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Abstract 

Clinical models are increasingly employed in medical science as either diagnostic or prognostic aids. 

Machine-learning methods are able to draw links in large data that can be used to predict patient risk 

and allow more informed decisions regarding treatment and medication intervention. An advanced 

clinical predictor, HRDetect, can determine loss of homologous recombination-based repair pathways 

in patients with triple negative breast cancer, other breast cancers, and other cancers with high accuracy 

through the use of mutational signatures determined through whole genome sequencing. These patients 

respond well to treatment with targeted therapies, and the predictor is able to identify a far larger number 

of patients than would be identified using current clinical methods. The aim of this thesis was to predict 

the results of patients previously classified by HRDetect using only more clinically available data alone. 

The predictor was developed in SCAN-B data of triple negative breast cancer patients. The process 

utilised multiple imputation to handle missing values, modelling of continuous variables using restricted 

cubic splines, and sparse principal component analysis for dimensionality reduction. The model was 

internally validated using bootstrapping, adjusted to improve calibration and applied to an external 

breast cancer dataset for external validation.  Interpretation of results was made difficult by large 

differences between the development and validation datasets, and the final model showed seemingly 

good discrimination but poor calibration. Further investigation of clinical relevance may be required.  

 

Introduction 

Advancements in sequencing technology have allowed genomes to be analysed with deeper coverage 

in faster times and at lower cost. This has lead to greater understanding of the genetic mechanisms 

beneath the surface in many fields, including cancer biology.  Cancer is a leading cause of death, with 
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up to one sixth of deaths attributed to it (1), with breast cancers alone accounting for up to 10% of 

cancer diagnoses (2). Deeper understanding of the genomic landscape that underpins these 

heterogeneous diseases has resulted in identification of new cancer driver and passenger mutations, and 

consequently, new therapeutic targets (3).  Passenger mutations that have occurred prior to, during, and 

after cancer development can also be used to infer the “history” of cancer cells (4). Mutational 

signatures – specific patterns of mutations, for example, copy number changes and DNA 

rearrangements – can be closely associated with specific cancer types, tumour characteristics and with 

certain mutagenic processes or mutagen exposure (3,4,5). Taken altogether, these genomic patterns and 

relationships, understood from mutagenic signatures and genomic “scarring”, can give vital information 

about a tumour, including prognostic indications, and can also inform what therapies may be beneficial 

to the patient.  

 

One way in which breast cancers can be categorised is the expression patterns of three receptors: 

Estrogen, Progesterone and Human Epidermal growth factor type 2 (HER2) (6,7).  Tumours expressing 

the Estrogen receptor (ER+) are receptive to certain hormonal treatments, while those that have HER2 

amplification (HER2Amp) respond to trastuzumab (3,6,7). Triple-negative breast cancer (TNBC) lacks 

expression of all three receptors and accounts for up to 17% of breast cancers (6). It has a particularly 

poor prognosis but has been treated effectively with poly (ADP-ribose) polymerase (PARP) inhibitors 

(6). However, this treatment is only effective in tumours that have deficiency in homologous 

recombination (HR) -based repair pathways caused by a loss of function of both copies of BRCA1, 

BRCA2 or other related HR genes (8). Identification of this subgroup within TNBC is therefore 

important in informing clinical treatment for these patients. A recently developed predictive model, 

HRDetect, is able to do this; it can accurately identify patients with deficiency in these repair pathways 

using mutational signatures identified from whole genome sequencing (WGS), not only within TNBC 

but also within other breast cancer and other cancer types (9) This could allow identification of more 

patients who would benefit from treatment with PARP inhibitors.  
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Despite the advancements made in WGS, it is not standard practice in the clinic to use these 

technologies when making clinical decisions about patients.  It is therefore interesting to investigate 

how well these groups can be identified from only those variables that are either currently routinely 

measured in the clinic or could become standard clinical practice in the near future. This was done by 

creating a predictive model using clinical and near-clinical data that had previously been assessed by 

HRDetect and determining how well this model could predict those patients identified by HRDetect as 

being deficient in HR-repair (HRD high). 

 

Materials and Methods 

Development Data:  

Sweden Cancerome Analysis Network-Breast (SCAN-B) data (n = 237) was used in model 

construction. The data was collected between 2010 and 2015 from hospitals in Skåne. The data is of 

high quality, with few missing values in the main variables, and forms an incredibly representative 

population sample of TNBC in southern Sweden due to high levels of participation from patients (10). 

Clinical features measured included patient age, tumour size, status of tumour migration to lymph nodes 

(LN binary), cancer molecular subtype as assessed by different subtyping methods (PAM50 AIMS, 

PAM50 SSSP), biopsy cell content (assessed by a pathologist), tumour grade, and level of the cell 

proliferation marker Ki-67 amongst others. “Near-clinical” variables were those such as gene 

expression levels of BRCA1, hypermethylation status of the BRCA1 promoter, and known inactivation 

of BRCA1 and BRCA2.  

 

External Validation Data: 

Collected data from breast cancer tumours of all types across Europe, put together by the Breast Cancer 

Somatic Genetics Study (BASIS), which had also been previously analysed through WGS (4, 11) (n = 

560) was used for assessing model performance in unseen data. While the data concerns WGS, clinical 
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variables were also measured. The data was collected from many different institutions across Europe 

(including Iceland) and pooled. As a result, the external data is not necessarily a representative sample 

of the same population as the development data. Furthermore, different centres had different practices 

regarding variable measurement, resulting in some variables being missing from certain study locations. 

The methods used for measuring certain parameters also differed between the development data and 

external data, and there may be some biases introduced as a result of this. All data in both datasets had 

been previously assessed by HRDetect. Mutational data from the WGS for this data was also available.  

 

Model Construction – Constraints and Considerations: 

When determining the course that model building should take, one of the foremost considerations was 

the sample size of the development data. While the data is of excellent quality, the low number of 

datapoints limits the complexity of the model that can be created – if too many variables are included 

the model is likely to wind up overfit to the development data, leading to poor performance when 

exposed to new data (12). The model building method chosen was logistic regression, which is a 

standard modelling technique (14) and a suitable choice for modelling a binary outcome (HRDetect 

high / low) and one that supports a mix of categorical and continuous variables. Beyond this, studies 

have shown that it is an effective modelling solution for small datasets, in contrast to other model types 

and deep learning methods (15). The choice to use the BASIS data as an external validation set allowed 

the SCAN-B data to be fully used in model development, thereby avoiding inefficient train/test splits 

(12). Consideration was given to pooling the two datasets to allow a more robust model to be developed 

by giving access to a larger development sample size; however, ultimately, this avenue was not pursued 

as this would preclude external validation of the developed model.   

 

Various studies have been carried out to determine the number of observations (“events”) that are 

required per variable included in the model (16, 17), (EPV). A ratio of 10:1 is commonly accepted as 

sufficient to avoid an overfit model (16-17), however other studies have suggested that ratios of 15:1 
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(18) or even 20:1 (15, 19) may lead to more robust and better fit models. This events per variable ratio 

is calculated based on the lowest frequency outcome in the data, in this case this is n = 98 (outcome = 

HRDetect low), suggesting that a model built in this data could support at most 9 variable “slots” using 

the lowest accepted ratio. However, different variables occupy different numbers of slots depending on 

their degrees of freedom. Factors take up n-1 slots, where n is the different factor levels the variable 

can take. Binary variables occupy a single slot (12). The number of slots for continuous variables varies 

depending on how they are modelled. With this limitation, some form of data reduction was necessary 

to maximise inclusion of explanatory parameters without overfitting the final model.  

 

Models can also either be pre-specified (subject knowledge is used to select relevant variables to be 

included in the model) or data-based (variables are selected during the model construction based on 

their relationship with the outcome), and both options have their share of trade-offs that must be taken 

into consideration (20). Some data-based modelling techniques can have poor performance in small 

sample sizes (17), leading to inaccurate models. It is possible this may be mitigated through a 

sophisticated penalization approach such as lasso or the elastic net. Model pre-specification was 

ultimately chosen for this project, both to avoid potential pitfalls with data-based methods, and because 

predictors with association to the outcome are already known – i.e. there was subject knowledge to 

facilitate modelling decisions. When using pre-specification, variables should not be discarded from the 

model due to low significance (12). 

 

Variable choice and handling:  

Variables were chosen through pre-specification, as outlined. This involved selecting those that had 

known associations with HRDetect status and TNBC and treatment, for example age. While HRDetect 

is able to identify patients of all age groups who have the HRD phenotype, an early onset of cancer is 

known to be associated with this phenotype. Variables that had a very high degree of missingness or 

those that were deemed subjective were discarded, for example, cell content from tumour biopsy may 
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be affected by which part of the tumour was captured. Other modelling studies have discarded variables 

with over 20% missing values (21). The final variables considered for model building were age, tumour 

size, tumour grade, LN binary, Ki-67, PAM50AIMS, BRCA1 gene expression, BRCA1 biallelic loss, 

BRCA2 biallelic loss and BRCA1 promoter hypermethylation. BRCA1 gene expression and tumour 

size both had skewed distributions and were log transformed before multiple imputation was carried 

out to normalise the distributions. 

These chosen variables were then reduced to conserve “model slots”: 

- PAM50AIMS classification was converted to a binary “basal / non-basal” variable. Basal 

morphology is associated with TNBC (6) and (loosely) with HRD phenotype. Other factor 

levels were much less common in the data, so this pooling of rare category levels seemed 

sensible. 

- BRCA1/BRCA2 loss and BRCA1 promoter hypermethylation were converted into a single 

binary variable. A loss of function of any major gene in the HR-repair pathway should result in 

the same phenotype in terms of HR-repair, so all inactivation mechanisms can be considered as 

a single “suspected loss of pathway” variable.  

- Continuous variables (age, tumour size, Ki-67 and BRCA1 gene expression) were modelled 

using restricted cubic splines with 3 knots. Ideally those variables thought to be most important 

would be given more knots, but due to the sample limitation all were given the minimum 

number of knots. 

The use of restricted cubic splines avoids loss of information from categorising continuous variables 

(13) and can serve to relax the linearity assumptions required for variables (12). They also solve the 

problem of edge values in continuous data (12, 14). The number of model slots used by continuous 

variables is equal to the number of knots they are modelled with.  

With this treatment, the variables in the model occupied a total of 16 slots (4 binary variables, and 4 

continuous variables with 3 knots each), so further data reduction was still required to avoid overfitting. 

The restrictions also meant that interaction terms could not be included without the risk of creating a 
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heavily overfit model. This was not thought to be a significant issue as there is evidence that inclusion 

of these terms often does not significantly improve a model (22).  

 

Handling Missing Data:  

Missing data distribution in both datasets was examined. There was little missing data in the 

development set within the variables chosen for inclusion into the model. Despite the low missingness, 

it was decided that missing values should be imputed, rather than discarding data with missing values. 

Use of complete cases (discarding of any data that contains missingness) is generally discouraged unless 

data is missing completely at random (MCAR) as it can result in a biased model in cases where 

missingness is not random but correlated with other significant values (26-29). The method chosen was 

multiple imputation, which was selected due to its high performance in simulation studies regarding the 

best handling of missing data (23). Multiple imputation was carried out using fully conditional 

specification using the MICE algorithm with predictive mean matching. This method is applicable to 

mixed categorical and continuous data types (26). Furthermore, it has been shown to be a forgiving 

method, particularly with respect to avoiding problems with misspecification of the imputation model, 

produces good results (24), and handles non-normal variable distributions well (30). The method 

involves creating a pool of donor values for the missing value based on other, similar data from the set, 

this results in only “real” values being chosen for replacement. Multiple imputation then generates 

separate datasets that use different replacement values drawn from the pool (24). Ten imputations were 

used for multiple imputation.  

 

Data Reduction 

Despite the variable handling steps undertaken, further data reduction was still required to adhere to the 

ratio rules for EPV. This was achieved through sparse principal component analysis (sPCA). This 

method resembles a combination of variable clustering and principal component analysis (PCA). Both 

these techniques can reduce high dimensional data (31); however unlike PCA, sPCA attempts to reduce 
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component loadings to zero. This can make it an attractive alternative as it achieves data reduction while 

leaving the generated components more interpretable than those produced in PCA (32).  

 

Like transformation, component calculation was blinded to the outcome, so components are based on 

the variance in the data they explain, and not on the variance in the outcome. The first six components 

explained a high proportion of variance in the data and were used as the final variables in the model. 

As the significance to the outcome was not measured, this was not thought to stray into data-based 

methods. By using sPCA, it was possible to reduce the dimensionality to six parameters, satisfying the 

EPV ratio rules outlined previously. This method should also solve collinearity in the variables 

(satisfying the assumption of variable additivity for logistic regression) as the method resembles a 

clustering step which is followed by a principal component analysis applied to the clusters (12). The 

drawback of this method is that, while the components are more interpretable than those of standard 

PCA (32), the overall interpretability of the model is reduced by the abstraction of the original variables.  

 

Internal Validation and the naïve model:  

It is important to validate a created model both internally and externally (17, 33-34). Internal validation 

can be thought of as validating the model building process itself. A created model will often be at least 

partially overfitted to its development data (34) and consequently perform less well in new data. Internal 

validation can correct the performance metrics of a model for development bias (35). In cases where 

external validation data is not available, internal validation methods are particularly important to 

provide an estimate of model performance without the need for creating unseen test data through data 

splitting (33). The bootstrap was chosen for internal validation, as it is a standard method that has shown 

good performance (36). The bootstrap repeats the model creation process in resampled datasets 

generated from the development data. It can also be used to calculate the “optimism” of model 

validation metrics and adjust them to reflect more accurate values (37-38). 
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It was also decided to use the bootstrap to calculate a global shrinkage factor that could be used to adjust 

the model coefficients to correct for/penalize overfitting to the development data (22). This method has 

been undertaken in other clinical models (21, 39). This is achieved by creating a first model, described 

here as the “naïve model”. This naïve model followed the previously outlined steps using the full 

development data (n = 237):  

1. Multiple imputation of missing values in the development data  

2. Transformation of continuous variables using restricted cubic splines  

3. Sparse principal component analysis  

4. Logistic model created from the first six components  

 

The naïve model was fitted from the mids object (generated using mice), so was generated from a 

pooling of all the imputed datasets.The process was then repeated within 10,000 bootstrap resamples (n 

= 237) that repeated all model building steps, culminating in the creation of a “boot model” for each 

resample. There was one introduced difference in the method: instead of fitting the boot models to all 

imputed datasets, they were fit individually in each imputation.  

 

Studies that have combined multiple imputation with internal validation have generally shown that the 

preferable order of these operations is bootstrap  imputation (25, 40-41), so this step was carried out 

within the bootstrap resamples. By applying these boot models to the unseen “out-of-bag” data – the 

data that was not selected within each resample - the calibration of the model can be determined from 

a calibration curve and averaged over the many replicates. The averaged slope and intercept of these 

curves can then be used to adjust the naïve model’s coefficients and intercepts (21-22, 39), correcting 

for the development process and model overfitting. The boot models were also applied to the original 

development data, to calculate the optimism of the C index in the performance metrics of the naïve 

model. 
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The combination of multiple imputation and the bootstrap presented some problems. Firstly, both the 

bootstrap and multiple imputation generate multiple datasets, so combining them multiplies the 

computational processing required. Furthermore, the use of the out-of-bag data required it to be imputed 

separately to the resampled data. Simulation studies that investigated combining imputation and 

bootstrapping with a validation in the out-of-bag suggested that imputation under these circumstances 

should be blinded to the outcome (25). Generally, multiple imputation should consider the outcome 

(27), so this was a pitfall of the method. However, with so little missing data, and many binary variables 

with heavily skewed class distribution this decision was unlikely to have much adverse effect. One 

concern in particular was that the out-of-bag data would be too small a validation set from which to 

draw meaningful conclusions. It was hoped that the many repetitions (10,000 bootstrap replicates x 5 

imputations = 50,000 generated boot models) would balance out skewed results that this could cause.   

 

The naïve model was adjusted based on the metrics obtained within the bootstrap, creating the final 

model. An overview of the full process can be seen in Figure 1. Simple comparative models were also 

briefly investigated in part to compare possible different approaches. All modelling steps were 

conducted with a preset seed.  
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Figure 1: Workflow overview of model development and internal validation 
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External Data & Validation of Final Model:  

As previously mentioned, the external data was a somewhat flawed validation set for the clinical model, 

as measurement of clinical variables varied between institutions. Some variables, such as Ki-67 were 

not measured at all, while others were measured or not measured depending on institution. Tumour size, 

when measured, was categorised as a factor with 4 levels that translated to ranges. For the first two 

ranges (0-20mm & 20-50mm), the middle value of the range was assigned. The last two categories 

(which related to tumours beyond 50mm and those that had breached the basement membrane) were 

pooled due to low prevalence of the latter case. Tumours in these classes were treated as 55mm. While 

age was measured for all patients, discrete age was not given for participants above 80 years old. All 

patients who were over 80 were assigned an age of 85.  

 

Multiple imputation was used to deal with the high degree of missing data in the external data, including 

a full imputation of the unmeasured Ki-67. This decision was to avoid using complete cases, which are 

not recommended if data is not missing complete at random (26-29). Multiple imputation has been 

shown to be effective even when imputing large amounts of data (42). The imputation was carried out 

using the development data as a framework, as this method was used in another study where a validation 

set had missing values (23). Imputation was performed by appending each external patient one by one 

to a previously imputed development set, imputing the new patient, then removing it and appending the 

next. The model and all requisite transformations were applied to the individual rows and a predicted 

probability between 0 and 1 was obtained for each imputed dataset. This corresponded to the predicted 

probability of the patient being HRDetect high. The final probability value taken was the average of 

probabilities from all imputed sets. Tumour size and BRCA1 gene expression were logged for both 

datasets prior to imputation.  

 

The solution chosen had drawbacks. Since the datasets are not equivalent, it is possible that imputing 

in the development data may introduce bias. However, this option was preferable to imputing entirely 
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within the external data, particularly when one variable had no measurements. Imputation becomes 

more difficult and less reliable the more missing values there are in the same set of observations, i.e. 

patients who have many missing variables are likely to have less accurate imputations than those 

missing few variables (29).  

 

A validation using only a single imputation through predictive mean matching was also run alongside 

the multiple imputation, this resembled what one multiply imputed dataset might look like. This single 

imputation was used to examine imputed variable distributions and to compare some parts of analysis.  

 

The external data was stratified by different groups and the model’s predictive ability validated within 

these groups for both multiple and single imputation.  

 

R Packages & Libraries:  

- All analysis steps were performed in R 4.0.0 (43) 

- tidyverse v. 1.3.0 including dplyr and ggplot2 used for tibbles and organization (44) 

- readxl v. 1.3.1 used for importing datasets (45) 

- naniar v. 0.6.0 for missing data plots and visualization (46) 

- rms v. 6.0.1 for model building and validation (47) 

- Hmisc v. 4.4-1 companion package to RMS for modelling (48) 

- mice v. 3.11.0 for multiple imputation (49) 

- boot v. 1.3.25 for creating the bootstrap (50-51) 

- pcaPP v. 1.9-73 for sparse principal component analysis (52) 
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Results 

Naïve Model & Internal Validation: 

The missing data proportions from the development data can be seen in Figure 2A. The figure includes 

all potential clinical and near clinical variables, not just those that were used in the modelling process. 

Those variables with the highest levels of missingness were in most cases subjective variables which 

were not included in the model. The exception to this is heavy missingness in some other examined 

HR-repair genes, however it was decided to consider only the BRCA1 and 2 genes within the model as 

these are responsible for the majority of HRD cases and are more commonly measured.   

 

Figure 2: Missing data distributions – A – the development data, before variable reduction. B – the external 

validation data, showing only those variables that correspond to those used in model development. 

A. 

B. 
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The reported metrics from the naïve model development (Table 1) showed reasonably high scores for 

some discrimination metrics, such as C-index. However, good performance is expected in the 

development data. The metrics from the bootstrap of the model creation process are featured in Table 

2. The optimism in the C statistic when boot models were applied to the full original development data 

was low, indicating the metrics should reflect the performance of the naïve model relatively accurately. 

In terms of the calibration slope (assessed in the out-of-bag data), the intercept is close to the desired 

value of 0, demonstrating good calibration-in-the-large. However, the slope is less than the ideal of 1, 

indicating some level of overfitting (53). Specifically, this indicates that high probabilities are 

overestimated and low probabilities are underestimated (54-55). The slope and intercept together were 

used to shrink the naïve model coefficients and recalculate the intercept to create the final model (21-

22, 39, 56) (available in appendix). An alternative validation was trialled using the rms validate function 

(47), and the slope and intercept values from this matched well to those from the out-of-bag analysis. 

This may indicate that the repeated bootstrapping was able to correct for biases caused by the small 

validation sample on each attempt.  

Table 1: Naïve model metrics from development 

 

Table 2: Metrics of boot models averaged from 10,000 bootstrap resamples with 5 multiple imputation repeats 

 

A scree plot of the naïve model components showed that inclusion of the first six explained a cumulative 

94% of the variance in the data. However, this was done while blinded to the outcome, so this does not 

correspond to an explained variance in the outcome. The components that were discarded were both 

 
Model Likelihood 

Ratio Test 
Discrimination 

Indexes 
Rank Discrim. Indexes 

Obs 237 LR chi2 157.01 R2 0.653 C 0.915 
0 98 d.f. 6 g 3.331 Dxy 0.829 
1 139 Pr (> chi2) <0.0001 gr 27.976 gamma 0.829 

max | deriv | 2e-08   gp 0.402 Tau-a 0.404 
    Brier 0.114   

DEV_R2 DEV_CInd Opt OOB_CInd OOB_Dxy OOB_Brier Cal_Int Cal_Slope 
0.6556 0.9141 -0.0133 0.8859 0.7719 0.1339 -0.0822 0.7845 
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single variable components of binary variables with very heavy class skew in the data, so this may be 

the reason for their low variance.  

 

Comparative Models:  

Two models that avoided sPCA were investigated. One used the same modelling procedure (multiple 

imputation followed by transformation within a bootstrap) but omitted the sPCA step for data reduction. 

The other used a previously imputed (single imputation) dataset using the RMS validate function to 

bootstrap the model for comparison. The degrees of freedom in both these models total 12, so they 

exceed the 10:1 ratio for events to the least frequent outcome. The model performance of both seemed 

broadly on par with the chosen strategy when considering validation metrics. Both did show a lower 

calibration slope, however, indicating greater overfitting. The value was not as different as expected 

(0.72 vs 0.78), where 1 is ideal.  

 

External Validation:  

An overview of the missing data proportions in the external data is available in Figure 2B. This figure 

shows only the equivalent parameters in the external data to those used in model development. 

Imputation of the external data was carried out while unblinded to the outcome, as this is the intended 

way for it to be performed. Brief investigations with a blinded imputation showed a generally worse 

performance. The degree of missingness was far higher than in the development data, and the 

distributions of variables may not be equivalent between the two sets. Imputed data distributions from 

a single imputation using predictive mean matching can be seen in the appendix.  

Model performance was assessed on the external data as a whole and in various stratified subgroups. 

Assessment was made within a single imputed set and in multiply imputed sets. Performance was 

expected to vary substantially due to the considerable differences between the development data and 

the validation data. An overview of metrics in some of the investigated subgroups from multiple 
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imputation is available (Table 3). The model appeared to show high discrimination across many of the 

groups examined in terms of the C-statistics and its related metric, Somers’ Dxy. Despite this, the 

calibration measures show poor fit of the model in most cases. When considering performance in 

imputation groups, it is important to note that there were no “complete cases” in the external data due 

to the requirement to fully impute Ki-67. However, those that lacked only that variable have been 

loosely termed as “complete” for the purposes of comparison with those that required further 

imputation.  

Table 3: Metrics from model performance in external data plus select stratified groups  

  
Validation Metrics  

Dxy C (ROC) R2 Brier Intercept Slope 
Overall 0.91281 0.95640 0.47398 0.09910 -1.28890 2.38416 

Imputation 
level 

complete cases 0.90991 0.95495 0.09215 0.08423 -2.40991 1.32825 
few imputations 0.94657 0.97329 0.61466 0.08154 -1.05197 2.87005 
many imputations 0.87940 0.93970 0.45668 0.11699 -1.02846 3.27739 

Cancer 
subtype 

TNBC all 0.84409 0.92205 0.64411 0.11722 -0.42570 2.27269 
TNBC complete 0.77778 0.88889 0.60279 0.13360 -0.77257 1.92426 
TNBC imputed 0.84818 0.92409 0.64705 0.11591 -0.39023 2.30264 
HER2 cases 0.49275 0.74638 -1.99206 0.14598 -1.60791 3.03651 
ER+ all 0.95462 0.97731 -0.00181 0.07868 -2.82695 1.76576 
ER+ complete 0.87211 0.93605 -0.52000 0.07968 -3.08298 1.30743 
ER+ imputed 0.98534 0.99267 0.16768 0.07813 -2.24831 7.14371 

Age 
<50 years 0.91852 0.95926 0.56436 0.11594 -1.24409 3.75441 
>50 years 0.89732 0.94866 0.30116 0.08720 -1.42271 1.89606 

 

When considering the overall results, performance within data which had a high degree of missingness 

was worse than in those requiring fewer imputations. The more variables missing in a patient the more 

inaccurate the imputation can be (29), so this result seems understandable. The results within cancer 

subgroups seem to indicate a better performance in imputed data. However, within TNBC, the 

“complete” cases numbered only 12 patients, and therefore the effect of any poor results is heavily 

exacerbated by the small sample size. Within this data, there were two HRDetect high patients of more 

advanced age who did not have a known inactivating mechanism within BRCA1/2 despite having full 



18 
 

data available. It is understandable that these outliers would not be assigned high probability by the 

model and affect the discrimination it displayed. 

 

The missingness within different cancer subtypes is also not uniform, which somewhat confounds 

interpretation between the groups. A graphical overview of the model performance in data stratified by 

amount of imputation required overall, along with performance in different cancer subtypes with further 

division based on imputation can be seen in Figure 3. When considering the different breast cancer 

types collected, TNBC cancers make up around 30% of the external data. The bulk of the data 

corresponds to ER+ tumours (57%), with the remainder being HER2 amplified. Within TNBC, which 

would be expected to have the closest resemblance to the development data, there were 151 cases with 

missing data beyond Ki-67. Of these, 60 had at least 5 missing variables.  HER2Amp tumour data had 

no “complete” cases, and of the 73 cases in the data, 62 had an exceedingly high degree of missingness. 

Imputation of the data within a fully TNBC dataset probably contributed to the poor performance in 

this group, and it showed the worst overall model metrics. ER+ tumours had many more complete cases, 

and a much lower proportion of cases that required many imputations within the same patient. This may 

be responsible for ER+ showing an apparently better performance in imputed cases between different 

cancer types – the imputation is made more unreliable in other cancer subtypes which require 

substantially more variables to be added. Further investigation into the ER+ complete cases showed that 

one patient (PD6042) had been classified as HRDetect low despite having a listed biallelic loss of 

BRCA2 in mutational information due to a nonsense mutation and loss of the alternative gene copy. 

The model’s assigning this a high probability of HRDetect high makes sense in this context, and the 

reason for it being low is unknown, but could be due to an error in measuring the second allele loss.  

 

The boxplots in Figure 3 show a general separation between the HRDetect low and HRDetect high 

classes in terms of probability assigned. However, further investigation shows that this effect seems to 

be primarily caused by one of the model’s variables: the suspected loss of the HR repair pathway 
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through inactivation/loss of function of BRCA1/2. The component in the model that comprises this 

variable has the highest coefficient.  

 

When using a multiply imputed external dataset, PD6042 was the only example of an HRDetect low 

patient being assigned a probability score of over 0.7. However, in a singly imputed dataset, there were 

six such cases including PD6042. Missingness in the remaining five cases was very high, with very 

little data available beyond age and mutational status (but not hypermethylation) of BRCA1/2 recorded. 

The ages of the five patients tended to be on the lower side. It is likely that imputation of these cases in 

the development data incorrectly assigned promoter hypermethylation as being present. Younger age is 

associated with the HRD phenotype, so imputation using “similar” donors may have selected for this. 

This was probably further exacerbated by inaccuracy of imputation due to high missingness. By 

multiply imputing this data, the probabilities in which hypermethylation was imputed as present were 

modulated by those sets in which the donor value was an absence, bringing the overall probability down 

to below 0.7. The metrics from a singly imputed dataset are available in the appendix.  

 

Investigation of HRDetect high patients that scored below the arbitrary 0.70 cut-off (32 total in multiply 

imputed external data, 36 in singly imputed external data) showed that these always lacked a known 

inactivation of HR-repair. Some were missing hypermethylation analysis and, while this was sometimes 

imputed as being present, it did not occur with enough frequency to result in a high probability. There 

are several other genes beyond BRCA1/2 involved in HR-repair. It is highly likely these patients are 

deficient in HR-repair, with an unknown mechanism; e.g. through biallelic loss of another HR-repair 

gene. This could be confirmed for one patient. PD4875 in TNBC had biallelic loss of BRIP1, which 

was recorded as another HR-involved gene. While monoallelic loss of other HR genes was noted for 

others, a clear-cut mechanism could not be identified. The probabilities assigned to these patients 

varied, and the level of missingness was, again, high. Those of more advanced age were assigned 

particularly low probabilities.  
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Figure 3: Box plots with scatter points of model performance in selected stratified groups in external data  – A 

– external “complete” cases – only Ki-67 imputed (left), cases with few imputations ( up to 3 including Ki67) 

(middle) and many imputations (>3 imputations) (right). B – stratification by breast cancer subtype overall 

performance (top row) and split based on “complete” cases and imputed cases (bottom row). TNBC (left), 

HER2Amp (centre), ER+ (right). Her2 amp “complete” cases are those with fewest imputations. 

A. 

B. 
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Overall, presence of a suspected inactivation of HR-repair resulted in a very high probability being 

assigned. Age and BRCA1 gene expression seemed to modulate the probability, with younger ages 

having a higher assigned probability and older ages often assigned very low probabilities, as would be 

expected from the known links between age and outcome. However, the major factor affecting 

probability was the inactivation of repair gene pathways.  A waterfall plot (Figure 4) illustrates the 

assigned probabilities of HRDetect high patients in order, with colouration determined by whether an 

inactivation mechanism was known. This illustrates the strong effect of this variable on the model’s 

assessment.  

 

An investigation was made into how well the model could predict if this variable was entirely imputed 

(i.e. all values were removed in the external data and analysis was rerun). This was investigated using 

a single imputation with outcome, multiple imputation with outcome and multiple imputation where 

the external, but not the development, outcome was blinded. The results can be seen in Figure 5. In 

single imputation, loss of this pathway was correctly assigned to many patients, but was also assigned 

incorrectly to many HRDetect low patients, resulting in them receiving disproportionately high 

probabilities. Unblinded multiple imputation modulated this effect and showed much better distribution 

of the values. However, the blinded investigation shows that this is less clear in the absence of the 

outcome. The discrimination measured by the Cindex falls from 0.93 in unblinded multiple imputation 

to 0.77 in blinded imputation. The latter situation more closely represents the situation in the clinic – 

where the HRD phenotype may be unknown, and the outcome would always be unknown. The 

separation of the two groups effectively demonstrates the correlation between the other variables and 

the outcome and HRD phenotype, however. Without these associations multiple imputation would not 

perform in the way demonstrated.  
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Figure 4: Waterfall plot showing model predicted probabilities of HRDetect high patients when status of 

BRCA1/2 are known vs unknown 

Figure 5: Box plot + scatter points of probabilities assigned by model in data with binary HR deficiency 

phenotype fully imputed through either single imputation, unblinded multiple imputation and blinded multiple 

imputation/ (For multiple imputation, model probability was averaged over 10 imputations) 
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Discussion 

Overall, sample size was a major guiding force in modelling decisions. While the development data 

was of excellent quality, its size (n=237) introduced many constraints, resulting in concessions being 

made with the aim being to “spend” variable slots in the model in the most efficient way possible while 

adhering to ratio rules regarding events per variable. The largest impact of sample size was in the 

decision to pursue a component model, as proper modelling of the relevant continuous variables (using 

restricted cubic splines) constituted a large “expense” in terms of model variables. While this achieves 

heavy dimensionality reduction, it complicates usage of the model by requiring new data to undergo 

multiple transformation steps in order for the model to be applied. Furthermore, while sPCA could be 

seen as an improvement over variable clustering followed by regular PCA, interpretability of the model 

is still affected when compared to a model that considers the variables in their original states. There has 

been some debate regarding how suitable sPCA is for non-continuous variables, although regular PCA 

can be used for mixed variable types (31). If this application in non-continuous variables were an issue, 

the model could have selectively used sPCA for the continuous variables and maintained binary factors 

as dummy variables outside of sPCA. However, this would have resulted in eight parameters, thereby 

lowering the EPV ratio, although it would have remained within the confines of the 10:1 rule.  Overall, 

it may have been preferable to find a solution that avoided the need for such extreme data reduction. 

The comparative models that omitted this step appeared to show slightly poorer calibration. A 

sophisticated penalisation method may have allowed inclusion of more variables while correcting for 

overfitting.  

 

The internal validation of the model showed seemingly good discrimination, although there were some 

calibration issues. However, the use of the calibration mismatch as a global shrinkage factor is supposed 

to rectify overfitting. Nevertheless, this method is a somewhat crude measure as it applies evenly to all 

model coefficients. Penalisation of individual coefficients in the model allows for finer adjustment and 

may have been preferrable if different modelling methods were used. Penalisation can be implemented 



24 
 

in some data-based model building methods such as LASSO and elastic net. Which method is best 

depends on the relative effects of the predictors in relation to each other (56). However, the size of the 

dataset in conjunction with these methods is still a concern. The implementation of multiple imputation 

within the bootstrap may not have been as good as it could have been, as it avoided proper pooling of 

the imputed datasets unlike the naïve model’ development, and therefore may not have adhered 

correctly to Rubin’s rules. However, the results were likely not significantly affected by this, as the 

variable included in the model had almost no missing values in the development data. Those that were 

missing were also almost all binary variables with very heavy class skew. The imputations for these 

would be expected to be the same – i.e. it would function no differently to single imputation. It was 

unclear whether the approach to external validation with multiple imputation, i.e. the averaging of 

model probabilities may also conflict with Rubin’s rules regarding pooling from multiply imputed 

datasets. If this did turn out to be a problem, a deeper understanding of the methods used in the paper 

(23) which imputed using the development data may rectify it.  

 

Another approach that could have been taken to mitigate the sample size constraints would have been 

to pool the BASIS and SCAN-B data – either for only the TNBC cases or the full data. However, this 

would have necessitated including cancer subtype as a variable, and the resultant model would then not 

be specific to TNBC. This would have expanded the sample size, possibly allowing for a more robust 

model to be created. Pooling of data in this way, followed by cross-validation that is stratified by the 

data collection institution  has been proposed and used before, and is referred to as “internal-external 

cross-validation” (57-58, 39). This serves as a way to build a model from all available data, avoiding 

holding back data for validation, while still attempting to obtain a good estimation of future model 

performance. However, it is uncertain whether the vast differences in the way data was measured and 

collected between the two datasets may have made this unfeasible overall. It is unclear if the cross-

validation being carried out by centre would rectify this, as validation would still be done partially 

between an all TNBC centre and centres of mixed cancer types. Imputation may also have posed a 

greater problem.  
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The external validation of the model was somewhat confounded by the differences between the 

development and test sets. A higher degree of missingness seemed to be associated with poorer overall 

model performance. This may have mostly been caused by the data in the HER2 subgroup, which was 

nearly entirely missing, and further compounded by the imputation using the development data as a 

basis. Since predictive mean matching selects donor values based on like data, the imputation may have 

been flawed as the two datasets were not equivalent; there were biases in the external data that were not 

present in the development data, and there were also other considerable differences between them 

beyond these. These differences occurred not only in the type of breast cancer assessed, but also in 

which variables were measured and how measurement was performed. The experimental procedures 

used to measure, e.g. hypermethylation in the development data were more sensitive than those used in 

the external data. Tumour size was also more biased in the external data towards larger tumours, where 

the development data was unbiased. These biases may have lead to inappropriate selection of the donor 

pool values in the imputation. Beyond this, predictive mean matching can become flawed when 

missingness exceeds a certain threshold (30). However, a comparison between a single imputation and 

multiple imputation using predictive mean matching seemed to show a modulating effect of multiple 

imputation, leading to better overall results than those obtained from a single imputation. A further 

concern is that missingness of variables may not have been random (MNAR), which has implications 

regarding the use of multiple imputation beyond those specific to predictive mean matching, which is 

designed for data that is missing at random (MAR).  

 

Comparisons between cancer subtypes were made more difficult both by the difference in missingness 

between them and the sizes of the samples. When evaluating model performance within different 

degrees of imputation, many of the more complete cases belonged to ER+; a cancer subtype that the 

model had not seen before. Furthermore, performance in specific subtypes, such as HER2, may be 

affected by many missing cases in those types. Strangely, the model appears to perform better when 

few imputations are required than in complete cases, but this could be due to a small sample of complete 

cases which also contains outliers from the standard variable associations, such as in TNBC that 
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disproportionately distort performance. Most of the more complete cases were in ER+ cancer which the 

model is unfamiliar with. This may also, in part, explain why the model appears to show unexpectedly 

good performance in ER+, as many imputations within the same patient can lead to poor values chosen, 

and the degree to which data was missing in ER+ was much lower than in TNBC and HER2. While the 

discrimination values were overall high, the calibration metrics show that the model is poorly fit. This 

may in part be caused by a much different proportion of HRDetect high cases in the validation data than 

in the development data. HRDetect high makes up approximately 60% of outcomes in the SCAN-B 

data, but only 22% in the BASIS data, of which 70% are in the TNBC. Overall, this makes the external 

set an imperfect validation set. A better validation set would be another iteration of SCAN-B, collected 

several years later. This would have been a test in a similar population, with variable collection carried 

out in the same way in terms of what is measured and how.  

 

The comparison between single imputation and multiple imputation reinforced the benefits that multiple 

imputation provides according to prior studies. The averaging of probabilities across multiple 

imputations also helped to modulate high probabilities assigned when the imputation model assumed 

hypermethylation in a patient. This reduced the assignment of very high probabilities to HRDetect low 

patients with many missing variables that was seen in single imputation. This only worked because of 

the associations between variables and the outcome. The performance of the model may have been 

overstated by the use of the outcome to impute, because it correlated directly with the HRD phenotype 

variable. However, imputation is supposed to correct for what the data should be, and should not be 

blinded to the outcome, and the model was built using full data for this variable. 

 

In terms of clinical usage of a model of this kind, the strong polarising effect of the HR-repair deficiency 

is problematic, as exemplified in the waterfall plot (Figure 4). While it is a “near-clinical” variable, it 

is not something routinely or necessarily easily measured in the clinic today, and a patient presenting 

with a known mutation in BRCA1/2 would likely be immediately assigned to PARP-inhibitor treatment 
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without consultation of a model, simply on the basis of knowledge of the disease. While the model’s 

discrimination metrics were reasonably good, in that generally HRDetect high are assigned higher 

probability than HRDetect low, it is unclear how much age and BRCA1 gene expression modulate the 

final probability without this variable. The imputation analysis which removed both outcome and 

knowledge of HRD phenotype gives the best representation of the clinic today (Figure 5, right). From 

this, it seems the model may have some ability to identify HRDetect high, if it involved a multiple 

imputation step in the development data, even without the HRD phenotype variable. The discrimination 

in this group was substantially lower, however and assigning a threshold that would balance capturing 

HRDetect high without also catching many HRDetect low may be challenging. Models should not 

necessarily be used to classify an individual. Instead, probability can be used to determine further action, 

for example, a deeper clinical investigation of those presenting with high predicted probability. 

However, further analysis would be needed to determine applicability to a clinical setting, for example 

with decision curve analysis. Model approximation could also be used to investigate model performance 

in the absence or presence of certain predictors; this could be used to better ascertain the predictive 

ability without the HR-repair deficiency variable. 
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Appendix: Inhouse data distribution (continuous & categorical), BRCA1gex and Tumour size logged 

 

Appendix: Distribution of variables in external data for (complete) age, fully imputed Ki-67 (left top and 

bottom), and paired distributions for known values and imputed values for tumour size, BRCA1 gene expression, 

and categorical variables. HRD was only partially imputed as some subfactors were complete. Imputation is single 

imputation using predictive mean matching 
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Appendix: scree plot of cumulative variance explained by components after sPCA (upper) and component 

loadings (lower) 

 

 

 

 

Appendix: naïve model coefficient scores (left) and updated scores following shrinkage   

Coef  S.E. Wald Z Pr(>|Z|)

Intercept 1.3771 0.4043 3.41 0.0007

Comp.1 -0.4165 0.2630 -1.58 0.1132

Comp.2 -0.1370 0.2129 -0.64 0.5200

Comp.3 -0.7145 0.2592 -2.76 0.0058

Comp.4 -0.5574 0.2979 -1.87 0.0613

Comp.5 -0.0919 0.4258 -0.22 0.8290

Comp.6 5.3945 1.1928 4.52 <0.0001

Naïve Model
Coef  S.E. Wald Z Pr(>|Z|)

Intercept 0.9980 0.4043 2.47 0.0136

Comp.1 -0.3267 0.2630 -1.24 0.2141

Comp.2 -0.1075 0.2129 -0.50 0.6138

Comp.3 -0.5605 0.2592 -2.16 0.0305

Comp.4 -0.4373 0.2979 -1.47 0.1421

Comp.5 -0.0721 0.4258 -0.17 0.8655

Comp.6 4.2319 1.1928 3.55 0.0004

Adjusted (Shrunk) Model

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

Age 0.682 0.730
Tumoursize 1.000
Lnbinary 1.000
Ki67 1.000
Grade 1.000
PAM50_AIMS_BASAL_bin 1.000
BRCA1gex 0.728 -0.684
is_suspected_HR_def 0.997
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 Appendix: Validation metrics for model applied in single imputed external dataset (Imputation through 

predictive mean matching)  

 

Appendix: Waterfall plot  showing model performance (probability) following only single imputation of 

validation data   

 

  

  
Validation Metrics Considered 

Dxy C (ROC) R2 Brier Intercept Slope 
overall score 0.84827 0.92413 0.36998 0.11566 -1.73052 1.16281 

imputation 
level 

complete cases 0.83912 0.91956 0.13893 0.08091 -2.36607 1.20039 
few imputations 0.92799 0.96400 0.61574 0.08422 -1.38339 2.06919 
many imputations 0.75743 0.87871 0.22375 0.15146 -1.63430 0.97917 

cancer 
subtype 

TNBC all 0.74516 0.87258 0.57275 0.13852 -0.63387 1.13634 
TNBC complete 0.88889 0.94444 0.64767 0.11764 0.76006 9.86695 
TNBC imputed 0.73245 0.86623 0.56621 0.14018 -0.62376 1.10051 
HER2 cases 0.21905 0.60952 -4.96637 0.19843 -3.12104 0.06241 
ER+ all 0.88845 0.94423 -0.10152 0.08503 -2.90296 1.27868 
ER+ complete 0.72245 0.86122 -0.45330 0.07769 -2.99641 1.14277 
ER+ imputed 0.93175 0.96588 0.01875 0.08898 -2.86786 1.35687 

Age 
<50 years 0.82501 0.91250 0.42070 0.14247 -1.60211 1.08133 
>50 years 0.83266 0.91633 0.23404 0.09670 -1.82537 1.24399 
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