bottleneck 625-300-100-300-625

The analysis starts with testing the pre-processing degradation of the original jet variable

distributions. This is done by calculating the corresponding distributions from the jet

images with Equations 2.5 and 2.6, and comparing them to the original distributions.
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Then, for each setup, the ability of the network to compress jet images is evaluated.

This is done by calculating the validation loss. In addition, the distributions of mass

and transverse momentum from inputted images versus outputted images are compared.

These distributions are also calculated with Equations 2.5 and 2.6.

For the non-trivial setups, the network will be fed background data during training and

then fed with a mix of background and signal to perform anomaly detection. The anomaly

detection will be done by thresholding the reconstruction loss. If the network is able to

distinguish the signal (anomaly) from the background (normal) then the next step is to

fine tune the thresholding to obtain the optimal discrimination by comparing confusion

matrices.
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Chapter 5

Results & Discussion

The first part of this chapter shows the results of the pre-processing degradation of the

original jet variable distributions, as it is a prerequisite to understand some of the fea-

tures in the following distributions. Thereafter, a section about compression results for

each setup follows. Lastly, the results from the anomaly detection are discussed. In the

following, the QCD-jet images will be referred to as background, and the W-boson jet

images as signal.

5.1 Pre-processing Degradation

Figure 5.1 shows the mass m and transverse momentum pT distributions from the jet im-

ages (calculated with Equations 2.5 and 2.6) and from the original jet variables, for signal

and background respectively. Note that these distributions have not been processed by a

network yet.

The distributions have approximately the same shape. Most importantly, the calcu-

lated signal mass distribution follows the original normal distribution with a peak around

80 GeV, which corresponds to the W-boson mass (mW = 80.379± 0.012 GeV [27]). This

is expected as all signal jets are coming from W-boson decays, and the invariant mass

of the two subjets (and therefore of the jet that encompasses them) corresponds to the

mass of the W-boson. The most apparent difference in the distributions is the distortion

at the edges. The reason for this can be traced back to the pre-processing. As mentioned

in Section 2.3.1, the pixelation has the largest effect on the distributions (see Figure 5.2).

The pixelation reduces the resolution of the image, which is correlated to the resolution of

the quantities in the distribution. This explains the blurring of the sharp edges in the dis-

tribution tails, as well as the blurring of the signal peak. The resolution effect is visually

smaller for the signal mass distribution compared to the other distributions. However,

37



this is simply a consequence of the cropping of the original distributions to a certain m,

pT range. Three of the original distributions are skewed distributions and cropping them

results in large, sharp edges. Cropping the tails of a unimodal normal distribution gives

small edges.

Because the calculated distributions and original distributions differ even without being

affected by a network, the network cannot be expected to give a reconstruction that repro-

duces the original distributions. However, the network setups should be able to reproduce

the calculated distributions.

(a) Mass distribution for signal (b) Mass distribution for background

(c) Transverse momentum distribution for
signal

(d) Transverse momentum distribution for
background

Figure 5.1: Comparison of mass m and transverse momentum pT distributions calculated
from the jet images and the original distribution, for both signal and background.
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Figure 5.2: Degradation of the signal mass distribution with respect to each pre-processing
step. The initial pixelation (Only pixelation, red dotted) highly impacts the original data
(No pixelation, black). Translation and reflection (Pix+Translate+Flip, green dotted)
does not affect the distribution but rotation has a slight impact (Pix+Translate+π/2
Rotation, red). The image is from Ref. [8]. Used with permission.

5.2 Compression

5.2.1 Setup 1: Network Without Bottleneck

The first setup, called Setup 1, has a network architecture without a bottleneck. For

this reason, the reconstruction loss is expected to be negligible. The network should be

able to learn to copy the data forward since it is faced to solve a trivial problem. This

setup sets a baseline for the best possible outcome of the bottlenecked networks. Figure

5.3 shows the distributions for mass and transverse momentum for both signal and back-

ground after passing it through the background-trained network, and Figure 5.4 shows

the corresponding residuals.

The residual is given by the difference between input and output, and then divided by

input. A perfect reconstruction would have the shape of a Dirac delta function. From

the standard deviation of the residual, the reconstruction error1 can be obtained. Two

1Not to be confused with reconstruction loss. The reconstruction loss is a metric used for the autoen-
coder training and reconstruction error is related to the width of the residuals.
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standard deviations represent the reconstruction error for over 95 % of the data, and this

metric is used to compare each setup.

The MSE validation loss is 6.6 × 10−4. This resulted in over 95 % of the signal images

having a reconstruction error within 0.84 % for both mass and transverse momentum, and

within 1.7 % respectively for background. Transverse momentum is reconstructed better

than mass. The residuals for transverse momentum are within 0.3 % for both signal and

background. Each residual peak is narrow has an expectation value with a negligible

distance from µ = 0, as expected. The reason for the error not being even smaller is

because the hyperparameters are not optimized.

(a) Mass for signal (b) Transverse momentum for signal

(c) Mass for background (d) Transverse momentum for background

Figure 5.3: Mass m and transverse momentum pT distribution overlay comparison of
input and output of the autoencoder for both signal and background for setup 1.
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(a) Mass residual for signal (b) Transverse momentum residual for signal

(c) Mass residual for background (d) Transverse momentum residual for
background

Figure 5.4: Mass m and transverse momentum pT residuals of input and output of the
autoencoder for both signal and background for setup 1.

5.2.2 Setup 2: Network With Large Bottleneck

This setup does not solve a trivial problem. Instead, it is faced with the task of com-

pressing the 625 input variables to 200 variables, i.e a compression to about a third of

the original size. Figure 5.5 shows the distributions for mass and transverse momentum

for both signal and background after passing it through the background-trained network,

and Figure 5.6 shows the corresponding residuals.

The MSE validation loss is 7.6 × 10−3. This resulted in over 95 % of the signal images

to having a reconstruction error within 3 % for both mass and transverse momentum,

and within 5 % respectively for background. Each residual peak has an expectation value

with a negligible distance from µ = 0. This network gives a reconstruction loss that is a

about one magnitude larger compared to the trivial network in setup 1.
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(a) Mass for signal (b) Transverse momentum for signal

(c) Mass for background (d) Transverse momentum for background

Figure 5.5: Mass m and transverse momentum pT distribution overlay comparison of
input and output of the autoencoder for both signal and background for setup 2.
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(a) Mass residual for signal (b) Transverse momentum residual for signal

(c) Mass residual for background (d) Transverse momentum residual for
background

Figure 5.6: Mass m and transverse momentum pT residuals of input and output of the
autoencoder for both signal and background for setup 2.

5.2.3 Setup 3: Network With Smaller Bottleneck

Given that it has a bottleneck of 100 nodes (starting with 625 nodes in the input layer),

this setup forces the network to compress the input variables to an even lower dimension.

This would correspond to a compression to about a sixth of the original size. Figure

5.7 shows the distributions for mass and transverse momentum for both signal and back-

ground after passing it through the background-trained network, and Figure 5.8 shows

the corresponding residuals.

The MSE validation loss is 2.6 × 10−2. This resulted in over 95 % of the signal images

to have a reconstruction error within 8 % for both mass and transverse momentum, and

within 15 % respectively for background. This network gives a reconstruction loss that

is about two orders of magnitude larger compared to the trivial network in setup 1, and

about one order of magnitude compared to setup 2.
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(a) Mass for signal (b) Transverse momentum for signal

(c) Mass for background (d) Transverse momentum for background

Figure 5.7: Mass m and transverse momentum pT distribution overlay comparison of
input and output of the autoencoder for both signal and background for setup 3.
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(a) Mass residual for signal (b) Transverse momentum residual for signal

(c) Mass residual for background (d) Transverse momentum residual for
background

Figure 5.8: Mass m and transverse momentum pT residuals of input and output of the
autoencoder for both signal and background for setup 3.

5.2.4 Summary of Reconstruction Errors

Table 5.1 contains a summary of the reconstruction errors for each distribution and setup.

For each setup, the reconstruction error is about two times larger for background compared

to signal. The networks are generally better at reconstructing transverse momentum than

mass. The ratio of reconstruction errors is approximately the same for each setup, i.e 6-1-

12-2. The largest contribution to the error is from the background mass distribution. The

smallest contribution to the error is from the signal transverse momentum distribution.
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Table 5.1: Summary of reconstruction errors (for over 95 % of the data, i.e within 2σ)
in percentages for mass m and transverse momentum pT , for both signal and background
respectively, per setup.

Signal Background

Description m pT m pT

Setup 1 No bottleneck 0.84 % 0.14 % 1.8 % 0.28 %

Setup 2 Large bottleneck 2.7 % 0.45 % 5.1 % 0.79 %

Setup 3 Small bottleneck 7.9% 1.5 % 15 % 2.8 %

5.2.5 Anomaly Detection

Anomaly detection with an autoencoder relies on the fact that anomalous data gives a

larger reconstruction loss than for normal data. However, our results show the opposite

for each setup (see Table 5.2), when testing a network trained on background with a signal

sample. The reconstruction loss ratio between background and signal is larger than two

for each setup, while it was expected to be much smaller than one. This translates to

the network being better at reconstructing the boosted W-boson jet signatures than the

QCD-jet signatures, even though it was trained to recognize the inherent structures of

QCD-jets.

Table 5.2: Reconstruction loss for background (normal) and signal (anomalous) for each
setup.

Loss for background Loss for signal Ratio

Setup 1 0.00066 0.00012 5.7

Setup 2 0.0076 0.0019 4.0

Setup 3 0.026 0.0092 2.8

While intuitively unexpected, this may be caused by the simple architecture of the net-

work being poorly suited for this task. Additionally, if the signal and background images

are too similar (see Figure 4.1 for average signal and background image), the autoencoder

will interpret them coming from the same underlying distribution of images. The back-

ground images could be a sample from this distribution with larger variance than for the

signal sample considered. As a consequence, the MSE loss would be larger for the sample

with the larger variance.

The images, for signal and background respectively, that give the largest contribution to

the MSE loss have high-pT subleading jets (see Figure B.2). The images that give the
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smallest contribution have conversely subleading jets with lower pT (see Figure B.3). The

network seems to have learned to recognize the one-prong substructure and diffuseness

of QCD-jets. When shown images with two hard cores, i.e the signature for boosted

W-boson jets, the reconstruction error is larger. However, splitting the sample into two

sub-samples with different N-subjettiness (τ21) [25] did not yield any additional explana-

tion for the phenomenon.

In any case, this thesis is the first step towards the use of this particular network structure

on jet images. The developed code, documented and released, will be useful for further

studies in this direction.
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Chapter 6

Conclusions

6.1 Conclusions

The autoencoder network was able to compress and decompress jet images successfully,

both in the case of QCD jets and in the case of hadronically decaying W-boson jets. The

best compression performance was seen with the network in setup 2 (bottleneck of size

200) where the data was compressed to a third of the original size. The reconstruction

error was within 5 % for over 95 % of the data. This corresponds to a significant reduc-

tion in data size with just a simple autoencoder, and as a consequence 3 times more data

could be stored. Increasing the compression by a factor of two – which corresponds to be-

ing able to store 6 times more data – resulted in a significantly larger error, i.e within 15 %.

The autoencoder networks, however, were not able to distinguish background (that they

were trained on) from signal. Therefore with the current configuration it is not possible

to perform anomaly detection on the jet images provided. Anomaly detection relies on

the fact that reconstruction error for anomalous should be larger than for normal data,

while the opposite was seen in with our data set. The signal (anomalous) data gave

an order of magnitude smaller reconstruction error than for background (normal). The

reason behind this is that jet images of signal and background could be too similar for a

simple autoencoder to distinguish.

6.2 Future Outlook

This thesis provides a base for further explorations of anomaly detection in jet images

with autoencoders. A natural next step is to split the signal and background sample

into sub-samples with similar characteristics, and identify what causes the signal to have
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such a small reconstruction error with a background-trained network. Furthermore, one

could perform a hyperparameter scan, i.e finding the optimal set of hyperparameters by

systematically testing different combinations. This will most probably improve the over-

all performance of the network. Exploiting the sparsenesss of the jet images could also

improve the performance.

Since the standard autoencoders were not able to differentiate features successfully in

the anomaly detection, one could add complexity. One example of adding complexity

is through switching the fully connected layers to convolutional layers. A convolutional

neural network (CNN) is a type of artificial neural network that is especially well suited

for image inputs. They learn local spatial relationships between input nodes (nearby

pixels) in order to perform feature detection. A mix of a CNN and an autoencoder is

called a convolutional autoencoder (CAE) [33]. Using a convolutional autoencoder could

potentially make anomaly detection possible.

If these changes would prove to be successful and anomaly detection is made possible,

then the next step would be to test new data, e.g a data set with QCD-jets and simulated

dark jets. The network would train on background QCD jets and then try to distinguish

the presence of dark jets via testing in a similar fashion as what was done for boosted

W-boson jets in this thesis.

49



References

[1] CERN. Dark matter. URL https://home.cern/science/physics/dark-matter.

(accessed: 2020-11-23).

[2] CERN. Detector & technology. URL https://atlas.cern/discover/detector.

(accessed: 2020-12-08).

[3] CERN. Facts and figures about the LHC. URL https://home.cern/resources/

faqs/facts-and-figures-about-lhc. (accessed: 2020-11-25).

[4] Wulff, E. Deep autoencoders for data compression in high energy physics (2020).

URL https://lup.lub.lu.se/student-papers/search/publication/9004751.

[5] Engström, O. Deep learning for anomaly detection in microwave links: Challenges

and impact on weather classification (2020).

[6] Wallin, E. Tests of autoencoder compression of trigger jets in the atlas experiment

(2020). URL https://lup.lub.lu.se/student-papers/search/publication/

9012882.

[7] Gupta, H. Deep-compression for high energy physics data (2020). URL https:

//zenodo.org/record/4012511.

[8] de Oliveira, L., Kagan, M., Mackey, L., Nachman, B. & Schwartzman, A. Jet-

images — deep learning edition. Journal of High Energy Physics 2016 (2016). URL

http://dx.doi.org/10.1007/JHEP07(2016)069.

[9] Cogan, J., Kagan, M., Strauss, E. & Schwarztman, A. Jet-images: Computer vision

inspired techniques for jet tagging. Journal of High Energy Physics 2015 (2015).

URL http://dx.doi.org/10.1007/JHEP02(2015)118.

[10] Martin, B. & Shaw, G. Particle Physics. Manchester Physics Series (Wiley, 2017), 4

edn.

50

https://home.cern/science/physics/dark-matter
https://atlas.cern/discover/detector
https://home.cern/resources/faqs/facts-and-figures-about-lhc
https://home.cern/resources/faqs/facts-and-figures-about-lhc
https://lup.lub.lu.se/student-papers/search/publication/9004751
https://lup.lub.lu.se/student-papers/search/publication/9012882
https://lup.lub.lu.se/student-papers/search/publication/9012882
https://zenodo.org/record/4012511
https://zenodo.org/record/4012511
http://dx.doi.org/10.1007/JHEP07(2016)069
http://dx.doi.org/10.1007/JHEP02(2015)118


[11] De Angelis, A. & Pimenta, M. Introduction to Particle and Astroparticle Physics:

Multimessenger Astronomy and Its Particle Physics Foundations (Springer Interna-

tional Publishing AG, Cham, 2018).

[12] Roos, M. Dark matter: The evidence from astronomy, astrophysics and cosmology

(2010). 1001.0316.

[13] Bertone, G. & Hooper, D. History of dark matter. Reviews of Modern Physics 90

(2018). URL http://dx.doi.org/10.1103/RevModPhys.90.045002.

[14] Kahlhoefer, F. Strongly interacting dark sectors at the LHC. URL https:

//indico.cern.ch/event/922632/contributions/4098266/attachments/

2143260/3612622/LLP8.pdf. (accessed: 2020-11-24).

[15] Doglioni, C., Helen-Genst, M. & Kulkarni, S. Snowmass 2020 - letter of interest. stud-

ies of dark shower benchmarks. URL https://www.snowmass21.org/docs/files/

summaries/EF/SNOWMASS21-EF10_EF9_Kulkarni_Suchita-149.pdf.

[16] Hansen, E. B. Searches for new physics phenomena with jet final states in the ATLAS

detector (2020). URL https://cds.cern.ch/record/2748331.

[17] Evans, L. & Bryant, P. LHC machine. Journal of Instrumentation 3, S08001–S08001

(2008). URL https://doi.org/10.1088/1748-0221/3/08/s08001.

[18] Aad, G. et al. The ATLAS experiment at the CERN large hadron collider. JINST 3,

S08003. 437 p (2008). URL https://cds.cern.ch/record/1129811. Also published

by CERN Geneva in 2010.

[19] CERN. About the ATLAS experiment. URL https://atlas.cern/discover/.

(accessed: 2020-11-23).

[20] Aad, G. et al. Topological cell clustering in the ATLAS calorimeters and its per-

formance in LHC run 1. The European Physical Journal C 77 (2017). URL

http://dx.doi.org/10.1140/epjc/s10052-017-5004-5.

[21] CERN. Trigger and data acquisition. URL https://atlas.cern/discover/

detector/trigger-daq. (accessed: 2021-01-29).

[22] Cacciari, M., Salam, G. P. & Soyez, G. The anti-kt jet clustering algorithm. Journal

of High Energy Physics 2008, 063–063 (2008). URL https://doi.org/10.1088/

1126-6708/2008/04/063.

51

1001.0316
http://dx.doi.org/10.1103/RevModPhys.90.045002
https://indico.cern.ch/event/922632/contributions/4098266/attachments/2143260/3612622/LLP8.pdf
https://indico.cern.ch/event/922632/contributions/4098266/attachments/2143260/3612622/LLP8.pdf
https://indico.cern.ch/event/922632/contributions/4098266/attachments/2143260/3612622/LLP8.pdf
https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF10_EF9_Kulkarni_Suchita-149.pdf
https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF10_EF9_Kulkarni_Suchita-149.pdf
https://cds.cern.ch/record/2748331
https://doi.org/10.1088/1748-0221/3/08/s08001
https://cds.cern.ch/record/1129811
https://atlas.cern/discover/
http://dx.doi.org/10.1140/epjc/s10052-017-5004-5
https://atlas.cern/discover/detector/trigger-daq
https://atlas.cern/discover/detector/trigger-daq
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063


[23] Marzani, S., Soyez, G. & Spannowsky, M. Looking inside jets: an introduction to jet

substructure and boosted-object phenomenology. Lecture Notes in Physics (2019).

URL http://dx.doi.org/10.1007/978-3-030-15709-8.

[24] Kogler, R. et al. Jet substructure at the Large Hadron Collider. Reviews of Modern

Physics 91 (2019). URL http://dx.doi.org/10.1103/RevModPhys.91.045003.

[25] Thaler, J. & Van Tilburg, K. Identifying boosted objects with n-subjettiness.

Journal of High Energy Physics 2011 (2011). URL http://dx.doi.org/10.1007/

JHEP03(2011)015.

[26] Scott, D. J. & Waalewijn, W. J. The leading jet transverse momentum in inclusive jet

production and with a loose jet veto. Journal of High Energy Physics 2020 (2020).

URL http://dx.doi.org/10.1007/JHEP03(2020)159.

[27] Tanabashi, M. et al. Review of Particle Physics. Phys. Rev. D 98, 030001 (2018).

[28] Collaboration, A. ATLAS Event at 13 TeV - Highest Mass Dijets Resonance event

in 2015 data (2015). URL https://cds.cern.ch/record/2113239. General Photo.

[29] de Oliveira, L., Paganini, M. & Nachman, B. Learning Particle Physics by Exam-

ple: Location-Aware Generative Adversarial Networks for Physics Synthesis (2017).

1701.05927.

[30] Sylvester, J. Xix. a demonstration of the theorem that every homogeneous quadratic

polynomial is reducible by real orthogonal substitutions to the form of a sum of

positive and negative squares. The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science 4, 138–142 (1852). URL https://doi.org/10.

1080/14786445208647087.

[31] The MathWorks, I. What is machine learning? URL https://www.mathworks.com/

discovery/machine-learning.html. (accessed: 2020-11-27).

[32] Ohlsson, M. & Edén, P. Lecture Notes on Introduction to Artificial Neural Networks

and Deep Learning (FYTN14/EXTQ40/NTF005F) (2020).

[33] Aggarwal, C. C. Neural Networks and Deep Learning: A Textbook (Springer Pub-

lishing Company, Incorporated, 2018), 1st edn.

[34] Skansi, S. Introduction to Deep Learning - From Logical Calculus to Artificial Intel-

ligence (Springer Publishing Company, Incorporated, 2018), 1st edn.

52

http://dx.doi.org/10.1007/978-3-030-15709-8
http://dx.doi.org/10.1103/RevModPhys.91.045003
http://dx.doi.org/10.1007/JHEP03(2011)015
http://dx.doi.org/10.1007/JHEP03(2011)015
http://dx.doi.org/10.1007/JHEP03(2020)159
https://cds.cern.ch/record/2113239
1701.05927
https://doi.org/10.1080/14786445208647087
https://doi.org/10.1080/14786445208647087
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html


[35] Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are

universal approximators. Neural Networks 2, 359–366 (1989). URL https://www.

sciencedirect.com/science/article/pii/0893608089900208.

[36] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2017). 1412.

6980.

[37] Smith, L. N. A disciplined approach to neural network hyper-parameters: Part 1 –

learning rate, batch size, momentum, and weight decay (2018). 1803.09820.

[38] Smith, L. N. & Topin, N. Super-convergence: Very fast training of neural networks

using large learning rates (2018). 1708.07120.

[39] Smith, L. N. Cyclical learning rates for training neural networks (2017). 1506.01186.

[40] Loshchilov, I. & Hutter, F. Decoupled weight decay regularization (2019). 1711.

05101.

[41] Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with

neural networks. Science 313, 504–507 (2006). URL https://science.sciencemag.

org/content/313/5786/504.

[42] Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). http:

//www.deeplearningbook.org.

[43] Aggarwal, C. C. Outlier Analysis (Springer International Publishing, 2017), 2nd edn.

[44] Howard, J. & Thomas, R. fastai. URL https://docs.fast.ai. (accessed: 2021-02-

23).

[45] Howard, J. & Thomas, R. fastai. URL https://github.com/fastai/fastai/tree/

master/. (accessed: 2021-02-23).

[46] Jupyter, P. About us: Some information about the jupyter project and community.

URL https://jupyter.org/about. (accessed: 2021-02-23).

53

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
1412.6980
1412.6980
1803.09820
1708.07120
1506.01186
1711.05101
1711.05101
https://science.sciencemag.org/content/313/5786/504
https://science.sciencemag.org/content/313/5786/504
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://docs.fast.ai
https://github.com/fastai/fastai/tree/master/
https://github.com/fastai/fastai/tree/master/
https://jupyter.org/about


Appendix A

Special Relativity

This appendix gives a brief introduction to special relativity, four vectors and natural

units.

A.1 Lorentz Transformation

The principle of special relativity is that the laws of physics are identical in all inertial

reference frames. An inertial frame of reference is a reference frame with no acceleration

[11].

Consider a person (P1) standing still on a train station. P1:s frame of reference is denoted

S. Consider another person (P2) sitting on a train passing by the station on a train

traveling at a constant speed v1. This person’s reference frame is denoted S ′. Since P1

is standing still and P2 is traveling at a constant speed, S and S ′ are inertial reference

frames.

Figure A.1: In relation to S, S ′ travels at a speed v along the x-axis.

1Consider the axes of the the coordinate systems to be shared and the x-axis is along the train tracks.
According to that definition, the train is traveling at a constant speed in the x-direction.
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If you want to describe an event that occurs at a certain position and time on the train

(in reference frame S ′) from the perspective of P1 (in reference frame S) you have to

transform the coordinates. In special relativity, this transform is called the Lorentz

transformation. For the two inertial reference frames S and S ′ as in the example, the

Lorentz transform would be: 

x = γ(x′ + βct′)

y = y′

z = z′

ct = γ(ct′ + βx′)

(A.1)

where x, y, z are the spatial coordinates, t is time, c is the speed of light, β = v/c and

γ = 1/
√

(1− β2). [11]. Note that the components orthogonal to the direction of motion

are not affected by the transformation. The reference frame S ′ is said to be Lorentz

boosted in relation to S in the x-direction. If a quantity is invariant under the Lorentz

transformation, it is Lorentz invariant, i.e it is the same in all inertial reference frames.

A.2 Four-vectors

An event is characterized by the four variables t, x, y, z that together describe both when

and where it occurs. This can be viewed as a vector in a four-dimensional space. A four-

dimensional space mathematically formulated for special relativity is called Minkowski

space. The four-dimensional vectors in Minkowski space are called four-vectors.

In normal three dimensional space, distances are invariant. The distance between two

arbitrary objects is the same no matter the perspective. The mathematical formulation

of spacetime is done for this is to also be the case. But, since the speed of light has to

be a constant (postulate), the algebra with four-vectors is different. In the mathematical

formulation of spacetime the coordinates of a four-vector Aµ = (A1, A2, A3, A4) are

A1 = x, A2 = y, A3 = z, A4 = iA0 = ict (A.2)

where i2 = −1 is the imaginary unit. This way distances ∆s are invariant but not the

coordinates ∆x1, ∆x2, ∆x3 and ∆x4 themselves. A distance in space time ∆s is:

(∆s)2 = (∆A1)
2 + (∆A2)

2 + (∆A3)
2 + (i∆A0)

2 = ∆x2 + ∆y2 + ∆z2 − c2∆t2 (A.3)
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Compare this to r2 = x2 + y2 + z2, i.e the distance from a point (x,y,z) to the origin in

3D space.

For now we have just considered one type of four-vector, i.e (x, y, z, ict). We can apply

the Lorentz transformation to any four-vector. Another common four-vector is four-

momentum pµ = (px, py, pz, E/c) = (p, E/c) which relates energy and momentum in

spacetime. [11]

A.2.1 Natural Units

In particle physics, natural units are used instead of the standard international sys-

tem of units (SI). In natural units, the scales are adjusted to be more suitable for

the scales in particle physics and the commonly used constants h̄ = c = 1. This is

convenient because then energy, momenta and mass are all expressed in electron volts

(eV) and, lengths and time are expressed in eV−1 [11]. Throughout this report, all

units are natural units. Using natural units simplifies the expression of four-vectors, e.g.

pµ = (px, py, pz, E/c) −→ pµ = (px, py, pz, E).

56



Appendix B

Additional Plots

This appendix includes some additional plots to chapter 5.

B.1 MSE Loss Distribution

Figure B.1 shows the MSE loss distribution per image for signal and background for setup

3 (smaller bottleneck, see 4.3). This is to confirm that background does not have outliers

that increase the average MSE loss. As can be seen, the MSE loss for signal is generally

higher than for background.

(a) Signal (b) Background

Figure B.1: MSE loss distribution for signal and background for Setup 3. The tails beyond
0.025 are negligible.

B.2 Images With Smallest and Largest Loss

Figure B.2 and B.3 shows the images that have the largest (and smallest) contribution to

the MSE loss for setup 3. The target and predicted image is shown. The images with the
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largest MSE loss have two subjets with high pT while the smallest have a subjet with a

lower pT .

(a) Target and prediction comparison for signal.

(b) Target and prediction comparison for background

Figure B.2: Target and prediction comparison for the image that has the largest contri-
bution to the MSE loss, for both signal and background.
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(a) Target and prediction comparison for signal.

(b) Target and prediction comparison for background

Figure B.3: Target and prediction comparison for the image that has the smallest contri-
bution to the MSE loss, for both signal and background.
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