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Abstract

The objective of this thesis is to study theoretically the violations of a thermodynamic
uncertainty relation, denoted as the TUR, in a double quantum dot. The current and
the noise in the system are calculated, while the system is in contact with two fermionic
baths. These quantities are used for studying the violations of the TUR, which is found
to be violated. This is the key finding of this thesis and the violations happen possibly
due to the quantum mechanical properties of the system. A reduced model, which includes
only the states in the double dot, is introduced in order to study the system’s time-evolution
analytically. A master equation and the suitable Hamiltonian are introduced. The theoretical
tools used in the calculations are the second-quantization formalism and the density matrix
formalism.
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Abbreviations

LB Left bath

RB Right bath

LQD Left quantum dot
RQD Right quantum dot

TUR Thermodynamic uncertainty relation
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1 Introduction

In the recent years there has been an interest in studying nano scale systems, which exhibit
significant quantum mechanical behaviour. The aim of this thesis is to calculate analyti-
cally the current and the noise in a double quantum dot connected to two heat baths and
study the violations of a thermodynamic uncertainty relation, denoted as a TUR. The cur-
rent and the noise are calculated with the second quantization formalism and the density
matrix formalism, which are commonly used for studying quantum many-body systems|1, 2].

The fluctuations are an important quantity to study, when it comes to nanoscale quan-
tum systems. In this system, quantum mechanical properties of the electrons determine
the electric current through the system, thus originate stochastic processes. The stochas-
tic processes are known to give a high-level of noise[3]. In general, a high-level of noise is
common to small systems. However, significant quantum mechanical properties in a small
system can cause the type of noise which is typical for the quantum systems. Therefore,
noise is something that could distinguish such systems from systems, which do not possess
significant quantum mechanical behaviour.

Thermodynamics is traditionally studied in larger scale systems, where the quantum me-
chanical properties are neglected, as they are not significant. However, in nanoscale systems
quantum mechanics can be behind the thermodynamical properties[4]. To study further the
quantum mechanical properties of the system the TUR is studied. Violations of the TURs
provide a way to see the quantum mechanical behaviour in the thermodynamical systems as
the TURs are bounds derived for the classical systems. When these bounds are violated, a
quantum mechanical behaviour can be assumed[5].

A serial double-quantum dot connected to fermionic baths has potential applications in
consistency in nanoscale and in nanotechnology. In the recent years the electronic devices
have become smaller and building nanoscale electronics is common. In spite of the smaller
size, a nanoscale electronics is not immune to an unwanted over-heating of the components.
A double-quantum dot connected to two thermal bath could provide a sustainable solution
to this problem by turning the excess heat into work. This application of the system has
been studied experimentally[6, 7]. In principle, a double-quantum dot can operate as a
heat-engine if the temperatures of the baths are set unequal. The heat-engines are machines
which are used for turning heat into work, which is a useful form of energy. This system
has also been studied experimentally by looking at a thermodynamic double-quantum dot
heat-engine and focusing on the impact that a maximal entanglement of the electrons can
have on extracting work from a heat-bath|8].

In this thesis the key theoretical concepts are introduced first which is followed by intro-
ducing the system and the main equations used in the calculations. The current and the
fluctuations of the current in a double-quantum dot are calculated. These results are an-
alyzed to understand how different parameters impact the values that the current and the
noise take. The system is analyzed further by writing the TUR in terms of the calculated
expressions for the current and noise. A conclusion and an out-look are provided at the end



of this thesis.



2 Theory and the system

2.1 Double quantum dot connected to two fermionic baths

A double quantum dot system studied in this thesis consists of two quantum dots, which
are serially connected to two fermionic baths. The quantum dots are called the left and
the right quantum dot and are denoted as LQD and RQD. The left and the right bath are
denoted as LB and RB. The quantum dots have a single level and a dot can be occupied by
one electron at a time. The electrons in this system are assumed to be non-interacting. In
order the current to flow through the system, the electrons can tunnel between the baths and
the quantum dots as well as between the quantum dots. This is illustrated in the following
figure.

I} g9 Ip

LB <«—» LQD | «» RQD <«—» | RB

Figure 1: An illustration of the double quantum dot connected to the two fermionic bath.
The tunneling rates of the electrons are denoted as 'y, g and ['g.

2.2 Second-quantization formalism

Particles which possess quantum mechanical properties do not have an exact position. In-
stead of being an one place at a given time, they are described by a wave-function of the
possible positions that the particles could take[9)].

The second-quantization formalism is commonly used when quantum many-body systems
are studied. The second-quantization formalism can be expressed in a form of single particle
states and the occupation of these states, instead of studying the positions of the particles
in real space. In a fermionic system, a state can have an occupation number 0 or 1. This is
due to the Pauli exclusion principle, which states that two identical fermions cannot occupy
the same quantum state[1].

The occupation number of the state is obtained by applying a number operator on a ket,
when the Dirac notation is used. The number operator n is defined as

i) = cle;|n) = nln) (1)
where cj is a raising operator, c; is a lowering operator and n is either 0 or 1 depending on
the occupation of the state. The state |n) is an eigenstate of 7 and the index i denotes the
quantum state the operator acts on.



The fermion operators obey the following anti-commutation relations.

{cic;} ={cl,cl} =0 (2)
{ci,cl} =6, (3)

2.3 Density matrix

In a density matrix, the state is expressed as an operator state, |¢)(¢|, which is an outer
product state of a ket and a bra. The states follow a probability density, meaning that there
is a probability that a given state occurs. A density matrix can be written as a weighted
sum of the states, where the weight, p;, is the probability of the respective state occurring.

p= sz’¢z><¢z| (4)
The sum of the probabilities adds up to 1. Thus, it holds that

sz' =1 (5)

Essentially, the density matrix provides a description of a quantum many-body system[2].
The density matrix, written as a sum in Eq. (4), can be expressed in a matrix form. The
diagonal elements are probabilities of the respective states occurring in the system.

It is common that the density matrix describes systems that are a statistical mixture of
states, for example the double-quantum dot system, as the dots can have different occupa-
tions. Hence, the density matrix can consist of either a pure state or a mixed state. The
difference between these states is described as follows. A pure state is a state that is com-
pletely known. This means that one probability in the sum given in Eq. (4) is equal to one
and the rest are zero. A density matrix that describes a mixed state will have instead more
than one non-zero term.

Using the double quantum dot connected to the two baths as an example, the density
matrix, which includes only the states of the quantum dot, would look like the following
matrix, when expressed with the matrix representation:

po 0 0 0
10 po a O
P=10 ax py O

0 0 0 pn

where p;; is the probability of the state ij. The index ¢ gives an occupation of the left
dot and the index j gives the occupation of the right dot. The occupation of the dot can be
0 or 1.



When the tunneling between the dots can happen, the density matrix given in Eq.(6) will
have non-zero off-diagonal elements, a and «*, which are called coherences. In this system,
the coherences will occur only in the matrix elements (2,3) and (3,2). This happens because
the tunneling between the dots can only happen when there is an electron in one of the dots
and the other one is empty.

When considering the density matrix representation of the system, the tunneling between
the dots can be understood as the electron being in a superposition in the both quantum
dots. The superposition of the electron is described in the the density matrix formalism as
the coherences in the density matrix, since the electron is on the left and the right dot at
the same time. If this system was described in terms of the wave-functions, the tunneling
would be understood as the wave-function of an electron extending to the both dots.

The density matrix is a Hermitian matrix. A Hermitian matrix has diagonal elements,
which are real. The off-diagonal elements obey the relation a;; = aj;.

2.4 Quantum mechanical description of the system

The double quantum dot connected to two fermionic baths can be described mathematically
with a reduced model where only the states of the quantum dot are considered, instead of
looking at all the possible states, which would include the baths as well. Therefore, the
density matrix used in the calculations is a reduced one. It does not take into account the
states that the baths have and the probabilities of these states. The reduced density matrix
is given in Eq. (6).

The Hamiltonian of the system is

H = ELCECL + ERC;CR + g(cEcR + CECL) (7)
Equation (7) contains terms which give the energies of the electrons in LQD and RQD.
The third term in the Hamiltonian gives the coupling between the quantum dots. Because
the model is a reduced one, the Hamiltonian does not have terms describing the baths or
the connections between the baths and the system[10]. The tunneling strength between the
quantum dots is denoted as g, which has the dimension of [1/s], as & is set to 1.

The electrons can tunnel from the fermionic baths to the quantum dots with given rates. The
tunneling rate between LB to LQD is denoted as I';. Similarly, the tunneling rate between
RQD and RB is denoted as I'g. I'y, and I'g have a dimension of [1/s].

The Fermi-function contributes to the probability of the electrons entering the dots from
the baths. It occurs in the calculations together with the tunneling rates I';, and I'p to
describe how the system evolves. The Fermi-function is

1
file:) = elei—p)/ksTi 4 1 "




where ¢; is the energy of the quantum dot, 7; is the temperature of the bath, u; is the
chemical potential level and kg is the Boltzmann constant. The index 7 assigns the position
left or right, denoted as L and R, to the given quantities.

2.5 Master equation of the double quantum dot connected to the
fermionic baths

Master equations are the first-order differential equations that describe the time evolution
of states, which follow some statistical distribution. The master equation is written as

dP,
d_tk = Z [Ty P, — Ty Py (9)

l

where P, is the probability of the particle being in the state k and Tj; is the transition
rate from the state [ to the state k. The master equation can be expressed as a matrix
equation %ﬁ = AIB, where A is a transition matrix consisting of the coefficients T}, and
T};. The transition matrix A gives the connections between the statistical states as the time
evolves[11].

The master equation given in Eq. (9) does not take into an account that there is coher-
ent tunneling between the dots. Therefore, a master equation for a quantum mechanical
system is formulated with the second quantization. The time evolution of the density matrix
of the double quantum dot connected to the fermionic baths has the master equation

Op = —ilH, p| + LLp+ ZLrp (10)

where .%; is given by,
% = Tifi(e)2]cl] + Till — fi(e)]Z[ei] (11)

and Z in Eq. (11) is defined as
A AA 1 - -
I Alp = ApAT — Z{ATA, p} (12)

The first term in Eq. (10) is a commutator of the Hamiltonian and the density matrix. The
second and the third term give a contribution from the baths into the time evolution of the
density matrix.



3 Method and Calculations

3.1 Current

A current through the system is defined as the ratio of the amount of charge ) flowing
through the system in a given time ¢ and the time ¢, I = Q/t. In the long-time limit, the
double quantum dot system will reach a steady state, meaning that the current over the
system will be constant. Physically this means that as enough time has passed, the current
between LB and LQD, denoted as I 1op, and the current between RQD and LQD, denoted
as Irgp,Lop Will have equal magnitudes but opposite signs, giving that

Itg.rop + Irop,gp =0 (13)

The amount of electrons in the quantum dot corresponds to the average occupation of the
quantum dot. Thus, (Q) = (clep)e is an expression for the average charge inside LQD,
where e is the electron charge. For simplicity, e will be set to 1.

8t<cEcL> gives the rate that the occupation of LQD changes. In the long time limit, this
rate will be zero, as the current over LQD will be constant. Same reasoning holds for
dy(cher) and 8y (chcr).

Derivatives of the expectation values d;(c] ¢;), are calculated by using that 9,(cl¢;) = Tr{clc; dp},
where 0,p is determined by the master equation given in Eq. (10). It is set that ¢ =eg = €,
which physically means that LQD and RQD are identical. The fermionic anti-commutation
relations, given in Eq. (2)-(3), are used to simplify the expressions.

The calculations give a linear system of equations.

8t<cEcL> = —ig(c}c;ﬁ + ig(c}cﬂ + T fr(e) — FL<CECL> (14)
dy(cher) = —iglcher) + ig(ch cr) + Trfr(e) — Tr{chcr) (15)
(9t<cTLcR> = —ig(cTLcL> + ig(cch) — %(FL + FR)<CTLCR> (16)
01(cher) = ~ig(chen) +ialcher) — (T + ) (cher) a7)

The current through the system is a stochastic process since the electrons can attempt
to enter the system from both baths with given probabilities. It follows that despite the
majority of the electrons are going in one direction, there will be electrons moving in the
opposite direction. This can be understood by studying the terms of Eq. (14) and noticing
that the terms have different signs.

Each term in Eq. (14) can be interpreted as the electrons moving in the system in a given
direction with a certain rate, which is by definition a current. The first two terms of Eq.
(14) constitute Irop,rop. The first term is the current from RQD to LQD and the second



term is the current from LQD to RQD. Irop rop is defined as the expectation value of the
current operator, giving that

A

(I) = —ig{cher) + ig{cher) (18)

Similarly, the third and the fourth term constitute Irprgp. The third term is the cur-
rent from LB to LQD, which is simply the tunneling rate multiplied by the Fermi-function
of the left bath. The fourth term is the current from LQD to LB.

Equation (16) consists of three terms. The first two terms are purely imaginary, since
(cte) and (ckc;ﬁ are real. Multiplying them by ¢ gives a purely imaginary expression.

Equation (16) is re-written by separating the third term of Eq. (16) into a real and an
imaginary part. Thus, Eq. (16) becomes

iglchen)—iglcher)+5 (Po+Tr) (chen) = ig(cher) —ig(cher)+5(TotTr) (Relchen) +ilmiclen))

(19)
The first, the second and the fourth term of Eq. (19) are imaginary. Therefore, for the terms
to add up to zero, it has to hold that

Re(chcg) =0 (20)

The density matrix is Hermitian, thus the expectation values (cher) and (c}cg) obey the

relation

(cher) = (cher) (21)

The imaginary and the real part of the complex number given in Eq. (21) are separated.

Re(ch cr) +iIm(ch, cr) = (Re(cher) + im(che))* (22)
= Re(cher) — im(chep) (23)

The real parts of Eq. (23) are zero because of the result given in Eq. (20). Thus, Eq.
(23) becomes

ilm(ch cp) = —ilm(cher)
(cher) = —(cker) (24)

0]



Finally, Eq. (14) and (15) are rewritten by using Eq. (24) and setting the expressions
to zero due to the steady state. The system of equations becomes

di(cher) = —2ig(cher) + Tofile) = Trlcher) =0 (25)
dy(cher) = 2ig(ch cr) + Trfr(e) — Tricher) =0 (26)
0(chen) = —iglcher) +iglcher) — (T + Ta)icher) = 0 (27)

Solving the system of equations above gives the result

—49°Tr(fL — fr)

T _
<CLCL> - (4g2+FLFR)<FL+FR) +fL (28>
; _ 49°TL(fL — fr)
<CRCR> - (492 + FLFR)(FL + FR) L <29)
(el o) = - 29T kUL (f1L — [R) (30)

(4g2 + FLFR>(FL + FR)

In the steady state, the current flowing through the system is the same everywhere. There-

fore, the current I is defined as I = Irprop. I has the following expression when the

expectation value (¢ ;) given in Eq. (28) is substituted in

I=Tpf —Tplcher) (31)

~ A4¢’TRIL(fL — fr)
 (4¢2 + T Tg)(Ip +TR) (32)

The equations of motion for (I} (cic) and (cheg) can be found by re-writing Eq. (14)-

(17). These expressions will be used in the further calculations.

The time derivative of the expectation value of the current operator becomes

O(I) = —igdy(c cr) +igdy(cher) (33)
dy(ch cr) and 9, (chcp) are given in Eq. (16)-(17). These expressions are substituted into Eq.
(33) giving

. 1 o1
o(l) = 292(c}r%cR> — 2g2<CECL> + 295 (FL + FR> <CTLCR> — zg§ (FL + FR> (CLCL) (34)

This expression can be simplified. ¢t er) and (cher) are eliminated from Eq. (34) by using
L R

~

the definition of (), which is given in Eq. (18).

9



Similarly, 8t<cEcL> and 8t(cTRcR>, given in Eq. (14)-(15), are expressed with (I). This gives

the equations of motion for (I), (c}c.) and (chep).

8t<f) = —% (FL + FR> (f) + 292<CJ;%CR> — 292(CTLCL) (35)
cher) = (I) = Tr(che) + Trfr(e) (36)
Ou(cher) = —(I) = Tr(cher) + Trfa(e) (37)

We now define the vector B as

where B is an identity operator.

The time-derivative of B is - . . _ .
B = ((B1),(Ba), (Bs), (B1)) (39)

where (B;) = 0. Then we set that §L = ((By), (By), (Bs)) so that EL gives the left-hand
sides of Eq. (35)-(37).
The matrix G' with coefficients Gj; is defined as

G G Giz3 Gu -3 <FL + FR) , =20, 2¢% 0
G=|Gn G Gu Gu| = 1, T, 0, Trfr(e) (40)
Ga1 Gz Gz Ga -1, 0, —I'r, Trfr(e)

Finally, the equations of motion of (I, (¢} c;) and (cheg) are written into the matrix equa-
tion

B, =GB (41)

3.2 Fluctuations of the current

The fluctuations of the current, also called the noise, are a measure of the time dependent
current differing from the average current. The noise is prominent in the system, as the
current is originated by a stochastic process and it gives information about the microscopic
processes in the system.

~

The noise is defined as the following integral of the two-point correlator (AI(T)AI).

5= / " dr(AI(R)AT) (42)

10



where the operator Al , with the time dependence given by the variable 7, is defined as
Al(r) =1(r) = (I) (43)

The two-point correlators have an identity (B;(—7)B;) = (B;(7)B;)*[12]. It follows from the
identity that the real part of a two-point correlator is an even function and the imaginary
part is an odd function. Therefore, the noise S becomes

S = 2Re / N dr({AI(r)AI) (44)

In order to calculate the integral we introduce the quantum regression theorem[11]. The
quantum regression theorem, which holds for some systems, states that operators, which can
be written as (B;) = > _; GU< ), have a two-point correlation function which can be written
as

d
- (Bi(t +7)Be(t ZGU (t +7)Bi(1)) (45)

As before, the operators, such as the current operator, are expressed as averages since they
are used for calculating the quantities in this system which exhibits a quantum mechanical
behaviour. The quantum mechanical behaviour in the system makes it possible to only study
these quantities as average values, because the behaviour of the electrons in this system is
formulated in a probabilistic manner.

The quantum regression theorem is applied to the matrix equation given in Eq. (41). Essen-
tially, the quantum regression theorem connects the two-point correlation functions to the
equations of motion of (1), (clcy) and (cheg). Tt is set that By, = I to obtain (I(1+t)I(t)).
By is independent of ¢ and 7. Therefore, (B (t + 7)I(t)) = (I(t)).

Quantum regression theorem gives the set of equations

ddT ((t+ 7)) = —% (Do + Tr) (E(t+ ) 1(0) = 263 (chen(t + PE(0) + 20%chen(t + T)I(1))
(46)

d%@%(t + 7)) = (I(t +7)]) = Tofeper(t + 1)I#) + Tofu(e(I(1)) (47)

Lichen(t +7)() = ~(i(t + 7)I(1) - Talchen(t + 7)I(1) + Trfale) (i (1) (48)

dr

The expressions above are considered to be in the steady state, thus they are independent
of t and only depend on 7. Therefore, the choice of ¢ is has no impact on the expression.
For convenience, it is chosen that t = 0.

11



Analogous to the operator AI(t), given in Eq. (43), the operators Any(t) and Ang(t)
are introduced.

Anr(t) = ng(t) — (Ar) (49)
Ang(t) = ng(t) — (Mr) (50)

where 7, = ¢l ¢ and g = chep. The operators AI(t),Any(t) and Adg(t) give the differ-
ence between the t dependent operator and the expectation value of that operator. Thus,
they have a zero expectation value, as the steady state is assumed for all t.

The equations of motion of the two-point correlators (f (t

A (it + )10, (chenlt + 1)) and
(cher(t +7)1(t)) will now be expressed in terms of AI(t), Ady(t

) and Adig(t).

The two-point correlator (I(7)I) is expressed by using AI(7). It is noted that I(0) = I.

~ ~

)
()] = (D) + D) (AT + (1))
= (AI(T)AL + AI(T)(I) + AI(T) + (I)?)
= (AL(T)AL) + (AI(T){T) + (ADV(T) + (1)
= (AL(T)AD) + (I)? (51)

where the expression is simplified by using that (A_f (t)) = 0 for all .

Similarly, the two-point correlators (¢} ey (7)) and (cheg(r)I) are expressed with the op-

erators Afiy(t), Ang(t) and AI(t). This gives

= (A (r)AL) + (1) (i) (52)

= (Ang(T)AL) + (1) (i) (53)

Equation (51) is substituted into the left-hand side of Eq. (46) in order to express it with
Al. This gives

LUAIE) 4 (D) (A +(1)) = S (ALE)AT) +(7)?) (54)
= %<Af(r)Af> (55)

12



2

The second term in Eq. (54) becomes zero when the derivative is performed, as (f )? is not
a function of 7.
Similarly, Eq. (52)- (53) are substituted into the left-hand sides of Eq. (47)-(48).
L (Ain(r) + ) (AT 4 (1)) = (Mg (r)A]) (56
L ((@slr) + (n)) (AT + (1)) = “H(Adp(r)AT) 67)

The two-point correlation function given in Eq. (46) is equated to the left-hand side of
Eq. (55). This gives

d, . . 1 s o a . .
E<AI(7)AI> = _§(rL +TR)I(T)) — 26%(cher(T)]) + 26 (cher(T)]) (58)
The two-point correlators (I(7)I), (

c
side of Eq. (58) are replaced with (AT
in Eq. (51)-(53).

tep(T)I) and (che (T)f> appearing in the right-hand
(T)IAY, (Afp(1)AID) and (Ang(T)AI) by substituting

d .. )
E<AI(T)AI> =—

+ 242 (<MR(T ALY + (I mR)) (59)

Similar step is performed to Eq. (56)-(57) giving

%<Am (ALY =(I(7)1) = Tr{cher(T)I) + Tpfrle)()

—((AHRAD) + (1)) = Do ((Aag(DAD + (I)(Ar) ) + T fu(e)) (60)

%<AﬁR(T)Af>> = —(I(1)I) = Tr{cher(r)I) + T fr(e)(I)

—((AI)AD) + (1)) = Tr((Din(r)AL) + (1) (r) ) + Trfa(e)])
(61)

13



Now Eq. (59)-(61) are expressed in terms of the operators AI, Ay, and Afg.

These equations are simplified further by using the equations of motion for <f ) <CTLCL> and

(cher), given in Eq. (35)-(37). The equations of motions take the zero value in the steady

state.

Equation (59) becomes
;—T<Af(T)Af> =— %(FL +Tg) ((Af(T)Af) + <f>2)
— 20* (i (1) AT) + (1) (1))

+ 20° ((Ap(r)AT) + () (nr))

=— %(FL +TR)(AI()AL) — 2g*(Ad (1) AT) + 2g°(Ang(r)Al)

D) (= 5T+ TR) () — 2% (nr) +26%(ns)

(T 4+ Tr)(AI(T)AL) — 2% (Ady (1)AD) + 2g*(Ang(T)AL)  (62)

N | —

Equation (60) becomes

L (g (r)AT) =({AHRAT) + (1) ~ T ((Ans AT + (1) () ) + Tefael])

=(AI(T)AI) — T (Any(1)AD) (63)

Thus, the equations of the motion for the two-point correlators of AI(7), Ay () and Afg(T)

14



L(AT(RAT) = 5 Ty + TR)AL(R)AL — 26 (Ain(r)AT) + 20 (Ana(r)AT) (65
;—T<AﬁL(¢)Af> = (AI(T)AI) — T (A, (1)AD) (66)

;1—T<MR(T)M> = —(AI(r)AD) — TR(Ang(7)AD) (67)

Next, the variables X, Y and Z are introduced.

x- [ dr(AI(r)AI) (68)
y = / " dr(Ang (1) AT) (69)
7z - / " dr (Anp(r)AR) (70)

The equations of motions of the two-point correlators, given in Eq. (65)-(67) are expressed
with the variables X, Y and Z and integrated giving

—(AIAT) = —%(FL +TR)X —2¢%Y +2¢°Z (71)
—(An Ay =X —TLY (72)
—(AngAl) = —X —TpZ (73)

where the two-point correlators evaluated at oo take the zero value. This holds since

lim (AI(T)AI) = (AD)? =0 (74)
The first equality in Eq. (74) holds as there are no correlations between ¢t = 0 and 7 tending
to infinity. The systems are statistically independent at ¢ = 0 when 7 tends to infinity.
Physically, this can be understood as the system having a limited memory. Eq. (74) being
zero follows from the construction of the operators, as these operators have the expectation
value zero.

Equations (43)-(50) with ¢=0, are substituted into the left-hand sides of Eq. (71)-(73)
in order to express the expectation values with the second quantization operators. The ex-
pressions are simplified by using the fermionic anti-commutation relations.
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The left-hand side of Eq. (72) becomes

(A ALY = ={ (A, = () (T = (D))
+{cpen)(d)

)
cr) + (cher) (—ig(cher) +ig(cher))
)
)

—ig2(cper)(cer)
(1 - 2<CTLCL>) (75)
The left-hand side of Eq. (73) becomes
—(AirAT) = =((nr — i) (T = (1))
= —ig(cker) + (cher)(])
—ig(chcr) (1- 2(0203)) (76)

where the result given in Eq. (24) is used to simplify the expression.

Equation (71) becomes

= (I)* —(I*) (77)
where (I2) is

(I?) = <( — igcTLcR + igcch)2>
g

= 2(02030}%01; + CECLCECR> (78)

Wick’s theorem gives an identity which is applied to Eq. (78).
(dejeter) = (clej)(cher) + (e (esel) (79)
Equation (78) becomes,

(I?) = g* (2(cher)(cher) + (cher)(crek) + (cher)(erch)) (80)

Equation (80) is simplified by using the result given in Eq. (24) and that (c/¢;) = —(cicl) +1
for i = L, R. This holds due to the anti-commutation relation given in Eq. (3).
(1) = ¢° (= 2{cper)® — 2(cer) (cer) + (cher) + (cer)) (81)
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The result given in Eq. (24) is used to simplify (I)2. This gives

(1) = (—ig(cher) +igiches))’
= ( — ng(cTLcR>)2
= —4g%(cl cp)? (82)

Equations (75)-(77) and Eq. (71)-(73) give a linear system of equations.

9* (2{cher)(cher) — (cher) — (cher) —2(cler)?) = _%(FL +Tr)X —24°Y +2¢°Z  (83)
iglcher) (1 —2(cter)) = X —TLY (84)
ig(cTLcR>(1 — 2<cEcR>) =-—-X-TgrZ (85)

The left-hand side of the linear system of equations is expressed in terms of (c}cp), (cheg)

and (¢! cp , given in Eq. (29)-(30), which are already solved for the steady state. Therefore,
L

it is possible to notice that the left-hand sides of Eq. (83)-(85) are real values.

The linear system of equations is solved giving
A+ B

X =0 o) ulaf2 297 0

where A and B are
A= Dulrg?(2cher) (cher) — (cher) — (cher) — 2(chen)?) (87)
B = 2¢°( ~ iglcler) (1 = 2(cLer)) T + iglclen) (1 = 2(chen)) T ) (88)

Equation (86) becomes the following when Eq. (28)-(30) are substituted in.

20°TLTr(fr(1 — fr) + fr(1 — fr)) 16(¢°TLlr(fr — fr))*(ULlr + 49 + (T + T'r)%)
(49> + TLl'r)(I'L 4+ Tr) (49> + TLTR)(I'L 4+ T'r))?

X —
(89)

Thus, the noise in the system, given in Eq. (42) becomes the following when X is sub-
stituted into S = 2ReX.
49°T L Dr(fr(1 = fo) + fu(1 = fr))  32(¢°TLUr(fr — fr))*(Til'r +49° + (T +T'r)?)

ST @ AT T (4% + Tl n)(Tr + )P

(90)
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4 Results

4.1 Current

The expression of the current is analyzed. It is possible to determine from Eq. (18) what
gives the direction to the current and some of the zero values that the current takes. The
sign of the current I, which gives the direction of the flow, arises from the factor f;, — fg.
Thus, the higher value which f; or fr takes determines the direction of the current.

The temperature is the parameter of the Fermi-function, which determines the direction
of the current when €, = €g, p, = pg for € > u. It can be seen from Eq. (8) that when the
temperature increases, the magnitude of the Fermi-function increases. Therefore, the current
will flow from the hotter bath to the colder one. It is noted that the tunneling rates appear
symmetrically in the expression for the current, meaning that interchanging the labels of the
tunneling rates I';, and ' has no impact on the current. Hence, the tunneling rates only
change the magnitude of the current but do not contribute to the direction of the current.

The current I takes a zero value if ¢ = 0. In this case, the Hamiltonian of the system
does not have a term which would give a rise to the coherences in the density matrix. In
other words, provide a coupling between the dots. If there is no coupling, the electrons will
not tunnel between the dots.

Also, the current takes a zero value if f;, = fr. The reason behind this is that the two
baths and the two quantum dots are equal up to the tunneling rates I';, and I'g. Thus, there
will be no favoured direction for the current to flow. It is noted that that by the current it
is meant the average current in the steady state. When f;, = fr there will be on average an
equal number of electrons passing through the system in the opposite directions.

4.1.1 Current’s dependency on the parameters

The current is plotted as a function of I';, I'r and g to analyze the behaviour of the current
when the parameters are varied. It is studied what happens in the large limit of the param-
eters and whether there is a maximum value that the current can take.

The current is modified into a dimensionless equation because dimensionless plots give a
more general description of the current’s behaviour as no dimensions are fixed.

The steady state current given in Eq. (32) is divided by ¢(fr, — fr) to obtain a dimen-
sionless current.

I o 492FRFL ) ]_/94
9(fr—fr) (4> +TTr)(CL+Tgr) 1/¢°
4(Tr/g9)(I'L/g)

TG+ (To/9)(Ta/9) (Tu/g) + (Taf9)) (91)
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The dimensionless current, I/g(fr — fr), is plotted in a three-dimensional figure.
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Figure 2: Dimensionless current, I/g(fr — fr), as a function of I'y /g and T'r/g

Figure (2) shows that the current is a concave function. Therefore, it takes a visible
global maximum value. This value is 1/2 and it occurs at the point (I't/g,T'r/g) = (2, 2).
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Figure 3: Plots of I/g(fr — fr) as a function of 'y /g, while T'r /g takes the constant values.
['r/g is set to take values 0.1, 0.5, 1.0 and 5, which are labelled in the figure.

In Figure (3), the current’s dependency of I'; is shown in a two-dimensional figure.
I/g(fr — fr) is plotted as a function of ', /g while I'r/g is kept constant. The difference
between the curves becomes more visible when several curves are plotted in the same figure.
Keeping I'g/g constant is enough to see the current’s dependency on either of the tunnel-
ing rates I'y, and g, since I';, /g and I'r/g appear identically in Eq. (91). Keeping I'z/g
constant and plotting I/g(fr— fr) as a function of I'g /g would give the same group of curves.
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The current tending to zero for large transition rates is verified analytically from Eq. (91).

1

FRl/lggoo 9(fL—fr) FLl/lgn[jwo 9(fL — fr)
— lim 4(Tr/g)(T'z/9)
ri/g=oo (4+ (Pr/9)Tr/9))(Tr/g9) + Tr/9))
-0 (92)

The quantum mechanical properties of the system are behind the physical reason why the
current tends to zero in the large values of the tunneling rates I';, and I'g. The tunneling
rate can be interpreted as an electron’s attempt to enter a dot. During this attempt, it is
evaluated if the dot is empty or not. Thus, the occupation of the dot is fully known. This can
be understood as the bath conducting a measurement on the dot. The quantum mechanical
phenomenon of an electron being in a superposition cannot take place when the occupation
of the dot is fully known. Therefore, if the measurement on the dot is conducted repeatedly
by the bath, it follows that the electron being in a superposition occurs less frequently. This
means that the number of electrons tunneling between the dots will decrease, thus the cur-
rent decreases. Eventually, the current tends to zero in the large limit of the tunneling rate.
This phenomenon is called the quantum Zeno effect.

The current, given in Eq. (32), is modified into a dimensionless quantity I/I" to study
the current’s dependency of the tunneling strength ¢g. Eq. (32) is divided by I" and it is set
thatFL:FR:Fande—fRzl.

2¢2T2  1/T*
I/r = 42T + 13 1/T3
_2(g/T)?
C4(g/T)2+1 (93)

The current’s dependency of g is illustrated by plotting Eq. (93) as a function of ¢/T.
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Figure 4: Dimensionless current I/T" as a function of g/T" with the parameters f; — fr =1
and FL = FR =T
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In Figure (4) the current seems to converge to 0.5 when the ratio g/T" takes large values.
This is verified analytically by taking the limit of Eq. (93).

2
lim I/T = lim —29/T)

—— =05 94
g—00 g—o0 4(g/T)2 + 1 (94)

When g increases, the tunneling between the quantum dots becomes more likely. Physi-
cally, the current tending to a constant value for large g can be understood as the current
being limited by the process of the electrons entering and leaving the baths. The differ-
ence between magnitudes of the Fermi-functions, f; and fg, gives the limitations for the
maximum value that the current can take for a given system, even when ¢ tends to the
infinity.

4.2 Fluctuations of the current

For simplicity, the noise is made dimensionless. It is done by setting that I'y, = 'r = I" and
dividing Eq. (90) by I'. This gives

4g°T2(fo(1 — fr) + fr(1 — fo)) 1/T*  32¢'T*(fr — fr)*(I” + 4¢> +41°) 1/T

S/T = 8¢°T + 2I3 1)T% (82T + 2I'3)3 1/T9
_ 2(9/T)*(fr(1 — fr) + fr(L = f1))  32(g/T)*(fr — fr)*(5 + 4(g/T)?) (95)
A(g/T)? +1 (8(g/T)* +2)

The dimensionless noise and the dimensionless current are plotted as a function of ¢/T",
with the parameters f;, = 1 and fg = 0.
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Figure 5: Dimensionless current and noise plotted as functions of g/I" with the parameters
fLZlandeZOandFL:FR:F

From Figure (5) it can be seen that the noise increases as the current increases, except
around ¢g/I" = 0.7. Around this value the noise exhibits a plateau.
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The dimensionless noise, given in Eq. (95), is plotted as a function f7, and fr while ¢/T" = 1.
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Figure 6: The dimensionless noise as a function of f; and fr with the parameter g/I" = 1
and FL = FR =T.

In Figure (6), it can be seen that the noise is a concave function and takes a visible global
maximum value. This value is equal to 1/5 and it occurs at the point (fr, fr) = (1/2,1/2).
With these values of the Fermi-functions, the average current will be zero.

To study the connection between the noise and the current, the Fano factor is introduced.

The Fano factor is defined as R
F=5/{I) (96)

The Fano factor is a useful quantity to plot since it makes it visible how the rates of the
noise and current change when the parameters are varied. It also gives information about
the particles that the system contains, based on what values the Fano factor will take. The
Fano factor is plotted as a function of ¢g/I". The noise and the current appearing in Eq.
(96) are set dimensionless quantities to preserve the dimensionless. It is set that f; = 1 and

Jr=0.
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Figure 7: The Fano factor plotted as a function of g/I" with the parameters f; = 1 and
fR:OEHldFL:FR:F

From Figure (7), it can be seen that the Fano factor will be less than 1 for all values of
g/T', which is a property of a fermionic system at low temperatures. This happens because
only one electron can occupy a quantum dot at a time.

4.2.1 Thermodynamic uncertainty relations

The system can be analyzed further by a TUR. The TURs are thermodynamic inequalities
that provide bounds for thermodynamical quantities. These bounds are originally derived
for classical systems. It is expected that in this quantum system a TUR could be violated
due to the quantum coherence. [13] This can be assumed by looking at the plateau observed
in Figure (5). A similar plateau was discovered earlier when coherent quantum tunneling was
studied[14]. The TUR studied in this thesis is the uncertainty of the steady state current,
which is bounded below by the entropy production in the system[5, 13]. The TUR is the
following inequality

Var(l) _ 2k

(n* = {3

where Var(I) is the variance of the current, (I) is the average current and ($) is the entropy
production. In the long time limit Eq. (97) is expressed with noise S.

(97)

The TUR given in Eq. (98) gives a bound for the systems in the long time limit. The
temperatures of the baths are set equal, T, = T = T, in order to study a simple system
which does not require additional computations of heat currents in the system. This gives
that the entropy production can be written as

(8) = (I)(pr — pr)/T (99)
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Equation (99) is substituted into the TUR, given in Eq. (98). The expression is multiplied
by (I) and the definition of the Fano factor is used. This gives the following expression for
the TUR

(100)

where eV = pup — pugr. The left-hand side is simply the Fano factor and the right-hand side
provides a classical bound. This difference, D = F — 2k, T/eV, is plotted as a function of
eV /kpT with parameters ¢, = eg = 0, ugp = —p, = eV//2 and g = 0.65I". These parameters
give a region where the TUR is violated[13].
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Figure 8: The difference between the Fano factor and the classical bound, D = F — 2kgT,
plotted as a function of eV /kgT. The parameters used are €, = €g = 0, ur = —pr = eV/2
and g = 0.65I". The inequality is violated when the curve is below the dashed line.

As expected, because the Fano factor takes values near zero, the TUR is violated in the
studied region, which can be seen in Figure (8). The violations happen when the curve is
below the dashed line. Next, the connection between the plateau and the violations of the
TUR is studied. This connection seems reasonable as the Fano factor takes smaller values
when the fluctuations increase slower than the current. This happens in the plateau, where
the derivative of the fluctuations is close to zero.

The fluctuations and the difference D are plotted as a function of g/I' with the same set
of parameters. The quantities are plotted for two different values of eV /kgT separately to
observe what happens when eV/kgT is varied. First, a value of eV/kgT near the minimum
of D is chosen, eV/kgT = 4, and then a larger value away from the minimum, eV/kgT =7,
is chosen.
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Figure 9: The fluctuations S and the difference D = F — 2kgT/eV plotted as a function
of g/T'. The parameters used are e, = eg = 0, ug = —puyp = €V/2 and g = 0.65I'. The
inequality is violated when the curve is below the dashed line.

Figure (9) shows that the violation of the TUR occurs near the plateau. However, it
can be noticed from Figure (9a) that when eV /kgT = 4 the plateau is not clearly visi-
ble, even though eV/kgT = 4 gave a large violation of the TUR in Figure (8). The value
eV/kgT = 4, corresponds to the region with small difference between the chemical poten-
tials, as eV = uy — pg, or a large value for the temperature.

When the value of eV/kgT is increased, the plateau becomes more visible, which can be
seen from Figure (9b). However, the violations of the TUR become smaller in that case, and
eventually disappear when eV /kgT is increased further. This region corresponds to a larger
difference between the chemical potentials or a smaller value for the temperature, resulting
a large entropy production, which can be seen in Eq. (99).

The physical reason behind the violations of the TURs in this system is quantum mechanics,
which gives a rise to the current and therefore, to the significant fluctuations in the system.
In the previously published paper [14], where the plateau was observed earlier, the effect of
the coherences on the current was studied. This gives evidence that the coherences could
possible be behind the plateau. Even though the connection is not that clear since the
plateau smears out in the region of the higher violations of the TUR.

5 Conclusions

In this thesis, a study of a double quantum dot was conducted. The thesis began with
presenting the theoretical concepts that are essential for understanding the content of this
thesis. The central concepts are the second-quantization formalism and the density matrix
formalism. The mathematical model to describe a system was introduced starting from the
density matrix and advancing to the Hamiltonian and the master equation.

Once the preliminary knowledge was obtained, the current was calculated by using the
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second-quantization operators. The calculations of current involved two steps. First, an
assumption of the steady state was made to obtain a linear system of equations. Secondly,
the terms that constitute the current were identified to be able to define the current. The
stochastic nature of the process was emphasized in order to understand how the flow of
electrons gives a rise to the current through the system.

The noise was calculated by applying the quantum regression theorem to the equations
of motions obtained from the calculations of the current. The time-integrals of the two-
point correlatiors were evaluated to arrive to the expression for the noise.

The expression of the current was analyzed. It was found that the current divided by g¢
takes a maximum value which is bound by the magnitudes of the Fermi-functions of the
baths, regardless the magnitudes of the other parameters. When the noise was plotted as a
function of ¢g/T; it was found that there is a plateau in a region with small g/I". The plateau
was studied by looking at violations of the TUR, which was expressed as a difference be-
tween the Fano factor and a classical bound. A possible connection between the Fano factor
and the plateau was found. Even though the violations of the TUR are the strongest when
the plateau becomes smeared out and when the plateau is the most visible the violations of
the TUR became weaker, hence further studies would be needed to understand the physical
phenomenon behind the existence of the plateau.

6 Outlook

Further studies on the double quantum dot system could be made. It could be studied when
the coherences are the highest in the system and what are the parameters that affect the
coherences the most. The connection between the magnitude of the current and the noise
and the coherences could be particularly interesting.

In this sytem the energies of the double quantum dots were set equal. The double quantum

dots with different energies could be an interesting subject of further studies. The TUR of
such a system could be studied.
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Appendices

A Trace

The trace is defined as a sum of diagonal elements of a matrix. The expectation value of an
operator acting on a density matrix can be found by calculating the trace. The trace has

the following computational rules.

The trace is linear.
(A+C) = Tr{Ap} +Te{Cp}
{4p} +CTr{p}
{Ap} +C

Tr
Tr

where A is an operator, C' is a constant and p is the density matrix.

The trace is invariant under cyclic permutations.
Tr{ABp} = Tr{Bpfl}

where A and B are operators and p is the density matrix.

(101)

(102)
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