
Abstract

Interpreting EEG measurements is of great relevance, both for developing underlying neuro-
scientific theory and improving existing applications. In this study, two networks with different
approaches to time-frequency analysis and feature selection are compared on simulated and real
data for semantic and emotional perception. The first network uses the Morlet wavelet transform
to achieve adaptable feature selection. The second network uses a convolutional net to analyse
reassigned spectrograms, in hope of improving component localisation. The result shows rel-
atively good performance of the Morlet network with easily interpretable features, especially
when combined with Grad-CAM, a method for visualising the gradients of the network to locate
relevant data regions. The network using reassigned spectrograms performs less well, but com-
parisons with methods for ordinary spectrograms suggest that this is due to poor performance of
the more traditional image-processing methods used, making it difficult to determine the effect
of reassignment. Testing on novel data shows lower, but statistically significant, classification
performance for emotional content, likely due both to methodological shortcomings and to the
intrinsic difficulty of the problem. The study explores the use of transfer learning and finds
promising results both in the accuracy on new subjects with models trained on data from others
and in boosting training on single subjects by initialisation with transferred weights. Finally,
the Morlet network is applied to analyse similarities between perception and memory retrieval,
with significant results for networks trained on memory data and tested on perception data.
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1
Introduction

The inner workings of the human brain have long been the subject of intense study, since a
deeper understanding leads to progress in many crucial fields, from psychology [Steingrimsson
et al., 2020] to prosthetics [Bright et al., 2016]. The interdisciplinary nature of the field has
meant that a vast variety of different approaches have been employed to study the brain, its pro-
cesses and their resulting actions. From more psychologically rooted experiments to biological
modelling on the level of individual neurons these attempts have revealed much about the way
the human mind functions, but a great deal remains unknown. Our entry-point into this field
is, naturally, influenced by many of these previous approaches but takes as its starting point
methods for large-scale data analysis recently developed within the fields of statistics and ma-
chine learning. Our work is less focused on mapping and modelling the actual processes of the
brain and focuses instead on methods for interpreting the observable signals that are evoked. We
use data relating to signals associated with image perception and the corresponding short-term
memories that are created, but the methods used are applicable in many different areas of signal
processing.

A diversity of methods is also present with regards to the measurements themselves. The
method chosen here, the electroencephalogram (EEG), is well suited for our particular problem
due to its high temporal resolution. Since a defining feature for many of the processes that we
study is the frequency and positions in time, this allows for good identification and separation.
The method is also useful due to the ease of measurement, meaning that more data can be
gathered than would be possible with more elaborate measurement techniques, as well as the
availability and relatively low cost compared to, for example, a Magnetic Resonance Imaging
(MRI) scanner. This does not, however, mean that this is the optimal measuring method for
studies of this kind and the EEG has its shortcomings compared to other techniques. For ex-
ample, the spatial resolution of the EEG is very poor compared to that of the functional MRI
(fMRI) [Lystad and Pollard, 2009], meaning that potentially important information about the
origin of signals within the brain is lost. This is especially true for EEG readings made with a
small number of electrodes. [Ferree et al., 2001]

Attempts to decode the contents of brain signals using more traditional existing psycho-
logical tools and models have relied on explicit knowledge of properties of the signals to find
empirical patterns, for example by calculating the Event-Related Potential (ERP) [Luck, 2005].
This has in many ways been a successful approach, but risks missing unexpected patterns and
fails to fully utilise the vast amount of data generated from many readings of brain signals.
Building upon previous work, we hope to overcome some of these shortcomings by exploring
different statistically based machine learning methods of data analysis to analyse and classify
labelled signals without prior information.

EEG carries multiple types of information as previously explained: spectral, temporal,
phase, channel correlation and spatial information. As EEG preserves certain information better
than others our study will focus on some of the EEG features with higher information retention:
temporal and spectral structures. These features are relatively easy to analyse.
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Chapter 1. Introduction

Our approach also seeks to deliver a method that can quickly and with little data be used on
previously unknown subjects. This would be a valuable advantage in many areas of application,
since the circumstances for the use of methods like these do not always allow for detailed study
of the subject a priori. A method working as fast as possible with as little data as possible will
make the use of these methods easier, which in turn means that they can be applied in new areas
in which they were previously of limited use. One good example is the interpretation of motor
signals, as studied by [Zhao et al., 2019], the article that inspired one of our network architec-
tures. In both mechanical prostheses and rehabilitation methods (one of the applications used as
an example in [Zhao et al., 2019]) a fast method requiring little beforehand knowledge makes
for easy to use applications that also require less on-board computing power. In psychological
applications, which are more similar to the data we use in this study, a lower data requirement
of these methods can mean many hours of time saved that would otherwise be used for calibra-
tion to the subject. In addition, long sessions of data collection is difficult since the participant
gets tired after a limited time, resulting in both discomfort and decreased data quality. Overall,
great improvements in the efficiency and applicability of EEG-based methods of psychological
treatment would be possible if the desired improvements of the methods can be realised.

Aim
Our hope with this study is to lay the groundwork for the applications described above by ex-
amining and comparing two different methods of time-frequency analysis, the adaptive Morlet
wavelet transform as proposed by [Zhao et al., 2019] and the scaled reassigned spectrogram
presented in [Sandsten and Brynolfsson, 2015], in conjunction with a compact neural network.
These methods and networks are evaluated by testing classification accuracy on simulated and
real data, some of which derives from a neurological test we have helped design and implement.
In addition, general machine learning tools frequently used to improve the performance or gen-
eralisability and to analyse the working processes of neural networks, such as data Grad-CAM
and transfer learning, are applied to improve and learn more about the methods’ functioning.

The methods are also used to draw conclusions from the real data and compare these to
existing studies and relevant theory. Analogue to modelling and technical aims the thesis aims
to correctly classify emotional context of images in a novel data set developed concurrently to
this thesis work as well as to investigate eventual differences in this classification task compared
to previous classification tasks for EEG data.
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2
Background & Theory

In this section we describe the principles behind methods used in this thesis study. The thesis, as
indicated by the title, focuses on classifying the contents of the mind both during active visual
perception and during recall of previous perceptions. It is important to have a basic understand-
ing of the neurological theory that is the basis for many of the assumptions and hypotheses
used. This background will therefore focus (narrowly) on concepts that are directly applicable
to the study at hand and not seek to give full explanations of the studied phenomena, although
the foundations in sections 2.2 and 2.3 are explored more deeply.

2.1 Neuroscience, Memory and EEG
When we receive visual stimulus the corresponding neural centres of the brain activate, pro-
ducing a mental representation of the image perceived. Information detailing this sequence of
activations is then stored, which is what makes up our short-term memory. When a memory
is triggered the same sensory information that was present during the initial perception is re-
activated [Waldhauser et al., 2016], producing a mental representation of the previously seen
image. This is what allows us to see past events in our "mind’s eye". The experiments referred
to in this study rely on this in combination with the fact that sensory information that relates to
a previous experience can activate the stored memory [Tulving, 1983]. This is used by associ-
ating an arbitrary and previously unassociated word to the image that is to be stored and later
activating the memory of the image by presenting the subject with the corresponding word.

EEG readings are widely used to analyse the processes taking place in the brain. The method
basically consists of measuring the differences in electrical potential between different points
on the scalp with the help of electrodes distributed across it. Extrapolating from the data points
along the scalp allows for reconstruction of the spatial relations between the signals (to a certain
extent), in addition to the time and frequency information collected by each individual electrode.
In the context of analysing the resulting signals the electrodes are frequently referred to as
channels, which will be used throughout this report.

The information correlating to events registered in the EEG is normally divided by fre-
quency into five rough bands: the delta band (0.5 - 4 Hz), usually associated with brain activity
during deep sleep, the theta band (4 - 8 Hz), activated during lighter states of sleep or when
focusing, the alpha band (8 - 14 Hz), normally activated when the subject is awake but relaxed
and with their eyes closed, the beta band (14 - 30 Hz), associated with most normal conscious
activity and when the subject is concentrated, and the gamma band (30+ Hz), normally acti-
vated by sensory stimulus [Abo-Zahhad et al., 2015]. According to [Bazgir et al., 2018] data
relating to emotional responses can be best classified by looking at intensities in the gamma
band, although information is presented throughout lower bands as well.

Disturbances introduced by sources other than the activity of the brain are called artefacts.
These can be detected and, if sufficient data is available, removed before the EEG is analysed.
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Chapter 2. Background & Theory

The most common large artefact in our analysis is the eye blink, which can be removed by com-
paring the affected channels to the one placed directly below the eye (VEOG). Other common
artefacts include movement by the subject and unconscious muscle activity like swallowing and
heartbeat, which as far as possible is removed from the final EEG. Poorly attached electrodes
and unforseen subject actions also create channels and epochs of largely unusable signal data.
Despite the best efforts of the researcher, many artefacts may remain undetected in the final
data. Taken together, this results in a large amount of noise relative to the signal content. Envi-
ronmental artefacts may also disturb the EEG and should be minimised during measurements.
Ordinary high-frequency disturbances such as power line noise also present a problem during
analysis of high frequencies. [Tatum, 2014]

Bramao & Johansson 2018
The article by [Bramao and Johansson, 2018] is a cornerstone in the basis of our work. The
authors investigate the possibilities of episodic memory decoding for semantic visual infor-
mation. The report proves the possibility of using information during perception to broadly
interpret later memories in certain cases.

The first real data set applied in this report and several others, denoted the semantic mem-
ory set in this study, originates from the experiments described in this paper. The experiment
consists of two phases: a study phase and a retrieval phase. In the study phase participants were
presented with an abstract word, an image and the same word and image as a pair. The par-
ticipant was asked to remember the word-image pair. In the retrieval phase the participant was
instead given one of two different tasks, a visual task and a verbal task. The visual task consisted
of identifying a previously shown image in a pair with the image in addition to a mirrored ver-
sion. In the verbal task participants were instead given the word and asked to respond with the
paired image (or a description of it). The semantic classes of images shown were "landscape",
"face" and "object".

The experiment was conducted on 36 subjects, half of which performed the visual task in the
retrieval phase and the rest performed the verbal task (not used in this study). The experiment
consisted of a number of blocks with breaks in between. Blocks consisted of a study phase and
a retrieval phase, containing a total of around 180 word-image pairs shown to the subjects over
the course of the experiment.

First the authors presented a classifier achieving reasonable accuracy (around 0.6) for three-
way classifying image class information during perception in the experiment. [Bramao and Jo-
hansson, 2018] subsequently studied the possibility to extrude semantic information from EEG
data taken at the time of image recollection by only using previous knowledge of the EEG data
recorded during the study phase. To achieve this, authors cropped EEG data, used the wavelet
transform, analysis of variance (ANOVA) feature reduction and trained a support vector ma-
chine (SVM) on image cue onset in the study phase to test on the visual or verbal task cue in
the retrieval phase. The authors achieved a statistically significant accuracy indicating the pos-
sibility of generally recognising the brain activation during memory retrieval when comparing
to brain activation when first perceiving the origin of the memory. The support vector machines
achieved a higher accuracy during the verbal task when compared to the visual task.

2.2 Time-frequency Analysis
Wavelets & Morlet
One of the two methods of time-frequency analysis used in this study is a discrete Morlet
wavelet convolution. A wavelet is in general an oscillating function used as a basis to decom-
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2.2 Time-frequency Analysis

Figure 2.1: Two example wavelets initialised with the same bandwidth 1
a and different fre-

quencies. The wavelets are depicted here in continuous time. When applied in the network
each wavelet is sampled to discrete representation that depends on the sampling frequency
of the data analysed.

pose complex functions into frequency components [Prakash, 2018]. In this study we restrict
ourselves to applying the Morlet wavelet, but other design choices are possible. It is imple-
mented in the network as a convolution of the signal with a window containing a real-valued
Morlet wavelet, defined by the equation:

w(t) = e−
a2t2

2 cos(2πbt) , (2.1)

where the two parameters determine the bandwidth 1
a and central frequency b of the wavelet

respectively [Zhao et al., 2019]. Figure 2.1 shows two example wavelets with parameters ini-
tialised within the range used in our layer design. When the wavelet is convolved with a given
signal, it is these characteristics that determine what range of frequencies is captured by the con-
volution. If for example the wavelet with central frequency 5 Hz is used, the method captures
the intensity of frequencies in a range centered around 5 Hz, the width of which depends on a.
This method also retains phase information at the frequency given by b. [Zhao et al., 2019]

The Scaled Reassignment Spectrogram
The spectrogram is one of the most well-established methods for time-frequency analysis of
stochastic processes. It displays the signal contents in an easily interpreted two-dimensional
image showing the power of all component frequencies over time [Boashash, 2016]. A trade-
off between resolution of individual peaks and spectral leakage at low-amplitude frequencies
is determined by the choice of window function used to calculate the spectrogram. Due to
general uncertainty there is an inherent trade-off between resolution of time and frequency
depending on the chosen window length. When analysing noisy or complex signals, however,
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Chapter 2. Background & Theory

the spectrogram is less legible and has difficulty resolving the signal contents into well-defined
separate components.

The reassignment method introduced in [Auger and Flandrin, 1995] and then further elabo-
rated to scaled or matched reassignment method by [Sandsten and Brynolfsson, 2015] are both
designed to improve the time and frequency resolution of single components compared to the
ordinary spectrogram. Using a window and scaling factors designed to match the examined
component the method can resolve a single, well-defined peak located at the "centre of mass"
of the component. The reassigned spectrogram is defined as

RSh
x(t, f ) =

∫∫
Sh

x(s,ξ )δ (t− t̂x(s,ξ ), f − f̂x(s,ξ ))dsdξ (2.2)

where Sh
x is the spectrogram defined as

Sh
x(t,ω) = |

∫
x(s)h∗(s− t)e−i2π f sds|2

calculated using the short-time Fourier transform (STFT) with a chosen window function h(t).
Here t and f denote the time and frequency. The spectrogram values are relocated to t̂x and f̂x,
which are in turn calculated as

t̂x(t, f ) = t + ct Re(
F th

x (t, f )
Fh

x (t, f )
) (2.3)

f̂x(t, f ) = f − c f
1

2π
Im(

Fdh/dt
x (t, f )
Fh

x (t, f )
) (2.4)

Here Fh
x ,F

th
x and Fdh/dt

x represent the STFT of the signal using h(t), t ∗h(t) and dh(t)
dt respectively

as the window function. ct and c f are the scaling parameters and the special case ct = c f = 1
corresponds to the usual unscaled reassigned spectrogram. In this report we will exclusively be
using the scaled reassigned spectrogram with specific values of the scaling parameters derived
below. When we refer to the reassigned spectrogram from this point onward, this should be
taken to mean the scaled reassigned spectrogram with this specific choice of parameters.

Using the example of a Gaussian windowed function

x(t) = e−
(t−t0)

2

2σ2 e−i2π f0t (2.5)

[Sandsten and Brynolfsson, 2015] show that Equations 2.3 and 2.4 evaluated for this specific
function give

t̂x(t, f ) = t− ct
λ 2

λ 2 +σ2 t (2.6)

f̂x(t, f ) = f − c f
σ2

λ 2 +σ2 f (2.7)

where λ is the scaling parameter defining the shape of a unit energy Gaussian window h(t)
used. Furthermore, they show that in order for the spectrogram of this particular function to
be entirely localised to the origin t̂ and f̂ should be zero. This gives the choice of the scaling
parameters as

ct =
λ 2 +σ2

λ 2 (2.8)
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2.2 Time-frequency Analysis

c f =
λ 2 +σ2

σ2 (2.9)

which authors further specify by making a design choice of setting λ = σ , giving the matched
reassigned spectrogram. This leads to c f = ct = 2 for perfect localisation of Gaussian signal
components defined as equation 2.5. Figure 2.2 shows a comparison of the spectrogram and
two different reassigned spectrograms for a simulated signal with three components. One can
see that the method correctly reassigns different components in Figure 2.2b and 2.2c.

(a) (b) (c)

Figure 2.2: Reassignment localises specific components in the spectrogram by reassigning
all nearby intensities to the "centre of mass" of components with selected length. In the
figure we see the ordinary spectrogram, (a), compared to the reassigned spectrogram, (b)
and (c), calculated with two different values for the parameter σ . The choice of sigma
determines which of the components in (a) that the spectrogram intensity is reassigned to.
In (b), the component at roughly (1.5 s, 12 Hz) is localised with a very large amplitude,
while the other components are reduced in intensity. In (c), σ has been chosen to select the
component at (1 s, 4 Hz) instead.

Sandsten & Brynolfsson, 2018
Aside from introducing the matched reassignment spectrogram [Sandsten and Brynolfsson,
2015] also conclude the possibility of the matched reassignment method to localise an unknown
number of Gaussian components of equal lengths. In a subsequent paper, [Sandsten et al., 2018],
by the same authors an extension is made that there is also localisation in the more general case
when the window function h(t) matches the transient envelope function of a component. In the
same paper, [Sandsten et al., 2018] also conclude highly accurate time-frequency localisation
by the matched reassignment method for components the method is not tuned against. They
also showed accuracy in the presence of noise. Lastly, [Sandsten et al., 2018] bring up a pos-
sibility of using the method as a shape detector for unknown components, simply performing
empirical search for parameters that reassign unknown spectrograms well. The authors present,
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Chapter 2. Background & Theory

beyond simple visual inspection of reassigned spectrogram, minimisation of the Rényi entropy
[Baez, 2011] of a given reassigned spectrogram as a method used to find suitable spectrogram
modifications, although this is a computation-heavy task.

2.3 Machine Learning & Neural Network
Multiclass classification is a problem posed in most natural sciences and computational models
to perform such task are constantly being developed. One such model is the artificial neural
network which can map any number of input data points to a class probability space. It does so
by linearly sending information through layers of nodes (sometimes with non-linear activations
in each layer) to a final layer of nodes each representing one class. To give a foundation for
readers without a conceptual understanding of neural networks, a slightly sweeping foundation
is presented. A mathematical representation of a neural network of depth L is for example given
in [Caterini and Chang, 2018] as

F(x;θ) = ( fL ◦ · · · ◦ f1)(x). (2.10)

with a partial function f defined as a vector of artificial neuron model functions, given here for
function number l,

ϕ

(
n

∑
i

θ
l
i xi

)
(2.11)

where θ are weight parameters, ϕ is a activation function of a neuron and n is the number of
inputs.

A softmax function,

ϕi(z) =
ezi

∑
K
j=1 ez j

z = [z1...zK] (2.12)

is finally applied to exponentially scale class node values zi to the range [0,1], all values sum-
ming to 1 to give a probability representation. A classifier can then compare values and pick
the class corresponding to the highest value. Each layer has a set of trainable parameters (also
referred to as weights) that can be adjusted to change the predictions made by the network.

To train a neural network one must define a target for it to tune it self towards. For clas-
sification, a loss function is often supplied which the computer minimises in regard to given
input data. In a multiple class classification context where outputs can be interpreted as class
probabilities (ŷk

i ∈R : 0≤ ŷk
i ≤ 1 for sample i and class k) a normal loss is the categorical cross

entropy defined, where k is specified to the correct label class, as

Loss =−∑
i=1

yk
i · log ŷk

i (2.13)

which, if outputs were probabilities would correspond to minimising cross entropy of predicted
class distribution with actual class distribution. Minimising cross categorical entropy equates
to minimising the Kullback-Liebler divergence [Kosheleva and Kreinovich, 2017] of the actual
class distribution compared to the predicted.

Using the loss function as metric, a neural network can tune itself by auto differentiation, a
method where the network utilises well defined mathematical functions and law of derivation to
evaluate the derivative of output with regards to parameters of the model. The model can then
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2.3 Machine Learning & Neural Network
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Figure 2.3: (a) Graph of ReLU activation function and its derivative. (b) Graph of ELU
activation function and its derivative. The derivative of ELU is never zero (although it ap-
proaches zero asymptotically for extreme negative values).

iteratively loop an optimisation algorithm (for example gradient descent or Adam) to minimise
the loss. The derivative can also be computed with regards to input for alternative conclusions.

The neural network will change weights during training to minimise the loss and improve
the prediction of defined classes. The "deep" structure of neural networks will enable the net-
works to separate data with more complex patterns and structures.

Additionally, non-linear activation functions can help the model to solve non-linear classi-
fication problems. The output elements of layers are often sent through an activation function
to augment the value in order to represent more complex connections. Examples of activations
used in this study are ELU and ReLU.

ReLU An important problem to expanding the depth of neural networks is the vanishing gra-
dient problem, where loss gradients are surpressed due to repeated sigmoid activations [Caterini
and Chang, 2018]. A partial remedy to this problem is the ReLU activation

ReLU(x) = max(x,0), (2.14)

argued for in [Caterini and Chang, 2018], also shown in Figure 2.3a. The gradient of a ReLU
activation is also easily calculated as 1 for x > 0 and 0 for x < 0. ReLU activation introduces
instead the problem of shutting down some parts of the network due to the gradient being zero
for negative input values. This is called the dead gradients problem.

ELU The activation ELU defined as

ELU(x) =
{

x if x≥ 0
α (ex−1) if x < 0 (2.15)

is very similar to ReLU but has a small but non-zero gradient for x < 0. The hyperparameter α

defines the negative asymptotic limit of the activation function. The function is shown in Figure
2.3b. This means the ELU function doesn’t suffer from either the vanishing gradient problem
or dead gradients problem but is however slower to compute compared to ReLU.

Convolutional Neural Networks
Particularly relevant to this thesis study are convolutional neural neworks (CNNs) which are
neural network models designed for images as input data. Layers of nodes form matrices rep-
resenting the multiple channeled image sent into the model. The basic building blocks of a
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Chapter 2. Background & Theory

CNN are convolution layers used to combine pixels/nodes with neigbouring pixels/nodes, cre-
ating new channels.1 The trainable parameters of this layer is the element values of the matrix
convolved with the image/data points. Thus a series of convolutions can send highly abstract
information through the network while keeping the amount of parameters low compared to fully
connected nodes. [Caterini and Chang, 2018]

Additional layers generally used in CNNs are dropout layers, normalisation layers, flatten
layers and dense layers.

Dropout Layer Dropout is a layer which applies a probability to the connections of the layer
to be removed. [Srivastava et al., 2014] presented the technique for regularisation. The layer
prevents the model from learning co-adaptations of the entirety of the input data as during
learning, the gradient is calculated only on a proportion of the data further upstream in the
network compared to the dropout layer. Thus the layer increases regularisation during fitting.

Normalisation Layer A normalisation layer is usually added in the initial layers of a CNN.
The purpose of the layer is to simply normalise the image data (sometimes over a large batch)
which has been shown to increase performance of networks. The case of batch normalisation
was presented in the paper [Ioffe and Szegedy, 2015] which was reconsidered to a layer nor-
malisation presented [Ba et al., 2016].

Dense Layer Fully-connected dense layers treat matrix elements like nodes and connect input
nodes to a determined number of nodes by multiplying each input with a uniquely tuned weight
and applying a activation function to the output node. CNNs usually have one or multiple dense
layers at the end of the neural structure. [Caterini and Chang, 2018]

Zhao et al. 2019
Previous work on learning feature selection and learning within a CNN in the context of decod-
ing EEG data includes work outlined in [Zhao et al., 2019]. The authors present a novel network
and layer in addition to a data augmentation method with the aim of addressing three main prob-
lems with EEG learning: the issue of feature selection, the issue of very large parameter spaces
when learning features and the issue of training on small amounts of data. A schematic image
of the network, named by the authors wavelet-spatial filters convolutional network (WaSF Con-
vNet), is shown in Figure 3.5. The first layer of WaSF ConvNet takes raw multi-channel EEG
time series as input and applies 25 different wavelet transforms to each channel. The bandwidth
and central frequency of each wavelet transform are defined as trainable parameters with ran-
dom uniform initialisation over a range of frequency bands known to carry relevant information.
The second layer spatially convolves all channels into a single representation, using 25 filters
to enable multiple different weightings in the same forward propagation. The remaining layers
are typical CNN layers used to reduce the number of dimensions to a single classification.

The method of data augmentation presented by the authors simply consists of cropping each
data point into multiple windows and minimising loss over all new data points with a penalty
towards differing labels for temporally adjacent data.

Authors of [Zhao et al., 2019] evaluated their network on three different data sets related to
the motor imagery paradigm and the network compared well to other modern methods for the
data sets in question.

1 The concepts of nodes neighbouring each other is not present in neural network plainly built on dense connec-
tions.
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Basic Knezevic & Heimerson 2018
A highly related, but separate problem formulation to ours was examined by [Basic Knezevic
and Heimerson, 2018] in a master’s thesis in 2018. In this thesis the authors evaluated the
accuracy of feature selection methods and neural networks on the data set investigating semantic
classification presented by [Bramao and Johansson, 2018]. The authors also made an effort to
classify EEG during the retrieval phase. However, no models had any significant accuracy in
this case.

The authors present multiple machine learning models with raw data as input as well as
machine learning models requiring feature selection through time-frequency transformations.
Models were applied to each subject who performed the visual task of the SM set (18 subjects)
using the 10-fold validation average accuracy as measure of the accuracy of the models. As a
final performance measurement an average over all subjects was presented for each model.

The highest performing network, when taking study phase accuracy into account, was a one
dimensional convolutional neural network, denoted CNN1D, with around 90000 parameters. It
was applied on raw data with no data augmentation and received an average accuracy of 0.82
in three-class classification.

In regard to feature selection significant to the work of this report, the authors [Basic Kneze-
vic and Heimerson, 2018] present several time-frequency based feature selection methods. Of
these methods the method of wavelet transforming input data and using a 2-D convolutional
neural network, denoted CNN2D, performed the best, having a study accuracy of 0.62 for three-
class classification.
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3
Method

3.1 Data Sets
In this study, multiple data sets were used to evaluate methods and networks. Initially, simulated
signals were used to establish a baseline validity of our networks. Secondly, the data set used
by [Basic Knezevic and Heimerson, 2018] was used to compare the performance metrics with
established neural networks for EEG-data as well as to reflect upon the experiments conducted
in [Bramao and Johansson, 2018]. Lastly, and paramount to our context, our methods are as-
sessed on a novel data set collected as part of a project at the Department of Psychology at
Lunds University, which the authors also collaborated with and assisted. As a preface, deeper
technical rundowns of each of the three data sets are given.

Simulated Set
Initially a simulated data set was used, consisting of single channelled data generated from 3
component Gaussian wavelets. Added one-over-f (pink) noise, alpha-noise and measurement
(white) noise aimed to represent expected noise in real EEG data according to methodology
presented in [Barzegaran et al., 2019]. The authors of [Barzegaran et al., 2019] combine the
three noise components with weights estimated to resemble resting state EEG, i.e. EEG signals
from brains not performing specific tasks. However, since we are not trying to create represen-
tations of EEG signals, but simply create data sets with similar inherent noise we settled for an
equally weighted noise, in regards to power of the three components.

Semantic Memory Data Set (SM)
The Semantic Memory data Set (SM set) consists of task-related EEG-data from an experiment
conducted in the report presented in [Bramao and Johansson, 2018], mentioned in section 2.1.
As mentioned each experiment consisted of two separate phases, a study phase and a retrieval
phase, shown in Figure 3.1. The study phase consisted of 180 instances of the subject being pre-
sented with a the word/image combination. The second phase of the visual task was comprised
of the subject trying to recollect these 180 images again one by one.

Each phase resulted in a subset: the SM study set and the SM retrieval set respectively.
Important to classification and learning is that each EEG-signal consists of 31 channels (one for
each electrode) and was sampled with a frequency of 512 Hz. Each sample consisted of EEG
data epoched from -1.5 to 2500 ms from post-image-stimulus onset. Additional data preparation
consisted of manual eye and muscular activity removal, artefact removal through independent
component analysis and manual inspection/cleaning of EEG signals. This was done by the
authors of [Bramao and Johansson, 2018].
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Retrieval Phase

Figure 3.1: Outline of experiment structure used to generate the two non-simulated data
sets. Both experiments were split into three phases: study phase, distraction phase and re-
trieval phase. Study comprised of seeing images of different classes and trying to remember
them. Distraction consisted of arithmetic tasks to empty working memory. Lastly in retrieval
phase memories of the same images were sparked for the participants. EEG readings were
captured during all phases and two separate subsets of each set were saved, one for the study
phase and one for the retrieval phase.

Emotional Memory Data Set (EM)
The novel emotional memory data set (EM set) was collected simultaneously to this thesis work
and also resulted in two different data sets for each subject performing the experiment: the EM
study set and the EM retrieval set keeping the same structure as the SM set.

The design of the experiment originated from a collaboration between Sterre Van de Lan-
genberg, Mikael Johansson and the authors of this thesis. The experiment consisted of 8 blocks
with each block containing a study phase and a retrieval phase. In the study phase the participant
was run through 24 loops of being presented a word for 1.5 seconds, an image for 1.5 seconds
and the word on top of the image for 2 seconds. In each loop, the participant was asked to mem-
orise the word-image pair. The ensuing retrieval phase exhaustively presented the words to the
participant again and subsequently the participant was asked three multiple choice questions
about the content of the image. First two prompts in a random order: Choose emotional con-
text of image (positive, negative, neutral) and choose semantic context of image (face, scene).
These questions correspond to Q1 and Q2 in Figure 3.2. For each question subjects also had
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the possibility to enter "don’t remember". The participant is lastly presented with a question
to either correctly identify whether an image is mirrored (if the image was labelled "scene")
or if the subject had seen the exact image before (if the image was labelled "face") given ei-
ther the correct image or a different one of the same face. This is to check whether the subject
has remembered the image in its entirety or merely associates the word presented with certain
characteristics like for example emotion, colour or general composition. The distinction of two
different last questions originates from the fact that it is harder to distinguish axial symmetry
orientation in face images than scene images.

Between phases the participant is asked to perform an arithmetical counting task, contin-
uously subtracting seven from a random integer for a period of time to empty the working
memory of any information. This is important since we are interested only in the reactivation
of brain regions due to the short-term memory, not in remaining impressions of the last few
images that could still be active in the working memory.

nsamples

nsamples

Figure 3.2: Design of one block of the novel experiment regarding emotions. A total of 8
blocks with 24 images each were recorded for each subject. The red word is related to the
image shown in the study phase. During the retrieval phase only the word is shown and
the subject is asked questions about the corresponding image. The questions about image
content (here represented by Q1 and Q2) are presented in random order. Q3 prompts the
subject to decide if the shown image coincides with the one shown during the study phase.
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Each image bore two different types of labels: "face" / "scene" and "positive" / "neutral"
/ "negative". The image sets used were faces from The NimStim set of Facial Expressions by
[Tottenham et al., 2009] and scenes from The International Affective Picture System (IAPS)
by [Lang et al., 2008]. Faces were emotionally categorised by classifying their label according
to existing ratings. Happy and surprise were classified as positive, calm and neutral as neutral.
Fear, anger, disgust were classified as negative. Scenes were categorised through the IAPS rating
system taking three metrics into account: valence, arousal and dominance. They were chosen
so that the average valences were 3,5,7 for negative, neutral and positive class sets respectively
as well as minimising the variance of the valence. Due to easier overreactions (connected to the
arousal and dominance metrics) to negative valence images the image sets were manually sifted
through to ensure there was an overall balance in the images.

In total, data from five subjects was used in the report to perform analysis. Experiments
were conducted in a Faraday cage to reduce electrical background interference in the signal.
62-channel EEG time series, with a sample frequency of 1 kHz, were recorded continuously
throughout the experiment using an active-electrode EasyCap and Neuroscan SynAmps RT 64-
channel Amplifier. A vertical electrooculogram (VEOG) electrode was placed below the left
eye to use for artefact extraction. Figure 3.3 shows one of the authors in the Faraday cage,
wearing the measurement equipment. Data preparation for all tests unless otherwise is stated
consisted of filtering data through a band-pass filter with lowest frequency 0.2 Hz and highest
frequency 40 Hz, performing independent component analysis (ICA) and removing VEOG (and
generally unreasonable) components. The data preprocessing and cleaning was conservative and
as automatic as possible as a result of a lack of experience on our part. The data was then split
into epochs from -100 to 1500 ms from image stimulus onset, with baselining from the first 100
ms of the epoch. Finally, the epoched data was downsampled to 512 Hz.

3.2 Software
The experiment used in the collection of the novel EM data was implemented in PsychoPy
3.0 [Peirce et al., 2019]. The subsequent artefact removal was done in MATLAB R2020a (the
version used in all MATLAB implementations) using the FieldTrip toolbox for the SM set. For
cleaning and epoching of the EM set the Python toolbox MNE was used [Gramfort et al., 2013].
Preprocessing of the data, which includes repackaging for all data and time-frequency analysis
in the reassignment case, was also done in MATLAB. All neural networks were implemented
in the TensorFlow 2.3 environment [Abadi et al., 2015] with Keras [Chollet et al., 2015] using
Python 3.7. The Adam optimiser, as introduced by [Kingma and Ba, 2014], was used with
default settings for all training unless otherwise is specified.

The TensorFlow environment had many advantages, including its accessibility (being open-
source). Customisability was also a priority due to the unorthodox first layer of our Morlet
transform network. This layer was implemented as a custom layer using only backend methods
compatible with TensorFlow’s automatic gradient calculation. The full implementation of the
final version of this layer, which is the one used in all presented data for the network, can be
found in Appendix A.

The MATLAB implementation of the function used to generate the reassigned spectrogram
can be found in Appendix B. The function generates reassigned spectrograms separately for
each channel of the EEG as well as ordinary spectrograms using the same window function for
visual comparison. In this case the original signal is downsampled with a factor four using the
MATLAB function decimate before computing the spectrograms. The final reassigned spectro-
gram is then cropped to contain only the 1.5 seconds directly after stimulus presentation. This
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Figure 3.3: Subject in the Faraday cage used for the experiment. Stimulus is presented on
the computer screen and the subject responds using the keyboard.

is partly done to emulate the previous study by [Basic Knezevic and Heimerson, 2018], but
is also justified by [Bramao and Johansson, 2018] showing that the majority of the predictive
information is contained within this time interval.

For more details regarding implementation of methods, see github.com/ohlindavid/
ExjobbEEG.

3.3 Morlet Network
Initial Layer
In the original paper by [Zhao et al., 2019] the WaSF ConvNet is proposed in which the first
layer selects the features to be analysed by letting the parameters aη and bη in the Morlet
wavelet equation

wη(t) = e−
a2
η t2

2 cos(2πbηt) η = 1,2, ...,25 (3.1)

be the weights of the layer. This design does not correspond well to any preexisting layers
found in the Keras/TensorFlow environment. Instead a custom layer was created to perform the
operations described in the original paper. A set of 25 windows with differently shaped Morlet
wavelets are constructed, each using a separate pair of weights (aη and bη ). The bη ’s were
initialised by uniformly random distribution in the interval 2-30 Hz and aη ’s were all set to
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an initial value of 10 Hz. Every window generated is then convolved along the time axis with
all electrode channels separately as shown in Figure 3.4, generating a three-dimensional data
structure with dimension:

(time− (L−1)/2)×Nchan×25 (3.2)

which is passed on to the following layer. Nchan is the number of electrode channels and L is the
window length measured in sample points. This means that the dimension corresponding to the
parameter η roughly represents 25 different selected frequencies and can be treated similarly to
how the frequency dimension is treated in other time-frequency analyses. The main difference is
the order, which is randomly decided by the network and can only be determined by looking at
the value of each corresponding bη . This is important to take into consideration when drawing
conclusions from the features, since even a network where the parameters bη are initialised in
order may later be ordered differently as the parameters change somewhat independently of
each other.
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Figure 3.4: Schematic figure showing the operation of the Morlet layer. The signal of each
electrode channel (blue) is convolved with 25 different Morlet wavelets (yellow) to distin-
guish the time varying power of different frequencies, one for each wavelet. One Morlet
convolution returns a signal of one frequency (green) with contributions from surrounding
frequencies depending on the bandwidth.This signal shows the presence (amplitude) of this
frequency in the original signal over time.

By tuning both the central frequency and bandwidth of each Morlet wavelet, the idea is to
initialise the weights so that wavelets are uniformly distributed in the desired frequency interval,
2-30 Hz for the semantic data. Much of the relevant information is thought to be located in this
range (containing all bands except the gamma band) and the choice also allows us to safely
reject high frequency noise in the data. This does not mean, however, that there is no relevant
information outside this interval. Initial testing with this setting gave promising results and
due to the large scope of examining all possible initialisations we have restricted our study to
initially examine this setting. Some further attempts to use the interval 30-60 Hz (located in the
gamma band) in combination with the lower bands were made to improve the performance on
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the EM data set, since these frequencies contain information relevant to emotional classification
according to [Bazgir et al., 2018].

Given a sufficiently wide initial bandwidth the wavelets should, at least starting out, be able
to register any event located in (and some distance outside) the interval. As the network trains,
the intent is for the wavelets to then move towards those frequencies that contain predictive
information, while at the same time narrowing the span of frequencies registered where ad-
vantageous to exclude noise. The position (in the frequency dimension) and bandwidth of the
different wavelets correspond to the features that would have to be manually calculated and
decided on before training the network in other non-adaptive applications. This also means that
given a reasonable initialisation this network could be used for a variety of tasks with different
features instead of having to tailor a network and the corresponding features to each problem.
This is especially useful for processes where the current theory is not able to fully determine
the optimal features.

Network Structure
The actual first layer of the model, which was not mentioned above since it basically amounts
to preprocessing, is a LayerNormalization set to normalise across the channel dimension. This
ensures that the data entering the network is on a suitable scale, but does not change the relative
structure of the data.

The subsequent shape of the network can be seen in Figure 3.5 and is almost identical to
the network structure presented by [Zhao et al., 2019]. The first layer, being the most novel part
of the network was manually designed to perform according to the theory presented by [Zhao
et al., 2019], as described above, using 25 different Morlet wavelets with a window length of
0.36 seconds.

The second layer performs a spatial 2D convolution of all previously generated images by
convolving the electrode channel space using 25 filters with a width of a single data point in the
temporal dimension. Since a 2D convolution is used the frequency dimension is treated as the
colour channels of the image, which means that they are added together after the convolution.
The number of filters in the convolution layer were selected to match the number of Morlet
wavelets (η) to ensure that the output of the layer can represent all information previously
contained in the frequency dimension. The convolution layer uses the ELU activation function.
Subsequently a standard 2D pooling layer with a pool size of 71 data points taking strides of
15 data points averages the produced image along the time axis to reduce its size (although
the parameters of this layer were changed to match the length of the signals). Following this,
a dropout layer with 75% likelihood is used and the result is passed on to a final dense layer
with either binary or three-way classification depending on the task at hand, using the sigmoid
or softmax activation function respectively.

3.4 Reassignment Network
Preprocessing
The model that uses the reassigned spectrogram as implemented here lacks the ability to adapt
the main parameters of the time-frequency analysis (λ and σ ) due to the technical difficulty of
implementing this in the TensorFlow environment. Initially we had hoped to design this auto-
matic adaptation by implementing a custom layer. However, the method used to calculate the
reassigned spectrograms required many functions that did not support automatic differentiation
in TensorFlow. This meant that in order to implement the desired layer we would have to either
radically change the way we calculate the reassigned spectrograms or find and use a different
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Figure 3.5: The architecture of the Morlet network, from normalised input to classification.
Linear activation is used after all layers unless otherwise specified. The number of channels
nchan varied between experiments, typically 31 (SM data set) or 62 (EM data set). The
number of filters was set to 25 in all scenarios. The final dense layer had two or three nodes
depending on the number of classes.
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environtment with better tools for differentiation. This was judged to be far too time-consuming
and we settled instead for a non-adaptive implementation.

The reassigned spectrogram can resolve most relevant frequencies using a single well-
chosen parameter if the components analysed are somewhat close in frequency. The drawback
to this approach is a deterioration of the resolution for certain components in the signal as a re-
sult of differing component temporal lengths and frequencies, but this was not enough to justify
the time necessary for a manual implementation in a different environment. As a result, the re-
assignment model uses the reassigment of the spectrogram as pre-processing and a TensorFlow
model takes these as input. The function used to generate the reassigned spectrogram of the
input signal can be found in Appendix B. Due to the large size of the spectrograms calculated
using the original sampling frequency of 512 Hz, the signal is downsampled to Fs = 128 Hz.
This was done both to reduce the parameter count of the network and to reduce the size of the
input data, which in turn shortened training times and reduced overfitting.

Following some of the conclusions by [Sandsten et al., 2018] the parameters λ and σ for
unknown components in the EEG data can be empirically chosen. Thus we first considered the
general scaled reassignment method. The estimation was performed by picking a few intuitive
values of the window length λ ×Fs (3, 5, 10, 12 and 15) and for each of these calculating the
reassigned spectrogram for an interval between 1 and 50 for the parameter σ ×Fs. Visual in-
spection of the spectrograms show that at the ends of these spectra the signal is very distorted
either in the time or frequency dimension and values outside of those tested are as a consequence
very unlikely to give good results. The parameters giving the seemingly best resolution of most
components in the spectrogram were then chosen as λ ×Fs = σ ×Fs = 3, and thus we settled
for the resulting matched reassignment method. The window length parameter λ = 3/Fs gives
a window length of 0.234 s for Fs = 128 Hz. This length approximately matches the expected
length of most signal components and roughly correponds to the one used by [Basic Knezevic
and Heimerson, 2018], enabling a more direct comparisons of our results to theirs. The reas-
signed spectrogram is not sensitive to small changes in these parameter values, meaning that this
very rough estimation of parameters should at worst only have a small negative impact on final
performance compared to alternative noise in the processing of data. Additionally, the purpose
of the proposed method is to correctly classify cases without prior knowledge of what specific
frequencies are present in the different classes and extensive neurological research beforehand
to better define these parameters would defeat this purpose.

Network Structure
The network using the reassigned spectrogram was designed to be identical to the one referred
to as "CNN2D - v2" by [Basic Knezevic and Heimerson, 2018], in order to make valid com-
parisons to the previous results. The network is here referred to as "CNN2D - reassignment".
This structure consisted of three convolutional layers using ELU activation, each followed by
a dropout layer and an average pooling layer. This is then flattened and followed by two dense
layers with 15 and 3 nodes respectively. A low learning rate was required for the network to
converge. We used a learning rate of 0.0001, which is a factor 10 lower than the default used
by TensorFlow’s Adam optimiser, since it resulted in the best performance when testing on
ordinary spectrograms.

Reconstruction
The results of our studies indicate that 2D-CNN may not be the optimal way to use the infor-
mation in spectrograms to classify images in our data sets. Additional possible methods would
be interesting to look in to. An alternate way to use information extracted in the reassignment
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method is to identify the time-frequency positions of the largest peaks in the reassigned spec-
trogram and use this information to reconstruct the signal again as input to the neural network.
The idea is to effectively pick out these components and isolate them, enabling the recreation
of noiseless signals retaining as much classifying information as be possible.

Our choice of method used the imregionalmax.m function in MATLAB to identify peaks
in the reassigned spectrogram matrix. Progressing through all peaks in descending order of in-
tensity removing other peaks located closer than a small distance to the current peak, in order
to select as many different components as possible. This was especially necessary in the reas-
signed spectogram, as single components were usually reassigned to multiple peaks. We chose
this distance empirically as a pixel length of 5 which removed peaks that we thought origi-
nated from the same component but kept close but distinct peaks. We also chose only to keep
the 25 largest peaks that survived the purge of proximal peaks. The selected peaks for a given
spectrogram and corresponding reassigned spectrogram can be seen in Figure 3.6. The choice
of retaining only the largest peaks is not necessarily obvious as the noise components of EEG
are of comparable magnitude to sought signal components. However, due to not having time to
develop another more suitable option we settled for this simplification.
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Figure 3.6: Selection of peaks in a spectrogram and the corresponding reassigned spectro-
gram. These peaks define the frequency and time of the components in the signal that is
later reconstructed. Notice the difference in selected peaks in the two spectrograms shown.

During reconstruction, components were assumed to have time lengths of 0.1 seconds. Two
different methods were used to estimate the amplitude and phase and recreate EEG signals.
The first method simply used the relative powers at the time-frequency coordinates of the cho-
sen peaks in the corresponding spectrogram (reassigned or untreated). Since the spectrogram
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contains no information about the phase of the signal it is not estimated and instead set to
0. The EEG signals are then estimated as a sum of Gaussian components with the calculated
ampltitude, phase, temporal centre, frequency and temporal difussion. The signals generated
in this way are termed Spect and ReSpect with amplitude originating in the spectrogram and
reassigned spectrogram respectively.

The second method (Least Squares (LS) - estimation method) utilises the simple trigono-
metric relation

αcos(x)+β sin(x) = γcos(x+φ) (3.3)

which holds even though transient components are multiplied to each side of the equation. A
LS-estimate of the two variables αi,βi for each component i in a n component estimation can be
made through solving the system

Xθ = Y ⇐⇒ [ vcos vsin ]



α1
...

αn
β1
...

βn


= Y (3.4)

where vcos and vsin are vectors of generated transient periodic component vectors with each
temporal centre, frequency and temporal diffusion calculated earlier and signal length corre-
sponding to the EEG signal length. In addition, vcos contains a simulated data vector created
by a cosine function and vsin is the respective data vector with sine function. Y is the raw EEG
signal the reconstruction is aimed to reproduce. The reconstructed signal is calculated as Xθ .
The signals generated in this way are termed SpectLS and ReSpectLS.

3.5 Baseline Networks
CNN1D To act as a baseline for model performance comparison we have chosen to implement
the best performing basic CNN1D network used by [Basic Knezevic and Heimerson, 2018]
(referred to as "CNN1D"). This network uses only conventional one-dimensional convolutions
of the raw signals, interspersed with dropout, pooling and normalisation layers. Since this is
a very general model a higher accuracy when using the Morlet network would be required to
consider the method beneficial for feature selection and classification.

CNN2D - Spectrogram In order to fairly judge the effect of using the reassignment method on
spectrograms before training a second CNN2D network was trained on untreated spectrograms.
The network was identical to the one used for the "CNN2D - reassignment" network and is
referred to as "CNN2D - spectrogram".

3.6 Machine Learning Tools
Grad-CAM
To handle the unintuitive black box-like characteristics of neural networks several attempts
to understand the information flow have been made. One particularly applicable to CNN is
Grad-CAM (Gradient - Class Activation Mapping) presented in [Selvaraju et al., 2019]. The
method visualises the gradient of class activations with regard to each pixel in the output of all
convolution layers. Since previous convolution layers retain spatial information (in regards to
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the image) this method represents a coarse representation of the original image with gradient
intensities as pixels. Pixels with high gradients have a large impact on the class prediction
and are therefore judged to contain a large amount of predictive information. This method is
developed for image analysis but has been applied and proven effective in finding sections of
importance in EEG signals by [Jonas et al., 2019].

We have adapted this method of mapping gradients of top class predictions with regards
to the outputs of our convolution layers in the models. One important difference is that we
only have one dimension of input data that is structurally retained; the time dimension. The
frequency dimension, as described above, is reconstructed by the convolutional layer in such a
way that each vector in time is some linear combination of the original frequencies. This means
that little intuition is gained by looking at the gradients in this dimension. The time dimension,
however, is run through convolution and pooling but is not reconstructed in any other way. Thus
our Grad-CAM-method is a one dimensional version of the method presented in [Selvaraju et
al., 2019] with 25 feature channels.

If one views the output, Ak, from convolution layers of the network as 25 channels for a one
dimensional image (with length T and increments i) and yc as the non softmaxed class outputs,
then the Grad-CAM heat map is calculated through

Lc
Grad−CAM = ReLU

(
∑
k

α
c
k Ak

)
︸ ︷︷ ︸

linear combination

(3.5)

where

α
c
k =

1
T ∑

i

∂yc

∂Ak
i︸︷︷︸

gradients via backprop

(3.6)

Transfer Learning
One of the main difficulties in the area of application for our networks is the lack of subject-
specific training data. The approach we have chosen tries to minimise the amount of training
data required to reach acceptable results by reducing the number of network parameters and
initialising the network in a way that gives the model a decent start without loss of general-
isation. While making a noticeable difference, these methods are limited in effect. They also
require unnecessarily long training time to reach acceptable accuracy and risk overfitting on the
available data. These drawbacks could impact many of the possible applications of the method
negatively.

In order to alleviate these issues transfer learning is employed. This means that the network
is initialised with layer weights learned from training on a large set of similar data from different
subjects. The idea behind this is for the network to learn those features that are generalisable
between subjects before training on the subject data to learn the subject specific features. This
should in theory result in a network that takes less time to train on the specific subject, since the
weights of the network are already somewhat well tuned and also prevent overfitting, since the
network has already learned more generalised features instead of data specific patterns that only
apply to this subject. We have implemented a very simple method of transfer learning by saving
a previously trained network and initialising the network intended for a specific subject with
the layer weights from the first network. As shown in the paper by [Zhao et al., 2019], more
sophisticated methods of transfer learning also exist and have proven effective with similar data
and models.
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(a) 2-D image of elephants, input for the Grad-CAM
method to identify region important to the classification
elephants by a pretrained VGG-16 network.

(b) Output heatmap of Grad-CAM of the image in a) for
the network VGG-16. Despite the low resolution one can
see the map identifies the position of the elephant.

(c) 1-D input for Grad-CAM in this thesis study. The net-
work in study is the Morlet network.

(d) Corresponding 1-D heatmap of input in c) for clas-
sifying the signal. As one can see the resolution in time
gives us a possibility to analyse the networks reasoning
about valuable time data points.

Figure 3.7: Set of figures comparing a 2-D case and a 1-D of Grad-CAM.

It is not implausible that many of the processes measured by the EEG are highly individ-
ual. This means that although some rough general features can be learned by the transferred
weights for some tasks, the effect is limited or sometimes even negligible. In order to determine
for which networks and data sets transfer learning would be effective, we used the accuracy
achieved by the network trained on multiple subjects on a validation set taken from all subjects.
If this accuracy is not significantly above chance, we judge the network unable to extract any
useful features that generalise across subjects and do not present any separate results for the
transferred network.
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4
Results & Discussion

This section presents the results of all tests that we have designed to compare the performance of
the models and analyse the novel data collected. The results are presented in three sections, one
for each data set. Generally, the accuracies presented for experimental data are calculated using
10-fold cross-validation, which is suggested to be an optimal compromise between negative bias
(due to small training sets) and variance (due to small validation sets) according to [Raschka,
2018]. These accuracies are then averaged over all 18 subjects for the SM data set and five
subjects for the EM data set unless otherwise is stated. The low number of test subjects in the
EM study analysed is unfortunate, since it likely induces a larger variance in these results. This
is a consequence of the experiment being severely delayed by the ongoing pandemic. No test
set separation was done because of limited intra-subject data sizes for both SM set and EM set.
For the test on simulated data, the exact accuracy is not important and only a basic method to
reduce the variance induced by random initialisation is used.

The chapter is concluded with a more thorough discussion of interdisciplinary insights and
observations mainly from the EM set.

4.1 Insights from Simulated Data
In order to know more about how the models work we initially designed test cases using sim-
ulated input data. This is intended both to test the methods in a controlled environment where
parameters can be independently tuned and to compare the performance of the methods.

The first test was intended to compare the noise sensitivity of the two time-frequency anal-
ysis methods. Three signals (shown in Figure 4.1) of length 1 s, each with a single Gaussian
component of identical amplitude, were generated such that two of the signals had their compo-
nents occur at the same time (0.4 s) but with separate frequencies (8 and 12 Hz) while the third
occurred at a later time (0.7 s) with the same frequency as the first signal (8 Hz). The thought
behind this was to ensure that the networks could distinguish between events separated only in
time or frequency. From these three signals evenly divided training (totalling 180 data vectors)
and testing (totalling 60 data vectors) sets were constructed by adding simulated EEG noise as
described in section 3.1 (under Simulated Set) with different average power relative to the sig-
nal. In Figure 4.2 the results of the two models are compared for sets generated with different
amounts of noise. Each model was trained for 25 epochs and then evaluated on the testing set.
This was repeated with five separate initialisations to give a more stable result. The models used
were the same as those used for similar signal lengths (1.5 s) in the rest of the study.

From these results it is clear that both models perform their basic function correctly and are
easily able to separate the three signals when little noise is present. The test also indicates that
the Morlet network is less sensitive to noise since it is able to perform well even for very noisy
signals, with a classification accuracy above 98 % when the power of the noise is up to ten times
larger than that of the signal (SNR = 0.1). It should be noted that given the simplicity of the task
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Figure 4.1: The three simulated signals used to test the noise sensitivity of the Morlet and
reassignment networks, presented here in the same figure without added noise.
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Figure 4.2: Performance of the Morlet network (blue) and the CNN2D - reassignment (red)
trained for 25 epochs on three classes of simulated signals with different levels of noise.
The Signal-to-Noise Ratio (SNR) specifies the power of the signal relative to the noise
in the generated data sets. Each test was performed five times to account for the random
initialisation of the model and the resulting accuracies were averaged. The accuracies are
calculated as the fraction of correct predictions on an unseen set of 60 signals with added
noise.
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4.2 Results from SM Data Set

this performance will likely be worse in a real scenario for both models, but the comparison
between the two models is still a good indication of which is more noise sensitive. It should
also be noted that for signal lengths of 1.5 s the Morlet network is significantly smaller than
the reassignment network (4753 parameters for Morlet compared to 8219 for reassignment).
Additionally, the training time was longer for the reassignment network, even when excluding
the preprocessing of the data.

4.2 Results from SM Data Set
Model accuracies and comparisons
To start the results and discussion section of the SM set, the overall performance of investigated
networks are presented in table 4.1. As initial discussion, the table shows clearly significant
performance for three-way classification for each new model. New models are also compared to
existing counterparts presented in [Basic Knezevic and Heimerson, 2018], named CNN1D and
CNN2D networks which were designed by the cited authors. [Basic Knezevic and Heimerson,
2018] also applied their two networks to the SM set, and achieved a higher accuracy. However,
as the accuracies were not replicable the new inferior accuracies resulting from our tests of these
networks are included for a fair comparison to network models presented in this report.

Table 4.1: Table showing predictive capabilities of our networks applied to classify seman-
tics (faces/landmarks/objects) in the SM set. Presented values are the average 10-fold cross-
validation accuracies, averaged over all subjects. The Morlet network performs best and
compares well to the previously developed methods (CNN1D) and the CNN2D networks
perform similarly to similar methods applied on ordinary spectrograms. The classification
is between the three semantic classes, meaning that random chance would give an accuracy
of 0.33.

Network \ Data Set SM Study set
CNN1D 0.66
Morlet 0.74
CNN2D - Spectrogram 0.45
CNN2D - Reassigned Spectrogram 0.44

In table 4.1, the one dimensional models are in general better compared to the time-
frequency convolutional neural networks. One partial explanation for this could be the higher
amount of parameters needed in two dimensional CNNs as well as the fact that two dimen-
sional CNNs are the best models for pattern recognition in images. Separating identities in
time-frequency representations are locations and overall distributions of power in the spectro-
gram, not localised patterns. As seen in Figure 4.3, reassignment increases contrast in the time
frequency image and introduces a property of sparsity to the image. This is a positive and nega-
tive characteristic since it is easier to work with while also creating very small gradient in many
parts of the spectrogram. One should also note that the highest peaks in both spectrograms are
not necessarily the most informative as EEG has high magnitude noise. It is also noteworthy
that the reassignment network performs slightly worse than the CNN2D using ordinary spectro-
grams. This could be due to the CNN being even worse at classifying the more sparse reassigned
spectrograms or suggest that reassignment, when used for signals containing components with
different properties, needs to be more precisely tuned.
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Figure 4.3: Three-dimensional plot showing the spectrogram and reassigned spectrogram of
one trial for one EEG channel. Notice the large difference in intensity scale between the two
subfigures and the much greater localisation of most peaks in the reassigned spectrogram.

Evaluation of Reconstructed Signals from Reassigned
Spectrogram
Exploring alternative ways to process information from the reassigned spectrograms, different
methods of reconstructing signals from spectrograms, as outlined under Reconstruction in sec-
tion 3.4, were tested. The reconstructed signals were then classified using the Morlet network.
As explained in the Method section, multiple different ways of estimating the amplitude and
phase of components in the reconstruction were tried. The average cross-validation accuracy of
all subjects of the semantic data set for multiple ways of reconstruction are presented in table
4.2.

Table 4.2: Average 10-fold cross-validation accuracies of Morlet network over all 18 sub-
jects using reconstructed signals of the SM set as input data. Ordinary and reassigned spec-
trograms are denoted as Spect and ReSpect, with LS signifying that least-squares estimation
was used to match the phase and amplitude from the original signal. As one can see the re-
assignment and subsequent reconstruction slightly impairs class predictability compared to
using the ordinary spectrogram. However, a lot of class separating information is retained
despite the very sparse reconstructed representation, as can be seen in the accuracies of re-
constructed signals. The classification is between the three semantic classes, meaning that
random chance would give an accuracy of 0.33.

Signal Acc.
Raw 0.74
Spect 0.44
SpectLS 0.62
ReSpect 0.43
ReSpectLS 0.59
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4.2 Results from SM Data Set

An interesting result here is that no matter which reconstruction method was used there is a
significant level of predictability. Due to time constraint the methods were not optimised over
multiple small hyper-parameters such as discriminant distance between peaks, number of in-
cluded peaks and actual reassignment parameters. Thus one could probably expect a slightly
higher possible accuracy. Here we again find that the results for reassigned spectrograms are
nearly identical and even slightly worse than those for ordinary spectrograms. This further im-
plies that the reassignment does not contribute significantly when not properly adapted to the
signal content.

Transfer Learning & Epoch Cropping
Transfer learning was implemented by training a Morlet network on study data from all subjects
except one. This network was evaluated, trained and again evaluated separately on the excluded
subject. Due to large training times for evaluation, the evaluation was repeated for six random
subjects to give an average accuracy over epochs. In Figure 4.4 we can see that model trans-
ferring results in both faster training and a higher final accuracy. This is a comforting result,
that data analysis of the SM set (and most certainly the EM set) can rely on the common per-
formance improvements of transfer learning. As EEG data is limited, using similar larger data
sets to increase learning speeds and validation generalisability even in unseen data is greatly
appreciated.
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Figure 4.4: Performance of the Morlet network averaged over 6 different subjects. The
model was trained in four differing scenarios. Two scenarios learning on whole epoch data
and two scenarios learning on cut data from image onset to 1.5 second after image onset.
Each of the pairs of scenarios had one scenario running on a freshly initiated network and
the other starting out with a model transferred from a training scheme on data from 17 other
subjects. One can see a clear increase in initial accuracy for transferred networks compared
to newly initiated Morlet networks. Transferred networks also performed better after many
epochs as well.
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Furthermore, the initial validation accuracy (epoch 0 in Figure 4.4) reached an average of
over 0.55 for the six subjects for the transferred models compared to the freshly initiated model
predict accuracy of 0.33. From this we can see that there is indeed generalisability in the data,
meaning that the processes classified are similar between subjects. For subjects with inherently
high accuracy probabilities, the newly transferred model tested well on the subject. For example,
the transferred Morlet network had, on subject 3, an accuracy of 0.83 before starting to train
on the subject. This could be interpreted as that the classification model actually generalises
fairly well over subjects overall, but has problems predicting strongly deviating signals from
previously seen data.

Heat Maps of Important Time-Frequency Stamps
As an investigative method to find time intervals that have a significant effect on classification
of the SM set, grad-CAM was used. The method was only applied to the SM set because of
the large amount of total trials over subjects, which was required for creating reasonable non-
overfitting models.

Figure 4.5 shows a grad-CAM heatmap for subject 14 after a pretraining algorithm has
fitted a model towards 17 other subjects. The grad-CAM is averaged over multiple trials of
different classes to get a reasonable grad-CAM, because grad-CAMs from individual signals
were very noisy and hard to make conclusive observations on. The signal shown in the figure is
not cropped, but has gone through convolutions (each shortening the signal by the length of one
window) and thus image onset lies at approximately 1.25 seconds into the signal. Thus one can
see that the grad-CAM method successfully identifies an interesting period from 150-600 ms
after onset. Stimulus information is processed in this time range according to previous works
on this data set as well as previous studies [Bramao and Johansson, 2018]. Thus grad-CAM
may prove useful for investigation of unknown EEG processes, and perhaps even other time
series, when using convolutional neural networks and when specific expertise is unavailable. In
addition to these conclusions, the grad-CAM also highlights a problem with the model. This
is the fact that pre-stimulus-onset (t < 0) the heatmap is not zero. Logically, all these pixels
should have zero gradient and zero input into the classification since the subject has not been
shown any image at that point in time. However, these pixels have a non zero gradient and thus
make a difference in classification, which causes the model to be less accurate generally, since
any gradient in this area is the product of overfitting. Thus, grad-CAM shows the strength for
properly epoched and preprocessed signals for the performance of the Morlet network.

Figure 4.5: An averaged grad-CAM heatmap from multiple trials from subject 14 after
pretraining a Morlet network on a pool of trials from multiple separate subjects. Gradient
of the grad-CAM is normalised to the range 0 to 1. The input signal here is epoched from
-1.5 to 2.5 second from stimulus onset in the study phase of the SM set. Although noise and
variance in the gradient from the small sample size, the grad-CAM has arguably identified
areas of interest in the signal as there is a highlighted time period soon after stimulus onset.
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4.2 Results from SM Data Set

Retrieval Performance
Some tests were conducted on data collected during the retrieval phase in order to use this easily
available data to compare model performance on a different task and draw some conclusions
regarding the difference between the SM data and the novel EM data. Analysis of this data was,
however, not the main focus of this thesis and as a result of time constraints and lacking data (for
certain subjects) these tests are not performed for all subjects. Several tests were performed to
test the hypothesised connection between signals during the study phase and the retrieval phase,
with varying degrees of success. The accuracies presented in Table 4.3 were calculated averages
from 10-fold cross-validation on three subjects using our best performing network, the Morlet
network, on the SM data set. The three subjects (1, 3 and 8) were randomly selected from those
that have a sufficient number of retrieval trials, at least around 90 trials, to give accuracy when
using retrieval data as training set.

Table 4.3: 10-fold cross-validation accuracies of the Morlet network using data from dif-
ferent phases of the SM experiment as training and testing sets averaged over three test
subjects selected to have a sufficient number of retrieval trials. Significant accuracies are
achieved for networks trained on retrieval data both when testing on retrieval and study
data, which was not the case in previous studies. The classification is between the three
semantic classes, meaning that random chance would give an accuracy of 0.33.

aaaaaaaaa
Training:

Testing:
Study phase Retrieval phase

Study phase 0.74 0.34
Retrieval phase 0.39 0.46

In the top left corner of Table 4.3 the accuracy when training and testing on data from the
study phase (for all subjects, already presented above) is included for comparison. The first and
most intuitive test on retrieval data (identified as training: study, testing: retrieval) is similar to
those performed by [Bramao and Johansson, 2018] and [Basic Knezevic and Heimerson, 2018].
The test simply trains a network on the data collected during the study phase, hoping that the
features extracted from this data can be generalised to give predictive accuracy on the retrieval
data. This would support the theory that similar processes in the brain occur for observation and
recall of an image. No significant accuracy (0.34) was found in this test, which was somewhat
expected due to similar or only marginally better results from the previous studies on the same
task. To analyse further, in order to examine if there is any predictive information whatsoever
in the retrieval data that allows classification into the three semantic classes, a second test used
retrieval data both as training and validation set. This resulted in an accuracy (0.46) that suggests
that there is indeed information present in the trials that can be used to classify into the desired
classes. A similar test performed by [Basic Knezevic and Heimerson, 2018] found no significant
accuracy, but we can not definitively say if this is due to differences in the test itself or in model
performance.

These results leave two possibilities for the relation between the two data sets. One is the
possibility that the signals in the two sets are indeed not similar and originate from different
processes. This would mean that there is no underlying connection that can be found by the
model. We are hesitant to accept this explanation, since results indicating that there is indeed
such a link have been presented by [Bramao and Johansson, 2018]. The second possibility
would be that there is a connection, but that the method for some reason fails to find it. This
could in turn have several causes, for example that the experiment fails to capture the signal at
the moment of visualisation (this is discussed further below). Another possible reason for the
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lack of accuracy when training on study data could be that the network extracts features that
are not useful for classifying retrieval data. Under the working assumption that there is some
connection we devised a third test.

The third test on retrieval used the retrieval data as training set and the study data as testing
set; a simple inversion of the original test, also similar to tests performed by [Basic Knezevic
and Heimerson, 2018]. The idea behind the test is that a network trained on study data could
be using features based on information from visual stimulus that is not present in the retrieval
data. If the signal originating in information related only to direct observation is significantly
stronger than signals that originate in processes that are common between observation and recall
(the ones we are trying to find) this could (hypothetically) cause the network to rely entirely on
features related only to direct observation. In reversing the problem, the hope is that the features
extracted from retrieval data could be the ones that are common between the two sets. The test
result from ten separately initialised networks trained on all retrieval data for ten epochs from
three subjects and tested on all available study data (for each subject) gives an average accuracy
of 0.39. Given the large testing set (in this case 185 trials) and the consistency of the average
over ten separate initialisations (with outliers reaching accuracies above 0.51) and averaged
over three subjects this seems to indicate a relationship beyond random chance.

An issue affecting the quality of the retrieval data in both studies is the time gap between the
end of measurements and the questions in the retrieval phase. Data is only collected while the
stimulus word is shown, after which the subject is given five seconds to reply to each question.
This means that it is very possible that the processes we wish to measure do not occur until after
the measurements have stopped. The result is that the subject could answer both questions cor-
rectly while the associated signal is devoid of any information about the relevant brain process.
Additionally, the number of trials available for each subject is limited by the number of correct
responses in the retrieval phase, since an incorrect response indicates that the correct mental
image is not present. This means that some subjects have very few trials and cannot be reliably
trained on the retrieval data.

4.3 Results from EM Data Set
Comparison of Semantic and Emotional Classification
Before any analysis on the performance and success of predictions of EEG in the context of
emotional images can be done one should recognise a fairly large impediment. This is the plain
fact that the authors of this thesis preprocessed the EM set. Due to a lack of experience within
EEG preprocessing and artefact cleaning a more automatised and general application of pre-
processing and data cleaning was chosen. Although unknown, a substantially lower theoretical
accuracy ceiling exists for this set for several reasons discussed below. Therefore cannot reliably
expect accuracies to be nearly as good as those obtained from the SM data set.

The Morlet network achieved an average cross validation accuracy of 0.41 (cohen’s κ =
0.12) for classification into the three emotional classes after training for 30 epochs, averaged
over all four subjects from the EM set. Initially this could be seen as quite low. During the train-
ing the cross validation accuracy lies above 0.33 which suggests an identification of some sort
of emotion classification separability. A two-way semantic classification was also performed for
this data set as well (since all images also had face/scene labelling). This test yielded a respec-
tive accuracy of 0.75 (cohen’s κ = 0.5). We know this level of classification accuracy should be
possible, as high accuracy has been redundantly shown for the SM set in this very report. This
is not as good as semantic classification in the SM set, but this can reasonably be explained by
poor prepossessing and cleaning of data. If one compares the respective Cohen’s κ , as a simple
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Table 4.4: Confusion matrix for validation predictions for 10-fold cross-validation, averaged
over all subjects in the EM set. One can compare the prediction accuracies for each class
as well as inspect the total accuracies. The classification is between the three emotional
classes, meaning that random chance would give an accuracy of 0.33.

Pred Pos Pred Neu Pred Neg
True Pos 0.43 0.32 0.26
True Neu 0.31 0.38 0.31
True Neg 0.30 0.30 0.40

way to compare model performance in the two cases, the two metrics do not coincide. This
suggests that the model doesn’t under-perform due only to the quality of the data, but instead
that there is some problem with classifying emotions in the EM set.

To see if the model can predict certain classes more easily than other, a confusion matrix was
calculated for each fold and averaged over folds and over subjects. This matrix is presented in
table 4.4. Note that each row in the matrix sums to 1. One can see that the previously mentioned
0.41 accuracy is shown in the confusion matrix as well. If one more closely studies the matrix,
one can note that when the model misclassifies positive images the model is more likely to
classify the image as neutral. In addition to this, when negative images are misclassified there
is an equal likelihood for a predicted positive or neutral label. This would suggest that the
model can classify the negative against either positive or neutral image, but has a harder time to
separate positive and neutral images from each other. However, a contradiction exists in the fact
that there is an equal prediction chance for positive and negative images when misclassifying
neutral images, according to the confusion matrix.

Multiple two-way classifications between two out of three emotion images were performed
as a response to these observations from the confusion matrix, as well as 2-versus-1 classifica-
tions, however these performed equally to three-way classification, and thus we concluded that
no certain emotional class separations were easier or clearer than another, at least in regards to
our results.

According to previous reports, emotional content of images are coded in the gamma band
which we had excluded during testing on the SM set [Mohammadi et al., 2015] [Bazgir et
al., 2018]. Thus we conducted multiple model evaluations with bη initialisation up to 60 Hz.
During these tests we also reprocessed the raw data to filter with a low-pass filter frequency of
100 Hz to avoid filtering away any important components. This had no distinguishable effect
on the performance of the model. Since this was implemented by simply spreading the same
number of Morlet wavelets over a larger interval it is possible that relevant information between
the wavelets was missed to a higher extent in these tests. An intuitive improvement would be
to increase the number of wavelets proportionally to the increase in interval length, but this
runs into the problem of giving the network far too many parameters. In combination with the
very small data sets available we found that this only resulted in overfitting. However, given a
sufficient amount of data this could be an effective option.

Uncertainty in the Emotional Memory Data
There are several aspects of the novel EM experiment that affect the quality and validity of the
resulting data. One of the largest factors that potentially ruins parts of the data is mislabelling
of the stimuli. This could conceivably occur for a variety of reasons, depending both on the
content of the image and - in the case of emotional data - the subjective experience of the test
subject. Some of the images in the stimulus set do not neatly fall into the semantic categories
of "faces" and "scenes". For example, many "scenes" contain prominent faces in the image and
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it is not impossible that this could cause the subject to react to the image as if it belonged to
the "faces" category. This would mean that the trial contained information that to the models
looks like the reaction to a face but is labelled as a "scene". In the previous SM data set, the
semantic categories were more separate ("faces", "landmarks" and "objects") although it is still
theoretically possible that an image categorised as "landmark" could contain an object that the
test subject reacted to. Although this kind of mislabelling is technically possible, we do not
judge it to be a large source of error, in part due to our own experience as test subjects as we
found little difficulty in classifying the semantic content of the images.

We believe, however, that the most significant contribution to mislabelling in the EM data is
the subjective experience of the test subject compared to the emotional label. When partaking
in the experiment ourselves we felt that a significant number of images were labelled differently
than our emotional response. For example, images of skydiving and parachuting were labelled
as "positive", but the reaction to these images for a test subject that is afraid of heights would
likely be negative and the reaction of a test subject that simply does not enjoy skydiving could
be neutral. Another illustrative example is the explicit erotic material that is categorised as
"positive". The erotic material consists mostly of images of women and the reaction of the test
subject can be assumed to vary greatly depending on whether or not they are attracted to women.

Since almost all of the images are to some extent subjective in their emotional effect we can
expect a significant number of mislabelled trials for every subject. This causes two problems in
the training phase. Firstly, the sample size of correct training data is reduced, meaning that we
can expect lower overall accuracies and quicker overfitting to the training data. Secondly, we
introduce false data points that mislead the network, changing the weights in ways that destroy
the structure for correct classification into the three classes. The first problem is unavoidable
and can only be compensated by collecting more data. The second problem could be avoided if
the experiment included a subjective labelling phase, where the subject after having completed
the experiment could label the seen images according to their reaction. This data could then be
used to remove incorrectly labelled trials individually for each subject.

Another source of uncertainty in the EM data is the difficulty in making the test subject
actually experience the emotion depicted in the image presented. Since the experiment is made
in a very safe controlled environment and the subject is focused on completing the assigned
task this is far from certain. This could lead to further disparity between the expected and
actual content of the EEG and in the extension means that conclusions drawn from this test are
not necessarily true in a scenario where the subject experiences more intense "real" emotional
responses.

In summary, the effects presented above likely cause significant deterioration of the EM
data when compared to the SM data. This can serve to explain at least part of the disparity in
accuracy between the emotional and semantic classifications.
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5
Conclusion

The main comparison of this thesis study, that between the Morlet network and the reassign-
ment network, resulted in superior performance for the Morlet network on both simulated and
real data. A clear conclusion from the tests is also, however, that the conventional 2D convolu-
tional net used here to analyse the reassigned spectrograms is not well suited to the task. The
traditional convolution focuses too much on kernel-level geometry, does not in an efficient way
use the difference between temporal and frequential information and is a very inefficient way to
analyse the sparse matrices generated by reassignment. It would therefore be unwise to discard
the method of reassignment as a whole due to a poorly adapted network.

From the analysis of the EM data set we can conclude that the task of emotional classi-
fication is more difficult than semantic classification. Even when taking the less sophisticated
preprocessing of the EM data into account by comparing semantic and emotional classification
on the same set we get significantly lower performance on the latter task. This could depend on
both poor adaptation of the networks to the problem of emotional classification, since they were
mainly tested using the SM data set, and on the difference between emotional and visual EEG
data.

The use of GradCAM in conjuncture with the easily interpretable frequency features of the
Morlet network has resulted in an intuitively understandable model. This is important if further
neurological conclusions are to be drawn from the results of applying the network and simplifies
the design and optimisation process considerably. Given scientifically relevant tasks the model
is capable of contributing to a deeper understanding both of the learning process itself and what
specific features in time and frequency are used to draw conclusions.

The tests of transfer learning with the Morlet network show surprisingly good results, con-
sidering that validation is carried out on previously unseen subjects. This strongly implies that
the network finds features that are very similar for equivalent visual processes across subjects.
In addition, the method is shown to significantly increase performance after subject specific
training for the previously unseen subject is performed. This effect is especially pronounced if
only a small amount of data or a short training time is available for the new subject.

Using the Morlet network for reverse classification of the retrieval data (training on retrieval
data and validating on study data) gave significant accuracies across multiple subjects and folds
where previous tests on the same data had yielded no significant results. The same was true for
training and validating on retrieval data. This supports previous theories claiming similarities
between the perception and memory processes and suggests that the feature selection of the
Morlet network is indeed selecting relevant high-level features that correspond to the underlying
processes, as opposed to only finding surface-level patterns in the data.
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6
Continuation

The results of this study reveal several interesting possibilities for further study. Looking at the
specific problem examined in the context of the novel emotional experimental data, it is clear
that the task of classifying emotional content is not equivalent to classifying semantic content.
The accuracies of our models further suggest that the emotional problem is more difficult than
the semantic one, at least using these methods. Further study into what methods perform best at
this task and why, possibly with a more robust basis in neurological theory to aid model design,
would be valuable since it would allow for better analysis of for example the link between
observed and remembered emotional data.

The area of spatial analysis was left mostly unexplored in this study due to the limited
time and scope. Integrating the existing information about the location of electrodes into the
networks tested here (for example by weighing the spatial convolution in the Morlet network
based on electrode distance) could enhance performance and, by applying analysis methods like
the GradCAM, illustrate the spatial relations between signal components.

In order to further examine the reassigned spectrogram for EEG signals our results seem
to indicate that a better method for analysing the resulting spectrograms is required. Conven-
tional image classification networks like 2D convolutional nets display many weaknesses when
applied to this kind of data. It is also clear that the reassignment network as implemented here
is more sensitive to differences in the given task compared to the Morlet network. Increased
performance could likely be achieved if the reassignment network was more precisely tailored
to the task at hand or, alternatively, made more adaptable by exploring a range of different pa-
rameters (similar to the Morlet network). If, for certain problems, the reassignment method has
desirable properties one possibility would be to use the two models presented here in tandem,
using the Morlet network to identify features and using the corresponding parameters for re-
assigning the spectrograms. Making the reassignment method learnable, unsuccessfully tried
during our work, might still be possible.

As expected of a study with limited scope and time, many parts of our methods could be fur-
ther optimised and more thoroughly tested, likely resulting in somewhat improved performance
and more statistically grounded conclusions.
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A
Morlet Layer

class MorletConvRaw(keras.layers.Layer):

def __init__(self, input_dim, Fs, input_shape=[75,31,1],etas = 25,
wtime = 0.36):

super(MorletConvRaw, self).__init__()
self.nchan = input_dim[1] #Antal kanaler
self.ttot = input_dim[0] #Tiden per trial
self.etas = etas #Antal fönster
self.wtime = wtime #Fönsterbredd i tid
self.wlen = int(self.wtime*Fs)
self.a = self.add_weight(name=’a’, shape=(self.etas,1),
initializer=keras.initializers.Constant(value=a_init),

trainable=train_a)
self.b = self.add_weight(name=’b’, shape=(self.etas,1),

initializer=keras.initializers.RandomUniform(minval=b_init_min, maxval=b_init_max, seed=1),
trainable=train_b)

def call(self, inputs):
#Create a Morlet window tensor.
win = tf.convert_to_tensor(np.linspace(-self.wtime/2,self.wtime/2,self.wlen,dtype=’float32’))
win = tf.raw_ops.MatMul(

a = tf.raw_ops.Diag(diagonal=win),
b = tf.constant(np.ones((self.wlen,self.etas),
dtype=’float32’)))

aterm = tf.raw_ops.Transpose(x = tf.raw_ops.MatMul(
a = tf.raw_ops.Diag(diagonal = tf.raw_ops.Mul(x = self.a,y =self.a/2)[:,0]),
b = tf.constant(np.ones((self.etas,self.wlen),dtype=’float32’))),perm=[1,0])

mwin = tf.raw_ops.Exp(x = -tf.raw_ops.Mul(x = tf.raw_ops.Mul(x=win,y=win),y = aterm))
costerm = tf.raw_ops.Transpose(x = tf.raw_ops.Cos(x = tf.constant(2*math.pi)*tf.raw_ops.MatMul(

a = tf.raw_ops.Diag(diagonal= self.b[:,0]),
b = win,transpose_b=True)),perm=[1,0])

mwin = tf.raw_ops.Mul(x= costerm,y = mwin)

# Expand
tinput = tf.raw_ops.ExpandDims(input = inputs,axis = -1)
mwin = tf.raw_ops.ExpandDims(input = mwin, axis=1)
mwin = tf.raw_ops.ExpandDims(input = mwin, axis=1)
# Convolve.
output = tf.raw_ops.Conv2D(input = tinput,filter = mwin,strides = [1,1,1,1], padding=’VALID’)

return output
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B
Reassignment

function [SS,MSS,TI,FI,H]=screassignspectrogram1(X,lambda,candsig,NFFT,NSTEP,Fs,e);

% SCREASSIGNSPECTROGRAM [SS,MSS,TI,FI,H]=screassignspectrogram(X,lambda,candsig,NFFT,NSTEP,Fs,e);
% computes and plots the windowed spectrogram and the scaled reassigned spectrogram.
%
% Output data
%
% SS: The Gaussian windowed spectrogram
% MSS: The scaled reassigned windowed spectrogram
% TI: Time vector for the time-frequency plots
% FI: Frequency vector for the time-frequency plots
% H: The Gaussian window
%
% Input data
%
% X: Data sequence
% lambda: Parameter of Gaussian window.
% candsig: Candidate sigma, the assumed scaling factor of the signal
% NFFT: The number of FFT-samples, default NFFT=2048.
% NSTEP:The time-step between to spectrum calculations, default NSTEP=1.
% Fs: Sample frequency, default Fs=1
% e: Smaller spectrum values than this number are not reassigned, default e=0.
%

% Gaussian window calculation

Hl=10*lambda; %Long enough window
H=exp(-0.5*([-Hl/2:Hl/2-1]’/lambda).^2);

% TH and DH needed for the reassignment

Tvect=[-Hl/2+1:Hl/2]’;
TH=Tvect.*H;
DHd=diff(H);
DHd2=interp(DHd,2);
DH=[0;DHd2(2:2:end)];

data=X;
data=data(:);

% Spectrogram calculation

%mvect=[0:NFFT-1];
data=[zeros(fix(Hl/2),1);data;zeros(fix(Hl/2),1)];
datal=length(data(:,1));

timevect=[0:NSTEP:datal-Hl-1];
TI=[];
FF=[];
TFF=[];
DFF=[];
MSS=zeros(NFFT/2,length(timevect));
nmat0=zeros(NFFT,length(timevect));
mmat0=zeros(NFFT,length(timevect));
nmat=zeros(NFFT,length(timevect));
mmat=zeros(NFFT,length(timevect));
for i=0:NSTEP:datal-Hl-1

testdata=data(i+1:i+Hl);
testdata=testdata-mean(testdata); % Mean value reduction!
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Appendix B. Reassignment

F=fft(H.*testdata,NFFT);
TF=fft(TH.*testdata,NFFT);
DF=fft(DH.*testdata,NFFT);
FF=[FF F(1:NFFT/2)];
TFF=[TFF TF(1:NFFT/2)];
DFF=[DFF DF(1:NFFT/2)];
TI=[TI i];

end
SS=abs(FF).^2;
% SS = SS + 0.1; % Add epsilon to check effect on final spectrogram
TI=TI/Fs;
FI=[0:NFFT/2-1]’/NFFT*Fs;
e = 0.02*max(max(SS)); %Mixtra med senare!
% Scaling factors for the scaled Gaussian reassignment

fact=(lambda^2+candsig^2)/(lambda^2);
fact2=(lambda^2+candsig^2)/(candsig^2);

% Scaled reassignment calculation

% imaginary = max(max(imag(FF)))

for n=1:length(TI)
for m=1:NFFT/2

if SS(m,n)>e
nmat0(m,n)=fact/NSTEP*(real(TFF(m,n).*conj(FF(m,n))./SS(m,n)));
mmat0(m,n)=NFFT/2/pi*fact2*(imag(DFF(m,n).*conj(FF(m,n))./SS(m,n)));
nmat(m,n)=n+round(nmat0(m,n));
mmat(m,n)=m-round(mmat0(m,n));
if mmat(m,n)>0 & mmat(m,n)<=NFFT/2 & nmat(m,n)>0 & nmat(m,n)<=length(TI)

MSS(mmat(m,n),nmat(m,n))=MSS(mmat(m,n),nmat(m,n))+SS(m,n);
else

mmat(m,n)=0;
nmat(m,n)=0;

end
end

end
end
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