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Abstract

The exponential-6 (exp-6) potential is an intermolecular pair potential that is widely
used to model fluids at high densities. The path from molecular interaction to equation
of state (EOS) for a gas is not straightforward however. Monte Carlo methods and
molecular dynamics give accurate results but are too slow for demanding applications
like detonation modelling or numerical simulations of reactive flows. In this thesis, I
propose a new equation of state in the form of an analytical expression for the excess
Helmholtz free energy of an exp-6 fluid. All other thermodynamic properties are
obtained as derivatives of this expression and gas mixtures are treated as an effective
simple fluid. The equation of state is based on extensive Monte Carlo simulations
and therefore combines the excellent accuracy of the simulations with the numerical
efficiency of a polynomial expression. The average relative error in compressibility factor
and internal energy is 0.14% and 0.25% respectively, which is a significant improvement
over statistical mechanical theories. The number of polynomial coefficients was also
significantly reduced compared to previous equations of state, through the use of a
new variable transformation. The EOS was implemented into a thermochemical code
in order to optimise gas parameters and evaluate its performance on pure gas data,
shock compression and detonation properties. Gas densities were typically predicted
to within 1.5% at pressures below 1 GPa and temperatures above 300 K. Calculated
shock Hugoniots showed excellent agreement with experimental values up to 150 GPa
and 15 000 K, and the detonation performance was accurately predicted for a number of
different types explosives.
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Chapter 1.

Introduction

1.1. Background

As early as 1662, Robert Boyle showed experimentally that the pressure of air is inversely
proportional to its volume [1]. In mathematical terms, this may be described as

?+ = constant . (1.1)

Over the years, the quantity of gas and its temperature dependence was included and the
equation developed into the well-known ideal gas law,

?+ = =') . (1.2)

The right hand side contains the number of moles of gas =, the ideal gas constant ', and
the absolute temperature ) . From a theoretical point of view, the ideal gas law is justified
by assuming pointlike gas particles and elastic collisions.

There are however many applications where intermolecular forces and the finite sizes of
the gas molecules cannot safely be ignored. This includes simulations of high-pressure
reactive flows in internal combustion engines and gas turbines, and even more non-
ideal conditions are reached in detonations and strong shock waves. Common for all
these applications is the need to accurately model a mixture of many different gases.
Furthermore, chemical equilibrium calculations require repeated evaluations of the gas
properties [2], so an equation of state used for this purpose should be numerically efficient
and accurate over a wide range of conditions.

There are however no simple equations or analytic solutions when the intermolecular
forces and molecular sizes are taken into account. Many approximations and corrections
to the ideal gas law have been proposed, but to get arbitrarily accurate results, statistical
methods are necessary. In 1953, Metropolis et al. published a new Monte Carlo (MC)
algorithm for statistical mechanical simulations of systems composed of individual
molecules [3]. Using the first electronic computers available for research, they simulated
a two-dimensional hard-sphere fluid. Three years later, the first molecular dynamics

1



Chapter 1. Introduction

(MD) simulation followed. Both methods are exact in the sense that they perfectly
reproduce the macroscopic properties of a fluid, given a sufficiently accurate model for
the intermolecular interactions in that fluid [4].

However, MC and MD simulations were, and are, extremely computationally expensive
and simulations of reactive gas mixtures were far beyond the capabilities of existing
computers. Early calculations of high-pressure mixtures instead used a much more
empirical approach. The Becker-Kistiakowsky-Wilson equation of state (BKW EOS)
was implemented and calibrated by Mader in the early 1960s and used to calculate the
properties and chemical equilibrium compositions in detonations [5].

The BKW EOS is given below [2]:

?+ = =') (1 + G4VG)

G =
^:

+ () + \)U ,
(1.3)

where U, V, ^ and \ are empirical constants. : is the mean covolume of the gas mixture,
essentially the average molecular volume. While the form of the equation of state has
some statistical mechanical motivation [6], the coefficients are empirical and numerous
sets of coefficients have been proposed [6]–[9]. These have been calibrated from various
experimental detonation data and generally produce much worse predictions for cases
not included in the calibrations.

In 1976, Cowperthwaite and Zwisler published a more theoretical equation of state for
hot, high-pressure detonation products: the Jacobs-Cowperthwaite-Zwisler (JCZ3) EOS
[10]. The EOS models the behaviour of a simple fluid interacting with the exponential-6
(exp-6) intermolecular potential. The result is generalised to any real gas mixture by
averaging the potential parameters of each gas. The exponential-6 potential and treatment
of mixtures are discussed in more detail in the theory section.

The JCZ3 EOS has a somewhat unusual form with the pressure split into two analytical
functions: ?0(+), which is the pressure in a crystalline lattice at 0 K, and � (+,)) which
contains the thermal contributions in the gas.

? = ?0(+) + � (+,))
=')

+
(1.4)

Several parameterisations of gas potential parameters have been performed over the
years. Early ones used shock compression experiments (so called shock Hugoniots)
of common fluids like water, nitrogen and carbon dioxide to determine the radii and
potential well depths of the gases. The parameters were then adjusted to better fit
experimental detonation velocities [11]. The stiffness of repulsion at short ranges
was set to the same constant value for all gases. More recent work [12] has shown
that detonation properties can be adequately predicted without calibrating the EOS
to detonation properties, however, "potential compensation" was required since all
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1.1. Background

molecules are not equally repulsive in reality. The apparent stiffness of a molecule can
be increased by decreasing its radius and increasing the potential well depth, in order
to properly fit shock experiments at high temperature and pressure. Since the potential
well depth is closely tied to the critical temperature of fluids [13], this method is less
accurate when individual gases are considered. Carbon tetrafluoride for example has been
modeled as a very stiff molecule by other authors [14] and the potential compensation in
the JCZS3 product library overestimates the critical temperature of CF4 by a factor of
twenty [12], [15].

The advent of new theories and greater available computer power in the 1980s allowed
Ree to to take a different, more theoretical approach to the problem. He used a fluid theory
based on statistical mechanics, Ross’s modification of the Mansoori-Canfield-Rasaiah-
Stell hard-sphere variational theory (MCRSR) to numerically calculate the properties of
an exp-6 gas [16]. It was combined with a new improved mixing rule for gases which
allowed the use of different stiffnesses and implemented into the thermochemical code
CHEQ [17]. He achieved good agreement with experimental detonation measurements
without fitting EOS parameters to such data, unlike BKW and JCZ3.

The computational effort required to repeatedly solve MCRSR numerically during
equilibrium calculations was still enormous, so simulations without supercomputers
were practically impossible. Brown solved this problem in 1986 by creating an analytical
representation of the WCA/Ree hard-sphere perturbation theory, achieving a hundredfold
speedup [18]. The two key features of his work was to fit a Chebyshev polynomial to the
excess free energy � of the gas, and the use of transformed variables. The gas law is

?+ = =')

(
1 + d

(
m�

md

)
)

)
, (1.5)

where d is the density of the gas. � is not a very well-behaved function in terms of
the temperature, density, and stiffness coefficient of the gas mixture. Brown therefore
proposed a transformation to � (G, H, I) which gave the polynomial 10 to 40 times better
accuracy. The variables G, H and I are defined as

G = 1/UV
H = 1/)U
I = d∗

(
UV/U

)3
,

(1.6)

where d∗ is the reduced particle density, U is the stiffness coefficient and UV and )U are
given by:

UV = U − log)∗ − log
(
U − 6

6

)
)U = )

∗ (UV/U)6 (1 − 6/U) .
(1.7)

)∗ is the reduced temperature. This approach gave excellent representation of the
statistical mechanical theory and close agreement with Monte Carlo simulations using

3



Chapter 1. Introduction

only 64 Chebyshev polynomial coefficients, within a limited temperature and density
range. He called this the THEOSTAR equation of state.

Since then, Brown’s transformation has been used several times with more accurate
statistical mechanical theories. Fried and Howard used Zerah and Hansen’s hypernetted-
mean spherical approximation (HMSA), an integral equation theory, to fit an analytical
EOS (HMSA/C) over a much larger range of conditions [19]. The region of interest
was split into 20 domains and a Chebyshev polynomial was interpolated in each domain.
They then used 57 Monte Carlo simulations to calculate a correction term, resulting in
the very accurate HMSA/MC. This EOS is used in the thermochemical code Cheetah.

Victorov et al. improved the Kang-Lee-Ree-Ree perturbation theory (KLRR) [20] and
used it to generate the thermodynamic data. Similarly to the approach of Fried and
Howard, they split the region of interest into smaller domains and interpolated around 200
Chebyshev polynomials [21], again using Brown’s transformation [20]. The analytical
EOS is implemented in the TDS code.

Suceska et al. followed Brown’s original approach with a single interpolation domain to
create the equation of state used in the EXPLO5 code [21]. It is valid for a somewhat
smaller range of thermodynamic states but uses much fewer Chebyshev coefficients.
The KLRR theory was used to generate the thermodynamic data. Other noteworthy
thermochemical codes are Carte [22], which uses MCRSR and improved KLRR; Tiger
[10], which uses the newly reparameterised JCZ [12]; and Jaguar [23], which also uses
JCZ.

Even though Brown’s transformation has been used very successfully over the years,
there is still room for improvement. The main issue is that the region of interest in
GH-coordinates is boot-shaped rather than a rectangle, as shown in figure 1.1.

(a) (b)

Figure 1.1. The region of interest (blue) and domains (red) in HMSA/C by Fried and Howard
[19], shown in both the natural U)∗-system and the transformed GH-system.

4



1.2. Objective

Therefore it must be much bigger to encompass the rectangular U,)∗-region, and as much
as half of the points used during the polynomial interpolation could lie outside the region
of interest [18]. For very large temperature ranges, the transformation completely fails
in the single-domain case. Splitting the region into several smaller domains mediates
the problem somewhat, however one of Fried and Howard’s domains still reaches eight
times the intended upper temperature limit.

The d∗ → I transformation on the other hand normalises the upper density boundary
fairly well. Brown noted that I = 1 approximates the freezing density of a hard-sphere
fluid regardless of temperature [18]. However, Suceska showed that I can be as high as
1.8 in certain shock phenomena [21], which is far above the freezing density of an exp-6
fluid at low temperatures [24]. This can again be mediated by the use of several domains,
but it comes at a cost. There is on one hand the problem of domain boundaries, since the
excess free energy function and its derivatives must be continuous, and on the other hand
is the sheer number of coefficients required when each domain has its own polynomial.
Victorov and Gubin used around 40000 coefficients [21] which is far more than what
should be required. A new transformation, with a better balance between well-behaved
free energy function and domain simplicity would be highly desirable.

The majority of the error in these equations of state can be attributed to the statistical
mechanical theories themselves. They have been used to generate thermodynamic data
for the analytical fit simply because they are much faster than Monte Carlo methods and
molecular dynamics. Thousands or tens of thousands of data points are required for
polynomial interpolation, and to compute these with sufficient accuracy requires so much
computational power that it has been impossible — until recently. Statistical mechanical
theories still have the advantage of generating a smooth function, while MC and MD are
stochastic by nature. With sufficient smoothing however, it should be perfectly possible
to generate an equation of state with Monte Carlo calculations only.

1.2. Objective

The objectives of this project are threefold:

• To create a new equation of state directly from Monte Carlo simulations. It
should achieve better accuracy than current equations of state based on statistical
mechanical theories, and only use a single domain.

• To implement the equation of state into a thermochemical code.

• To evaluate its performance on experimental data. This project focuses on
the thermodynamic properties of pure gases, shock compression- and detonation
modelling.

5



Chapter 1. Introduction

1.3. Constraints

To limit the scope of this project, only a single fluid phase will be considered. This
may not seem like a severe restriction for a gaseous equation of state, but solid products
like soot are common in the combustion of hydrocarbon molecules. Such products
require their own equations of state, a far from trivial task and also a potential source of
error. Therefore, the evaluation of the equation of state cannot include very oxygen-lean,
carbon-containing systems.

The equation of state will also be limited to supercritical temperatures only. This
guarantees that no condensation into liquid occurs, regardless of pressure. The gas-liquid
coexistence region is also more difficult to handle computationally; a more complex
Monte Carlo scheme is required.

6



Chapter 2.

Theory

2.1. The exponential-6 potential

The interactions between atoms and molecules in a fluid are determined by their
intermolecular forces. This is commonly defined by an intermolecular potential, a
function which describes the potential energy of two particles as function of their relative
positions. One such model is the exponential-6 potential (equation 2.1). Although it
strictly describes a fluid of identical, spherically symmetric particles like argon, it has
been widely used to model systems of nonspherical molecules as well as mixtures of
different species [19]. The exponential-6 expression of intermolecular potential energy D
in a pair of particles is

D(A) = Y

U − 6

(
6 4U(1−A/A<) − U

(A<
A

)6
)
, A ≥ A2

D(A) = ∞, A < A2 .
(2.1)

where A is the distance between the particles. Every chemical species is described by
a unique set of three parameters: Y is the depth of the attractive well and has units
of energy, A< is the distance where this minimum is located and U is a dimensionless
parameter controlling the stiffness of repulsion at short ranges. The adjustable repulsive
stiffness gives it an advantage over the commonly used Lennard-Jones potential [13],
since it is an important property in very high density systems [18].

The shape of the potential is shown in figure 2.1 (a). Since the repulsive (exponential)
part of the expression has a constant value at A = 0 but the attractive part diverges to −∞,
the potential has an unphysical well at very short distances. This is solved by adding
a hard core with infinite potential at distances shorter than A2, the highest point of the
potential, as shown in figure 2.1 (b).

7



Chapter 2. Theory

(a) Attractive region. (b) Repulsive region.

Figure 2.1. Graphs of the exp-6 potential in units of Y and A<. The stiffness U = 13. The
potential energy is set to infinity for distances below A2 . Note the different scales in the subfigures.

2.1.1. Dipole approximation

Water is a particularly difficult molecule to model and the exp-6 potential is not well
suited at ambient temperatures. The problem is twofold: its strongly polar nature is
not captured by a spherically symmetric potential, and multi-body interactions have a
significant contribution to its properties [25]. At higher temperatures, faster rotation of
the molecules disrupts the hydrogen bonding and complexes. It was also shown that high
pressure leads to a behaviour more similar to spherically symmetric molecules.

Based on these observations, Ree averaged the quantum mechanical pair potential
of two water molecules over all rotational configurations to produce a temperature-
dependent, spherically symmetric potential. This approximation successfully reproduced
the measured properties of shock-compressed water [25]. In a later work, he adapted the
temperature-dependent behaviour to the much simpler exp-6 potential in the form of a
correction for the well depth Y [16].

Y = Y0
(
1 + _

)

)
(2.2)

Here, Y0 is the potential well depth at infinite temperature, and _ controls how much the
well depth increases at low temperatures.

8



2.2. Mixing rules

2.2. Mixing rules

Since the interaction of many different chemical species is very complex, the mixture is
treated as an effective simple fluid using the van der Waals one-fluid (vdW1f) mixing
rules. An improved set of rules for the exp-6 potential was proposed by Ree [17] and is a
weighted average of all the interacting species’ parameters:

A3
< =

1
=2
C>C

∑
8, 9

=8= 9A
3
<,8 9

Y =
1
A3
<

1
=2
C>C

∑
8, 9

=8= 9Y8 9A
3
<,8 9

U =
1

A3
< Y

1
=2
C>C

∑
8, 9

=8= 9Y8 9A
3
<,8 9U8 9 .

(2.3)

=8 is the number of moles of the 8:th species, and =C>C is the total number of moles of gas
in the system. The parameters for two unlike species 8 and 9 are given by the extended
Lorentz-Berthelot combination rule [26]:

A<,8 9 = :8 9
A<,8 + A<, 9

2
Y8 9 =

√
Y8Y 9

U8 9 =
√
U8U 9 .

(2.4)

Here, :8 9 is a correction factor that enables finer tuning of gas mixtures if they are not
sufficiently well represented by this mixing rule. It is equal to 1 for nearly all pairs of
gases 8 and 9 . U8, Y8 and A<,8 are the parameters for the 8:th species.

Y8 is given by the dipole approximation:

Y8 = Y
0
8

(
1 + _8

)

)
, (2.5)

where _8 is zero for all nonpolar molecules.
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Chapter 2. Theory

2.3. Helmholtz free energy expression

The equation of state is based on an analytical expression for the excess Helmholtz free
energy of the gas mixture. "Excess" here means that it is the non-ideal component of
the free energy, �4G = � − �8340; . Using the mixing rules and reduced properties, the
free energy can be reduced from a very complex expression to a three variable function
� (U,)∗, d∗). � is scaled by the number of particles # , Boltzmann constant :� and
temperature to make it dimensionless:

�4G (+,), {=8}, {A<,8}, {Y8}, {U8}) = � (U,)∗, d∗) #:�) . (2.6)

Since the one-fluid parameter U is already a dimensionless quantity, only the temperature
and density need to be scaled. The average potential well depth Y is used for the reduced
temperature and A3

< is used for the reduced density:

)∗ = ):�/Y
d∗ = #A3

</+ .
(2.7)

The reduced density is essentially the number of particles inside a cube with side length
equal to the particle’s diameter.

2.3.1. Boundaries and variable transformation

Next, U, )∗ and d∗ are transformed into three new variables Uℓ, g and Z .

Uℓ = ln (U − 9)
g = ln)∗

Z = exp (Θd∗) ,
(2.8)

where Θ is defined by

Θ =

(U − g
U

)3
+ 0.000167 )∗ + 0.074

U − 10
√
)∗

. (2.9)

The transformation fulfils two criteria: it makes the free energy easier to accurately
represent with a low-order polynomial, and turns the region of interest into a cuboid.
Since the U,)∗-region is already a rectangle, Uℓ and g may only be functions of U and
)∗ respectively. Logarithms were suitable, since the most rapid free energy change is at
low temperatures and low U (soft systems).

The Z-transformation was chosen so that Z<0G approximately matches the freezing
density of the exp-6 fluid at low to medium temperatures (2 ≤ )∗ ≤ 15). This was
determined by Vörtler et al. through MD simulations of 500 particles, with careful
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2.3. Helmholtz free energy expression

monitoring of the fluid structure to detect if solid nuclei started to form [24]. At reduced
temperatures between 20 and 160, Z<0G approximates I = 1.8 which is sufficient for all
shock phenomena that Suceska et al. considered [21]. For )∗ ≥ 100, Z<0G is chosen to
limit the pressure of nitrogen gas to 2 megabar (200 GPa) which should be sufficient for
all intended applications of the EOS.

The lower and upper U-limits are 10.8 and 15.5 respectively. This range includes all
values for gases in the EXP6 Library by Fried et al. [14], plus an additional margin to
allow for adjustments. The lower )∗-limit is based on critical point calculations for an
exp-6 fluid performed by Kataoka [27]. The dimensionless critical temperature is 2.05
for a fluid with U = 10, 1.35 for U = 14.34 and 0.98 for U = 30. Extrapolating from these
results, )∗ ≥ 1.5 should avoid the liquid region for most common gases and gas mixtures.
This limit corresponds to about 160K for air. The upper temperature limit )∗ = 300
is more arbitrary since Y varies widely for different gases. )∗ = 300 corresponds to
hydrogen gas at about 10 000K, air at 31 000K and water at 95 000K, which should
again be sufficient for all intended applications.

The Chebyshev polynomial interpolation requires variables between −1 and 1, so Uℓ, g
and Z are scaled to fit the interval:

Ũ =
(
2Uℓ − Uℓ,<0G − Uℓ,<8=

)
/
(
Uℓ,<0G − Uℓ,<8=

)
g̃ = (2g − g<0G − g<8=) /(g<0G − g<8=)
Z̃ = (2Z − Z<0G − Z<8=) /(Z<0G − Z<8=) .

(2.10)

The minimum and maximum values are given in the table below.

Table 2.1. The Uℓ , g and Z limits used to scale the variables.
min max

Uℓ 0.58778 1.87181
g 0.4055 5.7038
Z 1 6.372

Finally, the equation of state is given by the following expression for the dimensionless
excess free energy:

� = Φd∗ , (2.11)

where Φ is a Chebyshev polynomial of the three scaled variables.

Φ =

!−1∑
8=0

"−1∑
9=0

#−1∑
:=0

)8 (Ũ))9 (g̃)): ( Z̃)�8 9 : (2.12)

11



Chapter 2. Theory

2.3.2. Chebyshev polynomials

The trivariate polynomial Φ is based on Chebyshev polynomials, which are defined as

)= (G) = cos(= arccos(G)) , (2.13)

where = is the order of the polynomial [28]. The five lowest order polynomials are
shown in figure 2.2. An alternative definition, which is the one used for all numerical
calculations in this work, is

)0(G) = 1
)1(G) = G

)=+1(G) = 2G)= (G) − )=−1(G) .
(2.14)

Figure 2.2. The first five Chebyshev polynomials.

Chebyshev polynomials were also used for the Monte Carlo data fitting and smoothing.
Several properties make them suitable for these tasks. The polynomials are orthogonal
and form a basis over the interval [−1, 1]. Furthermore, they are orthogonal when
evaluated at the roots of a higher-order Chebyshev polynomial [28].

#∑
8=1
)< (G8))= (G8) =


0 if = ≠ <
# if = = < = 0
#/2 if = = < ≠ 0

(2.15)

Here, G8 is given by

G8 = cos
(
c

28 − 1
2#

)
, 8 = 1 ... #. (2.16)

G8 are the roots of a Chebyshev polynomial of order # , known as Chebyshev points
or nodes. This set of points is particularly useful for polynomial interpolation on the

12



2.4. Derivatives

interval [−1, 1], since it minimises the error. Uniformly spaced interpolation points
can cause large errors close to the endpoints. The Chebyshev nodes on the other hand
are distributed unevenly with more weight at the endpoints, which spreads the error
uniformly over the whole interval [29].

The simplicity of data smoothing using Chebyshev smoothing is also noteworthy. Aspnes
showed that even very noisy data can be used to reproduce a function correctly, by
fitting an exact Chebyshev polynomial to the data points and then simply truncating the
polynomial [28]. This method has been used extensively in this work to process the
inherently noisy Monte Carlo data.

2.4. Derivatives

All thermodynamic properties are derived from the excess Helmholtz free energy and can
be described analytically as derivatives. The derivatives are complex but straightforward;
had the EOS instead been defined on the form ?(+,)), other properties would need
to be calculated by integration which is much more difficult. This section presents
the three most important properties for chemical equilibrium calculations. Once again,
dimensionless quantities are used.

/ =
?+

#:�)

*∗ =
*4G

#:�)

`∗8 =
`4G
8

')

(2.17)

Here, / is the compressibility factor – the deviation from ideal gas behaviour,*4G is the
excess internal energy, and `4G

8
is the excess chemical potential of the 8:th species. Their

relationships with the free energy are as follows:

/ = 1 + d
(
m�

md

)
),{=8}

(2.18)

*∗ = −)
(
m�

m)

)
d,{=8}

(2.19)

`4G8 =

(
m�4G

m=8

)
),+,{= 9≠8}

=
d

=C>C

(
m�4G

md

)
),{=8}

+
(
m�4G

m=8

)
),d,{= 9≠8}

. (2.20)
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Chapter 2. Theory

Adopting the compact notation for partial derivatives from [19], the derivatives of a
function 5 (), d, {=8}) will henceforth be written as:

5) ≡
(
m 5

m)

)
d,{=8}

5d ≡
(
m 5

md

)
),{=8}

5=8 ≡
(
m 5

m=8

)
),d,{= 9≠8}

.

(2.21)

Since functions of transformed variables will be extensively used, the same notation is
also used for derivatives of U, g, and Z .

6U ≡
(
m6

mU

)
g,Z

6g ≡
(
m6

mg

)
U,Z

6Z ≡
(
m6

mZ

)
U,g

(2.22)

In this shorthand notation, the expression for the compressibility factor Z is simply:

/ = 1 + d�d
= 1 + d

(
Φdd

∗ +Φ1
)
.

(2.23)

1 is defined in equation 2.31. The dimensionless excess internal energy is

*∗ = −)�)
= −d∗)Φ) ,

(2.24)

and the excess chemical potential is given by:

`4G8 =
d

=C>C
(�=C>C'))d + (�=C>C'))=8 . (2.25)

The chemical potential is made dimensionless by division by ') .

`∗8 = d�d + =C>C�=8 + �

= / − 1 + � + =C>C d∗
(
Φ=8 +Φ

1=8

1

) (2.26)
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The three derivatives of Φ are:

Φ) = ΦUℓ
1

U − 9
U) +Φgg) +ΦZ Z)

Φd = ΦZ Zd

Φ=8 = ΦUℓ
1

U − 9
U=8 +Φgg=8 +ΦZ Z=8 .

(2.27)

Since Φ is a sum of Chebyshev polynomials of Ũ, g̃, and Z̃ , the Uℓ, g, and Z-derivatives
are calculated simply by differentiating the appropriate polynomial in each term of the
sum. ΦZ is shown below as example.

ΦZ =
2

Z<0G − Z<8=

!−1∑
8=0

"−1∑
9=0

#−1∑
:=0

)8 (Ũ=))9 (g̃=)
d): ( Z̃)

dZ̃
�8 9 : (2.28)

The derivatives of Z are given below.

Z) = d
∗Z (Θgg) + ΘUU) )

Zd = ΘZ1

Z=8 = d
∗Z

(
ΘUU=8 + Θgg=8 + Θ

1=8

1

) (2.29)

Θ is a function of U and g and its derivatives are

Θg = −
3(U − g)2

U3 + 0.000167 )∗ − 0.037
U − 10
√
)∗

ΘU =
3(U − g)3

U4 + 3(U − g)2
U3 + 0.074

√
)∗

,

(2.30)

which are expressed using a combination of g and )∗ for numerical efficiency. Next, 0,
1 and 2 are defined based on the mixing rules:

0 = YA3
< =

1
=2
C>C

∑
8, 9

=8= 9Y8 9A
3
<,8 9

1 = A3
< =

1
=2
C>C

∑
8, 9

=8= 9A
3
<,8 9

2 = UYA3
< =

1
=2
C>C

∑
8, 9

=8= 9Y8 9A
3
<,8 9U8 9 .

(2.31)
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Those are used to simplify the derivatives of U and g:

U) =
2)

0
− 20)
02

U=8 =
2=8

0
−
20=8

02

(2.32)

g) =
1
)
− 0)
0

g=8 =
1=8

1
−
0=8

0
.

(2.33)

Finally, the derivatives of 0, 1 and 2 are

0) =
1
=2
C>C

∑
8, 9

=8= 9A
3
<,8 9

dY8 9
d)

2) =
1
=2
C>C

∑
8, 9

=8= 9A
3
<,8 9U8 9

dY8 9
d)

,

(2.34)

where
dY8 9
d)

= −
Y0
8
Y0
9

(
) (_8 + _ 9 ) + 2_8_ 9

)
2)2

√
Y0
8
Y0
9
() + _8) () + _ 9 )

(2.35)

and 1) = 0. The =8-derivatives are:

0=8 =
2
=2
C>C

∑
9

= 9Y8 9A
3
<,8 9 −

20
=C>C

1=8 =
2
=2
C>C

∑
9

= 9A
3
<,8 9 −

21
=C>C

2=8 =
2
=2
C>C

∑
9

= 9Y8 9A
3
<,8 9U8 9 −

22
=C>C

.

(2.36)
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2.5. Shock theory and the detonation wave

Data from shock compression experiments and detonation measurements have been used
extensively throughout this project. This section gives a brief introduction to the theory
behind the reactive and unreactive one-dimensional shock wave.

A plane shock wave can be described by the Rankine–Hugoniot relations, which relate the
conditions before and after the shock wave. For initially stationary media, the following
three equations describe the conservation of mass, momentum and energy respectively
[30]:

+1/+0 =
DB − D?
DB

(2.37)

?1 − ?0 =
DB D?

+0
(2.38)

*1 −*0 =
1
2
(?1 + ?0) (+0 −+1) , (2.39)

where + is the specific volume (1/d), the subscripts 0 and 1 indicate conditions in the
unshocked respectively shocked material, DB is the shock velocity and D? is the particle
or mass velocity.

From an experimental point of view, this means that the properties of the shocked media
can be determined by measuring DB and D? only [30]. Typically, the shock wave is
produced by hitting the sample with a high velocity projectile from a light gas gun [31],
a high intensity laser pulse [32] or the shock wave from a high explosive [30]. The shock
velocity is measured directly and the mass velocity is given by impedance matching [31].
+0 and ?0 are known from the density of the sample and the ambient pressure, so the
shock pressure and compressed specific volume are given by equations 2.37 and 2.38.

From a computational viewpoint, it is easier to express DB and D? as functions of ? and
+ :

DB = +0

√
?1 − ?0
+0 −+1

(2.40)

D? = +0
?1 − ?0
DB

. (2.41)

Given a volume+1, the shock pressure can be calculated iteratively by guessing a pressure
?1 and then:

• Calculate*1 using equation 2.39.

• Calculate a temperature )1 which matches the internal energy.

• Calculate a new pressure at +1 and )1 using an equation of state.
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Chapter 2. Theory

The system rapidly converges at the correct ?1. If the temperature and pressure are high
enough to dissociate the media, chemical equilibrium must be calculated in the loop as
well. The function ?1(+1) is known as the shock Hugoniot.

The key difference between a general shock wave and a detonation wave is that the
detonation wave is self sustaining, due to the release of chemical energy behind the shock
front. Each explosive or reactive gas mixture has its own unique detonation properties;
shock velocity, pressure, temperature; that are related to its density, composition and
energy content. The simplest model is the Chapman–Jouguet detonation wave which is
outlined below.

Figure 2.3. Typical shock Hugoniots for explosives and detonation products. The Rayleigh line
connects the initial state with the states in the von Neumann spike and C-J point. The detonation
velocity as function of the volume +1 is also shown in blue.

The combustible gas mixture or high explosive is initially at rest when the shock wave
arrives. The shock wave compresses the material along the unreacted Hugoniot to a
high-pressure state called the von Neumann spike [33], shown in figure 2.3. This marks
the beginning of the exothermic reaction zone and the reaction progresses as the gases
expand along the Rayleigh line. The line is tangent to the reaction product Hugoniot
at the C-J point — this is the point where the reactions are completed and chemical
equilibrium is achieved [33]. The shock velocity calculated with the pressure and volume
at the C-J point is the steady-state detonation velocity ��� .

For modelling purposes, another property of the C-J point can be utilised: the detonation
velocity can never be lower than ��� [33]. Therefore, it is sufficient to calculate the
shock Hugoniot for the reaction products, which can be done with the same iterative
method as the shock waves above. Then, the point along the Hugoniot that gives the
lowest detonation velocity according to equation 2.40 is the C-J point.
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2.6. Monte Carlo

Monte Carlo methods are a class of computational methods that are based on random
sampling. They are well suited to perform numerical integration in high-dimensional
spaces where uniform grids fail. Integrating some function using 100 evaluation points
per dimension is quite feasible in one, two or three dimensions — requiring 102, 104

and 106 evaluations of the integrand respectively. However, this strategy is impossible in
100-dimensional space since it would require 10200 calculations.

The high-dimensional integrals have a direct connection to fluid simulations [3]. For #
particles in the canonical ensemble (constant number of particles, constant temperature
and constant volume), the equilibrium value of a quantity � is

〈�〉 =
∫
� 4−V�d3# ? d3#A∫
4−V�d3# ? d3#A

. (2.42)

The integrals are taken over every possible configuration A and every possible momentum
?. The weight of each state is given by the Boltzmann factor 4−V� , where � is the total
energy of the system and V = 1

:�)
. However, since the forces between particles only

depend on their configuration, the internal energy and pressure in the system can be
determined without integration over momentum-space. Still, even with as little as 100
particles, a 300-dimensional integral is far beyond what can be solved with conventional
numerical integration.

The most basic Monte Carlo approach would be to randomly select a configuration,
calculate the energy and weight that integration point with the Boltzmann factor [3]. This
method would fail too however, due to the fact that the vast majority of configurations
in a high density fluid are extremely unlikely. In fact, the probability to randomly pick
a configuration with nonzero Boltzmann factor for 100 hard-sphere particles at their
freezing point is 10−260 [4].

Metropolis et al. [3] therefore proposed a different scheme with one critical difference:

“instead of choosing configurations randomly, then weighting them with exp(−�/:)),
we choose configurations with a probability exp(−�/:)) and weight them evenly.”

An analogy to highlight the difference between the basic scheme and the Metropolis
scheme could be to measure the average depth of the river Nile, without knowing exactly
where the Nile is. The naive method is to choose random sampling points over the whole
African continent, measure the depth, and give the measurement a weight 1 if it was
taken in the Nile and 0 otherwise. The Metropolis scheme instead constructs a random
walk through the river. With a starting point somewhere close to the Nile, each step
consists of a short random trial move which is accepted if it lands in the river and rejected
otherwise. When the river has been reached, each trial move is followed by a depth
measurement, either at the newly accepted position or once more at the old position if a
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move was rejected. Every measurement is weighted equally [4].

The same principle is applied to particles in a box in order to compute the equilibrium
properties of a fluid. The particles are initially placed in some allowed configuration, i.e.
with no overlapping hard cores [4]. This could for example be a cubic lattice. Then, a
particle is selected and given a random displacement. If the total energy of the system
decreased due to the trial move, the move is accepted. If the energy increased, the
move is accepted with probability exp(−VΔ�) where Δ� is the energy change. The
particle is moved back to its previous position if the move is rejected [3]. Finally, the
desired properties of the system are sampled and the procedure can be repeated with new
particles, until enough samples have been collected to produce an accurate average.

There is an obvious size difference between a box containing a few hundred particles
and a real fluid system, for example a drop of water consisting of 1021 molecules. In
order to avoid surface effects from the tiny box, the walls are periodic boundaries [3] as
shown in figure 2.4. The simulation box is essentially surrounded by copies of itself, and
real particles in the box can interact with images of other particles. The distance from
one particle to another is defined as the distance to the closest copy of the other particle
[3]. Each particle only interacts once with every unique particle and interactions with
copies further away are ignored, a sufficient approximation for intermolecular potentials
without long range components [3]. The distance at which interactions are no longer
considered is called the cutoff distance, denoted A2DC . This is usually half the box side
length or shorter in the case of a low-density fluid.

(a) The distance between any two particles
A and B is always the shortest distance
between A and any image of B.

(b) A particle will always stay within the
"real" box during a trial move; the blue
(split) square is valid destinations.

Figure 2.4. The periodic nature of the simulation is shown for the 2-dimensional case. The solid
box is the "real" box and the dashed boxes are the periodic images.
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The two desired thermodynamic properties in this work are the internal energy of the
system and the compressibility factor, which is calculated from the pressure. The internal
energy* per particle is simply the average energy of each configuration divided by the
number of particles,

* =
1
#
� . (2.43)

The pressure of the system is given by:

? =
#:�)

+
+ 1

3+

∑
8< 9

f8 9r8 9 (2.44)

where the first term is the ideal gas contribution and the second term is the virial [34].
f8 9 is the intermolecular force that particle 9 applies to particle 8, and r8 9 is the vector
from 8 to 9 . For the spherically symmetric exp-6 potential, f8 9r8 9 simplifies to

f8 9r8 9 =
6UY
U − 6

(
A8 9

A<
4U(1−A8 9/A<) −

(
A<

A8 9

)6
)
, (2.45)

which can be calculated and summed at the same time as the energy above.

The contribution from particles further away than half the box is small, but not negligible.
Therefore, long-range corrections based on the radial distribution function 6(A) are
usually added to the desired properties [19]. The radial distribution function is closely
tied to the structure of the fluid and describes the average density at distance A from a
particle, normalised by the density of an ideal gas. Its typical shape for a high-density
fluid is shown in figure 2.5 below.

Figure 2.5. Typical radial distribution function. Long-range corrections can be calculated by
setting 6(A) = 1 outside the cutoff radius, i.e. assuming randomly distributed particles.
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The internal energy and compressibility factor are completely determined by the radial
distribution function in combination with the intermolecular potential D(A) [19]. The
following expressions apply to spherically symmetric potentials:

*∗ =
2cd
:�)

∫ ∞

0
D(A)6(A)A2dA . (2.46)

/ = 1 − 2cd
3:�)

∫ ∞

0
A

dD(A)
dA

6(A)A2dA , (2.47)

By approximating 6(A) = 1 for A > A2DC , as shown in figure 2.5, these expressions can be
used to generate the long-range correction terms*C08; and /C08; :

*C08; = −
2cd∗

)∗

∫ ∞

A2DC

1
U − 6

(
64U(1−A

∗) − UA∗−6
)
A∗2dA∗

≈ − 2Ucd∗

3(U − 6))∗A3
2DC

(2.48)

/C08; = −
2cd∗

3)∗

∫ ∞

A2DC

6U
U − 6

(
−A∗4U(1−A∗) + A∗−6

)
A∗2dA∗

≈ − 4Ucd∗

3(U − 6))∗A3
2DC

,

(2.49)

where A∗ = A/A<. The analytical expressions are achieved by ignoring the exponential
term in the integrals, a fair approximation since it contributes with less than 0.0001% of
the total integral.
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Method

3.1. Monte Carlo implementation

A basic Monte Carlo program was written in C to simulate an exp-6 fluid in the canonical
ensemble. The program calculates the excess internal energy and the compressibility
factor of the fluid given a reduced temperature, reduced density and stiffness coefficient.
It was implemented in less than 250 lines of code, following the basic algorithm presented
in section 2.6.

An important problem caused by the choice of language lies in the generation of
pseudorandom floating-point numbers. The built-in rand function in C generates integers,
varies with implementation and is of questionable quality (rand_max is specified to be
as small as 32767)[35]. The Mersenne Twister was chosen instead. It is the standard
PRNG in many other common programming languages [36] and should be sufficient for
this task. In particular, a C implementation of the Mersenne Twister by Evan Sultanik
[37] was used. Each run started by seeding the PRNG with the current time, followed by
100000 iterations to improve the random quality.

Initialisation is done by placing # particles (usually 512, always a cube number) in a
box with side length ! = 3

√
#/d∗. The particles are defined by a 2D array of coordinates

and spaced evenly in a cubic lattice. The cutoff distance A2DC is set to min(3, !/2) and
the hard sphere-distance (which only depends on U) is solved iteratively.

The periodic boundaries are enforced by two different functions: one for particle positions,
and one for distances between particles. If a trial move would take a particle outside
the allowed [0, !) interval in any direction, ! is added or subtracted to let the particle
reappear on the opposite side of the box. A single addition or subtraction is guaranteed to
bring it back into the box since the maximum displacement in a move is always smaller
than !. The other function is applied during every particle interaction. A particle will
always only interact with the closest version of another particle, either the "real" particle
or one of its periodic images outside the box. Thus, the components of the vector between
them must fall within the interval [−!/2, !/2). This is solved by adding or subtracting
! if needed.
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Before the main loop, the total energy and virial of the system are calculated by the
energy function. The function starts by setting the energy and virial to zero. It then
loops over each unique pair of particles and calculates the square of the distance between
them as 32 = ΔG2 + ΔH2 + ΔI2. If 32 is smaller than A2

2DC , their potential energy and
virial contribution are calculated and added. The particles are guaranteed to never be
within the hard-sphere distance from each other when the energy function is called so it
does not have to check for that case.

The main loop runs for a set number of cycles, each one consisting of # trial moves.
A trial move starts by picking a particle 8 at random. Next, an array with the new trial
coordinates is created by taking the old coordinates and adding a random displacement
XA (b1, b2, b3) where b= are independent uniformly distributed random numbers in the
[−1, 1] interval and XA is the maximum displacement. After correction for periodic
boundaries, the energy change resulting from the move is calculated using the deltaEnergy
function. This step is by far the most computationally intensive and required the most
thorough optimisation.

The deltaEnergy function starts by setting the energy change 3* and virial change 3+8A
to zero. It then loops over every particle 9 ≠ 8. For each particle, the vector between 8
and 9 is calculated for both 8’s old and trial coordinates and the six values are stored in a
single array. The periodic boundaries are applied to the vector, this time inlined to avoid
function overhead. Next, the trial move distance squared and the old distance squared
are calculated and stored at positions 0 and 1 in an array A . If the trial position is outside
the hard-sphere distance and within the cutoff distance, its contribution to 3* and 3+8A
is calculated by the following code:

r[2] = sqrt(r[0]); //trial distance
r[3] = sqrt(r[1]); //old distance
r[4] = exp(alpha-alpha*r[2]); //repulsive part
r[5] = exp(alpha-alpha*r[3]);
r[6] = 1/(r[0]*r[0]*r[0]); //attractive part
r[7] = 1/(r[1]*r[1]*r[1]);

dU += 6/alpha*(r[4]-r[5]) - r[6] + r[7]; //energy
dVir += r[2]*r[4] - r[6] - r[3]*r[5] + r[7]; //virial

Although almost unreadable, it is extremely fast. The array guarantees that all values are
stored on adjacent memory cells. The expensive pow() is avoided and exp(), which uses
the majority of the time in the program, is only performed once per interaction instead
of twice like in the energy function. If the trial distance is shorter than the hard-sphere
distance, the function is immediately terminated and the trial move is rejected. After
the loop, 3* and 3+8A are multiplied by U/(U − 6) and 6U/(U − 6) before returning the
results.

Back to the main loop, the trial move is accepted if exp (−3*/)∗) > b, where b is a
random number in the [0, 1] range. If accepted, the old coordinates in the coordinate
array are replaced by the trial coordinates. The energy and virial of the system are
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3.2. Monte Carlo simulations

updated by adding 3* and 3+8A . The data collection starts after a predetermined number
of equilibrium cycles (usually 5000) has passed. The energy and virial are sampled
after each trial move, regardless of whether it was accepted or not, in order to calculate
averages at the end of the simulation.

The maximum step size XA is adjusted during the first 50 cycles of the simulation. A
larger step size leads to fewer accepted trial moves and the goal is a 50% acceptance rate.
The following proportional controller is used:

XA=+1 = XA=

(
0.8 + 0.4

�

#

)
, (3.1)

where � is the number of accepted moves during the last cycle of # attempted moves.
The maximum allowed step size is U/120 if d∗ < 2 and 0.4 for higher densities. These
settings gave good convergence rate and accuracy.

After the program has run the desired number of data collection cycles, the internal
energy and virial averages are calculated. The final internal energy and compressibility
factor are printed after*C08; and /C08; have been added.

3.2. Monte Carlo simulations

The simulations were performed on NSC’s cluster Tetralith, part of the Swedish National
Infrastructure for Computing (SNIC). Thanks to the cubic domain of interest and the
predefined Chebyshev nodes, the question was not where in Ud∗)∗-space to perform
Monte Carlo simulations, but simply how many and whether splitting the domain would
be necessary. Initial testing with 1000 points in a single domain showed that the
behaviour in g-direction was too complex to allow for efficient smoothing, so the region
of interest was split into 16 equally sized domains — eight in the g-direction and two in
the Uℓ-direction. Keeping the domains continuous in the Z-direction was necessary to
simplify the integration during post-processing.

The uncertainty in a MC simulation decreases with the square of the number of cycles,
i.e. doubling the accuracy requires four times more computational power. The same
computing time could be used to run four MC simulations instead. The problem is
illustrated in figure 3.1. The left graph shows a reference function H = G2 and three points
with an added random normally distributed error (f = 0.1). The green curve shows
the exact second order fit to those points. In the right graph, the nine points were given√

3 times larger error. The exact fit is quite far from H = G2, but the red curve which is
smoothed by truncation to second order is similar to the green curve.
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(a) Few, more accurate samples. (b) Many, less accurate samples.

Figure 3.1. Illustration of two ways to recreate the reference function H = G2 using noisy data.
The total computation time would be the same in both examples if the points were MC simulations.
The final polynomial fits have identical absolute errors on average.

On average, the absolute error is exactly the same for both methods, and only affected by
the total computation time. Too many short simulations are counterproductive however,
since each simulation starts with 5000 equilibrium cycles before the data collection
phase. Too short simulations will therefore waste most of the computation time without
contributing to the result. Too few long simulations on the other hand makes the
smoothing process more difficult, and outliers are harder to identify.

For the full scale simulation, ten points in each direction was chosen as a compromise. In
total, 16 000 MC simulations were performed with 15 000 cycles each, in roughly 1000
core-hours. About 20 outliers were identified and re-simulated with 30 000 cycles each.
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3.3. Polynomial fit to Monte Carlo data

The data processing was performed in Matlab. The process can be divided into three
main parts which are described in the following sections:

• Smoothing of raw Monte Carlo data,

• Integration to find Φ in each domain,

• Combination of all domains into the final equation of state.

3.3.1. Data fitting and smoothing

The raw / and*∗ data could not be used to calculate � andΦ directly due to the random
noise from the inherently stochastic simulations. The noise was reduced by fitting an
exact Chebyshev polynomial to the data, e.g. ninth order polynomial to ten data points,
and then truncating to a lower order polynomial. To ensure that *∗ → 0 and / → 1
when d → 0 (the ideal gas case), (/ − 1)/d∗ and*∗/d∗ were fitted instead of / and*∗.

The standard matrix polynomial regression method was adapted to a three-dimensional
Chebyshev polynomial. A continuous function H can be represented in the following
way:

H(Ũ, g̃, Z̃) =
"−1∑
8=0

"−1∑
9=0

"−1∑
:=0

)8 (Ũ))9 (g̃)): ( Z̃)�8 9 : . (3.2)

With < = "3 = 1000 data points H= evaluated at unique sets of inputs (Ũ, g̃, Z̃)=, the
following system of linear equations is formed:
H1
H2
...

H<


=


)0(Ũ1))0(g̃1))0( Z̃1) )0(Ũ1))0(g̃1))1( Z̃1) · · · )"−1(Ũ1))"−1(g̃1))"−1( Z̃1)
)0(Ũ2))0(g̃2))0( Z̃2) )0(Ũ2))0(g̃2))1( Z̃2) · · · )"−1(Ũ2))"−1(g̃2))"−1( Z̃2)

...
...

. . .
...

)0(Ũ<))0(g̃<))0( Z̃<) )0(Ũ<))0(g̃<))1( Z̃<) · · · )"−1(Ũ<))"−1(g̃<))"−1( Z̃<)



21
22
...

2<


(3.3)

or in short form,
y = Ac . (3.4)

The coefficient vector c is found by matrix inversion,

c = A−1y . (3.5)

Which is finally truncated to order*,+,, by setting all coefficients �8 9 : = 0 if 8 ≥ * or
9 ≥ + or : ≥ , . * and + were usually set to between 5 and 7, and, between 6 and 8.
The smoothing was optimised by hand for each domain.
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3.3.2. Integration

With the goal of achieving a Chebyshev representation of Φ in mind, the two relevant
thermodynamic derivatives are:

/ = 1 + d
(
m�

md

)
),{=8}

*∗ = −)
(
m�

m)

)
d,{=8}

.

(3.6)

The compressibility factor was used first and integrated to yield the excess free energy.

� =

∫ d∗

0

/ (d∗′) − 1
d∗′

dd∗′

=

∫ Z

1

/ (Z ′) − 1
Z ′ log Z ′

dZ ′

=
Z<0G − Z<8=

2

∫ Z̃

−1

/ ( Z̃ ′)
Z ′( Z̃ ′) log (Z ′( Z̃ ′))

dZ̃ ′

(3.7)

This expression requires a continuous integrand, so the smoothed representation of
(` − 1) � 1∗ = AcI was used. Bold letters denote column vectors (except for A which is
a matrix) and � denotes element-wise division. The integrand in the equation above was
then represented by another Chebyshev polynomial using the smoothed compressibility
factor AcI:

AcZ = (AcI ◦ 1∗) � (' ◦ log ') , (3.8)

where ' and 1∗ are transformed vectors corresponding to the vectors "̃, 3̃ and '̃ . ◦
denotes element-wise multiplication. With the integrand as a polynomial, the analytical
integral was then calculated at each of the 1000 Chebyshev nodes = to give L.

�= =
Z<0G − Z<8=

2

"−1∑
8=0

"−1∑
9=0

"−1∑
:=0

)8 (Ũ=))9 (g̃=)�Z,8 9 :
∫ Z̃=

−1
): ( Z̃ ′)dZ̃ ′ (3.9)

Finally, a Chebyshev polynomial representation of Φ was fitted:

� = Acq = L � 1∗ . (3.10)

This representation’s Z-derivative had excellent accuracy, however, small deviations
in the g-direction caused large errors in the g-derivative. The Monte Carlo generated
internal energy data was used to improve the fit.

Using the excess internal energy was not as straightforward as the compressibility factor
since the relation is a partial differential equation. The temperature-derivative in equation
3.6, transformed to UgZ-space, is given in the equation below. The shorthand notation
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for partial derivatives is used again for simplicity.

*∗ = −Φgd∗ −ΦZ d∗2ZΘg (3.11)

Solving for the g-derivative of Φ:

Φg = −
*∗

d∗
−ΦZ d∗ZΘg . (3.12)

Integration yields an expression for Φ,

Φ = −
∫ g

g<8=

*∗

d∗
+ΦZ d∗ZΘg dg + 5 (Ũ, Z̃) , (3.13)

where 5 (Ũ, Z̃) is an arbitrary function independent of g. This is not an explicit expression,
so the previously generated representation of Φ was used to calculate the Z -derivative of
Φ in the integral above.

ΦZ =
2

Z<0G − Z<8=

"−1∑
8=0

"−1∑
9=0

"−1∑
:=0

)8 (Ũ=))9 (g̃=)
d): ( Z̃)

dZ̃
�q,8 9 : (3.14)

Integration was once more performed by fitting a Chebyshev polynomial to the integrand
and integrating analytically. The function 5 (Ũ, Z̃) above was then determined by fitting a
two-dimensional Chebyshev polynomial to the difference between the old representation
of Φ and the integral. This essentially averaged out the problematic random noise in the
g-direction.

The integrated data and fitted 5 was then combined into a final Chebyshev polynomial
representation of Φ in the domain. A final smoothing was applied by truncating the
polynomial in the same manner as outlined in the previous section.

3.3.3. Combination of domains

With 16 sets of coefficients for the polynomials in the 16 domains, a single polynomial
representation of Φ was then created for the whole region of interest. The naive
implementation — a simple Chebyshev polynomial fit to selected points — gave poor
representation of the derivatives of Φ. Therefore, a more advanced approach was
developed.

"3 = 93 = 729 evaluation points were chosen at Chebyshev nodes in Ũg̃Z̃-space. For
each point, Φ and its Uℓ, g, and Z-derivatives were calculated and stored in the vectors
�,�"ℓ ,�3, and�' . Then, three new matrices were defined: AU, Ag, and AZ . They are
the three analytical derivatives of the original A-matrix defined in equation 3.3.
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The final Chebyshev coefficients c f in for Φ were then given by a weighted least squares
fit:

c f in = (XTX)−1XTy , (3.15)

where

X =


13 diag(1∗ ◦� ◦ ' ◦ (3 + 0.5) � "ℓ)A

AU

220 diag(1∗ � ("ℓ + 1))Ag

20 diag(1∗ ◦� ◦ '2)AZ

 (3.16)

and

y =


13 1∗ ◦� ◦ ' ◦ (3 + 0.5) � "ℓ ◦�

�"ℓ
220 1∗ � ("ℓ + 1) ◦�3

20 1∗ ◦� ◦ '2 ◦�'

 . (3.17)

The vectors 1∗, �, etc contain the values corresponding to each of the 729 points. The
weights were adjusted by hand to give the best possible fit.

The coefficients were then truncated to 7th, 9th, and 7th order respectively to yield the
final expression for Φ.

3.4. Equilibrium implementation

The new equation of state was implemented into my own thermochemical code EquiC,
in order to optimise gas parameters and evaluate the EOS. EquiC has previously used
BKW, JCZ3, and HMSA/C, and supports multiple condensed species. Since the scope
of this work is limited to gases only, the program was modified to prevent the formation
of solid and liquid products. This section gives a brief outline of the most fundamental
parts of EquiC. The flowchart in figure 3.2 shows how the main functions are connected
in the basic equilibrium loop.

The input data is prepared for the equilibrium solver by the preprocessor. It creates an
array {=8} that contains the number of moles of each species for exactly 1 kg of substance
in total. The equilibrium composition is roughly estimated according to a few simple
rules. Hydrogen combines with oxygen, fluorine and chlorine to form water, hydrogen
fluoride and hydrogen chloride, in that priority order. Carbon combines with oxygen to
first form carbon monoxide and then carbon dioxide if additional oxygen is available.
Nitrogen forms nitrogen gas. Any excess hydrogen, oxygen, chlorine or fluorine forms
H2, O2, Cl2 or F2 respectively. The system volume + is the volume of 1 kg of matter. The
enthalpy of formation of the compound or mixture (also for 1 kg) is used as a convenient
approximation for the internal energy, which is then preserved in the system.
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3.4. Equilibrium implementation

Figure 3.2. The basic equilibrium solving loop in EquiC.

The temperature solver (shown as "Temp" in the flowchart) takes the system volume,
the chemical composition and the internal energy, and returns the temperature of the
system. With no phase transitions, the internal energy is a nearly linear function of
temperature. The default algorithm is Newton-Raphson, which converges in only three
iterations. Each step uses the old temperature )= to generate a new, better estimate )=+1:

)=+1 = )= −
* −*1
2+

. (3.18)

Here, * is the current internal energy of the products which is calculated by the state
function every iteration, and *1 is the target internal energy. In a constant-volume
combustion, it is equal to the internal energy of the unreacted substance. In the case of
a shock wave or detonation, the shock energy has to be included as well (see equation
2.39). 2+ is the constant-volume heat capacity.

The state function, shown as red boxes in figure 3.2, implements the excess free
energy expression and its derivatives as outlined in sections 2.3 and 2.4. The ideal gas
components of the entropy and internal energy are taken from JANAF Thermochemical
Tables [38] and are stored in arrays with data points every 100 kelvin between 0 and
6000 K. Linear interpolation is used in between the data points, and the properties
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are linearly extrapolated beyond 6000 K. Given a system volume, a temperature, and
chemical composition array {=8}, the function returns the thermodynamic properties
of the system. This includes pressure, internal energy, free energy (�), entropy, and
chemical potentials for all species ({`8}).

The equilibrium solving function generates a better estimate of the chemical composition
array {=8} in the system at current volume and temperature. The objective is to minimise
the total Helmholtz free energy of the mixture. This is done by generating equilibrium
constants for a number of hypothetical reactions, solving them sequentially, and updating
the chemical composition. Compared to algorithms such as steepest descent, this method
finds the global minimum and not just the closest local minimum.

The method requires at least one reaction for each product in the product library. The
reactions are not necessarily reactions that would occur in reality, since equilibrium
composition is unaffected by reaction path. The reactions were instead chosen to optimise
convergence rate and numerical efficiency. A complete list is available in appendix B.

Consider the reaction 0 A + 1 B
 2 C + 3 D. At chemical equilibrium, the dimensionless
partial pressures of the products and reactants are related to the equilibrium constant  
by the equation

 =
?2
�
?3
�

?0
�
?1
�

. (3.19)

 is determined from the chemical potentials of the involved gases.

 = exp
(
−2`� + 3`� − 0`� − 1`�

')

)
(3.20)

By enforcing mass conservation, equation 3.19 is transformed into

(?� + 2G)2 (?� + 3G)3 −  (?� − 0G)0 (?� − 1G)1 = 0 , (3.21)

which is solved for G, a variable that determines how much of each gas must be created or
destroyed to achieve equilibrium. If min(0 + 1, 2 + 3) ≤ 2, then equation 3.21 is solved
analytically. Else, a second order Taylor series is expanded around G = 0 and solved to
give an estimate of G which gradually converges each time the equilibrium function is
called. After the equation has been solved once for every reaction, the {=8} vector is
updated and returned.

A new temperature can then be calculated using the new composition array, and the
loop continues until global equilibrium has been reached. This usually takes less than
50 iterations. This basic loop has been used to find the equilibrium state in both shock
Hugoniots and detonations.
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3.5. Determination of gas parameters

Several more or less complete exponential-6 product libraries are available in the literature
[14], [20], [21], [39]. There are considerable differences between parameters in the
different libraries, even for the most common gases. Therefore, the existing parameters
of the most important species were evaluated and new parameters were optimised when
necessary.

Shock Hugoniots provide a good test for an equation of state since extremely high
pressures and densities are attainable. At several times liquid density and pressures in
excess of a million atmospheres, the fluid is very far from an ideal gas, and as such its
properties are very sensitive to the choice of exp-6 parameters. The states along the
Hugoniot follows only a single line in ?+)-space however, and initial testing revealed
that experimental shock Hugoniot data could be adequately replicated by a range of
different gas parameters. A high U (stiff molecule) could be compensated by a smaller
A∗ (radius). The potential well depth Y did not affect the fit considerably as long as it
was within a fairly large interval. Therefore, an additional data source was required to
properly evaluate and optimise parameters. Both Fried et al. [14] and Victorov et al.
[20] used a combination of Hugoniot data and static ?+)-measurements to calibrate
their potential parameters. A similar approach was used in this work.

The NIST Chemistry WebBook [15] provides accurate reference equations of state for a
long list of common fluids. Since they are based on essentially all available experimental
data, they are expected to be more accurate than individual experimental data points.
Another advantage is that properties are available at any point in ?+)-space. Pressure,
internal energy, heat capacity at constant volume (2+ ) and speed of sound (2) were the
four selected properties; the first two are first derivatives of the free energy and the last
two are second derivatives. Their usual form is shown below [40].

2+ =

(
m*

m)

)
d

(3.22)

2 =

√(
m?

md

)
(

(3.23)

The cost function which was to be minimised during optimisation was constructed as a
weighted sum of the relative errors. Shock pressure, shock velocity and particle velocity
errors were given equal weights. For the static ?+)-data, pressure was usually given
weight 4, internal energy weight 2, and heat capacity and speed of sound each got weight
1. These two groups were normalised and usually given equal weight, however some
gases required a much higher weight on the static properties in order to give the cost
function a more sharply defined minimum. The optimisations were performed using
exhaustive search.
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The order of the parametrisation proved to be very important, since many gases could
not be evaluated on their own. For example, monatomic nitrogen will always exist in an
equilibrium with the much more stable diatomic nitrogen. N is only abundant enough to
evaluate its exp-6 parameters under very strong shock compression of liquid nitrogen.
The potential parameters for N2 are required in order to simulate the shock compression,
so they must be determined first. The workflow is outlined in the list below:

• N2 was optimised using data from NIST and shock Hugoniot data below 40 GPa.
The dissociation into N was negligible below this pressure.

• N constituted almost 2/3 of the shocked gas at 80 GPa, so the high pressure end of
the Hugoniot was used to test parameters. Parameters from [14] gave a good fit.

• O2 was tested using NIST and shock Hugoniot data. The parameters from [14]
gave an excellent fit and required no further optimisation.

• O was more difficult to evaluate due to limited dissociation of O2, but the values
from [20] provided a good fit.

• H2 was optimised using data from NIST and shock Hugoniots.

• H parameters from [14] then gave a good agreement with experimental shock
temperature, pressure and velocity in the upper part of the Hugoniot.

• H2O dissociates into H2, O2, H, and O when shocked to high pressures, but with
these determined, the parameters for water could be optimised using shock data
and static data from NIST.

• NH3 was optimised in the same way as H2O.

• CO and CO2 are very important combustion products, but they break down into
carbon when shocked to high pressures and could therefore not be optimised
properly (since no condensed products are included). CO2 parameters from [14]
and [20] were evaluated at pressures below 40 GPa and those from [20] were
slightly better. The CO parameters from [14] were chosen since they were closest
to those of the isoelectronic and equally heavy N2 molecule.

• NO2, N2O and NO were difficult to evaluate directly and parameters were taken
from [20].

• CHNO and CH2O2 (hydrogen isocyanate and formic acid) are usually minor
products but the choice of parameters proved to be important for the modelling of
nitroesters. Parameters for CH2O2 in particular varied considerably in the literature
but the most recent values from [21] were chosen. This gave excellent agreement
with the experimental PETN Hugoniot in the 40–90 GPa region, where formic
acid was predicted to be a major product.

• OH, the hydroxyl radical, was only available in the old JCZS library [11] and was
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taken from there.

• Parameters for all other gases were taken from [14].

The complete product library is available in table A.1 in the appendix. Even if all
these potential parameters would describe each gas perfectly on its own, there are still
pair-interactions between different species which are not perfectly represented by the
mixing rule (equation 2.4). Therefore, the equation contains :8 9 , an unlike-pair correction
factor for A∗

8 9
. Some previous works [21], [39] have included correction factors for Y8 9

and U8 9 as well, but these have often remained unused; probably because A∗
8 9
is the easiest

one to calibrate.

Only four unlike-pair corrections were determined in this work. Since only a single value
was adjusted for each case, and no advanced cost function was required, the optimisation
was performed by hand. The values are listed in table A.2 in the appendix.

• N2 – NH3 was chosen to correctly reproduce the detonation velocity, pressure, and
temperature of liquid hydrazoic acid. This explosive was predicted to produce
mostly nitrogen and ammonia which makes it ideal for the calibration.

• N2 – H2O was adjusted to better predict the detonation velocity of hydrazoic
acid/water mixtures. These produce almost exclusively N2 and H2O as products so
no other species were expected to interfere.

• CH2O2 – N was calibrated using shock Hugoniot data for PETN above 90 GPa.
Without a correction factor, the fit is good up to 90 GPa, after which the system
becomes too soft. This coincides with the onset of dissociation of N2 into N which
cools the system, and rapidly increasing amount of CH2O2 which decreases the
total amount of gas. Their unlike-pair constant was adjusted until the fit was good
above 90 GPa as well.

• CO2 – O has been given a correction factor by several authors, but since the best
data source for evaluation is a high pressure CO2 Hugoniot, the constant could not
be optimised in this work. It was therefore taken from [14] instead.
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Results

4.1. Evaluation of the Monte Carlo program

The Monte Carlo program was compared to reference simulations performed by Fried
and Howard [19] in order to assess its accuracy. Nine state points with various densities,
temperatures and stiffness coefficients were selected and / and *∗ calculated. 512
particles and 100 000 cycles were used in each simulation, compared to 1024 particles
and 140 000 cycles in the reference calculations. The results are shown in the table
below. The estimated standard error is denoted B. The 100 000 cycles were divided
into 10 blocks of 10 000 cycles, each block long enough to be considered essentially
independent from the others. The corrected sample standard deviation for the blocks
was then divided by

√
10 to give the standard error B.

Table 4.1. The results of long Monte Carlo simulations compared to reference values. Estimated
standard errors are denoted B.
State 512 particles, 100 000 cycles Reference [19]
d∗ )∗ U / B/ *∗ B* /A4 5 B/ *∗

A4 5
B*

3.8198 100 15.5 16.1730 0.0052 4.1189 0.0018 16.1734 0.0018 4.1193 0.0006
3.8198 100 13.5 9.9247 0.0010 2.8099 0.0004 9.9252 0.0007 2.8103 0.0003
3.8198 100 11.5 5.5030 0.0009 1.7974 0.0005 5.5049 0.0002 1.7982 0.0001
2.4749 20 15.5 15.9919 0.0065 2.8583 0.0018 15.9874 0.0020 2.8574 0.0006
2.4749 20 13.5 11.3064 0.0026 2.1600 0.0009 11.3049 0.0014 2.1596 0.0005
2.4749 20 11.5 7.3341 0.0016 1.4838 0.0007 7.3350 0.0005 1.4842 0.0002
1.4991 5 15.5 8.0751 0.0040 -0.1395 0.0009 8.0755 0.0018 -0.1387 0.0004
1.4991 5 13.5 6.5616 0.0046 -0.2677 0.0011 6.5626 0.0014 -0.2666 0.0003
1.4991 5 11.5 4.9173 0.0026 -0.4530 0.0008 4.9210 0.0011 -0.4515 0.0003

The results are overall extremely close to the reference. The differences and average
absolute difference between the two sets are shown in table 4.2 below. The table also
contains the C statistic from Welch’s C-test, which is essentially how the difference
compares to the combined standard errors. This was used to test the hypothesis that both
Monte Carlo programs would converge on the same results given infinite computation
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time. The largest (absolute) C is −1.97, which together with the approximately 9.6
degrees of freedom gives a two-tailed test ?-value of 0.079. Without a more in-depth
discussion about appropriate confidence intervals, the MC program written in this work
probably converges slightly differently than the reference, but it cannot be definitely
proved without more extensive simulations.

Table 4.2. The difference between present and reference calculations. The ratio of the differences
and the combined standard errors are shown in the C-columns.

d∗ )∗ U / − /A4 5 C *∗ −*∗
A4 5

C

3.8198 100 15.5 -0.0004 -0.08 -0.0004 -0.19
3.8198 100 13.5 -0.0005 -0.41 -0.0004 -0.67
3.8198 100 11.5 -0.0019 -1.97 -0.0008 -1.41
2.4749 20 15.5 0.0045 0.67 0.0009 0.49
2.4749 20 13.5 0.0015 0.52 0.0004 0.35
2.4749 20 11.5 -0.0009 -0.51 -0.0004 -0.56
1.4991 5 15.5 -0.0004 -0.09 -0.0008 -0.86
1.4991 5 13.5 -0.0010 -0.22 -0.0011 -0.97
1.4991 5 11.5 -0.0037 -1.34 -0.0015 -1.77
Average 0.0017 0.0007

As a comparison, the / and *∗ values from the fitted EOS are presented for the same
nine state points in the table below. The estimated standard errors for 10 000 cycle long
simulations are also shown. The average absolute differences are several times larger
than those of the long MC simulations in the previous table but very close to the average
standard errors. This indicates that the Monte Carlo implementation is not the main
source of error, regardless of whether it converges exactly or not.

Table 4.3. The difference between the new EOS and reference values. The standard errors of
10 000-cycle MC calculations have been included as well.

d∗ )∗ U /�$( /�$( − /A4 5 B/ *∗
�$(

*∗
�$(
−*∗

A4 5
B*

3.8198 100 15.5 16.1649 -0.0085 0.0163 4.1196 0.0003 0.0057
3.8198 100 13.5 9.9285 0.0033 0.0032 2.8110 0.0007 0.0013
3.8198 100 11.5 5.4676 -0.0373 0.0030 1.7925 -0.0057 0.0017
2.4749 20 15.5 15.9823 -0.0051 0.0205 2.8530 -0.0044 0.0058
2.4749 20 13.5 11.3020 -0.0029 0.0082 2.1578 -0.0018 0.0029
2.4749 20 11.5 7.3178 -0.0172 0.0051 1.4848 0.0006 0.0023
1.4991 5 15.5 8.0742 -0.0013 0.0126 -0.1393 -0.0006 0.0027
1.4991 5 13.5 6.5531 -0.0095 0.0144 -0.2702 -0.0036 0.0034
1.4991 5 11.5 4.9150 -0.0060 0.0081 -0.4540 -0.0025 0.0026
Average 0.0101 0.0102 0.0022 0.0032
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4.2. Representation of a simple exp-6 fluid

The extensive Monte Carlo simulations performed by Fried and Howard [19] have been
used several times to benchmark statistical mechanical theories and equations of state
over a wide range of conditions. The original set contains 57 data points, however two
of the high density points fall outside the domain used in this work. In particular, one
of them (d∗ = 5.8025, )∗ = 100, U = 15.5) showed signs of freezing which makes it
unsuitable for evaluating fluids. Gubin and Victorov excluded the same two points in
their comparison [41].

Table 4.4 below shows the accuracy of a number of theories and equations of state. The
first two are the statistical mechanical theories MCRSR and HMSA and the following four
are polynomial representations used in various thermochemical codes. The improved
KLRR uses around 40 000 coefficients [21], 4th order HMSA/C uses 1280 coefficients,
6th order HMSA/MC uses 4320 + 8 coefficients (the 8 being a correction polynomial)
[19] and 5th order KLRR as used in Explo5 uses 125 coefficients, however with a much
smaller valid region than the others [21]. The smoothed Monte Carlo results are the
Chebyshev polynomials fitted to the / and* data in the 16 domains, i.e. 32 polynomials
with 4464 coefficients in total. The present EOS uses only 441 coefficients, a reduction
by 90% with minimal loss of accuracy. It is several times more accurate than most
other equations of state, and much less complicated than HMSA/MC which contains 20
separate domains and a correction polynomial based on the 57 Monte Carlo data points
[19]. The average relative error of some set of values G8 compared to the reference values
A8 is

ΔG =
1
<

<∑
8=1

����G8 − A8A8

���� . (4.1)

Table 4.4. Average relative errors of several equations of state compared to the reference MC
data by Fried and Howard [19].

Method Average relative error Reference
ΔZ (%) ΔU (%)

MCRSR 2.07 2.46 [41]
HMSA(0) 0.69 1.65 [19]
Improved KLRR 0.60 0.87 [41]
HMSA/C 4th order 0.72 1.89 [41]
HMSA/MC 6th order(0) 0.19 0.28 [19]
KLRR 5th order(0) (1) 0.37 0.76 [21]

Smoothed MC results 0.11 0.25 This workEOS 0.14 0.25

(0) Evaluated using all 57 data points. (1) Valid over a smaller temperature range.
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4.3. Representation of real gases

The excellent representation of an exp-6 fluid has little value if it cannot be used to
model a real gas. The accuracy of the equation of state developed in this work has been
tested for six gases: nitrogen, oxygen and hydrogen which are all nonpolar, roughly
spherical molecules; carbon dioxide which is nonpolar but more elongated; and water
and ammonia which are strongly polar molecules. Among these, the potential parameters
for N2, H2, H2O and NH3 were optimised in this work. Four thermodynamic properties
have been studied: pressure, internal energy, heat capacity and speed of sound. The
calculated values have been compared to reference data from NIST Chemistry WebBook
[15] over a wide range of conditions.

The fluid density at a given pressure is overall predicted very well by the model, with
average deviation from the reference values on the order of 1%. The internal energy also
showed excellent agreement for the nonpolar species, but a significant deviation for water
and ammonia. In order to produce comparable error estimates for different gases, only
the thermal energy was considered, i.e. the internal energy was set to 0 at absolute zero.
The heat capacity and speed of sound are generally well predicted at high temperature,
but the fits become gradually worse as the temperature drops and completely fail close to
the critical temperature.

4.3.1. Nitrogen

Nitrogen data is available for the widest temperature and pressure range of all gases
considered here. Five isotherms were calculated at temperatures of 300–2000 K and
pressures between 0.2 and 2.2 GPa (2–22 kbar). They are shown in figure 4.1 together
with reference data.

The average errors shown in table 4.5 are on the same order as the uncertainty of
the reference values. While the error is evenly spread over the whole temperature
range for the density and speed of sound 2, the calculated heat capacity only shows
significant deviation for the two lowest temperatures (300 and 600 K) and are well within
experimental uncertainty elsewhere. Internal energy has a similar trend; the average
deviation above 1000 K is less than 0.2%.
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Table 4.5. Average relative errors of density, internal energy, heat capacity and speed of sound
for nitrogen gas at 300–2000 K and 0.2–2.2 GPa. This is compared to the uncertainty of the
reference values in the same region [15].

Average relative error / uncertainty of NIST data
Δd(%) Δ* (%) Δ2+ (%) Δ2(%)

EOS 0.8 1.8 1.4 3.0
NIST data 0.6 - >2 0.5–1.5

(a) Pressure vs specific volume. (b) Internal energy vs specific volume.

(c) Heat capacity vs pressure. (d) Speed of sound vs specific volume.

Figure 4.1. Static properties of nitrogen gas. Solid lines are EOS isotherms and symbols are
data from NIST [15]. The accuracy is overall very good but the heat capacity is underestimated
at low temperature and high pressure.
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4.3.2. Oxygen

Oxygen data was available in a much smaller pressure range, only up to 800 bar. Five
isotherms were calculated in the 280–1000 K interval and three of them are shown in
figure 4.2. The density error is similar to that of nitrogen, but the reference values
have significantly lower uncertainty in this region. The mean speed of sound error is a
considerable 14% at 280 K and pressures higher than 400 bar but quickly falls to 1% at
475 K and above, which is the same as the experimental uncertainty.

Table 4.6. Average relative errors of density, internal energy, heat capacity and speed of sound for
oxygen gas at 280–1000 K and 20–80 MPa. This is compared to the uncertainty of the reference
values in the same region [15].

Average relative error / uncertainty of NIST data
Δd(%) Δ* (%) Δ2+ (%) Δ2(%)

EOS 0.8 0.4 0.8 3.0
NIST data 0.1 - 2 1

(a) Pressure vs specific volume. (b) Internal energy vs specific volume.

(c) Heat capacity vs pressure. (d) Speed of sound vs specific volume.

Figure 4.2. Static properties of oxygen gas. Solid lines are EOS isotherms and black symbols
are data from NIST [15]. The fit is generally very good but the speed of sound is overestimated at
low temperatures.
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4.3.3. Hydrogen

Hydrogen data was available all the way up to 20 kbar and the error shows very much the
same trends as for nitrogen and oxygen. Despite the good internal energy representation,
there is a significant deviation in heat capacity, about 1.5% for the 1000 K isotherm and
as much as 13% at 250 K and 2 GPa.

Table 4.7. Average relative errors of density, internal energy, heat capacity and speed of sound
for hydrogen gas at 250–1000 K and 0.2–2 GPa. This is compared to the uncertainty of the
reference values in the same region [42].

Average relative error / uncertainty of NIST data
Δd(%) Δ* (%) Δ2+ (%) Δ2(%)

EOS 1.3 1.4 4.2 2.1
NIST data 1 - 1.0 -

(a) Pressure vs specific volume. (b) Internal energy vs specific volume.

(c) Heat capacity vs pressure. (d) Speed of sound vs specific volume.

Figure 4.3. Static properties of hydrogen gas. Solid lines are EOS isotherms and black symbols
are data from NIST [15]. Heat capacity and speed of sound are not very well represented at low
temperatures.
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4.3.4. Carbon dioxide

The carbon dioxide fit has larger errors on average than the previous three gases. Density
is still within experimental uncertainty, as is the speed of sound at high temperature and
below 0.5 GPa, and the heat capacity above 800 kelvin. There is however a noticeable
error in the internal energy which is carried over to the heat capacity at low temperature.

Table 4.8. Average relative errors of density, internal energy, heat capacity and speed of sound
for carbon dioxide at 500–1100 K and 0.1–0.8 GPa. This is compared to the uncertainty of the
reference values in the same region [43].

Average relative error / uncertainty of NIST data
Δd(%) Δ* (%) Δ2+ (%) Δ2(%)

EOS 1.5 2.4 3.5 6.8
NIST data 1–2 - 2–4 1–4

(a) Pressure vs specific volume. (b) Internal energy vs specific volume.

(c) Heat capacity vs pressure. (d) Speed of sound vs specific volume.

Figure 4.4. Static properties of carbon dioxide. Solid lines are EOS isotherms and black symbols
are data from NIST [15]. Some deviation is seen for the internal energy which in turn leads to
poorly represented heat capacity.
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4.3.5. Water

The strongly polar water molecule is not nearly as well represented as the other gases.
There is a near constant deviation in energy, which is noteworthy because the heat
capacity is better represented despite being its derivative. The 700 K isotherm was
extended down to ambient pressure in order to show the sharp peak in heat capacity
close to the critical point (647 K and 22 MPa [15]); this is not captured at all by the EOS.
The huge deviation in speed of sound at 700 K and 2 cm3/g may be caused by numerical
problems because it was very sensitive to step size.

Table 4.9. Average relative errors of density, internal energy, heat capacity and speed of sound
for supercritical water at 700–1275 K and 0.1–1 GPa. This is compared to the uncertainty of the
reference values in the same region [15].

Average relative error / uncertainty of NIST data
Δd(%) Δ* (%) Δ2+ (%) Δ2(%)

EOS 1.4 9.2 6.7 13.7
NIST data 0.25–0.5 - >0.5 -

(a) Pressure vs specific volume. (b) Internal energy vs specific volume.

(c) Heat capacity vs pressure. (d) Speed of sound vs specific volume.

Figure 4.5. Static properties of supercritical water. Solid lines are EOS isotherms and symbols
are data from NIST [15].
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4.3.6. Ammonia

Ammonia is also a polar molecule and the calculated isotherms deviated from the
reference values in a similar way, but less severely. The exception was the density which
had the best fit of all six gases. Another noteworthy observation is that the speed of
sound is predicted more accurately at high pressure than moderate pressures.

Table 4.10. Average relative errors of density, internal energy, heat capacity and speed of sound
for gaseous ammonia at 500–700 K and 0.1–1 GPa. This is compared to the uncertainty of the
reference values in the same region [15].

Average relative error / uncertainty of NIST data
Δd(%) Δ* (%) Δ2+ (%) Δ2(%)

EOS 0.5 5.8 3.5 7.1
NIST data 0.2 - 2 2

(a) Pressure vs specific volume. (b) Internal energy vs specific volume.

(c) Heat capacity vs pressure. (d) Speed of sound vs specific volume.

Figure 4.6. Static properties of gaseous ammonia. Solid lines are EOS isotherms and black
symbols are data from NIST [15].
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4.4. Shock Hugoniots

Experimental shock Hugoniot data served as a good test for gas parameters and the
equation of state at more extreme conditions. The same six species were evaluated:
N2, O2, H2, CO2, H2O and NH3, all initially in liquid form but shocked well into the
supercritical region. All six calculated shock Hugoniots display excellent agreement
with the experimental data. There is no noticeable difference in accuracy between polar
and nonpolar molecules which indicates that the dipole approximation works well at
elevated temperatures. The results for nitrogen and water are presented in figures 4.7
and 4.8 in this section; the rest which all look very similar are available in appendix C.

4.4.1. Nitrogen

(a) Shock pressure as function of specific
volume.

(b) Shock velocity as function of mass velocity.

(c) Temperature as function specific volume.

Figure 4.7. Liquid nitrogen shock Hugoniot. The calculated values are shown as black lines,
compared to experimental data from [30] (red), [31] (green) and [44] (blue).
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The most prominent feature of the nitrogen Hugoniot, which is not seen as clearly for the
other gases, is the sudden change of slope in the shock velocity/particle velocity plot. This
marks the onset of the highly endothermic dissociation into monatomic nitrogen. The
endothermic nature is clearly shown in subfigure 4.7 (c) as a change of slope around 0.5
cm3/g. The experimental temperature seems to display a more complicated relationship
with the shock volume than the calculated temperature, but it is hard to draw more exact
conclusions due to the large experimental uncertainties.

4.4.2. Water

The water Hugoniot has a more standard shape with a nearly straight shock velocity–
particle velocity relationship. The calculated curves pass within nearly all error bars,
except for the temperature curve that is very slightly too high.

(a) Shock pressure as function of specific
volume.

(b) Shock velocity as function of mass velocity.

(c) Temperature as function specific volume.

Figure 4.8. Liquid water shock Hugoniot. The calculated values are shown as black lines,
compared to experimental data from [30] (red), [45] (blue), [32] (green) and [46] (magenta).
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The low-pressure tail of the Hugoniot could not be calculated. The low temperature
(only slightly above critical temperature) and relatively high density (almost twice the
normal liquid density) cause these states to fall outside the domain used in this work.

4.4.3. PETN

Pentaerytrhitol tetranitrate (PETN) is a high explosive on its own and has a well-defined
detonation velocity and detonation pressure. It can also be shocked to higher pressures by
external means, a phenomenon known as an overdriven detonation. Figure 4.9 shows the
experimental overdriven shock Hugoniot of PETN compared to simulation results. The
red and blue curves are from [14], calculated using HMSA/MC and JCZS respectively.
The present model is shown as a black line. It was calculated based on the assumption
that no carbon forms in the shock wave. PETN is very slightly oxygen deficient, so if
carbon is formed, it is a minor product.

Figure 4.9. The calculated shock Hugoniot of PETN compared to experiments and two other
models: HMSA/MC with the EXP6 library and the JCZS library [14]. The experiments were
performed by Green et al. [47].
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4.5. Detonations

The calculated C-J point in high explosives is very sensitive to the equation of state
and gas parameters. Experimentally determined detonation velocities are also readily
available in the literature. Table 4.11 lists ten different explosives: two slightly oxygen-
positive nitrate esters, five hydrogen-free compounds, and three carbon-free explosives
or mixtures. None of them are expected to form solid or liquid carbon so they can be
modeled without a condensed phase equation of state. The table presents experimental
detonation velocity (�), and when available, detonation pressure (%) and temperature
as well. In addition to values calculated by EquiC, results from other thermochemical
codes were included for comparison when available.

Table 4.11. Experimental and calculated detonation properties of ten different explosives.
Compound d (g/cm3) � (km/s) % (GPa) ) (K) Method
Erythritol tetranitrate 1.702 7.97 ± 0.02 Experiment [48]
(ETN) 8.113 Cheetah [48]
C4H6N4O12 7.991 26.0 4184 EquiC
Nitroglycerin (NG) 1.6 7.70 25.3 4300 ± 100 Experiment [7]
C3H5N3O9 7.622 22.7 4372 EquiC
Liquid nitric oxide 1.3 5.62 ± 0.07 10 ± 1 Experiment [20]
NO 5.55 9.52 2858 TDS [20]

5.552 9.5 2869 Explo5 [21]
5.578 9.65 2868 EquiC

Tetranitromethane 1.65 6.45 15.5 Experiment [20]
(TNM) 6.46 15.0 2231 TDS [20]
CN4O8 6.45 14.9 2239 Explo5 [21]

6.474 15.2 2246 EquiC
Hexanitroethane 1.86 7.58 Experiment [20]
(HNE) 7.58 23.8 2527 TDS [20]
C2N6O12 7.584 23.7 2536 Explo5 [21]

7.570 24.0 2531 EquiC
Hexanitrobenzene 1.973 9.33 Experiment [20]
(HNB) 9.34 39.0 4896 TDS [20]
C6N6O12 9.313 38.5 4871 Explo5 [21]

9.354 39.1 5058 EquiC
4,4’-Dinitro-3,3’ 1.77 9.00 ± 0.10 Experiment [20]
-diazenofuroxan 8.94 33.3 5541 TDS [20]
(DDF) 8.915 33.0 5510 Explo5 [21]
C4N8O8 8.995 33.6 5725 EquiC
Hydrazoic acid 1.127 7.57 ± 0.02 16.6 4710 ± 120 Experiment [49]
HN3 7.572 16.4 4745 EquiC
Hydrazine nitrate (HN) 1.64 8.80 ± 0.05 21.1 ± 0.4 Experiment [50]
H5N3O3 8.952 29.6 2226 EquiC
RX-23-AB 1.38 7.48 ± 0.07 18.5 ± 0.5 Experiment [26]
70% HN, 24.1% water, 7.763 17.9 2168 EquiC
5.9% hydrazine
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The majority of the calculations have excellent accuracy. The detonation velocity of
the hydrogen-free explosives in particular deviate by 20 m/s on average and 42 m/s at
most, well within the available experimental uncertainties. TDS and Explo5 are almost
as accurate on average, but less consistent. Both programs underestimate DDF and
liquid NO; the predictions of the latter are just at the lower bound of the experimental
uncertainty.

The calculated values for ETN are in excellent agreement with recent experiments, both
at high and low loading densities as shown in figure 4.10. NG is slightly underestimated
in terms of detonation velocity (1%) and pressure (10 %). Those specific measurements
lack reported uncertainties, but the authors note that "Detonation velocities can typically
be measured to within a few percent" and "detonation pressures determined by various
indirect methods span a range of 10–20%" [7].

The only cases for which the new EOS clearly fails are the carbon-free explosives that
produce almost exclusively nitrogen and water as products. The detonation velocities of
both HN and RX-23-AB are significantly overestimated. Hydrazoic acid-water mixtures
also show significant deviations between simulations and experiments, see figure 4.11.
A small fraction of water leads to high temperatures (over 3000 K) and the detonation
velocity is underestimated in this region. As the water content approaches 50% by weight,
the temperature falls below 2000 K and � is overestimated instead.

Figure 4.10. Detonation velocity of ETN at
different densities. Simulation vs. experiments
from [51] (blue), [52] (green), and [48] (red).

Figure 4.11. Detonation velocity of aqueous
hydrazoic acid solutions. Simulation compared
to experiments from [49].
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Discussion

The equation of state developed in this work is a significant improvement in terms of
both accuracy and simplicity when compared to other similar equations of state. When
it comes to the representation of a simple exp-6 fluid, the small error can be attributed
mainly to the uncertainty of the Monte Carlo simulations. Therefore, the accuracy of the
EOS can be increased simply by running longer simulations. The computational cost
is considerable even for marginal accuracy gains however. Halving the error requires
four times longer simulations, and reducing it by a factor of ten would require a hundred
times more computational power, on the order of 100 000 core-hours.

It is doubtful whether further improvements in the representation of a simple exp-6 fluid
would improve its accuracy much more in practical applications. The limiting factor now
seems to be the applicability of the exp-6 potential itself. The optimised gas parameters
for nonpolar species have consistently reproduced the density and internal energy to
about 1% and less than 2% respectively, compared to 0.14% and 0.25% for the simple
exp-6 fluid. These are still excellent results considering that the uncertainties of the
experimental data have been on the order of 1%.

The present EOS has shown its value in my thermochemical code. The implementation
was straightforward and its polynomial form was numerically efficient as expected.
Calculated detonation properties served as a good test for the equation of state and
gas parameters, since the results are very sensitive to pressure, internal energy and
the chemical potential of all species. The calculated detonation properties compare
favourably with results from other thermochemical codes and seem to be slightly
more accurate, at least for this selection of explosives. Only the explosives consisting
of hydrogen, nitrogen and oxygen showed a significant deviation from the measured
performance. The source of this deviation will be discussed in detail later in this section.

The most obvious shortcoming of this equation of state is caused by the underlying
intermolecular potential. The spherically symmetric nature of exponential-6 cannot
capture the complex interactions in polar liquids like water. Ree concluded that
the potential of water can be approximated as spherically symmetric above 1300 K
[25]. Indeed, the dipole approximation (equation 2.2) seems to work perfectly at
elevated temperatures considering the excellent Hugoniot fit in figure 4.8. The dipole
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approximation was not sufficient at lower temperatures; this was clearly shown by the
poor representation of internal energy, heat capacity and speed of sound in the 700–1275
K range (figure 4.5). The internal energy deviation is interesting because it is consistently
overestimated and nearly constant for respective isotherm. It is most likely caused by
hydrogen bonding networks — more bonds in the fluid lowers its internal energy.

Fried et al. used an elegant solution to this problem: a multi-species model of polar
molecules [14]. Water was represented by associated and non-associated water, treated
as two separate species with the same chemical formula. Associated water had slightly
smaller radius, lower internal energy and lower entropy, as would be expected when
hydrogen bonds are prevalent. It was favoured at low temperature and high density, while
regular non-associated dominated at high temperature. This allowed them to reproduce
the low-pressure tail of the water Hugoniot, where a one-species model fails due to high
density and low temperature. Smaller molecular radius leads to lower dimensionless
density, and a lower internal energy leads to higher shock temperature. Both effects
contribute to bringing the states into the domain of the equation of state. Fried et al. did
not investigate the static internal energy, but the approach could most likely be used to
correct that deviation as well.

The slightly overestimated shock temperature of water in the 50–80 GPa range is not
necessarily caused by the equation of state however, but can probably be attributed to the
product library. Several radicals are included, for example OH, H and O; but no ions like
H+, H3O+ and OH–. Experiments have shown that significant ionisation occurs above
20 GPa based on the high electrical conductivity of shocked water [45]. This dissociation
is endothermic, and could possibly explain the temperature difference.

The van der Waals one-fluid (vdW1f) mixing rules have been an incredibly fundamental
assumption in this work. They allow theMonte Carlo results, which are based on identical
exp-6 particles, to be applied to mixtures of gases with vastly different properties. The
Lorentz-Berthelot rule similarly allowed the huge number of potential parameters for
unlike-pair interactions to be approximated from pure gas parameters. Overall, the
vdW1f and Lorentz-Berthelot rules have been remarkably successful considering their
simplicity and empirical nature. There are however two important limitations, one related
to the single-phase assumption and one related to the mixing rule itself.

All calculations in this work assumed a single, homogeneous mixture of all fluid
components. This is a fair assumption, since gases are usually miscible. One pair of
common gases is an important exception however — supercritical water and nitrogen
undergo phase separation at elevated pressure. Costantino and Rice determined the
solubility line experimentally up to 830 K, where phase separation occurs above 2.1 GPa
[53]. No direct measurements are available at the extreme conditions in a detonation, but
van Thiel and Ree simulated the phase separation in detonating RX-23-AB using the
exp-6 potential [26]. Increasing :8 9 for the H2O-N2 interaction to 1.04 was sufficient to
cause phase separation at 2600 K and 18 GPa, which brought the calculated detonation
velocity down much closer to the measured value. The only cases where detonation
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velocities calculated by EquiC deviated significantly from experiment were hydrazine
nitrate, RX-23-AB and aqueous solutions of hydrazoic acid. All three form almost
exclusively nitrogen and water as products and the deviations are in line with the results
from van Thiel and Ree. HN, RX-23-AB and dilute HN3 solution are all overestimated
by EquiC and have detonation temperatures around 2000 K. Phase separation would
soften the system and lower detonation velocity. Concentrated HN3 solutions on the
other hand were underestimated by about 200 m/s and reach temperatures higher than
3000 K. This is in the single-phase region where an increased :8 9 leads to a stiffer system
and higher detonation velocity; setting :8 9 to 1.05 indeed gave much better agreement
with experiments.

The vdW1f mixing rules also have limited applicability to mixtures of gases with very
dissimilar potential well depths. Bogdanova et al. determined that two species with
an Y-ratio larger than 3 are poorly represented as an effective one-fluid, and showed
that a two-component model based on perturbation theory could replicate Monte Carlo
simulations much more successfully [54]. The problem has not been directly observed in
this work. The similar Y-values of hydrogen-free detonation products may on the other
hand be a reason behind the excellent results for this class of explosives.

The calibration of gas parameters was straightforward for common species like water,
nitrogen, and oxygen but turned out to problematic for unstable species or more
complicated molecules. Monatomic nitrogen, oxygen and hydrogen could still be
validated through liquid shock Hugoniots of the respective species, since those were
essentially two-component systems and parameters for the diatomic molecules were
already known. The hydroxyl radical is an example of an even more difficult species.
H2O, H2, O2, H, and Owill always be present in a system containing OH, and to determine
potential parameters of a minor species in a six-component mixture is unfeasible due to
the many sources of error. The parameters for OH used in this work are taken from the
JCZS library, which in turn adopted parameters from old Lennard-Jones libraries.

It is easy to question the necessity of including minor species with uncertain parameters
in the product library. However, it quickly became apparent that minor products play
important roles in very specific cases. For example, the choice of parameters for formic
acid and hydrogen isocyanate had a profound effect on the C-J point of PETN. The
effect was not due to a direct change of pressure and temperature, but due to large
changes in the equilibrium composition. Similarly, :8 9 which corrects the unlike-pair
parameters given by the Lorentz-Berthelot rule seemed to mostly affect the chemical
equilibrium in multi-component mixtures, which made them hard to calibrate. Accurate
experimental data for high-density binary mixtures are required to properly calibrate
these constants. Again, it only works for stable products such as water and nitrogen
(produced by RX-23-AB) or nitrogen and carbon dioxide (from hexanitrobenzene). The
CO2 − O and CH2O2 − N interactions are based on multi-component systems and are
most likely less accurate.
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Conclusions

In this thesis, I have developed a new equation of state for gases and supercritical fluids
in the form of an analytical expression of the excess Helmholtz free energy. The idea of
an analytical, numerically efficient EOS for use in chemical equilibrium calculations
is not new. The two breakthroughs in this work have instead been the new variable
transformation and the use of Monte Carlo simulations to generate the EOS. The new
transformation has eliminated the need for multiple domains which reduced the number
of polynomial coefficients tenfold. The inherently noisy Monte Carlo data has required
a more complicated scheme in order to calculate the free energy and fit a polynomial
expression, but the finished EOS is, to my knowledge, more accurate than any previous
exponential-6 equation of state.

The EOS has been very successful in the representation of real gases. Small, nonpolar
molecules are well modelled by the exponential-6 potential and their predicted thermo-
dynamic properties have had excellent agreement with experimental data, from normal
conditions up to 15000 K and a million times atmospheric pressure. Dense mixtures
of detonation products are also well represented and the EOS can be used to accurately
model shock and detonation phenomena. However, polar fluids and water in particular
have not been adequately represented below 1300 K. A multi-species model of polar
fluids is an interesting future extension to the equation of state.

There is also clearly a need for accurately determined potential parameters for radicals and
other species that are difficult to isolate. Likewise, the Lorentz-Berthelot combination
rules are not perfect but the lack of suitable experimental data makes the calibration very
difficult. It is therefore worth investigating a more theoretical approach to this problem
in the future. For example, the exact pair interaction between two molecules (same or
different species) could be calculated using ab initio methods, rotationally averaged and
finally fitted as exp-6 parameters. Such an approach could, if successful, greatly simplify
the process of fitting potential parameters and allow the equation of state to be extended
to any desired chemical system.
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Appendix A.

Product library

Table A.1. The product library used in EquiC.
Product Formula A< (Å) Y/:� (K) U _ (K) Reference
Argon Ar 4.07 86.1 13 0 [14]
Acetylene C2H2 4.51 241.8 13.6 0 [14]
Ethylene C2H4 4.67 196.2 12.2 0 [14]
Ethane C2H6 4.84 238.5 13.9 0 [14]
Carbon tetrachloride CCl4 5.99 650.7 13.6 0 [14]
Carbonyl chloride fluoride CClFO 5.07 300 13 0 [14]
Carbon tetrafluoride CF4 4.67 602.5 14.5 0 [14]
Trifluoromethyl hypofluorite CF3OF 4.86 200 13 0 [14]
Carbonyl fluoride CFO 4.51 200 13 0 [14]
Dichloromethane CH2Cl2 5.55 305.8 12.1 0 [14]
Difluoromethane CH2F2 5.03 233 11.9 0 [14]
Formic acid CH2O2 4.62 150 13 0 [21]
Methanol CH3OH 4.24 507.2 13 0 [14]
Methane CH4 4.3 137.8 12.3 0 [14]
Trichloromethane CHCl3 5.74 301 15.3 0 [14]
Formyl fluoride CHFO 4.5 150 13 0 [14]
Hydrogen isocyanate CHNO 4.8 232 13 0 [21]
Monatomic chlorine Cl 3.9 130.9 13 0 [14]
Chlorine Cl2 4.93 346.7 11.3 0 [14]
Carbon monoxide CO 4.16 105.5 13.2 0 [14]
Carbon dioxide CO2 4.22 230.2 13.8 0 [20]
Carbonyl chloride COCl 4.92 250 13 0 [14]
Phosgene COCl2 5.25 368 13 0 [14]
Monatomic fluorine F 3.33 113 13 0 [14]
Fluorine F2 3.8 92.2 13 0 [14]
Monatomic hydrogen H 2.1 50 11 0 [14]
Hydrogen H2 3.62 33.2 10.94 0 This work
Water H2O 3.31 315 11.52 225 This work
Hydrogen chloride HCl 3.84 198.4 13.9 0 [14]
Hydrogen cyanide HCN 5.37 358.2 13.6 0 [14]
Helium He 2.97 10.7 13 0 [14]
Hydrogen fluoride HF 3.27 393.3 13.4 0 [14]
Monatomic nitrogen N 2.43 88.2 11.4 0 [14]
Nitrogen N2 4.14 100.6 13.35 0 This work
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Product Formula A< (Å) Y/:� (K) U _ (K) Reference
Nitrous oxide N2O 4.27 234.3 13.8 0 [20]
Ammonia NH3 3.718 229 12.08 112 This work
Nitric oxide NO 3.7 140.2 13.9 0 [20]
Nitrogen dioxide NO2 4.27 326.2 13.8 0 [20]
Monatomic oxygen O 2.57 277 11.5 0 [20]
Oxygen O2 3.83 121.2 13.6 0 [14]
Ozone O3 4.41 204.8 13.6 0 [14]
Hydroxyl OH 3.29 80 13 0 [11]
Xenon Xe 4.37 243.1 13 0 [14]

Table A.2. Unlike-pair corrections used in EquiC.
Interaction :8 9 Reference
CO2 - O 0.897 [14]
N2 - NH3 1.039 This work
N2 - H2O 1.01 This work
CH2O2 - N 1.07 This work
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Appendix B.

Chemical reactions

Table B.1. List of all reactions that are considered in the equilibrium solver of EquiC.
CH4 + CO C2H2 + H2O
C2H2 + H2 C2H4
C2H4 + H2 C2H6
2CH4 C2H6 + H2
CO2 + 2Cl2 CCl4 + O2
COCl + F CClFO
CO2 + 2F2 CF4 + O2
2CF4 + O2 2CF4O
2CO + F2 2CFO
CO2 + 2HCl CH2Cl2 + O2
CCl4 + 2H2 CH2Cl2 + 2HCl
CO2 + 2HF CH2F2 + O2
CF4 + 2H2 CH2F2 + 2HF
CO + H2O CH2O2
CO2 + H2 CH2O2
CH2O2 + H2O CH3OH + O2
CO2 + 2H2 CH4 + O2
CCl4 + HCl CHCl3 + Cl2
H + CFO CHFO
NH3 + CO CHNO + H2
Cl2 2Cl
2CO + O2 2CO2
CO + Cl COCl
CO + Cl2 COCl2
F2 2 F
H2 2H
2H2 + O2 2H2O
H2 + 2OH 2H2O
H2 + Cl2 2HCl
CO + NH3 HCN + H2O
H2 + F2 2HF
N2 2N
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Appendix B. Chemical reactions

2N2 + O2 2N2O
N2 + 3H2 2NH3
N2 + O2 2NO
N2 + 2O2 2NO2
O2 2O
O2 + O O3
O2 + H2 2OH
CO + H2O CO2 + H2
CO2 + NH3 CHNO + H2O
2CHNO C2H2 + 2NO
C2H2 + N2 2HCN
C2H2 + 2O2 2CO2 + H2
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Appendix C.

Additional shock Hugoniots

C.1. Oxygen

(a) Shock pressure as function of specific
volume.

(b) Shock velocity as function of mass velocity.

Figure C.1. Liquid oxygen shock Hugoniot. The calculated values are shown as black lines,
compared to experimental data from [30] (red) and [44] (blue).
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Appendix C. Additional shock Hugoniots

C.2. Hydrogen

(a) Shock pressure as function of specific
volume.

(b) Shock velocity as function of mass velocity.

(c) Temperature as function of shock velocity.

Figure C.2. Liquid hydrogen shock Hugoniot. The calculated values are shown as black lines,
compared to experimental data from [30] (red), [55] (green) and [56] (blue).
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C.3. Carbon dioxide

C.3. Carbon dioxide

(a) Shock pressure as function of specific
volume.

(b) Shock velocity as function of mass velocity.

Figure C.3. Liquid carbon dioxide shock Hugoniot. The calculated values are shown as black
lines, compared to experimental data from [57] (red dots).

C.4. Ammonia

(a) Shock pressure as function of specific
volume.

(b) Shock velocity as function of mass velocity.

Figure C.4. Liquid ammonia shock Hugoniot. The calculated values are shown as black lines,
compared to experimental data from [30] (red) and [45] (blue).
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