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Abstract

In this degree project, automatic live comments of the events in a football game
are generated in text format. The events are detected using machine learning,
where CNNs are fit using audio recordings and player positions of games. Suit-
able features are extracted, where several models are fit to detect different types
of events. The results indicate that the detections of sound powers and referee
whistles are sensitive to the arena, where difficult to determine the event of the
referee whistle. However, ongoing attacks are detected accurately. The detected
events are commented using natural language generation, where the comments are
generated using data-to-text generation. The results indicate that the complexity
of the comments is sensitive to the information able to be extracted of the events.
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1 Introduction

1.1 Background

Around the world, human voiced live commenting of sports has been around since
radio broadcasting in the early 1920’s. The first broadcast took place on April 11,
1921, from Motor Square Garden in Pittsburgh, where the 10-round no-decision
boxing match between Johnny Ray and Johnny Dundee was commented. Since
then, the commentators have gone from being broadcast on radio and television
to streaming services over the internet. [1]

During the past resent years, the applications for machine learning and natural
language generation have grown rapidly with the increase of big data, computa-
tional power and effective algorithms. Applications such as event detection using
deep learning and text generation using data-to-text generation, have become fea-
sible in practice. For example, this includes the events in a football game, which
calls for automatic live commenting. [2]

1.2 Motivation

At Spiideo, the Swedish sports video analysis company based in Malmö, a stream-
ing service is provided for their costumers in different sports. The company has
identified a growing market for commenting games not normally commented by
human voiced commentators, such as games in lower divisions and youth games.
Therefore, Spiideo is set to develop automatic live commenting of games, where
their ambition motivates this degree project.

The degree project is intended to be used as a basis of how automatic live
commenting may be implemented, paving way for more advanced implementations
by Spiideo in the future.
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1.3 Objective

The main objective of the degree project is to generate automatic live comments of
the events in a sports game, where the method is to use machine learning for event
detection and natural language generation for commenting in text format. The
project is constrained to football games in Sweden, thus football related events
are at focus. Due to broadcasting requirements of the streaming service, the aim
is to generate comments at relatively low cost. Therefore, provided data such as
audio recordings, player positions and tags of event information are used, excluding
direct analysis on video data.

The research issues of the degree project are given in accordance with the
following list.

• Is it possible to automatically detect the events in a football game using
machine learning?

• Is it possible to generate descriptive comments of the events in a football
game using natural language generation?

1.4 Outline

In the first part of the project, an event detector is constructed. The provided
data are used to fit machine learning models, where suitable features are extracted
of the audio recordings and player positions. The tags are used for classification,
where events not included in the provided tags are tagged manually if necessary.
Several models are fit to detect different types of events, where initially if an event
is occurring and further what event if possible. Moreover, additional properties
of the provided data are extracted, where the audio recordings are used to detect
changes in sound power and player positions changes in movement.

In the second part of the project, a commentator is constructed. The detected
events are commented using natural language generation, where the comments
are generated using data-to-text generation. To increase the complexity of the
comments, information of the provided data is extracted. The tags are used to
determine the team locations in the field and the player positions the general
movement of the players and player sprints. In addition, statistics of the detected
events and tags are gather during a game, such as the number of goals, shots,
corners, etc.

7
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1.5 Previous Work

For event detection using machine learning, most previous works concerning the
events in a football game are based on broadcasting material. Replays have been
extracted from video data, which were recognized by the camera changing view or
focus, thereafter the events of the replays were classified [3]. Video data have also
been used to detect goals, which were detected by the blurriness of the video as
the camera moves and zooms in connection with a goal [4]. Audio keywords have
been extracted from audio data, which were recognized by the referee whistle and
excitement of the commentator and audience, thereafter the events of the keywords
were classified using a rule-based system [5]. However, some works are not based
on broadcasting material. Player positions estimated from video data have been
used to detect different events, which decreased the computational cost compared
to direct video analysis [6].

For text generation using natural language generation, previous works generat-
ing both summaries and event comments of a football game have been published.
Syntactic templates have been used to generate summaries in speech, which used
tabular information as input [7]. Interactive multi-agent systems have been used
to generate comments of different events, where the events were simulated from a
server [8].

8



2 Machine Learning

In the following narrative on machine learning, mostly a descriptive outline of the
subject is provided. Most content is cited from Machine learning: A Probabilis-
tic Perspective by Murphy [9], Deep learning by Goodfellow et al. [10], Pattern
Recognition and Machine Learning by Bishop [11] and Deep Learning with Python
by Chollet [12], which offer more details from a mathematical point of view and
how to implement machine learning algorithms.

Machine learning (ML) is defined as methods that automatically recognize pat-
terns in data, which can be used to predict on future data. The goal of ML is to
learn a mapping from input to output, which is performed by observing a labeled
set of inputs and targets.

Deep learning is a subfield to ML, which emphasises on learning successive
layers of meaningful representations of the data, where the term deep refers to
multiple intermediate layers. The structure is modeled by artificial neural net-
works (ANNs), where the layers are represented by a series of stacked functional
transformations expressed in terms of each other. The functional transformation
of a layer is modeled by a set of units, where each unit is represented by a linear
combination of the layer input and trainable weights applied by a non-linear ac-
tivation function. This allows a complex model built on simpler concepts, where
each layer provides a new representation of the data. An ANN can be visualized as
a graph of connected units, where the weights determine the mapping from input
to output. A graph of a simple ANN, consisting of one intermediate layer, is given
by Figure 2.1.

9
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Figure 2.1: Graph of a simple ANN, consisting of one intermediate layer. [9]

2.1 Convolutional Neural Network

Convolutional neural networks (CNNs) is a branch of ANNs, where the input to
some layers consists of mathematical convolutions. Each unit of a convolutional
layer is represented by a linear combination of the convolutions and the weights,
as opposed to the full input as the layer of a standard ANN. This reduces the
number of weights significantly, but does not affect the ability to learn generalized
patterns. The convolutions are applicable to inputs of arbitrary dimension, where
examples are sequences in one, images in two and videos in three dimensions.
The convolutions are also translation invariant, thus local patterns can be learned
independently of their spatial locations. CNNs identify hierarchies of patterns
as the spatial complexity increases for each convolutional layer, which allows a
network to learn more abstract patterns.

2.1.1 Architecture

The architecture of a CNN consists of a series of alternately stacked convolutional
and maxpooling layers, which is followed by a flatten layer. The architecture is
ended by a series of stacked fully-connected layers, where the output layer achieves
classification.

10
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Convolutional Layer

The convolutions of a convolutional layer operate over tensors, which are referred to
as feature maps. The convolution operation swipes a window over the input feature
map and extracts patches, where a patch can be extracted every step or given step
size using strides. Each patch is transformed by a tensor dot product with a
kernel, where the assembly results in the output feature map. Considering the
initial convolutional layer of a CNN, the axes of the input feature map correspond
to the spatial dimensions and channel depth of the input. The depth axis of the
output feature map corresponds to the number of filters, where the filters represent
the learned patterns. A visualization of how the convolutions of a convolutional
layer work, for an input image of two channels, is given by Figure 2.2.

Figure 2.2: Visualization of how the convolutions of a convolutional layer work,
for an input images of two channels. Notice, 3 × 3 input patches are extracted
every step. [12]

11
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Maxpooling Layer

As convolutional layers are stacked in a CNN, the sizes of the feature maps in-
crease as the number of filters grows. To keep the feature maps at reasonable sizes
and to allow subsequent convolutional layers to experience great spatial extent, a
convolutional layer may be followed by a maxpooling layer. The maxpooling op-
eration swipes a window over the feature map and extracts patches, where a patch
can be extracted every step or given step size using strides. The local maximums
of the depth axis for each patch are calculated, where the assembly results in the
downsampled feature map. A maxpooling layer speeds up computation as the size
of the feature map decreases, but information is lost due to the downsampling.

Flatten Layer

The resulting feature map of successive convolutional and maxpooling layers is
filtered through a flatten layer. The flatten operation transforms the feature map
tensor into a one dimensional vector, which is the valid input shape of a fully-
connected layer.

Fully-Connected Layer

The fully-connected layer is essentially the layer of an ANN, where all units be-
tween successive layers are connected as visualized in Figure 2.1. Depending on
if a layer is intermediate or output, the activation function is selected in accor-
dance with Section 2.1.2. A fully-connected layer identifies global patterns and
is not translation invariant, thus requires to learn a pattern anew if appearing at
another spatial location.

2.1.2 Activation Function

Each unit of a layer is applied by a non-linear activation function, which transforms
the linear combination of the layer input and trainable weights into a non-linear
function. This to extend the hypothesis space of mappings from input to output
and prevent a network from collapsing into a linear regression model. However, ap-
plying non-linear activation functions, the problem of finding the optimal weights
becomes non-convex, but the benefits outweigh the harms. There are different
types of non-linear activation functions, where the choice depends on the purpose
of the layer. The most essential demand is to maintain the function of a unit
differentiable.

12
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ReLU

For intermediate layers, consisting of a convolutional or fully-connected layer, the
activation function of the units is usually selected as the Rectified Linear Unit
(ReLU) given by

σ(x) = max(0, x), (2.1)

where x is the linear combination of the input and weights of the unit, which sets
the output to zero if negative.

Sigmoid

For binary classification problems, the activation function of the output unit is
selected as the sigmoid function given by

σ(x) =
1

1 + e−x
, (2.2)

where x is the linear combination of the input and weights of the unit, which
converts the output into a probability.

Softmax

For multi-class classification problems, the activation function of the output units
is selected as the softmax function given by

σk(x) =
exk∑n
i=1 e

xi
, (2.3)

where xi is the linear combination of the input and weights of the unit i and n the
number of units, which converts the output of the unit k into a probability.

2.2 Learning Procedure

Before initiating the learning procedure of a neural network, the labeled set of
inputs and targets is split into training, validation and test sets. The training set
includes the samples a network is observing when learning a mapping from input
to output, the validation set the samples a network is validated against during the
learning procedure and the test set the samples a fit model is tested against when
the learning procedure is accomplished. This is necessary to find the model of
optimal generalization, reduce over-fitting and test the performance of a fit model
against unobserved samples.

13
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During the learning procedure, the output prediction of a network given an
input is calculated using the forward-propagation algorithm. Forward-propagation
feeds the input forward through the layers, where the output is calculated given the
current weights of the network. The performance of the network is measured using
a loss function, thereafter the weights are updated by an optimizer using the back-
propagation algorithm. Back-propagation feeds the loss score backward through
the layers, where the loss is slightly reduced using an optimization method. In
general, the weight update is performed for a batch of samples, where the procedure
is repeated for a sufficient number of epochs. This until the loss is reduced enough
and the network has learned a mapping from input to output. A visualization of
the learning procedure of a neural network is given by Figure 2.3.

Figure 2.3: Visualization of the learning procedure of a neural network. [12]

2.2.1 Loss Function

The performance of a network during the learning procedure is measured using
a loss function, which calculates the distance between the labeled targets and
corresponding predictions. There are different types of loss functions, where the
choice depends on the classification problem.

14
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Binary Cross-Entropy

For binary classification problems, the loss function is selected as binary cross-
entropy given by

L(y, ŷ) = − 1

n

n∑
i=1

yi log ŷi + (1− yi) log(1− ŷi), (2.4)

where y are the targets, ŷ the predictions and n the number of samples in the
batch.

Categorical Cross-Entropy

For multi-class classification problems, the loss function is selected as categorical
cross-entropy given by

L(y, ŷ) = − 1

n

n∑
i=1

yi log ŷi, (2.5)

where y are the targets, ŷ the predictions and n the number of samples in the
batch.

2.2.2 Optimizer

The weight update during the learning procedure is performed by an optimizer,
which slightly reduces the loss by adjusting the weights to fit the mapping from
input to output. Since the problem of finding the optimal weights is non-convex,
local minimums can be found analytically. The objective is to find a global min-
imum among the local minimums, while difficult to determine if a minimum is
global or local and easy to get stuck in a local minimum.

The optimization problem is solved by gradient-based optimization methods,
which calculate the gradient with respect to the weights and reduce the loss by
moving in the opposite direction of the gradient. The objective of finding a global
minimum is not to determine its exact location, but rather settle close enough to
speed up computation. Therefore, the step size is important. Large step sizes may
overstep the location and cause a randomized search. Small step sizes increase
the number of iterations and endanger getting stuck in a local minimum. This is
prevented by applying adaptive learning rates to the gradient-based optimization
methods. There are different types of adaptive optimization methods, where there
is no consensus on which is most suitable for a general neural network [10].

15
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Adaptive Moment Estimation

The Adaptive Moment Estimation (ADAM) is an adaptive optimization method,
which uses adaptive learning rates for each of the weights. ADAM estimates
the exponentially decaying averages of the first and second moments of the past
normalized gradients, which introduce the adaptive learning rates. On the other
hand, the moment estimates are biased towards zero if calculated directly, which
is avoided by estimating the bias-corrected moments instead. As a metaphor, the
first moment can be visualized as a ball rolling down a slope, where the second
moment illustrates friction. ADAM tends to prefer flat minimums in the error
surface, but modifies the step size suitably in favor of finding a global minimum.

2.2.3 Class weights

If the distribution of labeled targets is imbalanced among the classes, the neural
network endangers to be biased towards the dominant class during the learning
procedure. This is a problem if the targets are heavily imbalanced, which affects
the recognition results negatively. In case of weak imbalance, the problem may be
prevented by applying class weights to each of the targets in accordance with

wi =
ntargets

nclasses · ni

, (2.6)

where ntargets is the number of targets, nclasses the number of classes and ni the
number of targets for class i.

2.2.4 Metric

In addition to the loss, a metric is used to monitor during the learning procedure
and evaluate the test set when the learning procedure is accomplished. The metric
measures the prediction ability of the model. During the learning procedure, the
model of optimal generalization corresponds to when the loss and metric of the
training and validation sets cease to improve and the gaps between the training
and validation sets are minimal. At this point, it is appropriate to terminate the
learning procedure. Furthermore, a neural network requires a sufficient number
of weights to reduce under-fitting and not letting the learning procedure proceed
further to reduce over-fitting. There are different types of metrics, where the
choice depends on the distribution of labeled targets among the classes in the sets
of samples.

16
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Accuracy

For balanced classification problems, the metric is usually selected as the accuracy
given by

A =
ntp

n
, (2.7)

where ntp is the number of true positives and n the number of samples in the set.
The accuracy measures the fraction of inputs that are correctly classified by the
model.

F1 Score

For imbalanced classification problems, the metric may be selected as the F1 score
given by

F1 = 2
P ·R
P +R

, (2.8)

where P is the precision and R the recall given by

P =
ntp

ntp + nfp

, (2.9)

R =
ntp

ntp + nfn

, (2.10)

where ntp is the number of true positives, nfp the number of false positives and nfn

the number of false negatives. The F1 score measures the harmonic mean between
precision and recall by the model. If the distribution of targets is imbalanced,
the accuracy provides a skew measure of the prediction ability of the model. This
especially if the bias is large, which is avoided by using the F1 score instead.

2.3 Evaluation

When finding the optimal machine learning model of a mapping from input to
output, usually several models are fit using different structures and learning pa-
rameters. There are different types of methods for evaluating and comparing fit
models, where the choice depends on the distribution of labeled targets among the
classes in the sets of samples.

17
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Confusion Matrix

The distribution of predictions for a given threshold, can be visualized by a con-
fusion matrix in accordance with Figure 2.4. The notations are given by

TPR =
ntp

ntp + nfn

, (2.11)

TNR =
ntn

nfp + ntn

, (2.12)

FPR =
nfp

nfp + ntn

, (2.13)

FNR =
nfn

ntp + nfn

, (2.14)

where TPR is the true positive rate, TNR the true negative rate, FPR the false
positive rate, FNR the true negative rate, ntp the number of true positives, ntn the
number of true negatives, nfp the number of false positives and nfn the number of
false negatives. A model separating the classes perfectly has zero FPR and FNR,
while a contrary model has zero TPR and TNR. The concept of confusion matrices
can be extended to multi-class classification problems, which is performed by using
the number of predictions for each class in a similar manner.

Receiver Operating Characteristic Curve

The TPR and FPR in Equation 2.11 and 2.13 respectively, can be visualized
for a number of thresholds by a Receiver Operating Characteristics (ROC) curve
in accordance with Figure 2.5a. A model separating the classes perfectly has a
threshold in the top left corner, while a contrary model has a threshold on or below
the diagonal. The area under the curve (AUC) summarizes the ROC curve, where
the optimal value is 1. The optimal threshold balancing the TPR and FPR, can
be obtained by calculating the geometric mean for each threshold in accordance
with

G-mean =
√

TPR(1− FPR), (2.15)

where the optimal threshold corresponds to the threshold of maximum geometric
mean. ROC curves are informative for balanced classification problems, where the
distribution of targets is approximately even among the classes. The concept of
ROC curves can be extended to multi-class classification problems, which can be
performed by using the one label versus the rest approach.

18
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Precision-Recall Curve

The precision and recall in Equation 2.9 and 2.10 respectively, can be visualized
for a number of thresholds by a Precision-Recall curve in accordance with Figure
2.5b. A model separating the classes perfectly has a curve hugging the top, while
a contrary model has a curve hugging the bottom. The area under the curve sum-
marizes the Precision-Recall curve, which is estimated as the mean of precisions.
The optimal threshold maximizing the F1 score, can be obtained by calculat-
ing the F1 score for each threshold in accordance with Equation 2.8, where the
optimal threshold corresponds to the threshold of maximum F1 score. Precision-
Recall curves are informative for imbalanced classification problems, where the
distribution of targets is approximately uneven among the classes. The concept
of Precision-Recall curves can be extended to multi-class classification problems,
which can be performed by using the one label versus the rest approach.

Figure 2.4: Visualization of the confusion matrix.

(a) ROC curve. (b) Precision-Recall curve.

Figure 2.5: Visualization of the ROC and Precision-Recall curves. The black dots
indicate the corresponding optimal thresholds.
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2.4 Feature Extraction

Before fitting a machine learning model, some feature extraction of the inputs may
be required. There are numerous different types of feature extractions, where the
choice depends on the representation of the original inputs and what the model is
intended to learn.

Spectrogram

Since some of the provided data consist of audio recordings, the spectrogram may
be sufficient as feature extraction. The spectrogram of an audio segment is a visual
representation of the power spectral density as the segment changes over time,
where the pixels in the image correspond to the intensities in the time-frequency
domain. [13]

The spectrogram of an audio segment is extracted by performing the Short-
Time Fourier Transform (STFT), thereafter calculating the intensities. The seg-
ment is divided into shorter time frames, typically in range 23 − 93 milliseconds,
depending on the type of audio recording. Each frame is applied by a window func-
tion, where the Hanning window is adequate for most applications in audio signal
processing. The purpose of the window function is to reduce spectral leakage, but
sets both ends of a frame close to zero. This causes information loss at the edges
of adjacent frames, which is prevented by framing the segment with some overlap,
typically as a quarter of a frame. Each windowed frame is applied by the Discrete
Fourier Transform (DFT) in accordance with

Xk =
N−1∑
n=0

xne
− i2π

N
kn, k = 0, 1, ..., N − 1, (2.16)

where xn is an amplitude and N the number of amplitudes in the sequence of
a windowed frame. The assembly after performing the DFT corresponds to the
complex valued STFT. The complexity is handled by calculating the intensities
using the absolute value, which results in the extracted spectrogram. [13]

Mel-Frequency Ceptral Coefficients

As an extension of the spectrogram feature, the Mel-Frequency Cepstral Coeffi-
cients (MFCC) may be sufficient as feature extraction. The MFCC of an audio
segment is a visual representation of the Mel-Frequency Cepstrums (MFCs) as
the segment changes over time, where the pixels in the image correspond to the
coefficient values in the time-cepstrum domain. [14]
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The MFCC of an audio segment is extracted by calculating the MFCs, which
collectively build up the MFCC. The MFCs are calculated by filtering the spec-
trogram through the Mel-filterbank, which divides the spectrogram into frequency
bands and calculates the summarized intensities for each filter. The frequency
bands are equally spaced on the Mel-scale, which is a scale of pitches judges by
listeners to be equal in distance. Due to the human auditory, the Mel-scale is
non-linear, where the distance between pitches increases exponentially with fre-
quency. Since the frames are set to overlap performing the STFT, adjacent frames
are highly correlated. This is prevented by applying the Discrete Cosine Transfor-
mation (DCT) in accordance with

Xk =
N−1∑
n=0

xn cos
( π
N

(
n+

1

2
k
))
, k = 0, 1, ..., N − 1, (2.17)

where xn is an intensity and N the number of intensities in the sequence summa-
rized filter intensities. The assembly after applying the DCT corresponds to the
MFCs, where the MFCC is chosen equal or as a selection of the extracted MFCs.
[14]

2.5 Normalization

In addition, before fitting a machine learning model, the inputs may require nor-
malization if the values are large. This to prevent the model to learn large weights
during the learning procedure, which may cause a slow and unstable learning pro-
cess and in extension affect the recognition results. There are different types of
normalization methods, where the choice depends on the representation of the
inputs.

Minmax

Applying minmax normalization, the values of the inputs are normalized to a
specified range, given a minimum and maximum estimated over the training set.
Normalization to range [0, 1] is then given by

y =
x−min(x)

max(x)−min(x)
(2.18)

and to range [−1, 1] by

y = 2
x−min(x)

max(x)−min(x)
− 1 (2.19)

where x is the input value.

21



CHAPTER 2. MACHINE LEARNING Marcus Grönvall

Cepstral Mean-Variance

For automatic speech recognition using the MFCC feature, the MFCCs are recom-
mended to be normalized using Cepstral Mean Variance Normalization (CMVN).
CMVN is shown to improve the recognition results in various environments and
reduce noise. Applying CMVN, the coefficient values of the MFCCs are standard-
ized for each MFC separately, given the cepstral means and standard deviations
estimated over the training set. Normalization is then given by

yi =
xi − µi(x)

σi(x)
, i = 1, 2, ..., n, (2.20)

where xi is the cepstral input value, µi the cepstral mean, σi the cepstral standard
deviation and n is the number of cepstrals. [15]

2.6 Hard Negative Mining

In accordance with Cost-Optimized Event Detection in Football Video by Arpe
and Ericsson [6], hard negative mining is examined but with some modifications.
Given a model fit on initial data, the method is to use the model to predict on
new data. The samples the model classifies as false negatives are extracted and
added to the the initial data, thereafter a new model is fit to the updated data.
The intention is to improve the model to become more robust and accurate of
separating the classes, hopefully generating less false positives as well. The exact
approach is given in Section 7.3.

2.7 Constraints

If having access to a set of samples consisting of multiple inputs for the same
targets, there is a possibility to fit parallel neural networks. This is the case
considering both the audio recordings and player positions of the provided data.
On the other hand, such networks may be of high computational cost and slow
in a live commentator setup. Therefore, to constrain the degree project, parallel
neural networks are not examined.
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3 Natural Language Generation

In the following narrative on natural language generation, mostly a descriptive
outline of the subject is provided. Most content is cited from Survey of the State
of the Art in Natural Language Generation: Core Tasks, Applications and Evalua-
tion by Gatt and Krahmer [16] and Building Applied Natural Language Generation
Systems by Reiter and Dale [17], which offer a survey on natural language gener-
ation and how to build systems for text generation.

Natural language generation (NLG) is defined as computer systems that auto-
matically generate understandable text from some underlying information. The
representation of information input into an NLG system may vary considerably,
possibly consisting of semantic representations or non-linguistic data. Therefore,
the methods for generating text within a system may vary considerably as well,
where the choice depends on the information input and application.

3.1 Data-to-Text Generation

Data-to-text generation is a branch of NLG, where the representation of informa-
tion input consists of non-linguistic data. As mentioned in the introduction in
Section 1.3, the objective of the degree project is to live comment detected events
in a football game. Such events may be summarized as non-linguistic data, thus
data-to-text generation is implemented and the following outline adapted to the
branch and application.

The NLG problem of converting information input into output text can be
divided into a number of subproblems, where there are different methods of how to
solve each subproblem and in what order. The bound between subproblems may be
diffuse, where tasks may be shared and solved together depending on application.
The classical approach is to use a modular pipeline architecture, which solves
the subproblems in sequential order. An NLG system using a modular pipeline
architecture is given by Figure 3.1.
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Figure 3.1: NLG system using a modular pipeline architecture.

3.1.1 Text Planner

The text planner is considered as the early strategy process, which includes choices
concerning the information input into the NLG system. The text plan is crucial for
the development of NLG systems and often intimately connected to the applica-
tion. The text planner includes solving the subproblems of content determination
and text structuring, which constructs a text plan of the information input.

Content Determination

The content determination subproblem consists of deciding which information to
include in the text under construction, where typically more information is con-
tained in the input than desired to be expressed. For the NLG problem of live com-
menting the events in a football game, provided data consisting of audio recordings
and player positions are available for whole games. However, only data in connec-
tion with the detected events are of interest, thus the event detector is the main
part of content determination.

Given the decided information to be included in the text, the information
requires to be abstracted into some preverbal messages. One approach is to use
attribute-valued matrices, which are able to store the information of the detected
events suitably. Assuming the event of a goal is detected, the preverbal message
represented as an attribute-valued matrix may be given in accordance with Figure
3.2. Similar representations may be constructed for other events.

Text Structuring

The text structuring subproblem consists of determining in which order the in-
formation is presented in the text under construction, where the order is strongly
connected to the application. For the NLG problem of live commenting the events
in a football game, the order is determined by the temporal order of detected
events during the game. Therefore, the event detector is the main part of text
structuring.
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Figure 3.2: Preverbal message represented as an attribute-valued matrix of a goal
event.

3.1.2 Sentence Plan

The sentence planner is considered as the late tactics process, which includes
choices concerning the linguistics of the text under construction. The sentence
planner is often independent of application, thus the subproblems within may be
shared between applications. The sentence planner includes solving the subprob-
lems of sentence aggregation and lexicalization, which constructs a sentence plan
of the text plan.

Sentence Aggregation

The sentence aggregation subproblem consists of deciding which information to
present in individual sentences, where typically all preverbal messages are not re-
quired to be expressed in separate sentences or a preverbal message in a single
sentence. This in order to generate text more fluid and readable. For the NLG
problem of live commenting the events in a football game, one comment is in-
tended to be generated for each detected event separately. Therefore, the sentence
aggregation subproblem concerns if to split the information into multiple sentences
or not and what information to include in each sentence if separated. Considering
the preverbal message of the goal event in Figure 3.2, the information may be
separated into multiple sentences of the player scoring and the updated standings
of the game. Similar decisions may be considered for other events.
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Lexicalization

The lexicalization subproblem consists of determining which words and phrases to
express the information of the individual sentences, where the NLG system initiates
the conversion to natural language. For the NLG problem of live commenting the
events in a football game, the objective is to generate descriptive comments of the
detected events. One approach is to decide a word or phrase randomly among a set
of alternatives, thus the complexity of the comments depends on the alternatives
the system can provide. Assuming a goal is scored, the incident may be phrased as
’to score a goal’, ’to have a goal’, ’to put the ball in the net’, etc. Further, ’to score
a goal’ is an unfortunate way of expressing an own goal, thus the NLG system may
regard for stylistic constraints. Similar sets of alternatives can be constructed for
other incidents.

3.1.3 Realizer

The realizer is considered as the final process, which generates the natural language
text. The realizer includes solving the subproblem of linguistic realization, which
constructs the output text of the sentence plan.

Linguistic Realization

The linguistic realization subproblem consists of combining all the relevant words
and phrases into well-formed sentences. In other words, linguistic realization in-
volves ordering the constituents of the individual sentences and generating correct
grammatical forms, such as selecting verbs, prepositions and punctuation marks.
One approach is to use human handcrafted templates, which fit the mentioned
lexicalization method suitably. Templates are well sufficient if the application do-
main is small, as for the events in a football game. The advantage is that the
implementer has full control of the linguistics, thus minimizing grammatical er-
rors. The disadvantage is that templates are labour demanding and constrained to
the imagination of the implementer. Considering the preverbal message of the goal
event in Figure 3.2, the linguistic realization using sentence aggregation and lexi-
calization may be given in accordance with Figure 3.3. Similar human handcrafted
templates may be constructed for other events.

The output text is generated by deciding a word or phrase randomly among the
sets of alternatives of the human handcrafted templates. Considering the linguistic
realization of the goal event in Figure 3.3, the comment may be generated in
accordance with Figure 3.4. Similar comments may be generated for other events.
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(a) First sentence. Initiates by proclaiming a goal is scored and the minute of occurrence.

(b) Second sentence. States the scoring player and the corresponding number of goals
scored.

(c) Third sentence. States the goal increases the lead and the updated standings of the
game. Notice, a word or phrase can be skipped, as shown in the fourth set of alternatives.

Figure 3.3: Linguistic realization using sentence aggregation and lexicalization
of the preverbal message of the goal event in Figure 3.2. The curly brackets
correspond to the attribute values of the preverbal message.

Figure 3.4: Comment generated by randomly deciding a word or phrase among
the sets of alternatives of the linguistic realization of the goal event in Figure 3.3.
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3.2 Constraints

Automatized commentators do not require a large audience, where high profile
games are already commented by human commentators. For example, there are
games important to the teams involved but not commented by human voiced
commentators, such as games in lower divisions and youth games. Therefore, to
constrain the degree project, the comments are adjusted to the later. Tags are not
commented at all, due to typically not being provided live for such games.

There is a possibility of generating subjective comments adjusted to the fans
of each team, where an event can be positive or negative depending on the team.
To constrain the degree project, subjective comments are not generated. The aim
is to generate objective comments for the general audience.
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4 Data

The provided data used to fit machine learning models, consist of 33 football games
from the Swedish leagues Allsvenskan and Superettan during season 2019. The
games were recorded by the Spiideo devices from Stadion in Malmö, Tele2 Arena
in Stockholm and Gavlevallen in Gävle. The data are collected by request from
the Spiideo API server, which consist of audio recordings, player positions and
tags for each game. Specifically, a tag contains information of an event and its
occurrence, which is an object implemented by Spiideo.

The games and their number of tags in the provided data are given by Table A.1
in Appendix A. Notice, the games are recorded during the summer and autumn,
where the number of tags varies between 20− 85.

4.1 Tags

The tags of a game are received as a list of objects when requested from the
server, which are provided by Svensk Elitfotboll. The tags are kickoff, end of half,
goal, shot, corner, penalty, free kick, yellow card, red card and substitution, where
corner and free kick are provided from October 2019. Depending on the main
event, each tag includes additional information of the event, such as team, players,
etc. if available.

4.2 Audio Recordings

The audio recordings of a game are received as a list of items when requested from
the server, where each item corresponds to a segment in the game. The segments
are received in AAC-format, but converted to 32-floating-point time series using
the LibROSA library [18].

A selection of the audio segments in the game Malmö FF - Helsingborgs IF,
26 November 2019, is given by Figure 4.1.
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4.3 Player Positions

The player positions of a game are received as a list of items when requested from
the server, where each item corresponds to a segment in the game. The segments
contain information of the foreground ratio and player tracks, which are initially
extracted from video data [19].

4.3.1 Foreground Ratio

The pixels of a video image are modeled as P : Ω 7→ {0, 1}, indicating the likelihood
of a pixel belonging to a moving non-stationary object or the foreground. Assuming
the foreground consists mainly of players, the distribution of foreground pixels
indicates the positions of the players in the field. The football field is represented
by a 17× 28 grid, where the modeled pixels are projected into each subregion and
estimated as a ratio. In other words, the foreground ratio is represented by an
image of one channel, where the ratios in each subregion correspond to the pixels.
Each segment consists of a sequence of foreground ratios in chronological time
order, where the time difference between the timestamps is 80 milliseconds. [19]

4.3.2 Player Tracks

For the player tracks of a segment, each track consists of a sequence of the posi-
tions of a player at different timestamps. The player tracks are extracted from the
foreground pixels of the video images using a tracking algorithm, where the posi-
tions are projected into the field given the field dimensions of the arena. Notice,
the foreground pixels belong to moving non-stationary objects, which include the
players, referee, ball or anything moving in the video. Therefore, the assumption
that a moving object is a player, defines a track as a player track. The track
positions are given in chronological time order, where each position is represented
by its x and y coordinate in the field and a timestamp. [19]
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(a) No tag.

(b) Kickoff.

(c) Goal. Notice, the event occurs before the tag.

(d) Shot, shot.

Figure 4.1: Malmö FF - Helsingborgs IF, 26 November 2019. Selection of the
audio segments. An orange vertical line indicates the occurrence of a tag.
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5 Feature Extractions

To fit machine learning models, some feature extractions of the provided data are
required. This concerns both the audio recordings and player positions, where the
corresponding feature extraction depends on what the model is intended to learn.

5.1 Spectrogram

Screening through the video recordings of the games in Table A.1, one notices that
some events may be detected if able to identify the referee whistle. Examining
the spectrogram of the audio segments including tags indicated by a whistle, the
conclusion is that referee whistles are distinguishable visually. In particular, a
whistle is characterized by two horizontal lines in frequency range [3000, 5000] Hz,
where the lengths of the lines indicate its duration. Therefore, the spectrogram
is examined as feature extraction of the audio segments for detecting the referee
whistles in a game. A selection of the spectrogram feature extraction of the audio
segments in the game Malmö FF - Helsingborgs IF, 26 November 2019, is given
by Figure 5.1.

5.2 Mel-Frequency Cepstral Coefficients

For automatic speech recognition and modeling the subjective pitch of audio seg-
ments, the Mel-Frequency Cepstral Coefficients (MFCC) is proven effective in
various environments [5]. Therefore, the MFCC is examined as feature extraction
of the audio segments for detecting the events in a game. A selection of the MFCC
feature extraction of the audio segments in the game Malmö FF - Helsingborgs
IF, 26 November 2019, is given by Figure 5.2.
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5.3 Position Feature

To feed the player tracks of the position segments into a machine learning model,
some additional feature extraction is required. For detecting the events in a game,
both the foreground ratio and motion fields of the position segments are examined
as feature extraction. This as a concatenated position feature.

5.3.1 Motion fields

The motion fields of a segment is extracted from the player tracks, which is a fea-
ture produced by Spiideo. The momentary velocities of a moving non-stationary
object are estimated from the positions and corresponding timestamps of the track,
where a velocity is represented by its speed in the x and y direction and a times-
tamp. The football field is represented by a 17× 28 grid, where the speeds in each
subregion are approximated given the positions and velocities. In other words,
the motion fields is represented by an image of two channels, where speeds in the
x and y direction in each subregion correspond to the pixels in the first and sec-
ond channel respectively. Each segment consists of a sequence of motion fields in
chronological time order, where the time difference between the timestamps is 80
milliseconds. [19]

Examining the extracted motion fields of the position segments, one notices
that motion fields are not extracted for all timestamps. The absence of motion
fields occurs when no tracks including the concerned timestamp are extracted
from the foreground pixels. Screening through the video recordings of the games
in Table A.1, the conclusion is that the situation may arise when there is close to
no movement in the field.

5.3.2 Concatenating feature extractions

The position feature of a segment is extracted by concatenating foreground ratios
and motion fields of similar timestamps together, where two timestamps are con-
sidered similar if within the distance of 40 milliseconds. As mentioned, motion
fields may not be extracted when there is close to no movement in the field, thus
the motion fields are padded with zeros for the concerned timestamps. In other
words, the position feature is represented by an image of three channels, where
the foreground ratio and motion fields in the x and y directions correspond to the
channels respectively. Each segment consists of a sequence of position features in
chronological time order, where the time difference between the timestamps is 80
milliseconds defined as the timestamps of the foreground ratios. A selection of
the position feature extraction of the position segments in the game Malmö FF -
Helsingborgs IF, 26 November 2019, is given by Figure 5.3.
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5.4 Parameter settings

When extracting the spectrogram and MFCC features of the audio segments, vari-
ous parameter settings are available. To constrain the degree project, only one set
of parameters is examined. The feature extractions are performed in accordance
with Section 2.4 using the LibROSA library, where the set of parameter settings
used is given by Table 5.1. [18]

For the spectrogram feature, the default parameters of the LibROSA library
are used. The audio segments are received at native sample rate 16000 Hz, but
resampled to 22050 Hz when received. The time frames are set to 512 samples
corresponding to 23.2 milliseconds, where the overlaps are set to 128 samples cor-
responding to 5.80 milliseconds. The Hanning window is used as window function,
which is recommended for speech processing. For the MFCC feature, the number
of filters extracted is set to 26. There are different types of DCTs, where DCT-II
is used as the default type of the LibROSA library. Only the first 13 filters are
kept as cepstrums. [18][20]

Parameter settings

Feature extraction Spectrogram MFCC
Sample rate 22050 Hz

Time frames
512 samples

23.2 ms

Overlaps
128 samples

5.80 ms
Window function Hanning
Filters 26
DCT-type II
Cepstrums 1-13

Table 5.1: The set of parameter settings used for the spectrogram and MFCC
feature extractions of the audio segments.
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(a) No tag.

(b) Kickoff. Notice, the whistle occurs after the tag.

(c) End of half. Notice, the whistle occurs before the tag.

(d) Substitution. Notice, the whistle does not occur in the segment.

Figure 5.1: Malmö FF - Helsingborgs IF, 26 November 2019. Selection of the
spectrogram feature extraction of the audio segments. The upper images visualize
the full spectrogram, while the lower are divided into frequency range [3000, 5000]
Hz. An orange vertical line indicates the occurrence of a tag.
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(a) No tag.

(b) Kickoff.

(c) End of half.

(d) Substitution.

Figure 5.2: Malmö FF - Helsingborgs IF, 26 November 2019. Selection of the
MFCC feature extraction of the audio segments. An orange vertical line indicates
the occurrence of a tag. Notice, even if the MFCCs may be hard to separate
visually, there is a difference between the feature extractions.
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(a) No tag.

(b) Kickoff.

(c) Goal.

(d) Shot.

Figure 5.3: Malmö FF - Helsingborgs IF, 26 November 2019. Selection of the
position feature extraction of the position segments. If a segment includes a tag,
the frame of closest distance is visualized else the midpoint frame. Notice, even if
the motion fields may be hard to separate visually, there is a difference between
the feature extractions.
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6 Sampling

To feed the data of audio recordings and player positions into a live commentator
setup in a convenient way, the data are sampled as if the items are pushed from
the Spiideo API server during a live recording of a game. This is performed using a
sample generator, which is implemented to construct samples online. Each sample
consists of the spectrogram, MFCC and position feature extractions in accordance
with Chapter 5.

6.1 Sample

The ability to detect some events using the position feature, has been examined
previously in Cost-Optimized Event Detection in Football Video by Arpe and Er-
icsson [6]. The optimal results were achieved, if framing the position feature at 1
frame per second and sampling at 3 frames per sample. Therefore, equal settings
for sampling the position feature are examined in this degree project exclusively.
However, the duration of the referee whistle in the spectrograms are in general
shorter than 3 seconds, thus sampling similar to the position feature is probably
too long and may confuse a machine learning model. For example, the longer the
sample length, the filters of a CNN endanger to learn patterns irrelevant to actual
referee whistles. Therefore, both the spectrogram and MFCC features are sampled
with 1 second sample length instead. In addition, the spectrograms are divided
into frequency range [3000, 5000] Hz.

To construct such samples, the sampling is performed every second in accor-
dance with Figure 6.1. Each sample is defined by a time interval of 3 seconds,
which is divided into three equidistant intervals of 1 second. The center interval
consists of the spectrogram and MFCC features, while one frame of the position
feature is picked at the midpoint of each equidistant intervals. If no frames are
extracted within an equidistant interval, a frame of zeros is padded at the mid-
point. Given an audio or position segment and three equidistant intervals, the
corresponding feature extraction is performed in accordance with Algorithm 1.
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6.2 Sample Generator

The sampling is performed using a sample generator, which is implemented to
construct samples online as items arrive from the Spiideo API server. The sample
generator is defined by a time interval and the audio and position segments of not
yet sampled data. The lower bound of the interval is the timestamp to sample from
next and the upper bound the minimum of the end timestamps of the segments. As
an item is received, the corresponding segment is added to the sample generator,
thereafter the upper bound of the interval is updated accordingly. Furthermore,
the sample generator attempts sampling in accordance with Algorithm 2, which
constructs samples if sampling is possible, else waits for a new item to arrive.

Figure 6.1: Visualization of how the sampling is performed. The sampling is
performed every second, where a sample is defined by three equidistant intervals
of 1 second. The upper boxes correspond to the spectrogram and MFCC features
within the center interval, while the lower frames correspond to the position feature
at the midpoint of each equidistant intervals. Each frame contains a foreground
ratio and corresponding motion fields.
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Algorithm 1: Feature extraction

Input: segment, equidistant intervals
if audio then

for center interval do
extract spectrogram feature in frequency range [3000, 5000] Hz;
extract MFCC feature;

end

else if position then
extract position feature;
foreach equidistant interval do

if no frames then
pad frame of zeros at midpoint;

else
pick frame closest to midpoint;

end

end

end

Algorithm 2: Sampling

Input: sample generator
define empty list of samples;
while lower bound added by 3 seconds is less or equal to upper bound do

define empty sample;
define 3 equidistant intervals of 1 second starting from lower bound;
foreach segment do

extract features by Algorithm 1 and add to sample;
remove timestamps less than lower bound from segment;

end
add sample to samples;
add 1 second to lower bound;

end
return samples
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7 Datasets

Before fitting machine learning models, the data require to be structured into
some datasets. Several datasets are constructed for different purposes, depending
on what the model being fit to a dataset is intended to learn. One of the feature
extractions of the samples is chosen to construct a dataset, thereafter the samples
are labeled suitably for the purpose. The samples of a dataset are split into
training, validation and test sets, where the samples of each set are balanced,
normalized and reshaped if necessary.

7.1 Attack Datasets

As mentioned in Section 5.2 and 5.3, the MFCC feature of the audio segments and
the position feature of the position segments are intended to detect the events in a
game. Specifically, ongoing attacks are at focus. Therefore, the MFCC and posi-
tion features of the samples are chosen to construct two separate attack datasets,
each containing one of the feature extractions.

Labeling

Considering the events included in the provided tags, one may argue for when an
actual event is taking place. For example, is a free kick occurring when a player is
fouled, the referee whistles or the free kick is taken? Therefore, one may be more
interested in a time interval rather than a specific timestamp of an event, thus the
occurrence of a tag is of less importance when labeling. Given this argument and
the focus of detecting ongoing attacks in a game, both the MFCC and position
feature of a sample are labeled as an event if the event of the tags is goal, shot,
corner or penalty and a timestamp of these tags is within the whole interval of the
sample, and as no event otherwise.
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Splitting into Training, Validation and Test Sets

The labeled samples of the attack datasets are split into training, validation and
test sets. Three of the games in Table A.1 are put in the validation set, three in
the test set and the rest in the training set. The games are chosen the reflect the
variation of the data, thus each of the validation and test sets includes a derby, a
game from Allsvenskan and a game from Superettan.

Balancing Classes

Given how the MFCCs and position features are labeled in the attack datasets,
the number of samples in each class is heavily imbalanced. To balance the sam-
ples in each class evenly, all samples labeled as an event are kept and an equal
number labeled as no event. The balancing of classes is performed for each game
in each set separately, where the samples labeled as no event are picked randomly.
The number of samples and corresponding events in the attack datasets is given
by Table 7.1, where the corresponding numbers for each game are given by Ta-
ble A.2 in Appendix A. For clarification, the initial samples are the same, but
the corresponding feature extractions are chosen to construct each of the attack
datasets.

Normalizing

The coefficient values of the MFCCs are generally in range [−500, 100], which
can be notices in the MFCC feature extractions in Figure 5.2. As mentioned
in Section 2.5, CMVN is shown to improve the recognition results and reduce
noise. Therefore, the MFCCs of the corresponding attack dataset are normalized
using CMVN. This is performed by estimating the cepstral means and standard
deviations over the training set, thereafter all sets are normalized in accordance
with Equation 2.20.

The values of the foreground ratios are within range [0, 1] and the values of the
motion fields are generally in range [−12, 12], which can be noticed in position fea-
ture extractions in Figure 5.3. Therefore, as an attempt to balance all values, both
the foreground ratio and motion fields of the position features of the corresponding
attack dataset are normalized using minmax normalization. This is performed by
estimating the minimum and maximum of the foreground ratios and each of the
motion fields separately over the training set, thereafter all sets are normalized in
accordance with Equation 2.18 and 2.19 respectively.
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Reshaping

To feed the samples of a dataset into a machine learning model, the shapes of
the samples require to be equal. Given how the MFCCs are sampled in the cor-
responding attack dataset, the shapes of the MFCCs may vary. Therefore, the
MFCCs are reshaped using zero-padding before fed into a model. This is per-
formed by estimating the maximum shape over the training set, thereafter the end
of the MFCCs of all sets are padded with zeros or sliced into the maximum shape
if necessary.

Given how the position features are extracted, the shapes of the position fea-
tures in the corresponding attack dataset are equal by construction. Therefore,
the position features are not required to be reshaped before fed into a model.

7.2 Whistle Dataset

As mentioned in Section 5.1, the spectrogram of the audio segments is intended
to detect the referee whistles in a game. Therefore, the spectrogram feature of the
samples is chosen to construct a whistle dataset.

Comparing the timestamps of the provided tags and the occurrences of the ref-
eree whistle in the corresponding spectrograms, the conclusion is that the times-
tamps and whistles do not coincide accurately. This can be notices in the spectro-
gram feature extractions in Figure 5.1. In addition, the number of tags including
a referee whistle is low and does not include all whistles during the games. There-
fore, to fit machine learning models for whistle detection, the referee whistles are
tagged manually screening the games. This is performed using an analysis tool
provided by Spiideo, thereafter the whistle tags are collected similar to the pro-
vided data. Due to the time required to tag all the games, only six of the games in
Table A.1 are tagged. The games are selected among the training games in Table
A.2, which are chosen to reflect the variation of the data, thus two games from
each arena are picked. The games and their number of whistle tags in the whistle
data are given by Table A.3 in Appendix A. Notice, the number of whistle tags
varies between 72− 82.

Labeling

The spectrogram of a sample is labeled as an event if a timestamp of the whistle
tags is within the center interval of the three equidistant intervals of the sample,
and as no event otherwise.
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Splitting into Training, Validation and Test Sets

The labeled samples of the whistle dataset are split into approximately 70% train-
ing, 15% validation and 15% test sets. This is performed for each label and for
each game in Table A.3 separately, thereafter assembled into the corresponding
set.

Balancing Classes

Given how the spectrograms are labeled in the whistle dataset, the number of sam-
ples in each class is heavily imbalanced. Therefore, the whistle dataset is balanced
similar to the attack datasets. The number of samples and corresponding events
in the whistle dataset is given by Table 7.2, where the corresponding numbers for
each game are given by Table A.4 in Appendix A.

Normalizing

The intensities of the spectrograms are generally in range [−80, 0] dB, which can
be noticed in the spectrogram feature extractions in Figure 5.1. Therefore, the
spectrograms of the whistle dataset are normalized using minmax normalization.
This is performed by estimating the minimum and maximum over the training set,
thereafter all sets are normalized in accordance with Equation 2.18.

Reshaping

Given how the spectrograms are sampled in the whistle dataset, the shape of the
spectrograms may vary. Therefore, the spectrograms are reshaped using zero-
padding before fed into a model, which is performed similar to the MFCCs of the
corresponding attack dataset.

7.3 Hard Negative Mining of Whistle Dataset

Since the number of samples in each class is heavily imbalanced before balancing
classes, a significant number of whistles from the audience may not be represented
in the whistle dataset. Such whistles may be classified as false positives during
a live recording of a game, thus the method of hard negative mining mentioned
in Section 2.6 is examined. This as an attempt to improve the model for whistle
detection. The method is initiated by feeding all samples in the whistle dataset
before balancing classes into the optimal initial whistle model, which is declared
in the results in Section 11.1.2. Given the model predictions, the samples are
classified as true positives, true negatives, false positives or false negatives.
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Labeling

The spectrogram of the samples are labeled similar to the whistle dataset, thus a
sample classified as true positive or false negative is labeled as an event and true
negative or false positive as no event.

Splitting into Training, Validation and Test Sets

The labeled samples of the updated whistle dataset are split into approximately
70% training, 15% validation and 15% test sets, which is performed similar to the
whistle dataset.

Balancing Classes

Given how the spectrograms are labeled in the updated whistle dataset, the number
of samples in each class is still heavily imbalanced. Therefore, the updated whistle
dataset is balanced similar to the whistle dataset, but with some modifications
in accordance with the method of hard negative mining. The samples labeled
as no event are chosen randomly to include approximately 50% true negatives
and 50% false positives in the training and validation sets. This in order for
the updated whistle dataset to reflect the variation of the whistle data in a more
representative manner, where hopefully some false positives correspond to whistles
from the audience. Notice, this is not performed for the test set, due to being able
to compare the initial and updated whistle models for improvement. The number
of samples and corresponding events in the updated whistle dataset is given by
Table 7.2, where the corresponding numbers for each game are given by Table A.4
in Appendix A. Notice, the distribution of events are equal in the whistle dataset
and updated whistle dataset by hard negative mining, hence the number are shown
together.

Normalizing and Reshaping

The spectrograms of the updated whistle dataset are normalized using minmax
normalization and reshaped using zero-padding, which are performed similar to
the whistle dataset. For clarification, the minimum and maximum values and
maximum shape are estimated over the training set anew for the updated whistle
dataset.
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7.4 Whistle Event Dataset

Given the optimal whistle model, which is declared in the results in Section 11.1.2,
the intention is to determine what event if possible. To fit machine learning models
for determining the whistle event, both the events of the whistle detections and
actual referee whistles are tagged manually screening the games. This is performed
similar to the whistle tags in Section 7.2. The detection event tags are audience,
speaker, kickoff, end of half, free kick, penalty, offside, substitution, interruption
and others, and the whistle event tags the same as the detection event tags except
for audience and speaker. Due to the time required to tag all the games, only three
of the games in Table A.1 are tagged. The games are selected as the validation
games in Table A.2. The position feature of the samples is chosen to construct
the whistle event dataset. The games and their numbers of detection and whistle
event tags in the whistle event data are given by Table A.5 in Appendix A. Notice,
even if the numbers of tags are close for some events, the numbers are somewhat
misleading as sequential detections of the same event are common.

Labeling

As noticed in Table A.5, the number of detection and whistle event tags is low for
some classifications. Therefore, some classifications are assembled into a common
label. Audience and speaker are commonly labeled as surroundings, free kick and
penalty as free kick and end of half, offside, substitution, interruption and others
as others. The position feature of a sample is labeled as the common label of a tag
if the timestamp of the tag is within the center interval of the three equidistant
intervals of the sample. Unlabeled samples are rejected and not included in the
whistle event dataset.

Splitting into Training, Validation and Test Sets

The labeled samples of the whistle event dataset are split into approximately 70%
training, 15% validation and 15% test sets. This is performed for each label and
for each game in Table A.5 separately, thereafter assembled into the corresponding
set. The number of samples and corresponding events in the whistle event dataset
is given by Table 7.3, where the corresponding numbers for each game are given by
Table A.6 in Appendix A. Notice, the number of samples is lower than the total
number of tags in Table A.5, due to most whistle detections and actual referee
whistles are overlapping.
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Normalizing

The position features of the whistle event dataset are normalized using minmax
normalization, which is performed similar to the position features of the corre-
sponding attack dataset.

Attack Datasets

Samples Events
Training 4150 2075
Validation 364 182
Test 386 193

Table 7.1: The number of samples and corresponding events in the attack datasets.

Whistle Datasets

Samples Events
Training 642 321
Validation 140 70
Test 146 73

Table 7.2: The number of samples and corresponding events in the whistle dataset
and updated whistle dataset by hard negative mining.

Whistle Event Dataset

Samples Kickoff Free kick Others Surround.

Training 256 13 66 126 51
Validation 57 4 15 27 11
Test 61 4 16 28 13

Table 7.3: The number of samples and corresponding events in the whistle event
dataset.
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8 Detector

After fitting machine learning models to each of the datasets in Chapter 7, a
detector is constructed for detecting the events in a game. The detector is defined
by the optimal models for attack detection, whistle detection and whistle event
determination, which are declared in the results in Section 11.1. Furthermore,
additional properties of the data are used, where the audio segments are used to
detect high sound powers in a game and the position segments to sort out low
movement attack detections.

8.1 Sound Detection

The audio segment of the samples is used to detect high sound powers in a game,
which is performed by estimating the power of the segment. Examining the sound
powers during the games in Table A.1, the conclusion is that the volume depends
on the arena. The volume is low if close to no audience at the arena, such as the
games recorded from Gavlevallen in Gävle. The volume is higher for the games
recorded from Stadion in Malmö compared to Tele2 Arena in Stockholm, which is
probably due to the distance between the field and the recording device. Therefore,
the volume threshold is adjusted manually for each arena separately. The sound
powers and corresponding adjusted volume thresholds during the validation games
in Table A.2 are given by Figure 8.1.

8.2 Attack Detection

Given the results in Section 11.1.1, the position feature performs better compared
to the MFCC feature for detecting ongoing attacks in a game. Therefore, the
optimal attack model using the position feature is used exclusively for attack de-
tection. On the other hand, the Precision-Recall threshold is useless, due to the
corresponding F1 score is undefined. Therefore, the ROC threshold is used as
prediction threshold.
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Examining the detections of the games in Table A.1, the conclusion is that
the number of detections is very high. The attack model tends to detect multiple
sequential detections of the same attack and sometimes when no attack is ongoing.
This partly due to the ROC threshold being estimated over the balanced test
set, which is naive considering the full imbalanced set during a live recording
of a game. However, it is essential that there is certain movement in the field
during an ongoing attack, thus the position segment of the samples is used to sort
out low movement attack detections. This by summarizing the absolute values
of the motion fields into one value, which is performed for each frame of the
position feature of a sample, thereafter the mean is estimated over the whole sample
and used as an accumulated movement measure. Examining the accumulated
movements during the games in Table A.1, the conclusion is that the movements
are in the same order of magnitude. Therefore, the movement threshold is adjusted
manually for all games. The accumulated movements and adjusted movement
threshold during the validation games in Table A.2 are given by Figure 8.2.

8.3 Whistle Detection

Given the results in Section 11.1.2, the optimal initial whistle model performs
better compared to the updated whistle model for detecting the referee whistles
in a game. Therefore, the initial whistle model is used exclusively for whistle
detection. The Precision-Recall threshold is adapted to imbalanced classification,
as during a live recording of a game. Therefore, the Precision-Recall threshold is
used as prediction threshold. Notice, the optimal initial whistle model using the
Precision-Recall threshold is the model used to construct the whistle event dataset
in Section 7.4.

8.4 Whistle Event Determination

Given the results in Section 11.1.3, the intention is to comment whistle detections
determined as kickoff, free kick and others and ignore surroundings. Others are
commented even if not able to determine the event, but indicates that a referee
whistle has occurred. Surroundings are ignored, due to not able to determine if
the event is audience or speaker. Then, the Precision-Recall thresholds perform
better compared the ROC thresholds. Therefore, the Precision-Recall thresholds
are used as whistle event determination thresholds, where the priority is set in
growing order.
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(a) Dalkurd - Jönköpings Södra IF, 3 August 2019, at Gavlevallen in Gävle.

(b) Hammarby IF - Örebro SK, 30 September 2019, at Tele2 Arena in Stockholm.

(c) Malmö FF - Djurg̊ardens IF, 25 August 2019, at Stadion in Malmö.

Figure 8.1: The sound powers and corresponding adjusted volume thresholds dur-
ing the validation games in Table A.2. Notice, the volume depends on the arena.
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(a) Dalkurd - Jönköpings Södra IF, 3 August 2019, at Gavlevallen in Gävle.

(b) Hammarby IF - Örebro SK, 30 September 2019, at Tele2 Arena in Stockholm.

(c) Malmö FF - Djurg̊ardens IF, 25 August 2019, at Stadion in Malmö.

Figure 8.2: The accumulated movements and adjusted movement threshold during
the validation games in Table A.2. The green marks at the bottoms indicate when
the movement is zero.
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9 Commentator

For automatic live commenting of detected events in a game, a commentator is
constructed for generating comments using natural language generation. The com-
mentator is defined by its sample generator introduced Chapter 6, detector intro-
duced Chapter 8, commentator state, game information and NLG system. The
items and provided tags are fed into the commentator as if pushed from the Spiideo
API server during a live recording of a game, thus the commentator is implemented
to generate comments online. As items are received, samples are generated by the
sample generator, thereafter fed sequentially into the detector. Both the sample
and eventual detection are used to update the commentator state. As tags are
received, the game information is updated. Furthermore, the detection or tag,
commentator state and game information are used as information input into the
NLG system. Only valid detections are commented, but all events are used to
update the game information. A visualization of the commentator setup is given
by Figure 9.1.

Figure 9.1: Visualization of the commentator setup. Details regarding the com-
mentator state, game information and NLG system are given by Sections 9.1–3.
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9.1 Commentator State

The commentator state is used to increase the complexity of the comments, which
is defined by its current content and status. The content consists of locations
and directions extracted from the position feature of the samples and the status
information of ongoing detections. The content and status of the state are updated
for every sample generated by the sample generator, where the status is re-updated
for every detection by the detector.

9.1.1 Content

To determine valuable locations and corresponding directions for further comment-
ing, the position feature of the samples is used. This under the assumption that
the foreground pixels and tracks extracted from the player positions consist mainly
of players, thus locations and directions indicate the positions and movements of
the players in the field.

First one would like to know where in the field and in what direction the players
are moving in general, which may be helpful for deciding which team is attacking
during an ongoing attack. The center of gravity of the foreground ratio is used
to determine the location coordinates. The averages of the motion fields in the x
and y directions are used to determine the direction vector. Second one would like
to know where in the field and in what direction the maximum movement occurs,
which may be helpful for deciding a player sprint during an ongoing attack. The
absolute values of the motion fields are aggregated into an image of one channel,
thereafter the maximum value is used to determine the location coordinates. The
location in the corresponding motion fields are used to determine the direction
vector. The locations and directions of the center of gravity and maximum of
movement are extracted for the center frame of each sample only, due to outer
frames are similar to the center frame of sequential samples. This given how the
sampling is performed, outlined earlier in Chapter 6.

Furthermore, the location coordinates and corresponding direction vectors are
converted into string values in accordance with Figure 9.2 and 9.3 respectively. The
field is split into two halves defined by the camera angle towards the field, namely
left and right. Each half is divided into three zones defined by the attack direction
towards the goal, namely left, center and right. In addition, each zone is applied
by a set of directions, namely left, center, right and backward for the center zone
and forward, center and backward for the left and right zones. The content of the
commentator state contains the converted locations and corresponding directions
of the center of gravity and maximum of movement, which is updated for every
sample generated.
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9.1.2 Status

The status of the commentator state contains information of ongoing detections,
which consists of one status for sound, attack and whistle separately. Each status
may include multiple sequential detections, if detected within a time limit. The
time limits are set reasonably by hand given the performance of the detector, which
are summarized by Table 9.1. An ongoing detection is interrupted and reset, if the
corresponding time limit is exceeded. In addition, an ongoing attack detection is
interrupted before the time limit, if the location of the center of gravity switches
half. The status of the commentator state is updated for interruption every sample
generated by the sample generator and re-updated for ongoing detections every
detection by the detector.

Time Limits

Status Limit [s]
Sound 60
Attack 30
Whistle 5

Table 9.1: The time limits for ongoing detections.

In detail, each status consists of a set of attributes, which are categorized in
accordance with the following list.

in progress

A boolean. States if a detection is ongoing.

start time

The timestamp of the first detection included in the ongoing detection. De-
fines the start time of the corresponding time limit.

phase

A list of phases. Each phase corresponds to the detections included in the
ongoing detection. For the sound status, the phases are categorized in ac-
cordance with the following list.

initial

The first detection of the ongoing detection.

ongoing

All sequential detections included in the ongoing detection.
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For the attack status, the phases are categorized in accordance with the
following list. The phase of a detection is determined sequentially in the
given order of the list.

initial

The first valid detection included in the ongoing detection. A detection
is valid if the direction of the center of gravity is not backward.

switch gravity zone

If the location of the center of gravity switches zone from the previ-
ously commented detection validly. A switch is valid if the correspond-
ing direction is not backward and the time distance to the previously
commented detection is more than 1.5 seconds.

switch gravity direction

If the direction of the center of gravity switches direction from the previ-
ously commented detection validly. A switch is valid if the correspond-
ing direction is not backward and the time distance to the previously
commented detection is more than 1.5 seconds.

switch movement zone

If the location of the maximum of movement switches zone from the
previously commented detection validly. A switch is valid if the corre-
sponding direction is not backward and the time distance to the previ-
ously commented detection is more than 1.5 seconds.

switch movement direction

If the direction of the maximum of movement switches direction from
the previously commented detection validly. A switch is valid if the
corresponding direction is not backward and the time distance to the
previously commented detection is more than 1.5 seconds.

ongoing

If the phase is not determined as any of the previously mentioned phases
for the given category.

For the whistle status, the phases are categorized in accordance with the
following list. The phase of the detection is determined sequentially in the
given order of the list.

initial

The first valid detection included in the ongoing detection. A detection
is valid if the whistle event of the detection is kickoff, free kick or others.
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continuation

If the whistle event of the detection is kickoff, free kick or others and
none of these events are included in the ongoing detection previously.

ongoing

If the phase is not determined as any of the previously mentioned phases
for the given category.

content

A list of contents. Each content corresponds to the detections included in
the ongoing detection. The content of a detection corresponds to the content
of the commentator state when detected.

timestamp

A list of timestamps. Each timestamp corresponds to the detections included
in the ongoing detection.

to comment

A list of booleans. Each boolean corresponds to if to comment the detections
included in the ongoing detection. For the sound status, a boolean is true if
the phase is initial, else false. For the attack and whistle status, a boolean
is false if the phase is ongoing, else true.

Figure 9.2: Visualization of the conversion of locations, where the coordinates
are transformed into two string valued half and zone. The text above the field
indicate the halves and the text in the field the corresponding zones. Notice, the
axes correspond to the 17 × 28 grid of the foreground ratio and motion fields of
the position feature.
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(a) Half: left, zone: right. (b) Half: right, zone: left.

(c) Half: left, zone: center. (d) Half: right, zone: center.

(e) Half: left, zone: left. (f) Half: tight, zone: right.

Figure 9.3: Visualization of the conversion of directions for the corresponding
halves and zones in Figure 9.2, where the direction vector is transformed into a
string valued direction.
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9.2 Game Information

The game information is used to increase the complexity of the comments, which
is defined by its info, team locations and statistics. The info includes the partici-
pating teams, which team playing at home and away, arena and date of play, which
are extracted when the commentator is initiated. In addition, the info includes if
the game is ongoing and which half, which are extracted from the provided kickoff
and end of half tags when received. This to determine the minute an event occurs
and the period of the game, where the period is partitioned into before, first half,
break, second half and after. The team locations include the location halves of the
teams in the field, which are extracted from the provided tags when received and
possible. The statistics include information of the detected events, provided tags
and players of the provided tags, which are gathered from the NLG system during
a game.

9.2.1 Team Location Determination

The provided tags are used to determine the team locations, which include the
location halves of the teams in the field. For example, if an ongoing attack is
detected, the variation of the comment increases if the attacking team is known.
This is performed using the goal, shot, corner and penalty tags, which may contain
information of the performing team if provided. In such case, the location of the
center of gravity of the commentator state determines the half of occurrence. Then,
the performing team is determined as the opposite half and the other team as the
given half. The commentator attempts team location determination for every tag
received until determination. If the end of half tag of the first half is received, the
team locations switches halves.

9.2.2 Game Statistics

Apart from generating comments, the NLG system is used to gather event statis-
tics during a game. The game statistics are partitioned into sound, whistle, left,
right and rest categories, where left and right correspond to the team locations
of the events. The preverbal messages, constructed by the text planner of the
NLG system described in Section 9.3.1, and players of the provided tags, are the
information stored in the game statistics. For ongoing sound and attack detec-
tions, only preverbal messages constructed from a detection with initial phase
are stored in the game statistics. For ongoing whistle detections and provided
tags, all preverbal messages constructed and players of the tags are stored in the
game statistics.
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The sound and whistle categories store the sound and whistle detections. The
left and right categories store the attack detections, tags and players of the tags,
if able to determine the team location of the corresponding preverbal messages
and players. Otherwise, the preverbal messages and players are stored in the rest
category. The preverbal messages and players stored in the rest category are re-
considered for the left and right categories for every new tag received, if able to
determine the team location anew given the new information of the tags. For
example, assume the rest category contains the preverbal message of a substi-
tution including the performing team, where a tag is received determining the
team location, thereafter the substitution is transferred to the team location of
the performing team. Another example, assume the preverbal message of a goal is
constructed including the team location and scoring player, where the rest category
contains a pair of players from a free kick including the scoring player, thereafter
the other player is transferred to the opposite team location. Similar logical rules
can be constructed for sorting other preverbal messages and players of the game
statistics.

9.3 NLG System

The NLG system is built in accordance with Chapter 3, which generates comments
using natural language generation. Only valid detected events are commented,
where a detection is valid if the to comment attribute of the corresponding status
of the commentator state is true. For clarification, the provided tags are not
commented at all, due to typically not being provided live for games in lower
divisions and youth games. The NLG system uses a modular pipeline architecture
in accordance with Figure 3.1, thus the subproblems are solved in sequential order.
In addition, the NLG system is built to provide a welcome and goodbye comment,
which are generated when the commentator is initiated and the end of half tag of
the second half is received respectively.

9.3.1 Text Plan

Initially, the information input is fed into the text planner, which converts the
information into a preverbal message by content determination. The information
input consists of the detection or tag, commentator state and game information
as visualized in Figure 9.1. As mentioned, the preverbal messages and players
of the tags are the information stored in the game statistics, which is the reason
the provided tags are fed into the NLG system as well. The preverbal messages
constructed for detections, tags, welcome and goodbye are given by Figures B.2–15
in Appendix B.
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After content determination, the preverbal messages are filtered through text
structuring. For clarification, one text plan is constructed for each detection or
tag, which includes one preverbal message. In other words, the main part of text
structuring is performed by the detector, which determines the temporal order as
events are detected. Therefore, text structuring is built to pass preverbal messages
to be commented, where invalid detections and tags are neglected. The result of
text structuring corresponds to the text plan.

9.3.2 Sentence Plan

Further, the text plan is fed into the sentence planner, which converts the text plan
into a sentence plan. This is performed by sentence aggregation, which separates
the information of the text plan into multiple sentences if suitable. For text plans
of ongoing attack detections, the information may include the attacking team,
general movement and a player sprint. Therefore, to provide more fluid and read-
able comments, the information is separated into multiple sentences. In addition,
the center of gravity or maximum of movement are ignored if the corresponding
directions are backward, since the information is irrelevant considering the attack
direction towards the goal. The maximum of movement is ignored if equal to the
center of gravity, since the player sprint corresponds to the general movement.

After sentence aggregation, the information of the individual sentences are
transformed into sets of alternatives by lexicalization. Each set consists of words
and phrases to express the information of the individual sentence. The result of
lexicalization corresponds to the sentence plan.

9.3.3 Realization

Finally, the sentence plan is fed into the realizer, which generates the output text
of the comment. This is performed by linguistic realization, which combines all
words and phrases of the sets of alternatives included in the sentence plan. Human
handcrafted templates are used, where the words and phrases are expressed in the
Swedish language.

After linguistic realization, the output text is generated by deciding a word or
phrase randomly among the sets of alternatives of the templates. The result of
stochastic decisions correspond to the output text of the comment.
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10 Experiment Setup

To fit machine learning models for event detection and generate comments of de-
tected events, an experiment environment is setup. The machine learning models
and NLG system are implemented in accordance with Chapter 2 and 3 respectively.
Given the performance of the detector, the following NLG system is adapted ac-
cordingly.

10.1 Machine Learning

For the machine learning models, the model architectures are implemented using
the Keras library with the TensorFlow library as backend. The learning procedures
are performed on AWS using a g4dn.xlarge instance, which are run on Deep
Learning AMI (Ubuntu 18.04) Version 27.0. [21][22][23][24]

In accordance with the purposes of the constructed datasets in Chapter 7, two
separate attack models are fit to detect ongoing attacks in a game, where the attack
datasets consists of either the MFCC or position feature. Two separate whistle
models are fit to detect the referee whistles in a game, where the whistle datasets
consists of the spectrogram feature. As a reminder, the updated whistle dataset
is constructed by the method of hard negative mining, as an attempt to improve
the whistle model. One whistle event model is fit to determine the whistle event,
where whistle event dataset consists of the position feature. For clarification, the
optimal initial whistle model, which is declared in the results in Section 11.1.2, is
the model used to construct the whistle event dataset.

10.1.1 Model Architectures

The model architectures examined are adapted to each dataset individually, which
are built as an attempt to capture the patterns of the corresponding feature ex-
traction and separate the classes in a generalized manner. CNNs are investigated
for all datasets in accordance with Section 2.1, where the internal structures are
experimented with.
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The CNN architectures examined for the attack models, whistle models and
whistle event model are summarized by Figure 10.1. 1D convolutions are applied
if the corresponding dataset consists of the spectrogram or MFCC feature and
3D convolutions if the position feature. Both one and the visualized two fully-
connected layers are examined. Different kernel sizes, strides and number of filters
are examined for the convolutional layers, different pool sizes and strides for the
maxpooling layers and different number of units for the fully-connected layers. For
internal convolutional and maxpooling layers, the activation function is chosen as
the ReLU in accordance with Equation 2.1. For binary classification problems,
the output activation function is chosen as the sigmoid function in accordance
with Equation 2.2. For multi-class classification problems, the output activation
function is chosen as the softmax function in accordance with Equation 2.3.

Figure 10.1: Visualization of the CNN architectures examined for the attack mod-
els, whistle models and whistle event model.

62



CHAPTER 10. EXPERIMENT SETUP Marcus Grönvall

10.1.2 Learning Procedure

For optimal results during the learning procedures, different batch sizes are ex-
amined for each CNN structure. To reduce over-fitting, early stopping is used. A
model is fit for 1000 epochs, but stopped after 100 epochs if no improvement in
the validation set. The most accurate model on the validation set is evaluated on
the test set, where the most optimal model among all fit models is saved and used
further on.

The ADAM optimization method is used for all learning procedures. For bi-
nary classification problems, the binary cross-entropy is used as loss function and
accuracy as metric in accordance with Equation 2.4 and 2.7 respectively. For im-
balanced multi-class classification problems, the categorical cross-entropy is used
loss function and F1 score as metric in accordance with Equation 2.5 and 2.8 re-
spectively, where the targets are weighted using class weights in accordance with
Equation 2.6.

10.1.3 Model Evaluation

In accordance with in Section 2.3, different evaluation methods are used to compare
fit models. In addition, the loss and corresponding metric are monitored for all
models during the learning procedures.

For binary balanced classification problems, the ROC curve and its optimal
threshold are used estimated over the balanced test set. To get a hint on the
performance of the models on samples not included in the dataset, the Precision-
Recall curve and its optimal threshold are used estimated over the full imbalanced
training, validation and test sets. The confusion matrices are used estimated over
the balanced test set and full imbalanced training, validation and test sets, where
the thresholds are set to 0.5 in both cases.

For the imbalanced multi-class classification problems, the ROC and Precision-
Recall curves and their corresponding optimal thresholds for each label are used
estimated over the test set. The numbers of true positives, true negatives, false
positives and false negatives are calculated as one label versus the rest. The
confusion matrices are used estimated over the test set, where the thresholds are
set to the optimal thresholds for each label of the ROC and Precision-Recall curves
respectively. The threshold priorities are set in growing order, where a sample is
classified as undecided if not above any of the thresholds.
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10.2 Natural Language Generation

For generating comments of detected events, a commentator is setup in accordance
with Chapter 9. The comments of the NLG system are evaluated by running the
commentator on new data.

10.2.1 NGL System

The NLG system examined is built in accordance with Section 9.3, which is
adapted to the detector in Chapter 8. As a reminder, the detector consists of
the optimal models for attack detection, whistle detection and whistle event de-
termination, which are declared in the results in Section 11.1. In addition, the
detector is implemented to detect high sound powers in a game.

10.2.2 System Evaluation

The generated comments are evaluated by running the commentator on new data,
which consists of games not included in the previously provided data. The new
games are recorded from Guldf̊ageln Arena in Kalmar during season 2020, where
the items and tags are collected similar to previous data. The games and number
of tags included in the evaluation data are given by Table B.1 in Appendix B.
Notice, the games are recorded during the Covid-19 pandemic, thus no audience
was allowed at the arena and the majority of the sound environment corresponds
to the speaker and yelling of players and team staffs.

Since the NLG system is implemented to generate comments from human hand-
crafted templates, the variation of the comments is strictly bound the imagination
of the implementer. Therefore, the complexity, fluidity and readability of the com-
ments are not evaluated. Instead, the evaluation focuses on how well the generated
comments describe the events in a game, where examples of when the comments
are correct and incorrect are presented.
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11 Results

This chapter presents the results, which are partitioned into two parts. The first
part declares the machine learning models for event detection and the second part
the generated comments of detected events. The results are produced in accordance
with the experiment setup in Chapter 10.

11.1 Machine Learning Models

For the machine learning models, the results are presented in accordance with
Section 10.1.3. Only the optimal models for each of the attack models, each of the
whistle models and whistle event model are declared.

11.1.1 Attack Models

The performances of the optimal attack models using the MFCC and position fea-
ture on the test set are given by Table 11.1. The corresponding model evaluations
are given by Figure 11.1 and 11.2 respectively, where the results are summarized
by Table 11.2. The model architectures of the corresponding optimal model are
given by Figure A.1 in Appendix A.

The results indicate that the optimal model using the position feature per-
forms better compared to the MFCC feature. On the other hand, the precision
and recall are zero for the optimal threshold using the position feature, thus the
corresponding F1 score is undefined. In other words, all samples are classified as
no event if using the Precision-Recall threshold for prediction, thus the threshold
is useless for application. Therefore, the attack model using the position feature
and ROC threshold as prediction threshold, is the optimal model for detecting
ongoing attacks in a game.
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Performances of Attack Models

MFCC Position feature
Loss 0.5574 0.4872
Accuracy 0.7254 0.8575

Table 11.1: The performances of the optimal attack models on the test set.

Model Evaluations of Attack Models

MFCC Position feature
Loss 0.5448 0.3223
Accuracy 0.7363 0.9011
ROC
AUC 0.7807 0.8654
G-mean 0.7239 0.8585
Threshold 0.4985 0.5706
Precision-Recall
Precision mean 0.02416 0.03076
F1 score 0.1198 Undefined
Threshold 0.8062 0.9988

Table 11.2: The model evaluations of the optimal attack models. The numbers
correspond to the black dots in Figure 11.1 and 11.2 respectively.
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(a) Loss. (b) Accuracy.

(c) ROC curve. (d) Precision-Recall curve.

(e) Confusion matrix (ROC). (f) Confusion matrix (Precision-Recall).

Figure 11.1: The model evaluations of the optimal attack model using the MFCC
feature. The loss and accuracy curves visualize the learning procedure, where the
black dots correspond to the most accurate model on the validation set. The ROC
and Precision-Recall curves are estimated for the most accurate model, where the
black dots correspond to the optimal thresholds using the G-mean and F1 score
respectively. The confusion matrices are estimated over the samples of the ROC
and Precision-Recall curves respectively, where thresholds are set to 0.5.
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(a) Loss. (b) Accuracy.

(c) ROC curve. (d) Precision-Recall curve.

(e) Confusion matrix (ROC). (f) Confusion matrix (Precision-Recall).

Figure 11.2: The model evaluations of the optimal attack model using the position
feature. The loss and accuracy curves visualize the learning procedure, where the
black dots correspond to the most accurate model on the validation set. The ROC
and Precision-Recall curves are estimated for the most accurate model, where the
black dots correspond to the optimal thresholds using the G-mean and F1 score
respectively. The confusion matrices are estimated over the samples of the ROC
and Precision-Recall curves respectively, where thresholds are set to 0.5.
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11.1.2 Whistle Models

The performances of the optimal initial and updated whistle models using the
spectrogram feature on the test set are given by Table 11.3. The corresponding
model evaluations are given by Figure 11.3 and 11.4 respectively, where the results
are summarized by Table 11.4. The model architectures of the corresponding
optimal model are given by Figure A.2 in Appendix A.

The results indicate that the optimal initial whistle model performs better
compared to the updated whistle model by hard negative mining. The Precision-
Recall threshold is adapted for imbalanced classification, as during a live recording
of a game. Therefore, the initial whistle model using the Precision-Recall threshold
as prediction threshold, is the optimal model for detecting the referee whistles in
a game.

Performances of Whistle Models

Initial Updated
Loss 0.3065 0.4300
Accuracy 0.8699 0.7877

Table 11.3: The performances of the optimal whistle models on the test set.

Model Evaluations of Whistle Models

Initial Updated
Loss 0.3196 0.5362
Accuracy 0.8571 0.7571
ROC
AUC 0.9394 0.8668
G-mean 0.8766 0.8072
Threshold 0.5374 0.4547
Precision-Recall
Precision mean 0.04971 0.03770
F1 score 0.4141 0.3782
Threshold 0.9907 0.9225

Table 11.4: The model evaluations of the optimal whistle models. The numbers
correspond to the black dots in Figure 11.3 and 11.4 respectively.
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(a) Loss. (b) Accuracy.

(c) ROC curve. (d) Precision-Recall curve.

(e) Confusion matrix (ROC). (f) Confusion matrix (Precision-Recall).

Figure 11.3: The model evaluations of the optimal initial whistle model. The loss
and accuracy curves visualize the learning procedure, where the black dots corre-
spond to the most accurate model on the validation set. The ROC and Precision-
Recall curves are estimated for the most accurate model, where the black dots
correspond to the optimal thresholds using the G-mean and F1 score respectively.
The confusion matrices are estimated over the samples of the ROC and Precision-
Recall curves respectively, where thresholds are set to 0.5.
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(a) Loss. (b) Accuracy.

(c) ROC curve. (d) Precision-Recall curve.

(e) Confusion matrix (ROC). (f) Confusion matrix (Precision-Recall).

Figure 11.4: The model evaluations of the optimal updated whistle model. The
loss and accuracy curves visualize the learning procedure, where the black dots
correspond to the most accurate model on the validation set. The ROC and
Precision-Recall curves are estimated for the most accurate model, where the black
dots correspond to the optimal thresholds using the G-mean and F1 score respec-
tively. The confusion matrices are estimated over the samples of the ROC and
Precision-Recall curves respectively, where thresholds are set to 0.5.
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11.1.3 Whistle Event Model

The performance of the optimal whistle event model using the position feature
is given by Table 11.5. The model evaluation is given by Figure 11.5, where the
results are summarized in Table 11.6. For estimating the confusion matrices, the
threshold priorities are set in growing order in accordance with Table 11.7. The
model architecture of the optimal model is given by Figure A.3 in Appendix A.

The results indicate that the Precision-Recall thresholds performs better com-
pared to the ROC thresholds. This can be notices in the corresponding con-
fusion matrices in Figure 11.5c and 11.5d respectively, where less samples are
miss-classified using the Precision-Recall thresholds. Therefore, the optimal whis-
tle event model using the Precision-Recall thresholds, is the optimal model for
determining the whistle events in a game.

Performance of Whistle Event Model

Position feature
Loss 0.6959
Accuracy 0.8893
F1 score 0.7748

Table 11.5: The performance of the optimal whistle event model on the test set.

Model Evaluation of Whistle Event Model

Position feature
Loss 1.350
Accuracy 0.8114
F1 Score 0.6234
ROC Kickoff Free kick Others Surround.

AUC 1.000 0.8167 0.8171 0.8317
G-mean 1.000 0.8498 0.8218 0.7783
Threshold 0.1798 0.1930 0.6178 0.09457
Precision-Recall Kickoff Free kick Others Surround.

Precision mean 1.000 0.5514 0.7095 0.5266
F1 score 1.000 0.8000 0.8254 0.7273
Threshold 0.1798 0.4912 0.6178 0.4652

Table 11.6: The model evaluation of the optimal whistle event model. The numbers
correspond to the black dots in Figure 11.5.
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Thresholds for Whistle Event Determination

ROC
Event Threshold Priority
Surroundings 0.09457 1
Kickoff 0.1798 2
Free kick 0.1930 3
Others 0.6178 4

Precision-Recall
Event Threshold Priority
Kickoff 0.1798 1
Surroundings 0.4652 2
Free kick 0.4912 3
Others 0.6178 4

Table 11.7: The thresholds for whistle event determination and their priority.

73



CHAPTER 11. RESULTS Marcus Grönvall

(a) Loss. (b) F1 score.

(c) ROC curve. (d) Precision-Recall curve.

(e) Confusion matrix (ROC). (f) Confusion matrix (Precision-Recall).

Figure 11.5: The model evaluation of the optimal whistle event model. The loss
and F1 score curves visualize the learning procedure, where the black dots corre-
spond to the most accurate model on the validation set. The ROC and Precision-
Recall curves are estimated for the most accurate model for each label, where the
black dots correspond to the optimal thresholds using the G-mean and F1 score
respectively. The confusion matrices are estimated over the samples of the ROC
and Precision-Recall curves respectively, where the threshold priorities are set in
growing order in accordance with Table 11.7.
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11.2 NLG System

For the generated comments of detected events, the results are presented in accor-
dance with Section 10.2.2. Examples of when the the comments are correct and
incorrect are given by Figures 11.6a–14, which are presented for the evaluation
game Kalmar FF - Örebro SK, 6 August 2020, recorded from Guldf̊ageln Arena
in Kalmar. The sound detection threshold is adjusted using the other evaluation
games in Table B.1, which is set to 0.02.

The results indicate that the whistle model performs worse for games recorded
from new arenas. The number of detections increases tremendously, where the
large majority corresponds to no referee whistle. This affects the whistle event
model, which determines a significant number of detections as kickoff, free kick
and others incorrectly. This is not the case if running the commentator on the
test games in Table A.2, where the whistle model performs similar to the results
in Section 11.1.2. However, the performance of the whistle model is improved, if
increasing the prediction threshold manually. The number of whistle detections
and corresponding generated comments for different thresholds in the evaluation
game are given by Table 11.8. The printed comments of the evaluation game
are given in Appendix C, where the prediction threshold of the whistle model is
adjusted to 0.9999999. The results indicate that the sound detection and attack
model perform similar for games recorded from new arenas, while the whistle event
model performs worse in a live commentator setup in general.

Performance of Whistle Model

Threshold Detections Comments
0.9907 1187 570
0.999 700 387
0.9999 449 276
0.99999 301 203
0.999999 204 141
0.9999999 145 105
0.99999999 145 105

Table 11.8: The number of whistle detections and corresponding generated com-
ments for the game Kalmar FF - Örebro SK, 6 August 2020, recorded from
Guldf̊ageln Arena in Kalmar. Notice, only valid detections are commented, thus
the difference between the numbers.
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(a) The detection corresponds to the speaker, thus the comment describes the event
incorrectly.

(b) The detection corresponds to a goal scored, thus the comment describes the
event correctly. This as the surroundings, i.e. the players and team staff, celebrate
the goal.

Figure 11.6: Examples of the generated comments of two separate sound detec-
tions, visualized by the corresponding video images. The times correspond to the
occurrences into the recording.
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(a) The initial detection corresponds to a long ball from the defence line towards
the attacking box, thus the comment describes the attack correctly. However, the
player sprint may be irrelevant given the event examining the video sequence.

(b) The further detection corresponds to a player sprint on the left wing, which
whom the ball is passed to, thus the comment describes the attack correctly.

Figure 11.7: Examples of the generated comments of an ongoing attack detection,
visualized by the corresponding video images and center frames of the position
feature. The red arrows correspond to the center of gravity and the green to
the maximum of movement. The times correspond to the occurrences into the
recording. Notice, the team locations are not yet determined.
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(a) The detection corresponds to the startup of an attack on the right wing, thus the
comment describes the attack somewhat correctly. This as the general movement
occurs in the center, but the player sprint is accurate.

(b) The detection corresponds to Kalmar FF pressuring the defence line of Örebro
SK, thus the comment describe the attack incorrectly. In extension, the detection
updates the game statistics incorrectly.

Figure 11.8: Examples of the generated comments of two separate ongoing attack
detections, visualized by the corresponding video images and center frames of the
position feature. The red arrows correspond to the center of gravity and the green
to the maximum of movement. The times correspond to the occurrences into the
recording. Notice, the team locations are determined.
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Figure 11.9: Example of the generated comment of a whistle detection, visualized
by the corresponding video image, spectrogram and center frame of the position
feature. The red arrows correspond to the center of gravity and the green to
the maximum of movement. The time corresponds to the occurrence into the
recording. The detection corresponds to the referee whistle of a kickoff after a goal
is scored, thus the comment describes the event correctly.
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Figure 11.10: Example of the generated comment of a whistle detection, visualized
by the corresponding video image, spectrogram and center frame of the position
feature. The red arrows correspond to the center of gravity and the green to
the maximum of movement. The time corresponds to the occurrence into the
recording. The detection corresponds to the referee whistle of a free kick, thus the
comment describes the event correctly.
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Figure 11.11: Example of the generated comment of a whistle detection, visualized
by the corresponding video image, spectrogram and center frame of the position
feature. The red arrows correspond to the center of gravity and the green to
the maximum of movement. The time corresponds to the occurrence into the
recording. The detection corresponds to the referee whistle of allowing a free kick
to be taken, thus the comment describes the event correctly.
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Figure 11.12: Example of the generated comment of a whistle detection, visualized
by the corresponding video image, spectrogram and center frame of the position
feature. The red arrows correspond to the center of gravity and the green to
the maximum of movement. The time corresponds to the occurrence into the
recording. The detection corresponds to the speaker, thus the comment describes
the event incorrectly. This can be notices in the spectrogram, where no referee
whistle occurs visually. In extension, the detection updates the game statistics
incorrectly.
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Figure 11.13: Example of the generated comment of a whistle detection, visualized
by the corresponding video image, spectrogram and center frame of the position
feature. The red arrows correspond to the center of gravity and the green to
the maximum of movement. The time corresponds to the occurrence into the
recording. The detection corresponds to the players yelling, thus the comment
describes the event incorrectly. This can be notices in the spectrogram, where
no referee whistle occurs visually. In extension, the detection updates the game
statistics incorrectly.
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Figure 11.14: Example of the generated comment of a whistle detection, visualized
by the corresponding video image, spectrogram and center frame of the position
feature. The red arrows correspond to the center of gravity and the green to
the maximum of movement. The time corresponds to the occurrence into the
recording. The detection corresponds to the referee whistle of allowing a free kick
to be taken, thus the comment describes the event incorrectly. In extension, the
detection updates the game statistics incorrectly.
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12 Discussion

In this chapter, the results of the degree project are discussed. As a reminder, the
commentator was evaluated against the evaluation game Kalmar FF - Örebro SK,
6 August 2020, recorded from Gulf̊ageln Arena in Kalmar. The game are recorded
during the Covid-19 pandemic, thus no audience was allowed at the arena and
the majority of the sound environment corresponds to the speaker and yelling of
players and team staffs. In addition, the commentator was run on the test games in
Table A.2 for comparison. This was performed in accordance with the experiment
setup and results in Section 10.2 and 11.2 respectively.

12.1 Detector

As mentioned, since the volume depends on the arena, the volume threshold for
sound detection was adapted for each arena separately. This probably due to the
audience and distance between the field and recording device. The conclusion is
that the solution is not optimal, as the threshold requires to be set prior each game
commented from new arenas.

Since no audience at the arena, the sound detections of the evaluation game
correspond to the speaker and yelling. This may arise for games of low audience
in general, where the volume of the speaker and yelling may be higher than the
audience. However, the problem may be prevented, if adapting the threshold to
sort out the speaker and yelling. On the other hand, increasing the volume thresh-
old may result in no detections at all. To notify the problem, the sound detection
threshold of the evaluation arena, was set reasonably to detect some of the speaker
and yelling.

Examining the position feature in connection with the provided tags, one noticed
that goal, shot, corner and penalty tags are similar visually. Therefore, the conclu-
sion was that these events would be hard to separate individually using machine
learning models. However, all events are assumed to occur during an attack, thus
the decision was to classify the events collectively using an ongoing attack label.
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According to the results in Section 11.1.1, the position feature performs better
compared to the MFCC feature for ongoing attack detection. However, the op-
timal performance of the attack model on the test set of 86% is not ideal, which
resulted in a significant number of detections when no attacks were ongoing. The
attack model tended to detect the water sprinklers when activated and lineups
before offensive free kicks and corners. The problem was partly handled by sorting
out low movement detections using the accumulated movement, which resulted in
detections corresponding to more accurate events included in an attack. Still, the
model sometimes detects the opposing team pressuring the defence line, thus the
final model is not perfect. In extension, this affects the game statistics, where the
attack count for the pressuring team is increased incorrectly. Nonetheless, the con-
clusion is that the attack model performs accurately for detecting ongoing attacks
in a game.

The performance of the attack models may be improved if fitting machine
learning models to more data, which would increase the possibility of separating
the events included in the ongoing attack label as well. In addition, different pa-
rameter settings for extracting the position feature may be examined to find the
optimal parameters, which was not performed due to the computational cost and
to constrain the degree project.

According to the results in Section 11.1.2, hard negative mining did not improve the
results for whistle detection. This is rather disappointing as the method improved
the recognition results in Cost-Optimized Event Detection in Football Video [6],
even if the method was performed with some modifications in this degree project.
The idea was to update the whistle model for a number of iterations until conver-
gence, but since the model did not improve the first iteration no further attempts
were performed. However, the worsened updated whistle model may be due to the
tagging of referee whistles. In detail, a whistle was tagged when heard screening
the recording of the games, thus the timestamp of a tag corresponds to some time
during the whistle. In other words, the same whistle may be included in several
samples, but only the sample including the timestamp was labeled as an event.
Therefore, the updated whistle dataset includes samples of actual referee whistles
categorized as false positives, which probably confused the updated whistle model.
This can be avoided if picking false positives at a certain distance from the whistle
tags, but was discovered when the degree project had proceeded.

Still according to the results, the whistle model performs relatively accurate if
applied to games recorded from arenas the model is fit to. If running the com-
mentator on the test games, the performance is similar to the results in Section
11.1.1. On the other, hand according to the results in Section 11.2, the whistle
model performs worse for games recorded from new arenas. The conclusion is
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that the whistle model is not robust for application on new arenas directly. To
generate reasonable comments of the whistle events in the evaluation game, the
prediction threshold was adjusted manually. However, if increasing the threshold,
actual referee whistles are sorted out as well. In other words, the decision is a
trade-off between the number of whistle events commented and errors. Screening
through the recording of the evaluation game, one noticed that the referee whistles
and surroundings sound differently compared to the previous games. The empty
arena introduces some echo, which does not occur in the same extent at the previ-
ous arenas. This may be a part of the explanation for the worsened performance
from new arenas. Nevertheless, the results are somewhat disappointing, due to
the environment being close to similar to the surroundings at Gavlevallen.

The performance of the whistle models may be improved if tagging the referee
whistles manually for more games recorded from more arenas, which would prob-
ably fit a more robust model and improve the worsened performance from new
arenas. The hard negative mining method may be retried in accordance with the
modification above. In addition, different parameter settings for extracting the
spectrogram feature may be examined to find the optimal parameters, which was
not performed for the same reasons as the attack model. The samples were con-
structed to include a spectrogram and MFCC of 1 second and a position feature
of 3 seconds, where the decision was partly based to maintain the simplicity of the
sample generator. On the other hand, sampling the audio segments at 1 second,
the spectrograms may include data irrelevant for a whistle. Therefore, the models
may be improved if shorten the sample length, but the tagging requires higher
precision when the sample length is shortened.

According to the results in Section 11.1.3, the whistle event model performs rela-
tively accurate. On the other hand, if running the commentator on the evaluation
game and test games, the model performs poorly compared to the presented re-
sults. A significant number of surroundings are miss-classified as kickoff, free kick
and others. Confusion among the classes occurs in greater extent than presented.
This results in errors during commenting and affects the game statistics, where the
counts are updated incorrectly. However, considering the small and imbalanced
whistle event dataset in accordance with Table 7.3, the results are not surpris-
ing. Examining the position feature in connection with the whistle event tags, one
noticed that only kickoff tags are significantly different from the rest of the tags
visually. The others label includes a large variety of patterns, due to including
several different types of whistle events. Some of those patterns are similar to
the free kick patterns. This may explain the poor performance of the model in a
live commentator setup. The conclusion is that the whistle event model performs
inaccurately, where difficult to determine the event of the referee whistle.
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The performance of the whistle event model may be improved if tagging the
events of the referee whistles for more games, thus thereby constructing a larger and
possibly more balanced whistle event dataset. This would increase the possibility
of separating the events included in the others label as well, such as offside and
substitution, but was not performed due to the labour of tagging. In addition,
different parameters settings for extracting the position feature may be examined
to find the optimal parameters, but was not performed for the same reasons as the
attack models.

12.2 Commentator

According to the results in the printed comments in Appendix C and Figure 11.6,
the generated sound comments do not describe the events completely as intended
for the evaluation game. This as the corresponding human handcrafted templates
of the NLG system are adapted to the audience singing and cheering, thus the
following comments may not be fully accurate. The problem may be prevented by
adjusting the sound detection threshold in accordance with Section 12.1 or recon-
struct the templates to adapt for games of low audience. However, the threshold
for Guldf̊ageln Arena my be increased reasonably, once the audience is allowed at
the arenas again.

According to the results in the printed comments in Appendix C and Figures 11.7–
8, the generated attack comments describe the events accurately considering the
performance of the detector. The comments depend on the provided tags, where
the complexity of the comments increases if able to determine the team locations.
In particular, goal, shot, corner and penalty tags are valuable for determining the
team locations, where the earlier the tags are provided the better. The conclusion
is that the commentator is sensitive to the live provided tags, where the com-
plexity of the comments depends on the delay which the tags are provided. For
games where tags are not provided live at all, the variation of the comments is
expected to decrease, due to not being able to comment what team is attacking.
Unfortunately, this may be the case for games in lower divisions and youth games
in general.

As an alternative to the maximum of movement for determining the player
sprint, a threshold may be used for determining if a sprint is occurring or not.
Then, multiple player sprints during an ongoing attack may be determined, which
would increase the information input into the NLG system and thereby the com-
plexity of the comments. This was not performed due to the additional labour
and to constrain the degree project.
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According to the results in the printed comments in Appendix C and Figures 11.9–
14, a significant number of the generated whistle comments describe the events
inaccurately. This due to the reasons discussed earlier in Section 12.1. This is not
a problem if the referee whistles are determined as others or surroundings, where
the following comments are generated as ’the referee whistles’ or ignored. The
problem arise if the detections are miss-classified as kickoff or free kick, where the
following comments are completely inaccurate. A significant number of detections
are miss-classified as kickoff, thus the following comments are inaccurate. The ma-
jority of the detections are determined as others, thus the NLG system generates
an unsatisfying number of ’the referee whistles’ comments. The conclusion is that
the generated whistle comments are inaccurate, due to the worsened performance
of the whistle model for games recorded from new arenas and poor performance
of the whistle event model in a live commentator setup.

In general, the complexity of the comments is rather low, due to the information
able to be extracted of the detections and relatively small event domain. There-
fore, more advance NLG systems are hard to apply for increasing the complexity of
the comments further. However, the complexity may be increased if expanding the
sets of alternatives to decide among. On the other hand, considering the method
of human handcrafted templates of the NLG system, a significant increase of vari-
ation is unlikely by further expansion. Therefore, to constrain the degree project,
no further attempts to increase the complexity of the comments were performed.
In summary, the NLG system more or less comments that a detected event has
occurred without deeper details, which is unsatisfying results overall. Nonetheless,
the conclusion is that the complexity of the comments are somewhat high enough,
considering the performance of the detector and the method of human handcrafted
templates.

As mentioned, the preverbal messages constructed by the NLG system are used
to store game statistics in a game. The initial idea was to use the statistics to
increase the complexity of the comments. Unfortunately, the statistics were not
able to be included in the information input into the NLG system in any greater
extent, which is somewhat disappointing.

12.3 Computational Speed

When receiving the audio recordings from the Spiideo API server, the LibROSA
library requires that the audio segments in AAC-format are saved before loaded
and converted into a 32-floating-point time series. This introduces some delay,
which turned out to be negligible compared to the time required for sampling,
feature extraction and prediction in general.
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According to the results in the printed comments in Appendix C, the time
required to run the commentator on the whole evaluation game is 1 hour and 50
minutes. This is somewhat misleading, as the request from the server for this
game was modified due to an updated data structure in the Spiideo system. The
modification introduced some delay, which most likely can be reduced by Spiideo
further on. For the previous games, the run times are approximately 45 minutes.
How the run time affects the delay during an actual live recording of a game, has
not been examined.

12.4 Future Work

Given the results of the degree project, the conclusion is that the detector is
essential for automatic live commenting of football games. The results indicate the
difficulty of separating the events using the position feature exclusively. However,
if using both the audio and position segments as multiple inputs into a parallel
neural network, some events may be separable in greater extent than the presented
results. For example, the audience celebrating a home score is in general loud, thus
some goals may be separable using the MFCC and position features simultaneously.
This was not performed to constrain the degree project, but is a reasonable step
for future work.

If the position of the ball is known, it is fair to assume that more events are
separable using machine learning models. This possibly using the position feature
and position of the ball as multiple inputs into a parallel neural network. For
example, it is essential that a goal is scored if the position of the ball is in the net
or a kickoff is to be taken if the players are lined up and the position of the ball
is at the midpoint of the field. Therefore as future work, tracking of the ball may
improve the event detection.

Given the results of the degree project, the conclusion is that the NLG system
is strongly dependant on the information input. Unfortunately, the information
able to be extracted of the detections is rather low, thus the complexity of the
comments is restricted. However, assume the detector is able to detect a goal,
thus the complexity of the comment would increase if able to determine the scor-
ing player live. Therefore as future work, the step to improve the NLG system
is to keep track of the players for the whole games and possibly apply the name,
team or position. Then, the information input would increase and the possibility
to apply more advanced NLG systems to generate more alive comments. On the
other hand, implementing such advanced tracking algorithms, may come with high
computational cost.
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As mentioned, the game statistics including the preverbal messages, were not
able to be used to increase the complexity of the comments in any greater ex-
tent. However, the game statistics may be used to construct summarized text of
the events in a game using natural language generation. Such texts would only
require post provided tags and possibly ongoing attack detections to get a hint
on the performance of the teams during the game. This may be something that
Spiideo is interested in to implement in the future.
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13 Conclusion

In this degree project, automatic live comments of the detected events in a football
games have been generated in text format. Concerning the machine learning task,
the conclusion is that it is difficult to detect different events in general. The results
indicate that the detections of sound powers and referee whistles are sensitive
to the arena, where the detection thresholds require to be set manually prior
commenting at new arenas. In addition, it is difficult to determine the event of
the referee whistle in a live commentator setup. However ongoing attack detections
are detected accurately, if sorting out low movement detections.

Concerning the natural language generation task, the conclusion is that it is
possible to generate descriptive comments of the events, if regarding the perfor-
mance of the detector. The results indicate that the complexity of the comments is
sensitive to the detector and information able to be extracted of the events, where
the variation is bound to the relatively small event domain.
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A Appendix A

This appendix includes further details regarding the machine learning task of the
degree project. The games and their number of tags in the corresponding data
are given by Table A.1, A.3 and A.5. The number of samples and corresponding
events for each game in the corresponding datasets are given by Table A.2, A.4 and
A.6. The model architectures of the optimal models for each of the attack models,
each of the whistle models and whistle event model are given by Figures A.1–2.
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Provided Data

Game Tags Arena
190609 Dalkurd - Halmstad 36 Gävlevallen
190625 Dalkurd - Väster̊as SK 43 Gävlevallen

190706 Malmö FF - Örebro SK 35 Stadion
190707 Hammarby - Falkenbergs FF 43 Tele2 Arena
190714 Djurg̊arden - Malmö FF 36 Tele2 Arena
190720 Dalkurd - Varbergs BoIS FC 42 Gävlevallen
190721 Malmö FF - IK Sirius FK 42 Stadion
190722 Hammarby - IF Elfsborg 40 Tele2 Arena
190728 Djurg̊arden - BK Häcken 35 Tele2 Arena
190803 Dalkurd - Jönköpings Södra IF 34 Gävlevallen
190810 Djurg̊arden - IK Sirius FK 40 Tele2 Arena
190811 Hammarby - Helsingborgs IF 27 Tele2 Arena
190817 Hammarby - GIF Sundsvall 38 Tele2 Arena
190818 Dalkurd - GAIS 34 Gävlevallen
190818 Malmö FF - Falkenbergs FF 32 Stadion
190825 Malmö FF - Djurg̊arden 33 Stadion
190901 Dalkurd - Norrby IF 38 Gävlevallen
190915 Hammarby - IFK Göteborg 32 Tele2 Arena
190915 Malmö FF - IFK Norrköping 36 Stadion
190916 Djurg̊arden - Helsingborgs IF 37 Tele2 Arena

190921 Dalkurd - Östers IF 40 Gävlevallen
190922 Hammarby - AIK 20 Tele2 Arena
190924 Djurg̊arden - Falkenbergs FF 35 Tele2 Arena
190926 Malmö FF - Helsingborgs IF 38 Stadion
190929 Dalkurd - Trelleborgs FF 40 Gävlevallen

190930 Hammarby IF - Örebro SK 36 Tele2 Arena
191006 Djurg̊arden - Hammarby 71 Tele2 Arena
191006 Dalkurd - IK Frej Täby 84 Gävlevallen
191006 Malmö FF - IFK Göteborg 73 Stadion
191020 Hammarby - Malmö FF 70 Tele2 Arena
191028 Malmö FF - AIK 44 Stadion

191028 Djurg̊ardens IF FF - Örebro SK 32 Tele2 Arena
191102 Hammarby - BK Häcken 85 Tele2 Arena

Table A.1: The games and their number of tags in the provided data.
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Attack Datasets

Training Samples Events
190609 Dalkurd - Halmstad 146 73
190625 Dalkurd - Väster̊as SK 186 93

190706 Malmö FF - Örebro SK 132 66
190707 Hammarby - Falkenbergs FF 166 83
190714 Djurg̊arden - Malmö FF 138 69
190721 Malmö FF - IK Sirius FK 184 92
190722 Hammarby - IF Elfsborg 156 78
190810 Djurg̊arden - IK Sirius FK 156 78
190811 Hammarby - Helsingborgs IF 96 48
190817 Hammarby - GIF Sundsvall 156 78
190818 Dalkurd - GAIS 136 68
190818 Malmö FF - Falkenbergs FF 126 63
190901 Dalkurd - Norrby IF 134 67
190915 Hammarby - IFK Göteborg 116 58
190915 Malmö FF - IFK Norrköping 144 72
190916 Djurg̊arden - Helsingborgs IF 138 69

190921 Dalkurd - Östers IF 152 76
190922 Hammarby - AIK 78 39
190924 Djurg̊arden - Falkenbergs FF 138 69
190929 Dalkurd - Trelleborgs FF 154 77
191006 Djurg̊arden - Hammarby 168 84
191006 Dalkurd - IK Frej Täby 246 123
191006 Malmö FF - IFK Göteborg 234 117
191020 Hammarby - Malmö FF 144 72
191028 Malmö FF - AIK 106 53

191028 Djurg̊ardens IF FF - Örebro SK 122 61
191102 Hammarby - BK Häcken 298 149

Validation Samples Events
190803 Dalkurd - Jönköpings Södra IF 108 54
190825 Malmö FF - Djurg̊arden 104 52

190930 Hammarby IF - Örebro SK 152 76

Test Samples Events
190720 Dalkurd - Varbergs BoIS FC 100 50
190728 Djurg̊arden - BK Häcken 144 72
190926 Malmö FF - Helsingborgs IF 142 71

Table A.2: The number of samples and corresponding events for each game in the
attack datasets.
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Whistle Data

Game Whistle tags
190625 Dalkurd - Väster̊as SK 82
190818 Dalkurd - GAIS 75
190915 Malmö FF - IFK Norrköping 84
190922 Hammarby - AIK 78
191006 Djurg̊arden - Hammarby 72
191028 Malmö FF - AIK 74

Table A.3: The games and their number of whistle tags in the whistle data.

Whistle Datasets

Training Samples Events
190625 Dalkurd - Väster̊as SK 114 57
190818 Dalkurd - GAIS 104 52
190915 Malmö FF - IFK Norrköping 116 58
190922 Hammarby - AIK 106 53
191006 Djurg̊arden - Hammarby 100 50
191028 Malmö FF - AIK 102 51

Validation Samples Events
190625 Dalkurd - Väster̊as SK 24 12
190818 Dalkurd - GAIS 22 11
190915 Malmö FF - IFK Norrköping 26 13
190922 Hammarby - AIK 24 12
191006 Djurg̊arden - Hammarby 22 11
191028 Malmö FF - AIK 22 11

Test Samples Events
190625 Dalkurd - Väster̊as SK 26 13
190818 Dalkurd - GAIS 24 12
190915 Malmö FF - IFK Norrköping 26 13
190922 Hammarby - AIK 24 12
191006 Djurg̊arden - Hammarby 22 11
191028 Malmö FF - AIK 24 12

Table A.4: The number of samples and corresponding events for each game in the
whistle dataset and the updated whistle dataset by hard negative mining.

96



APPENDIX A. APPENDIX A Marcus Grönvall

Whistle Event Data

190803 Dalkurd - Jönköpings Södra IF Detection tags Whistle tags
Audience 5 -
Speaker 0 -
Kickoff 4 4
End of half 4 6
Free kick 32 31
Penalty 0 0
Offside 4 3
Substitution 2 4
Interruption 3 4
Others 47 57

190825 Malmö FF - Djurg̊arden Detection tags Whistle tags
Audience 22 -
Speaker 5 -
Kickoff 2 3
End of half 2 5
Free kick 24 24
Penalty 0 0
Offside 3 4
Substitution 4 4
Interruption 4 1
Others 22 37

190930 Hammarby IF - Örebro SK Detection tags Whistle tags
Audience 26 -
Speaker 17 -
Kickoff 6 8
End of half 1 4
Free kick 10 12
Penalty 0 0
Offside 1 2
Substitution 5 4
Interruption 4 3
Others 19 27

Table A.5: The games and their number of detection and whistle event tags in the
whistle event data.
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Whistle Event Dataset

Training Samples Kickoff Free kick Others Surround.

190803 Dalkurd - Jönköpings Södra IF 93 4 31 55 3
190825 Malmö FF - Djurg̊arden 85 1 25 41 18
190930 Hammarby IF - Örebro SK 78 8 10 30 30

Validation Samples Kickoff Free kick Others Surround.

190803 Dalkurd - Jönköpings Södra IF 21 1 7 12 1
190825 Malmö FF - Djurg̊arden 20 1 6 9 4
190930 Hammarby IF - Örebro SK 16 2 2 6 6

Test Samples Kickoff Free kick Others Surround.

190803 Dalkurd - Jönköpings Södra IF 21 1 7 12 1
190825 Malmö FF - Djurg̊arden 21 1 6 9 5
190930 Hammarby IF - Örebro SK 19 2 3 7 7

Table A.6: The number of samples and corresponding events for each game in the
whistle event dataset.
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(a) MFCC feature. (b) Position feature.

Figure A.1: The model architectures of the optimal attack models using the MFCC
and position feature extraction.
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(a) Initial whistle model. (b) Updated whistle model.

Figure A.2: The model architectures of the optimal initial and updated whistle
models using the spectrogram feature extraction.
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Figure A.3: The model architecture of the optimal whistle event model using the
position feature extraction.
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B Appendix B

This appendix includes further details regarding the natural language generation
task of the degreee project. The preverbal messages constructed for detections
are given by Figures B.1–3, tags by Figures B.4–13, welcome by Figure B.14 and
goodbye by B.15. The games and their number of tags in the evaluation data are
given by Table B.1.

Figure B.1: The preverbal message of an attack detection. If the game is not
ongoing, the minute is set to None. The score of the team corresponds to the
number of attacks carried out, which is increased if the phase is initial. If
the team locations are determined, the team is set to home or away with the
corresponding name. Otherwise, the team is set to the half of occurrence and the
name to None. The zones and directions of the center of gravity and maximum of
movement correspond to the content of the commentator state. Notice, the half
of the team can be determined given the location of the center of gravity and the
score given the gathered statistics during the game.
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Figure B.2: The preverbal message of a sound detection. If the game is not
ongoing, the minute is set to None.

Figure B.3: The preverbal message of a whistle detection. If the game is not
ongoing, the minute is set to None. The score corresponds to the number of
whistles detected for the corresponding type. Notice, the score can be determined
given the gathered statistics during the game.

Figure B.4: The preverbal message of a kickoff tag. The score of the team corre-
sponds to the number of kickoffs taken. If able to determine the half of the team
and the team locations are determined, the team is set to home or away, else the
half. If unable to determine the half of the team, the team and corresponding score
are set to None. If the team is not provided, the name is set to None. Notice, the
half of the team can not be determined given the location of the center of gravity.
The score of the team can be determined and the half of the team possibly given
the gathered statistics during the game.
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Figure B.5: The preverbal message of an end of half tag.

Figure B.6: The preverbal message of a goal tag. If the type is not provided, the
type is set to shot. The scores of the teams and player correspond to the number
of goals scored respectively. If the team locations are determined, the teams are
set to home and away with the corresponding name. Otherwise, the teams are set
to left and right and the corresponding name to None. If the team locations are
determined, the player is set to home or away, else the half of occurrence. If the
player is not provided, the name and score are set to None. Notice, the half of the
teams and player can be determined given the location of the center of gravity and
the scores given the gathered statistics during the game.

Figure B.7: The preverbal message of a corner tag. The score of the team cor-
responds the number of corners conceded. If the team locations are determined,
the team is set to home or away, else the half of occurrence. If the team is not
provided, the name is set to None. Notice, the half of the team can be determined
given the location of the center of gravity and the score of the team given the
gathered statistics during the game.
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Figure B.8: The preverbal message of a shot tag. If the type is not provided, the
type is set to shot. The scores of the team and player correspond to the number
of finishes taken respectively. If the team locations are determined, the team is set
to home or away, else the half of occurrence. If the team is not provided, the name
is set to None. If the team locations are determined, the player is set to home or
away, else the half of occurrence. If the player is not provided, the name and score
are set to None. Notice, the half of the team and player can be determined given
the location of the center of gravity and the score given the gathered statistics
during the game.

Figure B.9: The preverbal message of a penalty tag. The score of the team corre-
sponds to the number of penalties conceded. If the team locations are determined,
the team is set to home or away, else the half of occurrence. If the team is not
provided, the name is set to None. If able to determine the teams of the players
and the team locations are determined, the players are set to home and away, else
left and right. If unable to determine the teams of the players, the players are
set to an int. If a player is not provided, the name is set to None. Notice, the
half of the team can be determined given the location of the center of gravity and
the score of the team and the halves of the players possibly given the gathered
statistics during the game.
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Figure B.10: The preverbal message of a free kick tag. The score of the team
corresponds to the number of free kicks conceded. If able to determine the half
of the team and the team locations are determined, the team is set to home or
away, else the half. If unable to determine the half of the team, the team and
corresponding score are set to None. If the team is not provided, the name is set
to None. If able to determine the teams of the players and the team locations are
determined, the players are set to home and away, else left and right. If unable
to determine the teams of the players, the players are set to an int. If a player
is not provided, the name is set to None. Notice, the half of the team can not be
determined given the location of the center of gravity. The score of the team can
be determined and the halves of the team and players possibly given the gathered
statistics during the game.

Figure B.11: The preverbal message of a yellow card tag. The scores of team and
player correspond to the number of yellow cards conceded respectively, which is
always one for the player. If able to determine the half of the team and the team
locations are determined, the team is set to home or away, else the half. If unable
to determine the half of the team, the team and corresponding score are set to
None. If the team is not provided, the name is set to None. If able to determine the
half of the player and the team locations are determined, the player is set to home
or away, else the half. If unable to determine the half of the player, the player is
set to None. If the player is not provided, the name is set to None. Notice, the half
of the team and player can not be determined given the location of the center of
gravity. The score of the team can be determined and the halves of the team and
player possibly given the gathered statistics during the game.
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Figure B.12: The preverbal message of a red card tag, which is constructed similar
to the preverbal message of a yellow card.

Figure B.13: The preverbal message of a substitution tag. The score of the team
corresponds to the number of substitutions performed. If able to determine the
half of the team and the team locations are determined, the team is set to home
or away, else the half. If unable to determine the half of the team, the team and
corresponding score are set to None. If the team is not provided, the name is set
to None. If able to determine the player being substituted, the players are set to in
and out, else an int. If a player is not provided, the name is set to None. Notice,
the half of the team can not be determined given the location of the center of
gravity. The score of the team can be determined and the player being substituted
possibly given the gathered statistics during the game.

Figure B.14: The preverbal message of welcome.
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Figure B.15: The preverbal message of goodbye. The scores of the teams corre-
spond to the number of goals scored. If the team locations are determined, the
teams are set to home and away with the corresponding name. Otherwise, the
teams are set to left and right and the corresponding name to None. Notice, the
scores of the teams can be determined given the gathered statistics during the
game.

Evaluation Data

Game Tags Arena

200806 Kalmar FF - Örebro SK 82 Guldf̊ageln Arena
200813 Kalmar FF - IFK Göteborg 66 Guldf̊ageln Arena
200824 Kalmar FF - Mjällby AIF 60 Guldf̊ageln Arena
200914 Kalmar FF - IFK Norrköping 68 Guldf̊ageln Arena
200928 Kalmar FF - Varbergs BoIS FC 85 Guldf̊ageln Arena

Table B.1: The games and their number of tags in the evaluation data.
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C Appendix C

This appendix presents the generated comments of the commentator in Chap-
ter 9, if run on the game Kalmar FF - Örebro SK, 6 August 2020, recorded from
Guldf̊ageln Arena in Kalmar. The times correspond to occurrences into the record-
ing and corresponding texts to the generated comments of the detected events. In
addition, the occurrences of the team location determinations are printed. Notice,
the prediction threshold of the whistle model is adjusted manually in accordance
with Section 11.2 and the comments are generated in the Swedish language.

Commentator

-------------------------------------------------------------------------------

game_id 1859a748-6b19-4833-97f6-4c4c01b1ef9b

title 200806 Kalmar FF - Örebro SK

-------------------------------------------------------------------------------

None

Vi hälsar välkommen till dagens drabbning som står mellan Kalmar FF-Örebro SK

på Guldfågeln Arena. Vi ser fram emot en målrik batalj denna sommardag.

00:00:47

Domaren blåser.

00:00:48

Supportrarna sjunger igång sina lag inför dagens kamp.

00:06:37

Publiken hälsar lagen välkomna inför bataljen.

00:07:01

Domaren blåser i visselpipan.

00:07:07

Domaren markerar med visselpipan! En frispark är tilldelad för händelsen.

00:07:29

Domaren visslar. Frispark tilldelad för händelsen.
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00:07:46

Domaren blåser.

00:07:47

Publiken hejar igång sina lag inför kampen!

00:08:08

Domaren markerar med pipan.

00:10:04

Domaren blåser för avspark. Kampen är igång!

00:10:11

Ny attack pågår mot mitten från mitten. Samtidigt löpning mot mål längs höger

sida.

00:10:32

Spelare fyller på framåt på vänsterkanten.

00:10:34

Spelare fyller på mot box från mitten av banan.

00:11:03

Domaren markerar för avspark. Kampen är nu igång igen!

00:11:05

Ny attack startar mot box från mitten.

00:11:16

Nytt anfall startar mot mitten centralt i banan. Löpning kommer samtidigt mot

box från vänster sida.

00:11:48

Nytt anfall pågår mot mitten från vänster. Samtdigt fyller spelare på framåt

från vänster.

00:12:42

Domaren markerar med pipan!

00:13:29

Ny attack mot mitten längs högerkanten.

00:13:32

Attacken fortsätter i ny riktning framåt i banan från höger.

00:13:45

Domaren visslar.
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00:15:11

Attack startar mot mål i mitten av plan.

00:16:51

Domaren markerar för avspark. Kampen är igång!

Determination: team locations

home right Kalmar FF

away left Örebro SK

00:18:28

Bortalaget startar en attack mot mål centralt i banan. Spelare fyller på framåt

i banan längs högerkanten.

00:18:30

Spelare kommer i riktning mot box längs höger sida.

00:18:34

Domaren markerar med pipan.

00:19:08

Domaren blåser i pipan för avspark. Kampen är igång igen!

00:19:24

Örebro SK påbörjar en ny attack mot box längs vänster sida. Spelare fyller på

framåt från vänster.

00:19:32

Ny löpning framåt i banan på höger sida.

00:19:34

Attacken fortgår mot mitten i mitten av plan. Löpning samtidigt framåt i plan

längs höger sida.

00:19:44

Domaren visslar i pipan!

00:21:19

Kalmar FF startar en attack mot mitten centralt i plan.

00:22:05

Örebro SK påbörjar en attack mot mitten centralt i plan. Samtidigt fyller

spelare på mot mitten på högerkanten.

00:22:22

Domaren blåser i visselpipan!
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00:22:36

Örebro SK inleder ett anfall mot mål i mitten av plan. Löpning samtidigt mot

mål på högerkanten.

00:22:51

Domaren markerar med pipan. Frispark delgiven för företeelsen.

00:23:14

Kalmar FF startar ett nytt anfall mot mitten centralt i banan. Spelare kommer

samtidigt mot box på vänsterkanten.

00:23:25

Domaren markerar med pipan!

00:24:03

Domaren markerar med pipan!

00:25:54

Domaren markerar!

00:26:17

Bortalaget inleder en ny attack mot mitten centralt i plan. Spelare kommer

samtidigt mot mål från högerkanten.

00:26:55

Domaren visslar.

00:27:15

Domaren visslar!

00:27:25

Supportrarna uttrycker deras stöd!

00:27:51

Domaren blåser i pipan!

00:27:58

Hemmalaget inleder ett nytt anfall mot mål från högerkanten. Spelare fyller på

mot mitten centralt.

00:29:09

Domaren visslar med pipan! Frispark är tilldömd för händelsen.

00:30:07

Domaren visslar! Frispark är visad för regelvidrigheten.

00:30:16

Örebro SK startar en ny attack mot box centralt i banan. Samtidigt löpning

framåt i banan från höger sida.

112



APPENDIX C. APPENDIX C Marcus Grönvall

00:30:18

Spelare kommer mot box längs vänster sida.

00:30:31

Hemmalaget påbörjar en attack mot mitten från mitten av plan. Löpning mot box

längs vänster sida.

00:31:39

Bortalaget inleder en ny attack framåt från vänsterkanten. Spelare fyller på

mot box centralt i plan.

00:33:26

Domaren markerar!

00:34:04

Domaren visslar!

00:34:20

Hemmalaget inleder ett anfall mot mål centralt i banan. Samtidigt kommer

spelare mot mål längs vänsterkanten.

00:34:22

Ny löpning kommer framåt längs vänsterkanten.

00:34:27

Domaren visslar med pipan!

00:34:33

Domaren blåser i pipan!

00:35:03

Bortalaget påbörjar ett anfall mot mål i mitten. Samtidigt löpning mot mitten

på högerkanten.

00:35:05

Ny löpning mot box centralt.

00:36:25

Domaren blåser. En frispark är tilldömd för händelsen.

00:36:55

Domaren visslar. En frispark är tilldelad för regelvidrigheten.

00:37:04

Kalmar FF startar ett nytt anfall mot mitten från mitten av plan.

00:37:22

Domaren markerar med pipan!
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00:37:52

Domaren blåser i visselpipan! En frispark tilldömd för regelbrottet.

00:38:13

Domaren visslar med pipan för avspark. Matchen i spel.

00:38:26

Kalmar FF startar en ny attack mot mitten från mitten av plan.

00:38:29

Ny spelare kommer i riktning mot höger centralt.

00:39:13

Bortalaget startar en attack mot mål i mitten av plan.

00:39:15

Ny löpning kommer mot box längs vänsterkanten.

00:39:42

Ny spelare fyller på mot mitten från mitten.

00:39:43

Örebro SK påbörjar en attack mot box från mitten av plan. Löpning mot mitten på

höger sida.

00:40:24

Domaren markerar.

00:40:43

Hemmalaget startar ett nytt anfall mot mål centralt.

00:40:53

Örebro SK startar ett nytt anfall mot mål från mitten. Spelare fyller samtidigt

på mot box från höger sida.

00:40:54

Domaren blåser!

00:41:43

Örebro SK startar ett anfall mot box centralt i banan.

00:41:45

Ny spelare fyller på mot box från högerkanten.

00:42:27

Örebro SK startar ett anfall framåt i banan från vänster sida. Löpning kommer

mot vänster sida från mitten.
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00:44:00

Hemmalaget startar ett anfall mot mål på högerkanten. Spelare kommer samtidigt

mot box centralt i banan.

00:45:59

Domaren blåser i visselpipan!

00:46:20

Hemmalaget startar ett anfall framåt från högerkanten.

00:46:33

Bortalaget inleder en ny attack mot box från mitten av banan. Löpning mot box

från höger.

00:47:00

Domaren visslar i pipan!

00:47:25

Domaren blåser i visselpipan.

00:47:40

Domaren visslar med pipan.

00:48:06

Kalmar FF påbörjar ett nytt anfall mot box längs höger sida.

00:48:08

Löpning kommer mot mitten från mitten.

00:48:45

Domaren visslar med pipan! En frispark visad för regelvidrigheten.

00:50:19

Bortalaget inleder ett nytt anfall mot mitten i mitten. Löpning mot mål från

högerkanten.

00:50:55

Domaren visslar med pipan!

00:51:31

Domaren markerar med pipan.

00:53:32

Kalmar FF påbörjar en attack mot box från mitten av plan. Löpning kommer

samtidigt framåt längs höger sida.

00:54:18

Domaren visslar i pipan.
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00:54:45

Bortalaget startar ett anfall mot mål i mitten av plan.

00:54:49

Attacken fortgår i riktning mot vänster sida centralt. Löpning kommer framåt i

banan längs vänster sida.

00:55:17

Omgivningen uttrycker sin åsikt!

Switch: team locations

home left Kalmar FF

away right Örebro SK

00:58:21

Domaren markerar!

01:11:19

Domaren visslar med pipan för avspark. Matchen är igång igen!

01:11:53

Domaren visslar med pipan.

01:12:16

Domaren blåser!

01:12:56

Domaren visslar.

01:13:42

Domaren visslar i pipan.

01:14:57

Domaren visslar i pipan.

01:15:06

Domaren visslar.

01:18:29

Domaren markerar med visselpipan.

01:18:37

Kalmar FF inleder ett nytt anfall mot vänsterkanten centralt i plan. Spelare

kommer samtidigt framåt från vänster sida.

01:18:42

Domaren blåser i visselpipan!
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01:18:56

Domaren blåser.

01:19:11

Domaren blåser i pipan!

01:20:04

Domaren blåser!

01:20:29

Domaren blåser i pipan för avspark. Matchen är nu igång igen!

01:20:56

Kalmar FF inleder ett nytt anfall mot mitten från mitten. Spelare kommer

samtidigt mot box på vänster sida.

01:20:58

Löpning kommer framåt i plan från höger sida.

01:21:10

Domaren visslar med pipan!

01:21:51

Domaren markerar med visselpipan!

01:22:13

Domaren markerar med visselpipan!

01:22:53

Domaren markerar.

01:23:19

Kalmar FF startar ett nytt anfall mot mål centralt. Löpning kommer framåt på

högerkanten.

01:24:10

Bortalaget startar en attack mot mitten från mitten. Löpning samtidigt mot

vänster från mitten.

01:24:13

Löpning kommer mot mål från vänsterkanten.

01:24:16

Omgivningen gör sig hörd!

01:24:18

Domaren visslar i pipan!
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01:25:39

Domaren visslar.

01:25:46

Domaren visslar med pipan! En frispark är tilldelad för händelsen.

01:26:11

Domaren blåser i pipan!

01:26:26

Domaren markerar.

01:27:06

Bortalaget startar ett anfall mot box längs högerkanten.

01:27:08

Supportrarna uttrycker deras stöd!

01:27:46

Domaren blåser i pipan.

01:28:25

Domaren visslar med pipan för avspark. Kampen i spel återigen!

01:28:46

Hemmalaget påbörjar ett anfall mot mål centralt i banan. Löpning kommer

samtidigt mot mitten på högerkanten.

01:28:48

Anfallet fortsätter i riktning mot vänsterkanten centralt i banan.

01:29:11

Bortalaget inleder ett nytt anfall mot mitten i mitten.

01:32:17

Domaren visslar.

01:32:52

Hemmalaget påbörjar en ny attack mot mitten i mitten.

01:33:55

Domaren markerar med visselpipan!

01:34:55

Domaren visslar med pipan! En frispark är tillgiven för händelsen.

01:35:43

Örebro SK inleder ett anfall mot mitten på höger sida.
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01:35:45

Spelare kommer mot box från vänster sida.

01:35:47

Anfallet fortsätter mot box från mitten av banan. Samtidigt kommer löpning mot

mål längs högerkanten.

01:35:51

Domaren blåser i pipan.

01:36:41

Örebro SK startar en attack mot mål i mitten av plan.

01:36:45

Supportrarna reagerar!

01:37:24

Domaren visslar i pipan.

01:37:33

Domaren markerar med visselpipan för avspark. Matchen nu igång igen.

01:37:46

Kalmar FF startar en attack mot mål längs vänster sida. Samtidigt löpning mot

mitten från högerkanten.

01:38:10

Kalmar FF påbörjar ett nytt anfall mot box i mitten av plan. Löpning samtidigt

mot mitten från höger sida.

01:38:12

Löpning kommer mot box centralt i banan.

01:39:27

Domaren markerar.

01:40:09

Örebro SK startar ett nytt anfall mot mål från mitten av banan. Samtidigt

kommer spelare mot box från vänster sida.

01:40:14

Domaren visslar med pipan. Frispark tillgiven för regelbrottet.

01:41:13

Domaren visslar med pipan. En frispark är delgiven för regelbrottet.

01:42:42

Domaren blåser i visselpipan. En frispark tillgiven för företelesen.
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01:42:52

Kalmar FF påbörjar ett nytt anfall mot mitten från mitten av banan. Spelare

fyller på framåt i banan längs vänster sida.

01:42:54

Anfallet fortsätter mot vänsterkanten centralt i banan. Samtidigt kommer

löpning framåt i banan längs vänster sida.

01:43:12

Domaren blåser i pipan.

01:43:35

Domaren blåser i visselpipan!

01:45:21

Domaren markerar!

01:46:00

Domaren blåser för avspark. Matchen igång!

01:46:28

Domaren visslar.

01:46:53

Domaren blåser i pipan. Frispark är tillvisad för regelvidrigheten.

01:47:06

Domaren markerar med visselpipan!

01:47:15

Domaren visslar i pipan!

01:47:20

Domaren markerar!

01:47:55

Hemmalaget påbörjar ett anfall mot mål centralt. Spelare kommer samtidigt mot

mål längs vänsterkanten.

01:48:02

Domaren markerar med visselpipan!

01:48:14

Domaren markerar med visselpipan! Frispark är tillgiven för regelvidrigheten.

01:48:38

Domaren visslar i pipan.
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01:48:54

Domaren visslar i pipan!

01:49:44

Domaren visslar.

01:50:21

Domaren blåser!

01:51:10

Örebro SK påbörjar ett nytt anfall mot mål från mitten av plan. Spelare kommer

framåt i banan längs höger sida.

01:51:51

Domaren markerar med pipan.

01:52:19

Kalmar FF inleder ett nytt anfall mot mitten i mitten av plan. Samtidigt

löpning framåt i banan från höger sida.

01:54:35

Domaren blåser i pipan! En frispark tillgiven för regelbrottet.

01:54:54

Domaren markerar med pipan.

01:55:28

Domaren visslar med pipan!

01:56:17

Kalmar FF startar ett nytt anfall mot box från mitten. Spelare kommer mot box

längs vänsterkanten.

01:56:55

Domaren blåser.

01:57:04

Domaren visslar med pipan!

01:57:44

Domaren visslar med pipan.

01:58:04

Domaren visslar i pipan.

01:59:28

Domaren markerar med visselpipan!
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None

Matchen är över och lagen har krigat väl. Resultatet blev 0-3 till Örebro SK.

02:00:26

Domaren blåser i visselpipan!

02:02:30

Domaren blåser! Frispark tillgiven för företelesen.

02:02:50

Domaren blåser i pipan.

-----------------------------------------------------------------

time 01:50:19
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