
An extreme value approach to modelling number

of causalities in earthquakes

Henrik Steneld

Supervisor: Nader Tajvidi

January 2021

1



Abstract

Earthquakes occur around the globe all the time. Most are weak enough to just
pass by, some are strong enough to be felt by us humans, and some very few
are completely devastating. A comprehensive database distributed by NOAA
National Centers for Environmental Information provides a means for review-
ing devastating earthquakes over the past. Extreme value theory has previously
been applied to modelling earthquakes, although for the most part the modelling
has been concerned with the magnitudes. In this thesis, extreme value theory
has been applied to the number of casualties that are directly or indirectly the
result of an earthquake.

An in-homogeneous Poisson point process is fitted to events where the death
toll is at least ten or more. The events are assumed to be independent but
non-stationary with respect to the magnitude of the earthquake. This leads
to a Poisson point process with an intensity which is a function of magnitude.
In addition, an assumption is made about the distribution of the magnitudes
of earthquakes, which provides the necessary means for modelling extremes of
earthquakes death toll unconditional of magnitude. With the aid of simula-
tions and the asymptotic normality of maximum likelihood estimators, return
levels and corresponding confidence intervals are calculated for three different
geographical regions.
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1 Introduction

There have been a number of papers published dealing with Extreme value the-
ory applied to earthquakes. For example, back in 1945, John M. Nordquist
published Theory of largest values applied to earthquake magnitudes [6]. How-
ever, while a lot of statistical research has been done on earthquakes and the
effect that earthquakes have, there does not seem to be a lot of cases where ex-
treme value theory has been applied to the resulting death toll. Therefore, the
purpose of this thesis is to investigate whether univariate extreme value theory
may be applied in a satisfactory manner to death tolls arising from earthquakes.
If an approximate model for the number of deaths as an outcome of earthquakes
can be found, return levels (quantiles) may be calculated and may perhaps so be
done for different parts of the world, even those where devastating earthquakes
are very rare. It is expected that the magnitude of an earthquake will play a
significant role in the death toll. However, just like the death toll, the mag-
nitude of an earthquake can be assumed random, which opens up for further
investigation. Especially, if extreme earthquake events (with regards to death
toll) can be modeled as a Poisson point process conditioned on the magnitude,
extreme earthquake events might be modeled unconditionally and in a para-
metric manner given that the magnitude can be assumed to belong to some
parametric family of distributions. The resulting unconditional point process
model will then be a doubly stochastic Poisson process, also known as a Cox
process [3, ch. 8, p. 265].

1.1 Objective

The objective is to find a suitable estimate for an approximate Poisson point
process conditioned on any significant covariates, such as magnitude. With such
a model, quantiles may be estimated, yielding return levels for varying values
of the covariates. Furthermore, an unconditional approximate Point process
is sought to be estimated. Such a point process might be more valuable in
regards to explaining return levels, as those will be regardless of the values of
the (perhaps random) covariates.

2 Univariate Extreme value theory

Extreme value theory might fundamentally be explained as the modelling of the
maximum of some sequence of random variables. One could in some scenarios
be interested in drawing conclusions from the random variable

Mn = max{X1, X2, ..., Xn},

where {Xi}i=1,...,n is a sequence of independent random variables, typically with
an unknown but common distribution.
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2.1 Extreme value distributions

Given the assumption in the previous section, that {Xi}i=1,...,n is a sequence of
independent random variables with common distribution function F , it is quite
straight forward to express the distribution of the maximum Mn as a function
of F .

P (Mn ≤ z) = P (X1 ≤ z, ..., Xn ≤ z) = P (X1 ≤ z) · ... · P (Xn ≤ z) = F (z)n

Typical problems in practices involve F being unknown, meaning that the above
expression for the distribution of Mn provides little to no help. An alternative
way of gaining knowledge about the distribution of Mn could be that of inves-
tigating the approximation of Fn as n → ∞. An arising problem is then that
for any z < z+, with z+ being the upper endpoint of F , F (z)n will tend to zero
as n → ∞. Meaning that one can’t find an expression for the distribution of
Mn that isn’t a degeneration onto z+. It is however sometimes possible to ex-
press a function M∗n of Mn in such a way that M∗n tend to some non-degenerate
distribution as n→∞. Let

M∗n =
Mn − bn

an

with {ai > 0}i=1,...,n and {bi}i=1,...,n being a sequence of constants. In this
setting, a central theorem in the extreme value theory follows.

Theorem 2.1 (Fisher–Tippett–Gnedenko theorem) ([1, ch. 3, p. 46])
If there exists sequences of constants {an > 0}i=1,...,n and {bn}i=1,...,n such that

P ((Mn − bn)/an ≤ z)→ G(z) as n→∞,

where G is a non-degenerate distribution function, then G belongs to one of the
following families:

Gumbel : G(z) = exp

(
−exp

(
−z − b

a

))
,−∞ < z <∞;

Fréchet : G(z) =

{
0, z ≤ b,
exp

(
−
(
z−b
a

)−α)
, z > b;

Weibull : G(z) =

{
exp

(
−
(
−
(
z−b
a

)α))
, z < b,

1, z ≥ b;

for parameters a > 0, b ∈ IR and, in the case of families II and III, α > 0.

If one were to research the distribution of Mn in this setting, in particular carry
out inference, one would have to decide upon which of the three families of
distributions to assume. This could be an inconvenience as it might not always
be a clear choice, especially as any subsequent inference would be under the
original assumption that the correct choice of family was made.
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2.2 Generalized Extreme Value Distribution

A way of conquering the problem of uncertainty in regards to which limiting
distribution to decide upon could be to instead view the three distributions as
one, the Generalized Extreme Value distribution (GEV).

Theorem 2.2 ([1, ch. 3, p. 48])
If there exists sequences of constants {an > 0}i=1,...,n and {bn}i=1,...,n such that

P ((Mn − bn)/an ≤ z)→ G(z) as n→∞,

for a non-degenerate distribution G, then G is a member of the GEV family

G(z) = exp

(
−
(

1 + ξ

(
z − µ
σ

))−1/ξ
)
, (1)

defined on {z : 1 + ξ(z− µ)/σ > 0}, where −∞ < µ <∞, σ > 0 and −∞ < ξ <
∞.

If the random variable

M∗n =
Mn − bn

an

is distributed according to (1) with parameters µ, σ, ξ, we say that

M∗n ∼ GEV (µ, σ, ξ)

2.3 Block Maxima

In practice, it is often of interest to model the maximum over some set time
frame, e.g the maximum annual event. The maximum over some decided upon
time frame can then in many cases be approximated by its asymptotic distribu-
tion, that is GEV. The choice of block size becomes important in the sense of
evaluating whether or not there is enough time in each block to assume asymp-
totic behavior, as well as if there are enough blocks to have a decent sample
variance.

2.4 Peaks over threshold

Sometimes, since several extreme events might occur relatively close in time,
while not in others, approaching the problem of inference with block maxima
might mean that important data gets discarded. An alternative approach, that
builds upon the theory of a maximums asymptotic tendency towards GEV, is
peaks over threshold. A theorem, encapsulating the approach follows,

Theorem 2.3 ([1, ch. 4, p. 75])
Let {Xi}i=1,...,n be a sequence of independent random variables with common
distribution function F, and let

Mn = max{X1, ..., Xn}.
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Denote an arbitrary term in the Xi sequence by X, and suppose that F satisfies
Theorem 2.2, so that for large n,

P ((Mn ≤ z) ≈ G(z),

where

G(z) = exp

(
−
(

1 + ξ

(
z − µ
σ

))−1/ξ
)

for some µ, σ > 0 and ξ. Then, for large enough u, the distribution function of
(X − u), conditional on X > u, is approximately

H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ

defined on {y : y > 0 and (1 + ξy/σ̃) > 0}, where

σ̃ = σ + ξ(u− µ).

The family of distributions defined by H(y) is called the generalized Pareto fam-
ily.

What theorem 2.3 says is that we can approximate the distribution of the excess
(X−u), for all X > u, and we may include data from observations where xi > u
even if xi lies close (in time) to another observation xj that is included and
satisfies xj > u.

2.5 Non-stationary sequences

An assumption that was made in the introduction and in section 2.1 was that of
a common distribution function F, which would imply that a stationary process
laid as foundation for the maximum Mn. It is however not always the case
that observations can be assumed to come from a stationary process. Non-
stationarity can be present in time, or in terms of other variables. Assume that
the underlying stochastic process {Xi}i=1,...,n is non-stationary in the variable
t ∈ T (typically time) such that also the maximum is non-stationary in t. Then
it is typically possible to model the maximum Zn as

Zn(t) ∼ GEV (µ(t), σ(t), ξ(t)),

where the parameters are for example linear functions of t:

µ(t) = β0 + β1t

or other functions, such as:

σ(t) = exp(β0 + β1t),

which is generally suitable for σ to ensure that σ > 0, ∀t ∈ T .
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2.6 Return level

Return levels zp are quantiles associated with return periods 1/p, in such a
way that if G is the distribution function for yearly maximum, then zp will be
the level that is exceeded on average once every 1/p year, and is given by the
equation G(zp) = 1− p.

2.7 Goodness Of Fit (GOF)

Model diagnostics is an essential part of fitting data to a model, i.e. doing
inference. This section focus on the creation of diagnostic plots that may visually
be interpreted as a mean of determining the goodness of fit. Of special interest
are qq-plots for non-stationary models. Such plots can be created after some
transformations. Given that a model can be estimated as

Zt ∼ GEV(µ(t), σ(t), ξ(t)),

one can make a transformation such that

Z̃t =
1

ξ(t)
log

(
1 + ξ(t)

(
Zt − µ(t)

σ(t)

))
,

with Z̃t having the standard Gumbel distribution. Then, with known standard
distribution, producing a qq-plot can be done by plotting the pairs

{z̃(i),−log(−log(i/(m+ 1)))); i = 1, ...,m},

given that z̃(1), ..., z̃(m) is the ordered values of observed z̃t. If instead a model
has been estimated such that Yt ∼ GP(σ(t), ξ(t), with GP being the generalized
Pareto distribution, then the transformation

Ỹtk =
1

ξ(t)
log

(
1 + ξ(t)

(
Ytk − ut
σ(t)

))
,

implies that Ỹtk will have the standard exponential distribution. If ỹ(1), ..., ỹ(k)

are the ordered observations of Ỹtk , then a qq-plot can be produced by the pairs

{ỹ(i),−log(1− i/(k + 1))); i = 1, ..., k}.

3 Generalized Likelihood Ratio (GLR)

A powerful tool in testing nested models is the Generalized Likelihood Ratio
Test. It is encapsulated with the following two theorems.

Theorem 3.1 ([1, ch. 2, p. 35])
Let x1, ..., xn be independent realizations from a distribution within a paramet-
ric family F , and let θ̂0 denote the maximum likelihood estimator of the d-
dimensional model parameter θ0 = (θ(1), θ(2)), where θ(1) is a k-dimensional
subset of θ0. Then, under suitable regularity conditions, for large n

Dp(θ
(1)) = 2{`(θ̂0)−max

θ(2)
`(θ(1), θ(2))} ∼ χ2

k.
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Theorem 3.1 may be exploited in such a way that schemes for trying out nested
models can be laid up,

Theorem 3.2 ([1, ch. 2, p. 35])
Suppose M0 with parameter θ(2) is the sub-model of M1 with parameter θ0 =
(θ(1), θ(2)) under the constraint that the k-dimensional sub-vector θ(1) = 0. Let
`0(M0) and `1(M1) be the maximized values of the log-likelihood for modelsM0

and M1 respectively. A test if the validity of model M0 relative to M1 at the α
level of significance is to rejectM0 in favor ofM1 if D = 2(`1(M1)−`0(M0)) >
cα, where cα is the (1− α) quantile of the χ2

k distribution.

4 Point Process

A point process over a set S ⊂ IRd is a rule for the occurrence and position
of point events. If S = IR+, then a point process could for example model the
occurrence of significant earthquakes in time. The properties of a point process
can be characterized by a set of non-negative integer-valued random variables,
N(A), for every A ⊂ S, such that N(A) describes the number of points in A. In
such a way, the point process, N , is characterized by the distributions FN(A) of
each N(A). One measure that is usually of importance is the intensity measure
Λ(A), which describes the expected number of points in A. Thus,

Λ(A) = E(N(A))

.

4.1 Poisson point process

Perhaps the most central of point processes are those that can be defined as a
Poisson point process. A Poisson point process is such that

N(A) ∼ Poi(Λ(A))

and if A, B are disjoint, then N(A) and N(B) are independent.

4.2 Application to Extreme Value Theory

Assume that {Xi}i=1,...,n is a sequence of independent and identically dis-
tributed random variables. Then if one define

Nn = {(i/(n+ 1), Xi : i = 1, ..., n},

one have that for certain regions, Nn is approximately a Poisson process. More
precisely, with the above setting one have the following theorem,
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Theorem 4.1 ([1, ch. 7, p. 133])
For sufficiently large u, on regions of the form (0, 1) × [u,∞), Nn is approxi-
mately a Poisson process, with intensity measure on A = [t1, t2]× (z,∞) given
by

Λ(A) = (t1, t2)

[
1 + ξ

(
z − µ
σ

)]−1/ξ

Here, u is seen as a threshold, where events that lie above u are considered
extreme in an analogous way as those events above the threshold in the POT
approach (see section 2.4). In the case of a Poisson process for extremes, the
parameters, µ, σ and ξ are all invariant of the threshold [1, ch. 7, p. 136].
This, together with the fact that the intensity (thus also the distribution of
N(A)) being a function constant w.r.t the threshold, makes for a more natural
way of modelling non-stationary sequences, as the threshold may easily be non-
constant (for example a function of time) without affecting anything other than
the bias-variance trade-off.

4.2.1 Cox point process for extremes

Assume that a process Nn,

Nn = {(i/(n+ 1), Xi(yi) : i = 1, ..., n}

can be approximated as a Poisson point process with intensity measure Λ on
A = [t1, t2]× (u,∞), such that

Λ(A) = (t2 − t1)

[
1 + ξ(y)

(
u− µ(y)

σ(y)

)]−1/ξ(y)

.

for some large enough u. An interpretation of this would be that the extreme
of {Xi(yi)} can be approximated under the GEV distribution with parameters
as functions of y, i.e. the extreme is non-stationary in y. With yi’s known,
Λ(A) is deterministic and the number of points Nn(A) in A can be modeled as
an in-homogeneous Poisson point process, Nn(A) ∼ Poi(Λ(A)). Assume now
that yi are in fact realizations of some random variable Y such that Λ(A) is in
fact a realization of a random field Ψ(A). Then one might be interested in the
unobserved effects of Y , i.e. when the intensity measure of the point process is
considered random. Under such assumptions, we have that

Nn(A) | (Ψ(A) = Λ(A)) ∼ Poi(Λ(A)).

This implies that the unobserved process Nn is in fact not a Poisson process, but
an instance of a more general process named Cox process or doubly stochastic
Poisson process [3, ch. 8. p. 265]. Such a process does not share all the same
properties as a Poisson process. Nn(A) will in general not be distributed as a
Poisson random variable. For instance

Var(Nn(A)) ≥ E(Nn(A)),
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with equality only if Ψ(A) is almost surely constant [4, ch. 3, p. 8]. However,
as the conditional distribution of Nn is known, it is fairly straight forward to
establish the intensity measure and the void probabilities of Nn. One have that
the intensity measure ψ(A) of Nn(A) is given by

ψ(A) = E(Ψ(A))

[4, ch. 3, p. 8]. For the void probabilities P (Nn(A) = 0), first note that by the
law of the unconscious statistician one have that

E(e−Ψ(A)) =

∫ ∞
−∞

e(t2−t1)(1+ξ(y)(u−µ(y)σ(y) ))
−1/ξ(y)

fY (y)dy. (2)

Secondly, note that the continuous version of the law of total probability [3, ch.
3, p. 39) implies that

P (Nn(A) = 0) =

∫ ∞
−∞

P ((Nn(A) | Y = y) = 0)fY (y)dy

=

∫ ∞
−∞

e−Λ(A)fY (y)dy

=

∫ ∞
−∞

e(t2−t1)(1+ξ(y)(u−µ(y)σ(y) ))
−1/ξ(y)

fY (y)dy

(3)

Thus, (2) and (3) together implies that the void probabilities are given by

E(e−Ψ(A)).

4.2.2 Special case

A particular case that will demonstrate relevance in the subject of modelling
significant earthquakes will be when one can assume that ξ(y) and σ(y) are both
constant but µ(y) = µ0 + µ1y and y is the realization of a random variable Y ,
Y ∼ Exp(θ). Then

Nn = {(i/(n+ 1), Xi(yi) : i = 1, ..., n}

is a point process such that for regions A of the form A = [t1, t2] × (u,∞) one
have that

N(A) | (Ψ(A) = Λ(A)) ∼ Poi(Λ(A))

with the intensity measure Λ(A) given by

Λ(A) = (t2 − t1)

(
1 + ξ

(
u− (µ0 + µ1y)

σ

))−1/ξ

,

and for unobserved y the intensity measure ψ(A) of Nn(A) can be expressed
(according to the previous section) as

E(Ψ(A)) =

∫ ∞
0

(t2 − t1)

(
1 + ξ

(
u− (µ0 + µ1y)

σ

))−1/ξ

θe−θydy.
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Or equivalently, with the aid of the upper incomplete gamma function Γ(a, x) =∫∞
x
ta−1e−tdt, in the following manner,

ψ(A) = (t2 − t1)β−αeβzΓ(α+ 1, βz)

with change of variables α = −1/ξ, β = −θ/(ξµ1/σ), and z = 1 + (ξ/σ)u −
ξµ0/σ− ξµ1/σ. The void probabilities can be obtained for example by numeri-
cally solving

E(e−Ψ(A)) =

∫ ∞
0

e
−(t2−t1)

(
1+ξ

(
u−(µ0+µ1y)

σ

))−1/ξ

θe−θydy.

5 Data

Data from the Significant Earthquake Database laid as core for the analysis.
Data from the ANSS Comprehensive Earthquake Catalog was used as a way of
complementing in the analysis of unconditional probabilities. The Significant
Earthquake Database consists of thousands of events that stretches from 2150
BC to present time. However, not all earthquakes during the time is included
(earthquakes of low intensity occurs incredibly frequent). Events that meets at
least one of the following criteria is included: moderate damage (approximately
$1 million or more), 10 or more deaths, magnitude 7.5 or greater, Modified
Mercalli Intensity X or greater, or the earthquake generated a tsunami. To
analyse whether or not there is a correlation between societal aspects and the
number of deaths, data from World Development Index was imported. This data
set, which take the form as a time series contains a vast amount of information
related to countries, such as population density and GDP.

5.1 Data filtering with regards to death toll

An important part of the analysis was that of choosing events from the Sig-
nificant Earthquake Database that could be considered unbiased. Unbiased in
the sense that all events included are included on the same premises. Since the
primary objective of the analysis was to model the number of deaths from an
earthquake, it seemed reasonable to include only events where there are 10+
deaths as those are all included, regardless of whether or not the event satisfied
any other criteria. Suppose events where there are less than 10 deaths where
to be included, then those event would have to meet one of the other criterion,
which would mean that those particular events would be ”more extreme” than
other events with the same number of deaths (that are excluded). It is also
noteworthy that when modelling extremes (such as yearly maximum), one can
expect the number of deaths to be high and above 10, meaning that events with
sub 10 deaths would have little to no impact on the statistics.
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5.2 Transformation of death tolls

The analysis considers the logarithm over the number of deaths rather than
just the number of deaths. The motivation for this is twofold. First, the non-
transformed data is highly skewed, and outliers seems to have an unreasonable
large impact on the modeling (parameter estimation). Second, the number of
deaths was assumed dependent on the magnitude of the corresponding earth-
quake, and the magnitude is logarithmically proportional to the amplitude of
the ground motion [15]. Therefore, if a linear trend seems evident in the rela-
tion between the logarithm of the number of deaths and the magnitude, then
that would suggest a linear trend between the number of deaths and the ground
motion.

5.3 Transformation of magnitudes

The magnitudes of the earthquakes were shifted and scaled such that m∗ =
0.4(m− 6)/10, so that the magnitudes m∗ had origin at 6 and was scaled such
that an earthquake with magnitude 10 was an earthquake with modified mag-
nitude 1. Those below magnitude 6 were dropped. The shifting countered the
issue of model instability for low magnitudes. As it was deemed highly unlikely
(or perhaps impossible) to have any other death toll than zero for ”extreme”
earthquakes with magnitude close to zero, it meant that the statistical model
in place would have to predict a value for the logarithm of deaths approaching
negative infinity. The scaling was done such that any magnitude would fall
in the interval [0, 0.95], i.e. close to [0, 1]. (The strongest ever earthquake on
record is of magnitude 9.5, it happened 1960 in Chile [16]).

5.4 Data with respect to geographic location

The Significant Earthquake Database includes information regarding where the
earthquakes occurred, in the sense of geographical coordinates, country and
region. It was reasonable to assume that earthquakes have varying effects on
the number of deaths dependent on location.

15
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Figure 1: Death toll shown in correlation with location. Region codes are
predefined in the Significant Earthquake Database and can can be found on the
NOAA website.

Although the data set could be separated into subsets for different regions,
the analysis was mostly based upon the entirety, primarily as a way of reducing
variance. The result suggested that a fine model could be established neverthe-
less.

5.5 Data with respect to time

Another aspect in the choice of events was the year of which they occurred.
It is not obvious (and probably false) to assume that the number of deaths in
an event is identically distributed regardless of time. However, viewing the the
annual maximum over the last 80 years, Figure 2 shows that any trend might be
negligible. It was therefore decided to include data only of events that occurred
between 1940-2020 (the last 80 years), thus assuming local stationarity.
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Figure 2: A weak trend can be shown with respect to time.

5.6 Subset for block maxima

A subset of the data was created by selecting the events that was the annual
maximum with regards to death toll. Thus, the subset contained 80 events. No
smaller (half-year or quarterly) subsets was created as those would not have
been complete in the sense of each frame containing at least one event.

6 Software

The data review and subsequent extreme value analysis was implemented via
RStudio in the programming language R. The package in2extRemes was used for
most of the extreme value analysis, including parameter estimation, creation of
GOF plots, GLR testing and data simulation. The package rcomcat was used to
search information from the ANSS Comprehensive Earthquake Catalog. The wdi
package was used to search and download content from the World Development
Index database.

7 Formulation of the objective

The objective was to establish a reliable point process that could be used to
model the number of deaths that is the outcome of earthquakes with extremely
high death tolls. An expected correlation between the number of deaths from
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the worst earthquakes and the earthquakes magnitude could at first be strength-
ened by a visual inspection of the annual maximums, see Figure 3. This sug-
gested that the worst earthquakes should perhaps be modeled with distribution
dependent on magnitude. Define,

X̃i(mi) := Logarithm of death toll from a single

earthquake with known magnitude mi ∈ [0, 1].

Xi := Logarithm of death toll from a single

earthquake with random magnitude.

Zn(m) := max{X̃i(m)}i=1,..,n.

As a mean of finding a model for the extremes of n Xi’s, a first goal was set
to establish a point process for the extremes of n X̃i(mi)’s. This point process
would be of the form suggested in section 4.2, i.e.

Nn = {(i/(n+ 1), X̃i(mi) : i = 1, ..., n}

such that for regions A of the form A = [t1, t2] × (u,∞), the number of points
in A, Nn(A), is Poisson distributed Nn(A) ∼ Poi(Λ(A)) with

Λ(A) = (t2 − t1)

(
1 + ξ(m)

(
u− µ(m)

σ(m)

))−1/ξ(m)

.

. Thereafter, with aid from the theory established in section 4.2.1, a more gen-
eral point process was hoped to be found for the extremes of Xi. An assumption
was made that there occurs n earthquakes annually with magnitude larger than
six, i.e. a fixed amount of earthquakes.
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Figure 3: Yearly maximum with respect to magnitude.

8 Parameter functions for the process {X̃i(mi)}n
Let θ(m) = (µ(m), σ(m), ξ(m)). Due to the link between the parameters given
by modeling Zn(m) as

Zn(m) ∼ GEV(θ(m))

and the parameters in the intensity measure of a point process (such as suggested
in section 4.2), it made sense to start with the simpler model, block maxima,
to determine the basic construction of the function θ(m). The approach for
finding suitable functions was to try nested models. Especially, performing for-
mal generalized likelihood ratio (GLR) tests in order to determine significant
parameters. Goodness of fit (GoF) plots were reviewed for each model. Evalu-
ation of each model was then based on both the GLR test and the GoF plots
with the principle of parsimony in mind. Five models were evaluated,

M1 : θ(m) =(µ, σ, ξ)

M2 : θ(m) =(µ0 + µ1m,σ, ξ)

M3 : θ(m) =(µ0 + µ1m+ µ2m
2, σ, ξ)

M4 : θ(m) =(µ0 + µ1m+ µ2e
m, σ, ξ)

M5 : θ(m) =(µ0 + µ1m, exp(σ0 + σ1m), ξ)

The evaluation for each model was made by fitting a GEV distribution to
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the annual maximum. The corresponding Log-Likelihood values were,

M1 : −106.906

M2 : −104.028

M3 : −103.603

M4 : −103.590

M5 : −102.950

Thus, the deviance statistic D = 2(`(M2) − `(M1) was realized to d = 5.756,
which implied that the hypothesis that M1 is a plausible reduction of M2

could be rejected with p-value p = 0.0164, i.e significance level lower than 0.05.
Rejection on level 0.05 could not be done for any of the more complex models
M3,M4,M5 againstM2. GoF plots were reviewed forM1 andM2 (see Figure
4 and 5) and they did not seem to speak in any great disfavor for M2 even
though it could be noted that two observations were a bit off line forM2. Thus
it was said that, out of the five models considered, modelM2 provided the best
description of Zn(m) and would be the one used for further analysis.
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Figure 4: qq-plot for model 1.
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Figure 5: qq-plot for model 2.

8.1 Other possible covariates

Several functions for the parameter was tried with generalized likelihood ratio
tests againstM1 in addition to those already suggested. Especially with regards
to year of occurrence linear in µ (p = 0.922), population density in the country
of occurrence linear in µ (p = 0.132), and GDP per capita in current $ linear
in µ (p = 0.264). Assumptions that any of these could be significant was based
on information from World Health Organization (WHO) [12] and Our World in
Data [13]. However, none were determined to be an acceptable extension of the
constant model M1.

9 Model Construction for the process {X̃i(mi)}n
This section concerns the method for estimating the parameters in the intensity
measure of the Poisson point process. Although parameters for the Poisson point
process could be estimated using block maxima or POT, it was decided to first
and foremost fit a point processes. The strategy to fit a point process (as well
as would have been with POT) is beneficial over fitting a block maxima in the
sense that some data which could very well contribute to parameter estimation
might be spared. Consider that Xi(m) depends on magnitude m, then what
might be considered an unusual high value for Xi(m) will depend on m. This
suggests a non-constant threshold over which observations are considered into
the parameter estimation.
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As the function for θ(m) was decided (section 8) to be linear in µ and
constant for σ, ξ, i.e. θ(m) = (µ0 + µ1m, σ, ξ), the aim for the parameter
estimation was to estimate µ0, µ1, σ and ξ.

9.1 Threshold Selection

As the parameterization of a point process is invariant of the threshold, the
selection of a threshold function would only affect the bias-variance trade-off.
Earthquakes with high magnitude can be expected to cause a significantly higher
death toll compared to a low magnitude earthquake, it was therefore sensible to
have a threshold that increased with magnitude. One approach that was tried
was to view the empirical quantiles: q0.9(m), and base the threshold function
on those, as to approximately keep an uniform rate of exceedances. However,
since only data from events with 10 or more deaths are included, the empirical
quantiles produced could be assumed higher than the ones that would have been
obtained if data from all earthquakes was included in the data set. In essence,
Figure 6 depicts what could be assumed to be some estimated upper bound for
q0.9(m). The threshold function was then being selected by trial-and-error, with
the quantiles as reference and with GoF plots used for comparing thresholds of
the same shape. A function that seemed sensible was found and is depicted in
Figure 7.
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Figure 6: 90% quantiles for the magnitudes of earthquakes.

22



0.0 0.2 0.4 0.6 0.8

1
2

3
4

5

Suggested threshold

Magnitude

lo
g(

de
at

hs
)

Figure 7: A function for the threshold.

9.2 Parameter Estimation

With a threshold selected, the parameters µ0, µ1, σ and ξ was numerically
estimated as the ML-estimators µ̂0, µ̂1, σ̂ and ξ̂. Logistically, this was made
by first estimating the parameters of the corresponding generalized Pareto dis-
tribution, which was then transformed to those approximately equivalent for
a GEV distribution [17]. Confident intervals was also established numerically
from the observed information matrix [17].

µ̂0 = 3.13, µ̂=2.45, σ̂ = 0.63, ξ̂ = −0.23

and 95% confidence intervals obtained by normal approximation,

Iµ0
= (2.83, 3.42), Iµ1

= (1.50, 3.39)

Iσ = (0.54, 0.72), Iξ = (−0.32,−0.14)

9.3 Model Diagnostics

Diagnostics for the model was primarily made by inspecting plots. Especially
three plots. First, a qq-plot with modified excesses over the threshold that was
compared to the standard exponential distribution through the means of first
transforming the parameters to those approximately equivalent of generalized
Pareto. The data was sought to line up somewhat neatly.
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Figure 8: qq-plot with modified excesses compared to standard exponential
distribution.

Secondly, a qq-plot with model simulated data compared to excesses. Trans-
formations of the parameters once again made to those that are approximately
equivalent of generalized Pareto. Similar to the first plot, data was sought to
line up, although it could not be expected to behave just as well [17].
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Figure 9: Simulated data compared to excesses. Data sough to line up.

Third, a return level plot. A plot depicting lines for some estimated return
levels ry, where ry is the y-year return level, as well as data points. An indication
of an ill-behaved model would be for example if there would be a tendency for
data to come out above all or most return levels ry more than 80/y times (or
analogously, below).
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Figure 10: Return level plot. The black line crossing any of the coloured lines
depicts an event above corresponding return level.

10 Further Justification

The data was fitted using block maxima and peaks over threshold strategy as
well. This was primarily done for the purpose of inspecting GoF plots. If
those were reasonable, they could possibly strengthen the arguments for that
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the model assumptions that had been made were reasonable.

10.1 Block Maxima

Parameters in an intensity measure for a point process of extremes are closely
linked to those of an approximate distribution for maximums obtained by a
block maxima model. In fact, by default, the software used constructs the
estimates from a point process fitting to those that in theory are the same
as fitted with block maxima [17]. Therefore, it was sensible to compare the
estimated parameters from the point process for X̃i(mi) with thus obtained by
modelling Zn(m) as Zn(m) ∼ GEV(µ(m), σ(m), ξ(m)). The estimates for the
block maxima were

µ̂BM0 = 0.90, µ̂BM1 = 2.89, σ̂BM = 0.93, ξ̂BM = −0.28

and for the point process

µ̂PP0 = 3.13, µ̂PP1 = 2.45, σ̂PP = 0.63, ξ̂PP = −0.23

Something noteworthy and sought for, is that the shape parameter is negative
in both cases. A qq-plot was also produced which did not indicate any direct
issues, see Figure 11.

−1 0 1 2 3 4

−
1

0
1

2
3

4
5

Diagnostic QQ plots for Block Maxima

Model

E
m

pi
ric

al

Figure 11: qq-plot for a model that has been fitted using the block maxima
approach on yearly maximums.
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10.2 Peaks Over Threshold

The data was fitted to a General Pareto distribution using the POT strategy.
The same threshold that was decided upon in section 9.1 was used for this
model. A linear trend in magnitude was added to σ with a log-link to ensure
positivity. The qq-plot could be deemed a bit off in one section, see Figure 12.
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Figure 12: qq-plot for a model that has been fitted using the peaks over threshold
approach with the same threshold as the one used for the point process.

11 A point process describing {Xi}n
If an assumption could be made regarding the distribution of the magnitudes
m1, ...,mn such that they are i.i.d and realizations of some random variable M
with known density fm(m), then it would be possible to describe a point process
Nn = {i/(n+ 1), Xi : i = 1, ..., n} as a Cox point process. As such, it would be
possible to obtain estimates for the corresponding intensity measure ψ(A) and
for the void probabilities ν(A) = P (Nn(A) = 0).

11.1 Distribution of earthquakes magnitudes

A histogram (see Figure 13) of the modified magnitudes worldwide over a ten-
year period was produced, visually indicating that an exponential distribution
might had been to assume. Although a corresponding qq-plot did not line up
perfect (see Figure 14), it did line up somewhat fine, and for that reason it
was decided that an assumption from thereon would be made that magnitudes
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of earthquakes (above magnitude 6) follows an exponential distribution. An
estimated rate value for earthquakes worldwide was numerically calculated to
be 10.2 with standard deviation 0.26. It was expected that the rate value would
vary a lot when looking at geographical regions other than worldwide.
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Figure 13: Histogram produced to aid in the search for a parametric family of
distributions that the magnitudes can be fitted to.
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Figure 14: Diagnostics for magnitudes fitted to an exponential distribution.

11.2 Return Levels

With ν(A) being the void probability over A = [t1, t2]× (u,∞). The probability
of the maximum Xi over the time frame [t1, t2] being less than u, is

P (max{{Xi : (i/(n+ 1)) ∈ [t1, t2]}} ≤ u) = ν(A),

since if the maximum is not above u, then no points can be in A. This implies
of course that

P (max{{Xi : (i/(n+ 1)) ∈ [t1, t2]}} > u) = 1− ν(A).

By recognizing that an assumption had been made stating that n earthquakes
occurs per year, letting t1 = 0, t2 = 1, means that one can determine the y-year
return level zy from the equation 1− ν([0, 1]× (zy,∞)) = 1/y.

With the density for magnitudes assumed exponential, i.e. fm(m) = θeθm,
estimated confidence intervals for the return levels could be obtained with the
aid of simulations. The method used was to, for each zy return level of interest,
draw a large number of realizations of the estimate

({ ˆ(µ0)i, ˆ(µ1)i, ˆ(σ)i, ˆ(ξ)i, ˆ(θ)i}i=1,...,N )y.

Then, y could be estimated N times and the upper and lower .05 empirical
quantiles could make up the 95% confidence interval for y. This was possible
since the distribution of the MLEs used for (µ0, µ1, σ, ξ) could be approximated
as

Normal4((µ̂0, µ̂1, σ̂, ξ̂),Σ)
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with Σ being the covariance given by the inverse of the observed information
matrix. Similarly, the distribution of θ̂, which was assumed independent of the
other estimates, was approximated as N((θ̂, V ar(θ̂)) due to asymptotic normal-

ity, with V ar(θ̂) numerically estimated.
Since the distribution for the relevant magnitudes of the earthquakes were

assumed exponential, the theory in section 4.2.2 could be applied directly, and
the void probabilities could be estimated by numerically approximating

ν([0, 1]× (zy,∞)) =

∫ ∞
0

e
−(t2−t1)

(
1+ξ

(
zy−(µ0+µ1m)

σ

))−1/ξ

θeθmdm.

Return level plots based on the methodology above were created for three
different geographical regions as mean of model validation. The reasoning for
looking at different regions was to review the adaptability with respect to the
estimated rate parameter. The rate parameter for the magnitudes varied by
region, while estimates for the GEV-parameters were based upon earthquakes all
over the world, but scaled in µ and σ due to the varying number of earthquakes
per year. If the model could be assumed good enough of an approximation,
then it would perhaps be possible to apply the model for regions were large
earthquakes very rarely occurs.
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Figure 15: Rate parameter estimated to 12.5
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Figure 16: Rate parameter estimated to 7.88
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Figure 17: Rate parameter estimated to 9.33
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11.3 Intensity of extreme cases

With an established assumption of earthquakes magnitude following an expo-
nential distribution with parameter θ, what is theorized in section 4.2.2 may be
applied. Therefore, with the following change of variables,

α = −1/ξ

β = −θ/(ξµ1/σ)

z = 1 + (ξ/σ)u− ξµ0/σ − ξµ1/σ

an approximate intensity measure of earthquakes with death tolls above u, over
the number of days t, can be given by

ψ(A) = (t/365)β−αeβzΓ(α+ 1, βz)

with Γ(a, x) being the upper incomplete gamma function.

12 Conclusions

The objective of the the thesis was first and foremost to find a suitable estimate
for an approximate Poisson point process conditioned on any significant covari-
ates. It was determined, as suspected, that the magnitude would be a relevant
covariate that should be conditioned upon. Other covariates were tried out, but
none were found to significantly impact the statistical model. The diagnostics
performed on the estimated model that was a result of fitting a point process to
selected data suggested that extreme value theory might very well be applica-
ble under reasonable assumptions. The fact that fitting a GEV model over the
yearly maximum made for a reasonable qq-plot and estimated parameters (that
were in line with the point process approach), was definitely sought after and
contributed to the overall reasonability of the estimated point process. It was
not straight forward how to validate the general point process that relied on
known magnitude distribution, however, return level plots that was produced
were indeed looking good.

13 Future research

Although some covariates other than magnitude were considered, it may be of
interest to investigate others. One possible covariate that was not particularly
looked into, but that could probably influence the behavior of the model was
geographical regions. As stated in section 5.4, it is reasonable to assume that
earthquakes have varying effects on the number of deaths dependent on location
and therefore one might find it interesting to look further into the topic.

Another aspect that would be interesting to look further into would be the
effect of a random number of observations. An assumption was made was that
there occurs n earthquakes annually with magnitude larger than six and with
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death toll at least ten. This assumption is obviously a hefty one, and not true. It
seems likely that n could be assumed random with Poisson distribution, however
validation of this and the effect it would have on both parameter estimation and
corresponding confidence intervals was not dealt with. ξ is invariant of n, but
µ and σ is variant in such a way that σ− ξµ will remain constant w.r.t n [1, ch.
4, p. 75-76]. For block maxima the randomness of n would not pose a direct
issue as it is incredibly unlikely that no event would qualify for an entire year.

Figure 14 indicates that perhaps it is an over simplification to assume expo-
nential distribution for earthquakes with magnitude higher than six. Although
qq-plots was inspected for smaller regions, indicating a better match for the ex-
ponential distribution, it could be of interest to find a more suitable distribution,
or perhaps look into non-parametric assumptions.

In addition to the number of deaths from an earthquake, the data set pro-
vided by NOAA National Centers for Environmental Information also contains
other interesting information, such as the number of houses destroyed, econom-
ical damage, and injured people. Those may be of interest to model for similar
reasons as the death toll is interesting to model.
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