
LU-TP 21-04
March 2021

Squaring VEGAS

Multidimensional Integration Using 2D Correlations

Philip Siemund

Department of Astronomy and Theoretical Physics, Lund University

Bachelor thesis supervised by Rikkert Frederix

Abstract

Multidimensional integrals are used in many areas of physics; electrodynamics, quantum
mechanics and statistical physics, to name a few. Many integrals can not be solved analyt-
ically, but can instead be approximated numerically. VEGAS is a Monte Carlo integration
algorithm, which specializes it in approximating multidimensional integrals. By treating
each integration variable independently, VEGAS only offers good approximations if the
characteristic regions of the integrand’s graph align with the coordinate axes. This thesis
presents a modified VEGAS called VEGAS squared, which tracks possible correlations be-
tween the integration variables pairwise. When integrating Gaussian functions in two and
three dimensions, for which the central parts of the graphs misalign with the coordinate
axes, VEGAS squared produces a standard error by a factor of 2.5 less than what VEGAS
does.

From Monte Carlo to VEGAS to VEGAS squared

A definite integral represents the area under the graph of the function, known as the inte-
grand, that is to be integrated. A double definite integral represents a volume and anything
beyond represents a hypervolume. The latter integrals are referred to as multidimensional
integrals and can be found in many areas of physics; electrodynamics, quantum mechanics
and statistical physics, to name a few. Many integrals do not have an exact solution in
which the value of the integral can be expressed with a finite number of symbols. These
integrals can instead be approximated numerically; through solutions that can be shown
to be almost exact.

Monte Carlo integration, named after the Monte Carlo Casino in Monaco, is a numeri-
cal integration technique in which the integral is approximated by the mean of random
evaluations of the integrand. More generally, the method of using random sampling as a
means to estimate a deterministic quantity, such as a hypervolume, is known as the Monte
Carlo method. This method is said to originate from scientists working at the Manhattan
project, where they were challenged with testing their theories about neutron diffusion
in fissionable material while simultaneously not affording to run countless experiments.
Since then it has become a very popular tool in making theoretical predictions and its
applications reach beyond sciences.

The Monte Carlo method uses a brute force approach. Consider rolling two dice. To
find out the different probabilities of the outcomes, one can construct a simple table.
There will be thirty-six outcomes in total and finding the probabilities from the table is
straightforward. This is the mathematical approach and no dice were rolled. Another
approach is to actually roll the dice, say ten thousand times, and make a note of the
outcome with each roll. This is what the Monte Carlo method does; your results will be
approximate, meaning there will be an uncertainty, and they can always be improved by
continuing rolling the dice.

The uncertainty in the approximation indicates how well a numerical integration technique
performs. There are different strategies to reduce the uncertainty when using Monte Carlo
integration. VEGAS is a Monte Carlo integration algorithm that tries to reduce the un-
certainty by evaluating the integrand where it is large. This strategy has made VEGAS
very efficient in higher dimensions compared to other Monte Carlo integration algorithms
using other strategies. However, VEGAS only offers good approximations if the character-
istic regions of the integrand’s graph align with the coordinate axes of a given coordinate
system. The purpose of this thesis is to modify VEGAS to improve its approximation of
integrals for which it performs less well and thereby possibly contribute to a more accurate
prediction somewhere. The modified VEGAS is called VEGAS squared.

2

Contents

1 Introduction 4

2 Theory 5

2.1 Monte Carlo integration . 5

2.2 Importance and stratified sampling . 7

2.3 Curse of dimensionality . 8

2.4 VEGAS algorithm . 9

2.4.1 Optimal number of bins in VEGAS 10

2.5 VEGAS squared . 11

2.6 2D correlations . 14

2.7 VEGAS squared algorithm . 15

3 Result 18

4 Conclusion 19

5 References 20

Appendix Python Code 21

VEGAS . 21

VEGAS squared . 24

List of acronyms

MC Monte Carlo
i.v.(’s) integration variable(s)
nD n-dimension(s)(al)
LLN law of large numbers
r.v.(’s) random variable(s)
pdf(s) probability density function(s)
i.i.d. independent and identically distributed

3

1 Introduction

VEGAS [1] is a Monte Carlo (MC) integration algorithm, which specializes it in approx-
imating multidimensional integrals. By treating each integration variable (i.v.) indepen-
dently, VEGAS only offers good approximations if the characteristic regions of the inte-
grand’s graph align with the coordinate axes of a given coordinate system. The purpose
of this thesis is to modify VEGAS to improve its approximation of integrals for which it
performs less well, that is, where the characteristic regions of the integrand’s graph do
not align with the coordinate axes, or equivalently, if the level sets corresponding to the
characteristic region display correlations between the i.v.’s. Using the programming lan-
guage Python, a self-written VEGAS will be implemented and subsequently modified. The
modified VEGAS is called VEGAS squared.

The thesis is structured as follows. The Theory section, section 2, starts with a brief
overview of how integrals can be approximated numerically. This is followed by subsection
2.1 on MC integration and in turn by subsection 2.2 on two variance reduction tech-
niques, namely importance and stratified sampling. Next, subsection 2.3 highlights some
of the challenges in approximating multidimensional integrals, specifically the phenomenon
known as the curse of dimensionality. The VEGAS algorithm is presented in subsection
2.4, which is a rewrite of the algorithm as presented in [2]. Then follows subsection 2.5,
in which the necessary changes that need to be made in VEGAS in order to transition to
VEGAS squared are discussed. Subsection 2.6 defines the 2D correlations used in VEGAS
squared. Finally, the VEGAS squared algorithm is presented in subsection 2.7.

In the Result section, VEGAS squared is compared to VEGAS. This involves comparing
standard errors when integrating a 2D (two-dimensional) Gaussian function. Since a Gaus-
sian function is commonly used in approximating parts of other functions, it lends itself
well for testing. Gaussian functions can also be rotated so that the characteristic regions
of their graphs do align with the coordinate axes, however, for many other functions this is
not possible due to the correlations between the variables. The computational costs of the
two implementations for a fixed number of points will not be compared, since in practice
they would be negligible compared to the computational cost of evaluating the integrand.

4

2 Theory

In numerical integration, the integral is approximated by a weighted sum of a finite num-
ber of evaluations of the integrand. How the weights and points for the evaluations are
determined is what characterizes a specific technique. The goal is to get an error in the
approximation less than a given threshold with as few points as possible. For example, the
numerical approximation of the Riemann integral follows from its definition.

Definition 1. Let f(x) be a function defined on the interval [a, b]. Let PN be a partition
of [a, b] consisting of N intervals [xk−1, xk] and k = 1, . . . , N . Then, for all choices of
ck ∈ [xk−1, xk] and all possible sets PN for which the largest interval approaches 0 as
N →∞, the Riemann integral I is defined as

lim
N→∞

N∑
k=1

f(ck)(xk − xk−1) = I =

∫ b

a

f(x)dx . (2)

The weighted sum approximates the integral and is known as the Riemann sum. The
weights are xk − xk−1 and the points ck are predetermined. When f is only evaluated at
xk−1 or xk, this is known as a left and right Riemann sum respectively. The trapezoidal
rule is a numerical integration technique that averages the left and right Riemann sums.
Its rate of convergence εN , i.e. how fast the error in the approximation approaches 0, is
of order N−2/n [3], where n is the number of dimensions. This means, for some positive
constant C and a given threshold δ such that εN ≤ δ, N must satisfy

εN ≤ CN−2/n ≤ δ =⇒ N ≥
(
C

δ

)n/2

. (3)

For a fixed εN , the number of function evaluations grows exponentially with n. MC integra-
tion will be shown to have a rate of convergence of order N−1/2, independent of dimension.
This makes it the preferred numerical integration technique in higher dimensions.

2.1 MC integration

The trapezoidal rule uses a deterministic approach, meaning that each point where the
function is evaluated is known beforehand. MC integration, on the other hand, is non-
deterministic; it uses random points when evaluating the function. This alludes to intro-
ducing MC integration from a probabilistic standpoint.

The motivation behind MC integration arises out of two basic concepts in probability
theory; expectation and law of large numbers (LLN). The strong LLN relies on convergence
in p’th mean; a form of stochastic convergence. Intuitively, the expectation describes
where the distribution of a random variable (r.v.) is centered, and the LLN says that
the probability of an event approximately equals the proportion of times the event has
occurred in a large number of trials.

5

Definition 4. Let X be a continuous r.v. defined on the interval [a, b] with probability
density function (pdf) g(x). Then its expectation E[X] is defined as

E[X] =

∫ b

a

xg(x)dx . (5)

Definition 6. Let X be a r.v. and {Xk}k≥1 a sequence of r.v.’s. Also, let p > 0 and
E[|X|p],E[|Xk|p] < ∞. If E[|Xk −X|p] → 0 as k → ∞, Xk converges in p’th mean to X,

denoted Xk
Lp

−→ X. In particular, for p = 2, it is called convergence in quadratic mean.

Theorem 7. Let X1, . . . , XN be independent and identically distributed (i.i.d.) r.v.’s and
E[Xi] = µ. Then the arithmetic mean of X1, . . . , XN converges in quadratic mean to µ,
that is,

1

N

N∑
i=1

Xi
L2

−→ µ . (8)

Note that the i.i.d. r.v.’s X1, . . . , XN can be seen as a sample of a single r.v. X, in which
case the capital letters become lower case ones, and the arithmetic mean becomes the
sample mean. Thus, let X be uniformly distributed over [a, b], so that g(x) = 1/(b − a),
and define the r.v. f(X), which is a r.v. if the function f is well-behaved1. Using the
definition of expectation and LLN, it follows that a reasonable approximation IN of the
integral I in equation 2 is given by∫ b

a

f(x)dx ≈ IN =
(b− a)

N

N∑
i=1

f(xi) . (9)

The weighted sum is the approximation of the integral in MC integration. That the rate of
convergence of IN goes as N−1/2 follows from the variance of IN , Var[IN], which in turn is
determined by the variance of f(X), Var[f(X)]. The square root of Var[IN] is the standard
error uN . If Var[f(X)] is given by the biased sample variance, then

uN =
√

Var[IN] =

√
(b− a)2

N
Var[f(X)] ≈ (b− a)√

N

√√√√(N∑
i=1

f(xi)2

N

)
−

(
N∑
i=1

f(xi)

N

)2

=
1√
N

√√√√(b− a)2

(
N∑
i=1

f(xi)2

N

)
− I2N . (10)

If Var[f(X)] is bounded as N →∞, then uN approaches 0 as N−1/2. The proportionality
constant N−1/2 provides a simple check that the numerical integration algorithm behaves
correctly, i.e. uN should decrease by a factor of N−1/2 when increasing N and vice versa.

1By the law of the unconscious statistician, see theorem 7.11 in [4], E[f(X)] is simply given by replacing
x by f(x) in Definition 4.

6

Another sound inspection related to equation 10 is comparing the integral of f1(x) = 1/
√
x

and f2(x) = 1/
√
x+ 0.001 over the interval [0, 1], both of which exist. For small x, the

latter integrand is bounded by 1/
√

0.001, whereas the former approaches infinity. Thus
the variance can get much larger for f1 over [0, 1], which implies a larger uN .

By reducing Var[f(X)] in equation 10, one reduces uN . Hence different variance reduc-
tion techniques have been developed to make MC integration more efficient. Two such
techniques are highlighted in the next section; importance and stratified sampling.

2.2 Importance and stratified sampling

Importance sampling is a variance reduction technique used by VEGAS. It samples where
it is important, which is accomplished by replacing the uniform distribution with a non-
uniform one. Consider a very large and narrow Gaussian function defined on the interval
[0, 1]. Recall that in MC integration one approximates the expectation by the sample mean,
and thus the contribution to IN should come from the part of the function where it steeply
rises and reaches its peak. This part, however, corresponds to a relatively small interval
on the x-axis. A uniform pdf is not ideal in this case since the length of the interval equals
the probability of finding a point there. Rather, a pdf h(x) that looks just like the function
is more suitable. Thus IN in equation 9 becomes∫ b

a

f(x)dx =

∫ b

a

f(x)

h(x)
h(x)dx ≈ IN =

(b− a)

N

N∑
i=1

f(xi)

h(xi)
. (11)

In two and higher dimensions, VEGAS defines the joint pdf associated with the multivariate
integrand as a product of the marginal pdfs of the r.v.’s. That is, h(x, y) = h(x)h(y) in
2D. This is equivalent to all r.v.’s being independent2.

Another variance reduction technique is called stratified sampling. One partitions the do-
main in subdomains, i.e. strata, of possible different sizes. MC integration is performed in
each subdomain with the original number of points divided by the number of subdomains.
The sizes of the subdomains are varied and minimized when the contributions to the vari-
ance from each subdomain are equal. Consider again a very large Gaussian-like function,
but with a peak stretching over a large part of the interval over which the function is
defined. Importance sampling is not ideal in this case, since then the contribution to IN
will mainly come from the value of the function at the peak. By dividing the domain into
subdomains where the function is constant and non-constant, contributions to IN from
both parts will be considered.

In summary, importance sampling increases the density of points where the integrand is
large. Stratified sampling increases the density of points where the integrand changes
rapidly. In the case of a large and narrow Gaussian function, these techniques are equiva-
lent.

2This follows from theorem 5.18 in [4].

7

2.3 Curse of dimensionality

Although MC integration has a rate of convergence independent of dimension, the space
of higher dimensions poses another problem; sparseness. When the number of dimensions
increase, so do the degrees of freedom. There are two ways to move away from the center
of a line, but an infinite number of ways to move away from the center of a square. In a
sense, the points can thus differ in more ways from each other as the dimensions increase.
For a fixed number of random points, this leads to a larger average distance between the
points. As each point also has a higher probability for any of its components to lie at the
edge of an axis with more axes, the points gather at the edge of the integration domain.
The probability that points lie at the center of the domain approaches 0. The curse of
dimensionality derives its name from the fact that this happens regardless of how the points
are distributed and counteracting it requires an exponential increase of points. In general,
a high density of points in each part of the integration domain will give a fast convergence,
but as the number of dimensions grow, this becomes close to impossible.

To illustrate the above, consider the volume of a unit hypercube in n dimensions (nD),
which equals 1. The fraction of its volume occupied by another hypercube inside of it
is simply the volume V (r, n) = rn of the other hypercube, where r is its side length.
Figure 1 shows how V (r, n) depends on r for different n. In 10D, a side length of 0.8 only
corresponds to approximately 0.11 of the volume of the unit hypercube. Specifically, it is
the fraction that goes to 0 as n→∞, regardless of the side lengths of the two hypercubes.
A point with any of its components in the interval [0.8, 1] will most likely be far away from
an already sparse set of points.

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.2

0.4

0.6

0.8

1.0

V(
r,

n)

Volume occupied by hypercube inside unit hypercube
n = 1
n = 3
n = 10

Figure 1: As n increases, so does the sparseness of a fixed number of points in the integra-
tion domain.

8

2.4 VEGAS algorithm

In words, there are two unit hypercubes; the x-cube, the integration domain, and the
y-cube, where random points are generated in. In the x-cube the bins are varied in size
and in the y-cube they are fixed. The first iteration starts with the bins in the x-cube
having the same length as those in the y-cube. One generates N random points in the
y-cube and maps those to points in the integration domain. This map assigns different
probabilities to each bin in the x-cube, but in VEGAS the bins in the y-cube are fixed, so
each bin in the x-cube gets on average the same number of points. The integral is then
approximated by the sample mean of the random evaluations of the function and the error
by the standard error. For each iteration, one stores the integral in each bin on each axis.
This information is then used to change the bin sizes in the x-cube, so that the integral
in each bin is approximately equal. Thus, a large bin corresponds to a region where the
function is small and vice versa.

In symbols, and following the notation of [2], consider the nD unit hypercube for n ≥ 1,
and let f(x1, . . . , xn) be an integrable function in this domain, where xk denotes the k’th
coordinate. Divide the interval [0, 1] for each coordinate in m bins of variable length. Let
yk denote the k’th coordinate in another unit hypercube, and divide the interval [0, 1] for
all of these in m fixed bins of length 1/m. Define n piecewise linear and strictly increasing
functions hk(yk) by

hk
(
l

m

)
= xkl , (12)

where l = 0, . . . ,m and k = 1, . . . , n. Thus, the point l/m on every yk-axis maps to the
point xkl on every xk-axis, each marking the possible end and beginning of a fixed bin and
variable sized bin respectively. If yk is given and y is a random point in the interval [0, 1]
satisfying (l − 1)/m < y < l/m, then

dhk(yk)

dyk

∣∣∣∣
yk=y

= (xkl − xkl−1)m . (13)

The first iteration starts with xkl = l/m. A set YN of N random points y are generated
in the unit hypercube 0 ≤ yk ≤ 1. The integral of f(x1, . . . , xn) is approximated by IN in
equation 9, and the error uN by equation 10,∫

f(x1, . . . , xn)
n∏

k=1

dxk =

∫
f(h(y1), . . . , h(yn))

n∏
k=1

dhk(yk)

dyk
dyk

≈ IN =
1

N

∑
y∈YN

f(h(y1), . . . , h(yn))
n∏

k=1

dhk(yk)

dyk
, (14)

uN ≈
1√
N

√√√√√√
∑

y∈YN

(
f(h(y1), . . . , h(yn))

∏n
k=1

dhk(yk)
dyk

)2
N

− I2N . (15)

9

For each point y and each of its components y, the cumulative sum of the integral less
than a factor mn as well as the number of points in a given bin on the yk-axis are stored in
the arrays Rlk and Nlk. These arrays are used to compute the average integral in each bin
on the xk-axes, and the cumulative sum of these are stored in the array Ilk, where I0k = 0.
That is,

Rlk =
∑
y∈YN

1{(l − 1)/m < y < l/m}f(h(y1), . . . , h(yn))
n∏

k=1

(xkl − xkl−1) , (16)

Nlk =
∑
y∈YN

1{(l − 1)/m < y < l/m} , (17)

Ilk =
l∑

j=1

Rjk

Njk

, (18)

where l = 1, . . . ,m and k = 1, . . . , n. Finally, one defines n piecewise linear and strictly
increasing functions ik(xk) similar to hk(yk), mapping xkl to Ilk. Then for the next iteration,
the new xkl in equation 12 are found by solving the equation

ik(xkl) = ik(1)
l

m
, (19)

where l = 0, . . . ,m and k = 1, . . . , n. Since the bins on the yk-axes are fixed, the number
of points will on average be the same in each bin on the xk-axes. When all Rjk/Njk are
equal, the graphs of ik(xk) approach a straight line and xkl no longer change.

2.4.1 Optimal number of bins in VEGAS

A high density of points in each part of the integration domain is a preferred outcome. For
a fixed number of points N in VEGAS, one would expect to have a large uN for a few bins,
but likewise for many bins, since the density in a single bin will be low in both cases due
to each bin having on average the same number of points. Clearly, uN is minimized for a
specific m given N points and an integrable function. Figure 2 shows that the minimum
error in VEGAS is reached for different number of bins when integrating over a 1D and 2D
domain, approximately 175 and 125 respectively. The fewer bins in 2D is due to the fact
that, when adding another axis, each prior bin grows in height, and thus the sparseness of
the points increases.

10

0 50 100 150 200 250 300 350
m

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
u N

Optimal number of bins m for f(x) = 1 x in VEGAS

0 50 100 150 200 250 300 350
m

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

u N

Optimal number of bins m for f(x, y) = 1 x in VEGAS

Figure 2: The optimal number of bins m in VEGAS when integrating f(x) = 1 − x and
f(x, y) = 1 − x over the unit interval and square respectively after five iterations and
N = 1000.

2.5 VEGAS squared

Suppose the characteristic regions of a function’s graph do not align with the coordinate
axes, but for example with the hypersurface y = x. Moreover, suppose the function is only
large within a finite space close to this curve. A Gaussian function satisfies these criteria,
specifically G1(x, y) with a = 500, b = −495, c = 500, A = 3 and B = 0 in the general, 2D

11

Gaussian function G(x, y) centered at (0.5, 0.5),

G(x, y) = Ae−a(x−0.5)
2−2b(x−0.5)(y−0.5)−c(y−0.5)2 +B . (20)

The fact that G1(x, y) is a narrow Gaussian should make important sampling ideal, but
in VEGAS it is implemented in such a way that the density of points in parts of the
integration domain increase by changing the sizes of the bins on each axis, independently.
Each bin on each axis also receives on average the same number of points. This culminates
in a large number of points not landing within the narrow stretch where the function is
large, see Figure 3. More points will be needed to reach a good approximation of the
integral, but in higher dimensions, this may have little effect.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Integrating G1(x, y) in VEGAS
G1(x, y) = 0.8

Figure 3: The bin sizes and distribution of points in VEGAS when integrating G1(x, y)
over the unit square after five iterations, m = 10 and N = 10000. A grey dot represents a
point.

The idea behind VEGAS squared is to find the parts of the integration domain where
the i.v.’s make G1(x, y) large and only increase the density of points in those parts. The
information where G1(x, y) is large is partly given by VEGAS, but only for the bins on
each axis. It needs to be refined and the bins provide the structure for this refinement; the
grid of rectangles in Figure 3. Then, to increase the density of points in those parts where
G1(x, y) is large, the i.v.’s have to depend on each other.

If the bins are varied in size, only variable sized hyperrectangles which belong to small
bins will have a high density of points. This will lead to a collection of hyperrectangles in
the integration domain where the concentration of points is high, which is why VEGAS is
good at approximating integrals where the characteristic regions of the integrand’s graph
do align with the coordinate axes – the bins on each axis may adjust to increasing or

12

decreasing the dimensions of the characteristic regions of the integrand’s graph and ensure
that the corresponding part of the domain receives the main portion of the points, provided
m and N are chosen reasonably. This is shown in Figure 4, where G2(x, y) is the rotated
version of G1(x, y), that is with a = 5, b = 0, c = 995, A = 3 and B = 0 in equation 20. For
G1(x, y), however, variable sized bins have to be rejected, mainly due to the variable sized
grid of rectangles they give rise to; tracking where G1(x, y) is large becomes problematic
without a fixed, common area for each rectangle, in which case the rectangles become
squares.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Integrating G2(x, y) in VEGAS
G2(x, y) = 0.8

Figure 4: The bin sizes and distribution of points in VEGAS when integrating G2(x, y)
over the unit square after five iterations, m = 10 and N = 10000. When the dimensions of
the characteristic region enclosed by the level curve change, so do the bins correspondingly.

When the bin sizes are fixed, the points need to be, possibly differently, distributed in the
bins on each axis, whereas in VEGAS the points were on average the same for each variable
sized bin. Clearly, these are equivalent approaches in controlling the density of points over
the integration domain, and thus one may expect the advantages in one approach to be
the disadvantages in the other and vice versa. For example, if the size of a whole number
of bins do not match the dimensions of the domain where G2(x, y) is large, there will be
squares in which G2(x, y) is both large and small. These squares will be filled with points,
but only a fraction of them effectively determine the resulting, poor approximation.

As an intermediate step, the distribution of points for the bins on each axis may be de-
termined similar to the sizes of the bins in VEGAS; through the integral, i.e. the sample
mean, of the function in each bin. Adopting this approach, the integral in each bin remains
almost unchanged after the first iteration, and using it to optimize the distributions for the
next iteration will have no effect. To increase the density of points in a given hypercube in

13

the integration domain where the function is large, the distributions have to redetermine
each other.

In VEGAS, an evaluation of the integrand at a point lying in a hyperrectangle of the
integration domain is associated with the bins the hyperrectangle belongs to. However,
the value of the integrand could also be associated with the rectangles in each plane cor-
responding to two i.v.’s. Applying this to an integration domain made up of hypercubes,
one can study how the i.v.’s are correlated, pairwise. These are the so-called 2D correla-
tions and they determine the distributions for each r.v. corresponding to an i.v. Not all
distributions can determine each other; a natural choice is to let each added i.v. depend on
the existing ones, making one i.v. independent of all the others. Its r.v. has a distribution
determined by the intermediate step suggested in the previous paragraph.

To introduce what the 2D correlations are, consider a 2D domain and let i be an observation
of the discrete r.v X indicating the bin in which the random number x′ of the i.v. x is
found and whose distribution is determined by the integral in each bin on the x-axis. The
distribution of the discrete r.v. Y indicating the bin of the random number y′ of the i.v.
y is then determined by the integral in each square above the bin i on the x-axis. Thus y′

will most likely be found in a bin where the function is large for both i.v.’s, which is the
desired outcome.

With m bins in nD, the above implies that one must track the integral in
(
n
2

)
m2 squares,

which is significantly larger than the nm bins VEGAS tracks the integral in. The curse
of dimensionality ensures that this number grows exponentially if one tracks correlations
beyond 2D correlations, which is not feasible. Note also from the above that in 3D and
in all higher dimensions, the distribution of the r.v. corresponding to the added i.v. is
determined by the 2D correlations collected from each existing i.v. These must be combined
into a total correlation.

2.6 2D correlations

The 2D correlations are no more than conditional probabilities and how to obtain a total
correlation follows from two related concepts, namely conditional independence and Bayes’
theorem. In the following definitions and theorem, it is assumed a probability space is given;
an outcome space Ω, a σ-algebra F and a probability measure P . A, B and C are elements
of F .

Definition 21. If P (B) 6= 0, then the conditional probability of A given B, P (A|B), is
defined as

P (A|B) =
P (A ∪B)

P (B)
. (22)

Definition 23. If P (C) 6= 0, A and B are conditionally independent given C if

P (A ∩B|C) = P (A|C)P (B|C) . (24)

14

Theorem 25. If P (B) 6= 0, then the conditional probability P (A|B) is given by

P (A|B) =
P (B|A)P (A)

P (B)
. (26)

For the r.v.’s X and Y of the next to last paragraph in the previous subsection, given the
observation i of X, the 2D correlation P (Y = j|X = i) is defined as the integral in the
square above bin i and bin j, on the x- and y-axes respectively, divided by the integral
in bin i. Note that it is a function of j only. Furthermore, the r.v.’s corresponding to
the existing i.v.’s will be conditionally independent given the r.v. of an added i.v. Thus,
in 3D, if Z is the counterpart to X and Y , given the observations i and j of X and Y
respectively, and in turn the 2D correlations P (Z = k|X = i) and P (Z = k|Y = j), the
total correlation P (Z = k|X = i ∩ Y = j) is given by

P (Z = k|X = i ∩ Y = j) =
P (X = i ∩ Y = j|Z = k)P (Z = k)

P (X = i ∩ Y = j)

=
P (X = i|Z = k)P (Z = k)P (Y = j|Z = k)P (Z = k)

P (Z = k)P (X = i ∩ Y = j)

=
P (X = i)P (Y = j)

P (Y = j ∩ Y = j)

P (Z = k|X = i)P (Z = k|Y = j)

P (Z = k)

∝ P (Z = k|X = i)P (Z = k|Y = j)

P (Z = k)
, (27)

where the first equality follows from Theorem 25, the second from Definition 23 and the
third from Definition 21 [5]. The proportionality constant can be omitted since, in normaliz-
ing the probabilities, it is absorbed by the normalization constant. Equation 27 determines
how the 2D correlations from different planes are combined and the generalization of it is
straightforward.

2.7 VEGAS squared algorithm

In words, and like in VEGAS, there are two unit hypercubes; the x-cube, the integration
domain, and the y-cube, where random points are generated in. However, the bins in the
x-cube are now fixed, whereas those in the y-cube, the probabilities, are varied. As in
VEGAS, the first iteration starts with a uniform distribution. One generates N random
points in the y-cube and maps those to points in the integration domain. The integral is
approximated by the sample mean and the error by the standard error. For each iteration,
one stores the integral in each square in each plane. This information is then used to update
the bin sizes in the y-cube when determining the bins of each component of a generated
point. This will lead to squares with few points corresponding to where the function is
small and vice versa.

In symbols, consider the nD unit hypercube for n ≥ 2 and let f(x1, . . . , xn) be an integrable
function in this domain, where xk = xk(x1, . . . , xk−1) denotes the k’th coordinate. Divide

15

the interval [0, 1] for each coordinate in m bins of length 1/m. Let yk denote the k’th
coordinate in another unit hypercube, and divide the interval [0, 1] for all of these in m
variable sized bins. Define n piecewise linear and strictly increasing functions hk(ykl) by

hk(ykl) =
l

m
, (28)

where l = 0, . . . ,m and k = 1, . . . , n. Thus, the point ykl on every yk-axes maps to the
point l/m on every xk-axes, each marking the possible end and beginning of a variable
sized and fixed bin respectively. If yk is given and y is a random point in the interval [0, 1]
satisfying ykl−1 < y < ykl , then

dhk(yk)

dyk

∣∣∣∣
yk=y

=
1

(ykl − ykl−1)m
. (29)

The first iteration starts with ykl = l/m. A set YN of N random points y are generated
in the unit hypercube 0 ≤ yk ≤ 1. The integral of f(x1, . . . , xn) is approximated by IN in
equation 9, and the error uN by equation 10,

IN =
1

N

∑
y∈YN

f(h(y1), . . . , h(yn))
n∏

k=1

dhk(yk)

dyk
, (30)

uN ≈
1√
N

√√√√√√
∑

y∈YN

(
f(h(y1), . . . , h(yn))

∏n
k=1

dhk(yk)
dyk

)2
N

− I2N . (31)

For each point y and its components y, the cumulative sum of the value of the integral less
than a factor

∏n
k=1 = 1/(ykl − ykl−1) as well as the number of points in a column above a

given square in all the planes of the unit hypercube 0 ≤ xk ≤ 1 are stored in the collections
of arrays R12

ij , ..., R
uv
ij and N12

ij , ..., N
uv
ij respectively, for which there are

(
n
2

)
arrays of each

collection. If Y k is a r.v. indicating the bin where the component y corresponding to yk

was generated in, and R
(k−1)k
ij represents the array for the xk−1xk-plane, then

R
(k−1)k
ij =

∑
y∈YN

1{Y k = i ∩ Y k−1 = j}f(h(y1), . . . , h(yn))
1

mn
, (32)

N
(k−1)k
ij =

∑
y∈YN

1{Y k = i ∩ Y k−1 = j} , (33)

where 0 ≤ i, j ≤ m − 1 and 1 ≤ u < v ≤ n. In the xk−1xk-plane, the integral in each
square I

(k−1)k
ij is simply R

(k−1)k
ij /N

(k−1)k
ij . For the next iteration, y1l+1 = y1l + C1

∑m−1
i I12il

in equation 28, where y10 = 0 and C1 normalizes the sum of
∑m−1

i I12il over l to 1. The
unnormalized correlation P (Y k = i|Y k−l = j) is defined as

P (Y k = i|Y k−l = j) = I
(k−l)k
ij , (34)

16

where 0 ≤ i, j ≤ m − 1 and l = 1, ..., k − 1. In the next iteration, given Y 1 = j, it
determines y2l . Then, given Y 2 = i, it together with Y 1 = j determines y3l . In general, and
using equation 27,

ykl+1 = ykl + CkP
(
Y k = l|Y k−1 = j′

)
1{Y k−1 = j′} · · ·P

(
Y k = l|Y 1 = j

)
1{Y 1 = j}

P (Y k = l)n−2
(35)

where yk0 = 0, 0 ≤ l, j, j′ ≤ m− 1 and Ck normalizes the sum of the total correlation over
l to 1.

17

3 Result

Table 1 shows the value of uN for VEGAS and VEGAS squared respectively when in-
tegrating G1(x, y) over the unit square. The error in VEGAS squared is approximately
less by a factor of 2.5 after the first iteration. Figure 5 shows the distribution of points
over the integration domain after the fifth iteration. The same results were obtained when
integrating G1(x, y) over the unit cube, and replacing the x and y coordinate respectively
by the coordinate z.

Table 1: uN in VEGAS and VEGAS squared respectively when integrating G1(x, y) over
the unit square.

VEGAS VEGAS squared

Iteration uN uN
1 ± 0.004106 ± 0.004301
2 ± 0.003638 ± 0.001452
3 ± 0.003512 ± 0.001507
4 ± 0.004176 ± 0.001485
5 ± 0.003736 ± 0.001490

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Integrating G1(x, y) in VEGAS squared
G1(x, y) = 0.8

Figure 5: The bin sizes and distribution of points in VEGAS squared when integrating
G1(x, y) over the unit square after five iterations, m = 10 and N = 10000.

18

4 Conclusion

Figure 5 confirms that the algorithm of VEGAS squared works in 2D as intended. That
similar figures can be produced in 3D is a testament to that the algorithm can be applied
in higher dimensions. Table 1, on the other hand, confirms the intention of the thesis – to
improve the approximation of integrals in which the i.v.’s display correlations. It should
be noted that, when integrating functions like G2(x, y), whose graph’s characteristic region
does align with the coordinate axes, the approximation and error in VEGAS squared will
greatly depend on the number of bins m. Unlike in VEGAS, the fixed bins can not adjust
to the dimensions of the domain where G2(x, y) is large, leading to a decreased control of
the distribution of points and ultimately a less accurate approximation. G1(x, y) is thus an
ideal case and it remains to test how VEGAS squared performs when integrating functions,
possibly not Gaussian, with correlations between the variables other than simply y = x.

19

5 References

[1] G Peter Lepage. “A new algorithm for adaptive multidimensional integration”. In:
Journal of Computational Physics 27.2 (1978), pp. 192–203. issn: 0021-9991. doi:
https : / / doi . org / 10 . 1016 / 0021 - 9991(78) 90004 - 9. url: http : / / www .

sciencedirect.com/science/article/pii/0021999178900049.

[2] P. Nason. MINT: a Computer Program for Adaptive Monte Carlo Integration and
Generation of Unweighted Distributions. 2007. arXiv: 0709.2085 [hep-ph].

[3] Magnus Wiktorsson. Monte Carlo and Empirical Methods for Stochastic Inference
(MASM11/FMSN50). http://www.maths.lth.se/matstat/kurser/fmsn50masm11/
2020/material/L1.pdf. Accessed: 2020–11-07. 2020.

[4] Dragi Anevski. A Concise Introduction to Mathematical Statistics. Lund, Sweden:
Studentlitteratur, 2017.

[5] Till Hoffmann (https://stats.stackexchange.com/users/17643/till-hoffmann). Proper
way to combine conditional probability distributions of the same random vari-
able conditioned on a discrete variable ? (based on assumptions). Cross Validated.
URL:https://stats.stackexchange.com/q/112361 (version: 2020-07-23). eprint: https:
//stats.stackexchange.com/q/112361. url: https://stats.stackexchange.
com/q/112361.

20

https://doi.org/https://doi.org/10.1016/0021-9991(78)90004-9
http://www.sciencedirect.com/science/article/pii/0021999178900049
http://www.sciencedirect.com/science/article/pii/0021999178900049
https://arxiv.org/abs/0709.2085
http://www.maths.lth.se/matstat/kurser/fmsn50masm11/2020/material/L1.pdf
http://www.maths.lth.se/matstat/kurser/fmsn50masm11/2020/material/L1.pdf
https://stats.stackexchange.com/q/112361
https://stats.stackexchange.com/q/112361
https://stats.stackexchange.com/q/112361
https://stats.stackexchange.com/q/112361

Appendix Python Code

VEGAS

1 import numpy as np

2

3

4 it=5 #it>=1

5 N=10000 #N>=1

6 m=10 #m>=2

7 n=2 #n>=1

8

9

10 x_i=np.linspace(np.zeros(n),np.ones(n),m+1)

11 y_i=np.linspace(0,1,m+1)

12

13

14 A=3

15 B=0

16 a=500

17 b=-990

18 c=500

19

20

21 def f(arr): #define appropriately according to n

22 x=arr[0]

23 y=arr[1]

24 return A*np.exp(-a*(-0.5 + x)**2-b*(-0.5 + x)*(-0.5 + y)-c*(-0.5 + y)**2)+B

25

26

27 for dummy1 in range(0,it):

28

29

30 I=0

31 u=0

32 N_l=np.zeros([m,n])

33 R_l=np.zeros([m,n])

34

35

36 for dummy2 in range(0,N):

37

21

38

39 y=np.random.uniform(0,1,n)

40 Y=np.argmax(np.repeat(y_i[:, np.newaxis], len(y), axis=1) >= y, axis=0)

41

42

43 h_y_k=np.zeros(n) #equation 12

44 p=1

45 for i,k in zip(Y,range(0,n)):

46 h_y_k[k]=x_i[i-1,k]+(x_i[i,k]-x_i[i-1,k])*m*(y[k]-(i-1)/m)

47 p*=x_i[i,k]-x_i[i-1,k]

48

49

50 I+=f(h_y_k)*p*m**n #equation 14 and 15

51 u+=(f(h_y_k)*p*m**n)**2

52

53

54 for i,k in zip(Y,range(0,n)): #equation 16 and 17

55 R_l[i-1,k]+=f(h_y_k)*p

56 N_l[i-1,k]+=1 #exiting 1st for-loop

57

58

59 I_N=I/N #equation 14 and 15

60 u_N=np.sqrt((u/N-I_N**2)/N)

61 print("{} {:3f} +\- {:3f}".format(dummy1+1,I_N,u_N))

62

63

64 N_l=np.where(N_l>0,N_l,1) #equation 18

65 R_l=np.where(R_l>10**-8,R_l,10**-8)

66 I_l=np.r_[np.zeros([1,n]),np.cumsum(np.divide(R_l,N_l),axis=0)]

67

68

69 x_i_new=np.zeros([m+1,n]) #equation 19

70 for k in range(0,n):

71 for l in range(0,m+1):

72 r=l/m*I_l[-1,k]

73 i=np.argmax(I_l[:,k]>=r)

74 x_i_new[l,k]=x_i[i-1,k]+((r-I_l[i-1,k])/(I_l[i,k]-I_l[i-1,k]))*(x_i[i,k]-x_i[i-1,k])

75 x_i=x_i_new #exiting 2nd for-loop

22

VEGAS squared

1 import numpy as np

2

3

4 it=5 #it>=1

5 N=10000 #N>=1

6 m=10 #m>=2

7 n=2 #n>=2

8

9

10 y_i=np.linspace(np.zeros(n),np.ones(n),m+1)

11 x_i=np.linspace(0,1,m+1)

12 I_ij=np.ones([n-1,n-1,m,m])

13

14

15 A=3

16 B=0

17 a=500

18 b=-990

19 c=500

20

21

22 def f(arr): #define appropriately according to n

23 x=arr[0]

24 y=arr[1]

25 return A*np.exp(-a*(-0.5 + x)**2-b*(-0.5 + x)*(-0.5 + y)-c*(-0.5 + y)**2)+B

26

27

28 for dummy1 in range(0,it):

29

30

31 I=0

32 u=0

33 N_ij=np.zeros([n-1,n-1,m,m])

34 R_ij=np.zeros([n-1,n-1,m,m])

35

36

37 for dummy2 in range(0,N):

38

39

40 y=np.random.uniform(0,1,n)

23

41 Y=[1]*n

42

43

44 tot_prob_Y1=np.sum(I_ij[0,0],axis=0)/np.sum(np.sum(I_ij[0,0],axis=0))

45 y_i[:,0][y_i[:,0]>0]=np.cumsum(tot_prob_Y1)

46 Y[0]=np.argmax(y_i[:,0]>=y[0])

47 for k in range(0,n-1): #equation 35

48 corr=np.vstack([I_ij[i,k,:,Y[i]-1] for i in range(0,k+1)])

49 tot_prob_Yi=np.sum(I_ij[0,k],axis=1)

50 tot_corr=(np.prod(corr,axis=0)/tot_prob_Yi**k)[::-1]

51 y_i[:,k+1][y_i[:,k+1]>0]=np.cumsum(tot_corr/np.sum(tot_corr))

52 Y[k+1]=np.argmax(y_i[:,k+1]>=y[k+1])

53

54

55 h_y_k=np.zeros(n) #equation 28

56 p=1

57 for i,k in zip(Y,range(n)):

58 h_y_k[k]=x_i[i-1]+(y[k]-y_i[i-1,k])*(x_i[i]-x_i[i-1])/(y_i[i,k]-y_i[i-1,k])

59 p*=1/(m*(y_i[i,k]-y_i[i-1,k]))

60

61

62 I+=f(h_y_k)*p #equation 30 and 31

63 u+=(f(h_y_k)*p)**2

64

65

66 for r in range(0,n-1): #equation 32 and 33

67 for k in range(r,n-1):

68 R_ij[r,k,m-Y[k+1],Y[r]-1]+=f(h_y_k)*(1/m)**n

69 N_ij[r,k,m-Y[k+1],Y[r]-1]+=1 #exiting 1st for-loop

70

71

72 I_N=I/N #equation 30 and 31

73 u_N=np.sqrt((u/N-I_N**2)/N)

74 print("{} {:3f} +\- {:3f}".format(dummy1+1,I_N,u_N))

75

76

77 N_ij=np.where(N_ij>0,N_ij,1)

78 R_ij=np.where(R_ij>10**-8,R_ij,10**-8)

79 I_ij=np.divide(R_ij,N_ij) #exiting 2nd for-loop

24

	Introduction
	Theory
	Monte Carlo integration
	Importance and stratified sampling
	Curse of dimensionality
	VEGAS algorithm
	Optimal number of bins in VEGAS

	VEGAS squared
	2D correlations
	VEGAS squared algorithm

	Result
	Conclusion
	References
	Appendix Python Code
	VEGAS
	VEGAS squared

