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Abstract

Electroencephalography (EEG) is a medical technique for measuring brain
activity through several channels connected to the scalp. Interpreting EEG
data is a difficult problem because of the large amount of noise contained
in the data. Using spectral methods on EEG data can improve the ability
to interpret the data, especially using a time-frequency method called the
scaled reassigned spectrogram which has been shown to perform well on
data with similar properties to a model containing Gaussian envelope tran-
sients. A technique for classification of data transformed by time-frequency
methods is to use convolutional neural networks (CNN), which are known
to be successful at image classification. In this thesis, spectral methods and
CNNs are combined for use on EEG data in order to identify the location
of a sound, whether a person hears the sound in the left or in the right
ear. The best classification results obtained in this thesis were for a single
channel near the right ear without transforming the data at 60.13%, and
using singular value decomposition (SVD) on four channels near each ear
and the scaled reassigned spectrogram with a result of 59.47%. These are
both significant results.
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Chapter 1

Introduction

The reassigned spectrogram is a spectral method that was first mentioned
in 1994 by Auger and Flandrin [1]. The purpose of the method was to
get better resolution on the peaks in power when viewing the spectrogram,
and thereby be able to see the signal more clearly. By adding scaling fac-
tors to the reassignment, the scaled reassigned spectrogram is obtained. In
2015 it was shown that the method works well for data containing Gaussian
envelope transient signals [2], meaning an oscillating signal with Gaussian
envelopes, where an envelope is a smooth curve outlining the extremes of
the signal.

Though the scaled reassigned spectrogram has been theoretically shown to
work well for data holding Gaussian envelope transients, it still has to be
evaluated on a number of different data sets. A type of real-world data
that appears to behave like Gaussian envelope transient data is electroen-
cephalography, often referred to as EEG.

EEG is a medical technique that measures activity in the brain. The method
consists of placing a cap with several channels on a person’s scalp. Each
channel corresponds to a signal output, and each signal output is a result of
activity in a certain part of the brain, due to the fact that the channels are
evenly distributed over the scalp.

EEG was discovered in 1929 by German psychiatrist Hans Berger [3]. Since
then it has been researched continuously, and still is today, as being able
to interpret EEG is something that could help people with injuries and dis-
abilities in their daily life. Currently, a system for interpretation of EEG
signals called BCI (Brain-Computer Interface) is being researched, which
aims to create a direct communication pathway between the brain and an
external device. An example of a use of BCI [4] is to develop compensating
systems to help people with severe motor control disability to recover mo-
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bility. There are many other areas where interpreting EEG can have a large
impact. The BCI project that is driven at Lund University [5] sees oppor-
tunities like smart hearing aids, forensics tools and gaming-devices, along
with other health-related applications, such as rehabilitation. An important
part to be able to do this is to classify the EEG data.

A great tool for classification is the use of artificial neural networks, as they
are known to perform well as classifiers. For image classification, a convo-
lutional neural network is typically used. A convolutional neural network,
or a CNN, is a type of artificial neural network that uses a specific type of
filter for image recognition. The reason for using CNNs on signals trans-
formed by the scaled reassigned spectrogram is that the signals will become
two-dimensional and therefore can be seen as images.

1.1 Thesis Objective

The aim of this thesis is simply to classify real EEG data. The goal is to
be able to tell if a sound is coming in the left or the right ear on a person,
only by using the EEG data set. The idea is to classify by using the scaled
reassigned spectrogram, but other spectral methods will be tested and com-
pared to this method.

The classification will be done by using a CNN for all the spectral methods,
and it will be kept similar for all methods. The only difference is between
the one-dimensional methods, simple raw data and the periodogram, and
the two-dimensional methods, the spectrogram and the scaled reassigned
spectrogram. This is because of the so-called convolutional layer which
preferably should be two dimensional but has to be one-dimensional for the
raw data and the one-dimensional periodogram.

1.2 Structure of the Thesis

In chapter 2 of the thesis, all theoretical concepts are specified. Secondly, in
chapter 3 the method is described, where the used CNNs are specified. The
rest of the method is divided into two parts, where the first part describes
a simulation study and the second part the use of real data. In chapter 4
the results are presented and a discussion about the results is carried out.
The first part of the chapter regards the simulated data and the second part
regards the real data. The last chapter of the thesis, chapter 5, contains the
conclusions.
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Chapter 2

Theory

Contained in this chapter are the definitions of all the spectral methods used
in the thesis. These are the periodogram, the spectrogram and the scaled
reassigned spectrogram. Then the signal-to-noise ratio is defined as well as
the singular value decomposition. The signal-to-noise ratio is used when
creating simulated data, and singular value decomposition is used when
merging several sequences of real data. Lastly, artificial neural networks are
described, as well as convolutional neural networks.

2.1 Spectral Methods

In spectral analysis, a common and useful tool is time-frequency analy-
sis. Time-frequency methods are representations of the power of the sig-
nal under consideration, over frequency and time. The scaled reassigned
spectrogram is a time-frequency method, but the most common one is the
spectrogram. Another used method that is not a time-frequency method is
the periodogram. The periodogram is an estimate of the stationary spectral
density of a signal and is defined below. For all spectral methods, integration
runs from −∞ to ∞ if nothing else is specified.

2.1.1 The Periodogram

The periodogram is normally defined for stationary discrete-time data [6].
The discrete-time data is replaced with the continuous-time signal x(t) for
consistency with all other formulas, and therefore we define the continuous-
time Fourier transform

X (f) =

∫
x(t)h(t)e−i2πftdt (2.1)

where t is time, f is the frequency and h(t) is the window. Then the estimate
of the spectral density is
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Figure 2.1: Two simulated Gaussian envelope transients and their corre-
sponding periodograms. Signal 1 has the time centre values at 1, 2 and 3
seconds while signal 2 has all its centre values at 2 seconds.

R̂X(f) = |X (f)|2 (2.2)

in concordance with the periodogram definition. Figure 2.1 shows two sim-
ulated signals, Gaussian envelope transients, with their corresponding un-
windowed periodograms. The first signal has the time centre values at 1,
2 and 3 seconds, and the second signal has all the time centre values at 2
seconds. Notice that the two periodograms are identical.

2.1.2 The Spectrogram

To define the spectrogram we first define the continuous-time STFT (short-
time Fourier transform) of the signal x(t) as

F hx (t, f) =

∫
x(s)h(s− t)e−i2πfsds (2.3)

where t is time, f is the frequency and h(t) is the window [7]. From this we
get the spectrogram as

Shx(t, f) = |F hx (t, f)|2. (2.4)

In figure 2.2 a spectrogram computed on real EEG data is shown.
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Figure 2.2: A spectrogram computed on real EEG data.

2.1.3 The Scaled Reassigned Spectrogram

The primary method considered in this thesis is the scaled reassigned spec-
trogram. Firstly the spectrogram values t and f are relocated to t̂x and f̂x,
and the reassigned spectrogram is found as

RShx(t, f) =

∫ ∫
Shx(s, ξ)δ(t− t̂x(s, ξ), f − f̂x(s, ξ))dsdξ. (2.5)

Here s is the integration variable in time, ξ the integration variable in fre-
quency and δ(t, f) is the two dimensional Dirac impulse defined as

∫ ∫
g(t, f)δ(t− t0, f − f0)dtdf = g(t0, f0) (2.6)

where g(t, f) is a function. To get the scaled reassigned spectrogram we use
the scaling factors ct and cf to compute the reassignment as

t̂x(t, f) = t+ ctR

(
F thx (t, f)

F hx (t, f)

)
, (2.7)

f̂x(t, f) = f − cf
1

2π
I

(
F
dh/dt
x (t, f)

F hx (t, f)

)
, (2.8)

where R is the real part and I is the imaginary part [7]. F thx and F
dh/dt
x

are calculated using (2.3) with the windows t · h(t) and dh(t)
dt respectively.

In figure 2.3 the spectrogram and the scaled reassigned spectrogram on
simulated data containing three Gaussian envelope transients are plotted.
Both the spectrogram and the scaled reassigned spectrogram have their time
centre at 2 seconds and the frequencies 5, 10 and 15 as well as an SNR of
20 dB (see section 2.2 for SNR).
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Figure 2.3: A comparison of the spectrogram and the scaled reassigned
spectrogram on simulated Gaussian envelope transient data.

2.2 Signal-to-Noise Ratio

Signal-to-noise ratio, or SNR, is defined as

SNR =

∫
x2(t)dt

σ2noise
(2.9)

where x(t) is the signal assumed to be transient and σ2noise is the variance of
the noise. In a decibel scale SNR is

SNRdB = 10log10(SNR). (2.10)

(2.9) and (2.10) indicates that a lower SNR, or SNRdB, means a greater
amount of noise relative to the signal.

2.3 Singular Value Decomposition

The singular value decomposition, or SVD, is a type of matrix factorization.
If A ∈ R is an m× n matrix, then the full SVD is defined as

A = UΣV T (2.11)

where U is an m×m orthogonal matrix, Σ is an m×n diagonal matrix and
V is an n × n orthogonal matrix [8]. The entries σj of Σ are non-negative
and in non-increasing order, meaning that σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 where
p = min(m,n).

6



2.4 Artificial Neural Networks

An artificial neural network (ANN), often referred to simply as a neural
network, is a construction that is inspired by the human brain and consists
of so-called nodes. The nodes are placed in different layers where the first
layer is the input layer and the last layer is the output layer. In between
these, there are other layers, where the types and the sizes of the layers vary
depending on the type of ANN and the desired result.

Deep learning is a specific kind of machine learning that uses artificial neural
networks to learn. The definition of learning is presented below.

Definition. A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P , if its perfor-
mance at tasks in T , as measured by P , improves with experience E [9].

Simply put, an ANN is an algorithm that can learn from data in some way.
The task T is what we want to solve with the learning algorithm, it is not
the process of learning [10]. An example of a deep learning task is classifica-
tion. The performance measure P is a quantitative measure of the learning
algorithm’s performance. Often the performance measure is the accuracy of
the model, where classification is a case where this is true.

The experience E, or the learning, can be classified into two classes; super-
vised learning and unsupervised learning. Unsupervised learning algorithms
learn useful properties in the data set. In supervised learning, each mea-
surement in the data set is associated with a label or target. Because of this,
the algorithm can learn to classify the data into categories. The found prop-
erties can be connected to the label or target, and then sorted into categories.

When working with ANNs, an important part is that the algorithm should
be able to take in new data, that it has not trained on, and still perform
well. This means that the algorithm can not be too specifically created for
the training data, but has to be able to handle other similar data. This data
is called test data, and one of the most important parts of deep learning
is to increase test accuracy. We also want to decrease the gap between the
test accuracy and training accuracy. When the gap between these is too
large we have something called overfitting, and when the training accuracy
in very low we have underfitting [10]. There needs to be a balance in how
well the model fits the training data. When we have underfitting we have a
quite large bias. The bias is much lower for overfitting but is still quite low
when the optimal model is achieved.

To be able to increase the accuracy of the test data using the training data
there needs to be some assumptions made about the data. We assume that
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all measurements are independent of each other and that the training data
and the test data are identically distributed [10]. These assumptions are
known as the i.i.d. assumptions.

In machine learning a popular theorem is the no free lunch theorem by
Wolpert [11]. This means that there is no universally better machine learn-
ing algorithm, the model has to fit the data and the task.

Most deep learning algorithms are powered by the learning rate optimiza-
tion algorithm called stochastic gradient descent [10]. This is an algorithm
that uses the derivative is to minimize the loss function, which is described
below. An extension of the classical stochastic gradient descent is the Adam
algorithm. This is an algorithm that is viewed as being quite robust to the
choice of hyperparameters. In one step of the algorithm, a mini-batch is
sampled. A mini-batch is a small subset of the total amount of data, and
this subset is used during one iteration in the ANN. A run through all the
mini-batches is called an epoch.

When using deep learning, a loss function needs to be specified. The loss
function usually includes at least one term that causes the ANN to perform
statistical estimation. An example of a loss function is the cross-entropy
loss, which is common for classification. It measures the difference between
two probability distributions for classification ANNs, where the output is a
probability value between 0 and 1.

2.4.1 Convolutional Neural Networks

In this thesis, a convolutional neural network (CNN) is used. The reason for
this is that CNNs are shown to often perform well on images, due to current
research on the subject [12], and a time-frequency plot is an image.

The difference between a CNN and a general ANN is that a CNN uses a
convolution, which is a specialized kind of linear operation, instead of general
matrix multiplication, in at least one layer. The convolution provides a more
smoothed version of the input and is defined as

s(t) =

∫
x(a)w(t− a)da (2.12)

where w is a weighting function and x is the input [10]. Convolution is
typically denoted as

s(t) = (x ∗ w)(t). (2.13)
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Figure 2.4: Illustration of the nodes in a CNN, where the first layer from
the left is the input layer, the middle layer is the convolutional layer and
the last layer is the output layer. In between these are other hidden layers.

Figure 2.5: An example of a convolutional layer. The first matrix from the
left is the input of the layer, the second matrix is the filter and the third
matrix is the output of the layer.

In figure 2.4 an example of how the nodes in a CNN are positioned can be
seen. The first layer is the input layer and the last layer is the output layer.
In between these, there is at least one convolution layer, and the other used
layers here referred to as hidden layers. An example of how a convolutional
layer works can be seen in figure 2.5. The filter, which is the second matrix
from the left, is placed in the top left corner of the input matrix. The values
in the same positions are multiplied, and everything in the filter is added
together. This value will be in the top left corner of the output.

Shifting the filter one step to the right, and computing a value for this
placement the same way as before, gives the value to the right of the formerly
placed value in the output matrix. The filter is shifted one step to the right
again and the computations are done. When the first row in the output
matrix is filled, the filter is moved to the next row and the values for the
output matrix are computed. This is done until the whole input matrix of
size m×n is covered, and the output is a matrix with size (m−1)× (n−1).
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Chapter 3

Method

The thesis is divided into two parts, where the first one consists of creating
simulated EEG data and inserting this data into a CNN to gain an under-
standing of the potential of the network, as well as a comparison of the
different spectral methods. The chosen procedure for simulating EEG data
was created by Barzegaran, Bosse, Kohler and Norcia [13], and implemented
into Matlab by Maria Sandsten.

The second part of the thesis was to use real EEG data provided by Mikael
Johansson, professor in psychology at Lund University, to classify the data,
and along with this also compare the spectral methods and evaluate the
usefulness of the CNN applied to EEG data. The first part of the method
will be a description of the CNN that is used for both of the data types,
along with other choices involving the neural network that applies to all
data. All programming in this thesis was done in Matlab.

3.1 Neural Network

In this section, all choices regarding the CNNs for both simulated data and
real data are specified. The layers are specified and explained.

For the training data and the test data, shuffling was done. The training
data was shuffled before every training epoch and the test data was shuffled
before each network validation. The validation frequency was chosen so that
the network was validated about once per epoch, and so that the validation
frequency times the mini-batch size equalled the size of the training data set.

The chosen learning rate optimization algorithm was Adam [15]. The stochas-
tic gradient descent with momentum (SGDM) optimizer was also tested, but
the results were not improved. Because the last layer in the network is a
classification layer, the used loss function is the cross-entropy loss.
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# Layer Matlab name

1 Image input layer imageInputLayer
2 2-D convolutional layer convolution2dLayer
3 Batch normalization layer batchNormalizationLayer
4 Rectified Linear Unit (ReLU) layer reluLayer
5 Dropout layer dropoutLayer
6 Fully connected layer fullyConnectedLayer
7 Softmax layer softmaxLayer
8 Classification output layer classificationLayer

Table 3.1: The CNN structure for all neural networks in this thesis as well
as the layers and their Matlab names.

In table 3.1 the structure for all neural networks used in this thesis is pre-
sented. The first layer is the image input layer where the selected data is
inserted into the CNN, and the size of the data is specified. Then we have
the convolutional layer, followed by a batch normalization layer and a recti-
fied linear unit layer, or a ReLU layer [14]. In the batch normalization layer
the mini-batches are normalized, and in the ReLU layer input elements that
are less than zero are set to zero. In the dropout layer randomly selected
input elements are set to zero with a given probability. The fully connected
layer multiplies the input by a weight matrix and adds a bias vector to
it, this is where the output size of the neural network is specified. In the
softmax layer a softmax function, or a normalized exponential function, is
applied to the input. From this layer, we get a probabilistic output. Finally,
in the classification output layer, the cross-entropy loss for the classification
problem is computed.

In table 3.3 the structures with inputs for the simulated and the real data
are shown. In the convolutional layer, the first input is the size of the filter
and the second input is the number of filters used. After this padding, or
zero-padding, is specified, where ’same’ means that the zero-padding is done
so that the output of the layer has the same size as the input.

The 70/30 rule was used, which is a common way to divide data sets in deep
learning. This means that 70% of the data was used for training and 30%
for validation.
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Figure 3.1: A comparison of the scaled reassigned spectrogram correspond-
ing to two different SNRs in simulated EEG data. The first plot has an SNR
of 13 dB and the second an SNR of 10 dB.

3.2 Simulated Data

The simulated data consists of Gaussian envelope transients as well as three
different types of noise [13]. 1/f-noise is one of the types of noise and is also
called pink noise. To create it, temporally and spatially uncorrelated white
Gaussian noise is filtered to get the desired power spectral density of 1

f . The
other types of noise are α-noise and sensor noise. α-noise is created using
white Gaussian noise signals that are filtered using a 6th-order Butterworth
filter with a lower cutoff frequency of 8 Hz and a higher cutoff frequency of
12 Hz. Sensor noise is modelled as spatially and temporally uncorrelated
white Gaussian noise.

The amount of noise in the data is set by SNRdB, the SNR in a decibel scale,
and will be referred to as simply SNR from now on. An SNR of about 20 dB
means a very low amount of noise while a slightly negative SNR means quite
a lot of noise, and this is a level that is similar to the amount of noise in real
EEG data. The signals in the simulated sequence were three Gaussian enve-
lope transients with both random and set values that can be seen in table 3.2.

In figure 3.1 two scaled reassigned spectrograms on simulated Gaussian en-
velope transient data are seen. The data contains three Gaussian envelope
transients with time centre values at 2 seconds and the frequencies 5, 10 and
15. The SNRs are 13 dB and 10 dB respectively.
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Input parameter C1 & C2 C3

Data vector length 1024 2000
Sample frequency 256 500
Gaussian component lengths 512 1000
Amplitudes U(0.5, 1.5) U(0.5, 1.5)
Time centre values (s) 2 2
Frequency values of each component (Hz) 4, 8 & 12 5, 10 & 15
Phases U(0, 2π) U(0, 2π)

Table 3.2: General choices for the simulated Gaussian envelope transient
and the choice for the signal that is similar to the real data. C1 is case 1
where the second class has a different time, C2 is case 2 where the second
class has a different frequency and C3 is case 3 where the second class does
not contain any signals.

3.2.1 Approach

When simulating the data, the SNR was initially set to 13 dB. This was the
lowest value for SNR where one could clearly see the three peaks in power.
The lowest chosen value for SNR was -1 dB. The amplitude of the signal set
to a random value uniformly distributed between 0.5 and 1.5.

The first step was to create two classes of simulated EEG data, with some
small difference between the two data classes. For all choices, the first class
had the input parameters seen in table 3.2, and the second class had the
same input parameters unless something else is specified.

The first difference tested was a small difference in the time (case 1). The
choices for the second class was 2.1 seconds instead of 2 seconds as for the
first class. The second difference was in frequency (case 2), where the first
class had frequencies 4, 8 and 12 and the second class had 5, 10 and 15.
The last difference tested was where only the first class had a signal and the
second class contained solely noise (case 3). The first class had a signal with
conditions similar to those of the real data. A comparison between this and
the real data can be seen in figure 3.2.

For all the cases, half of the data was of the first class and the other half
was of the second class. For cases 1 and 2, the number of data points in
the data sets was 200, and for case 3 it was 352. The test sets for cases 1
and 2 had the sizes 60, and for case 3 it had size 102. The Gaussian en-
velope transients were created for the above-specified cases using the input
parameters seen in table 3.2. The data was created by adding noise to these.
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CNN

imageInputLayer([m 1 1])
convolution2dLayer([60 1], 4,

’Padding’, ’same’)
batchNormalizationLayer

reluLayer
dropoutLayer(0.3)

fullyConnectedLayer(2)
softmaxLayer

classificationLayer

(a) CNN for the first two cases of
simulated raw data and periodogram
data, where m is 1024 for raw data
and 2048 for the periodogram.

CNN

imageInputLayer([490 64 1])
convolution2dLayer([30 10], 4,

’Padding’, ’same’)
batchNormalizationLayer

reluLayer
dropoutLayer(0.3)

fullyConnectedLayer(2)
softmaxLayer

classificationLayer

(b) CNN for the first two cases of sim-
ulated spectrogram data and scaled
reassigned spectrogram data.

CNN

imageInputLayer([m 1 p])
convolution2dLayer([60 1], 16,

’Padding’, ’same’)
batchNormalizationLayer

reluLayer
dropoutLayer(0.3)

fullyConnectedLayer(2)
softmaxLayer

classificationLayer

(c) CNN for the third case of simu-
lated data and real data, using raw
data and the periodogram, where m
is 2000 for the raw data and 4096 for
the periodogram.

CNN

imageInputLayer([490 125 p])
convolution2dLayer([30 10], 16,

’Padding’, ’same’)
batchNormalizationLayer

reluLayer
dropoutLayer(0.3)

fullyConnectedLayer(2)
softmaxLayer

classificationLayer

(d) CNN for the third case of sim-
ulated data and real data, using
the spectrogram and the scaled reas-
signed spectrogram.

Table 3.3: CNNs using simulated and real data. p is either 1 or 2 for real
data, depending on whether the data is originated from the left or right ear,
or both ears. For simulated data p is 1.

The data in the three cases were first inserted into the CNN seen in table 3.3a
for cases 1 and 2, and the CNN seen in table 3.3c for case 3. Secondly, the
periodograms for the cases were computed using the number of fast Fourier
transform samples as seen in table 3.4 and inserted into the same neural
networks as the raw data (table 3.3a or 3.3c). Thereafter the spectrogram
was computed, using a Matlab function created by Maria Sandsten, for the
three cases using the inputs seen in table 3.4. The scaled reassigned spec-
trogram was computed using the same inputs as the spectrogram as well as
the reassignment level also seen in table 3.4, using the same Matlab function
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Figure 3.2: Simulated data plotted with real data. The simulated data has
inputs similar to the ones for the real data and an SNR of 0 dB.

Input parameter C1 & C2 C3 & real

Number of FFT-samples 4096 8192
Window length (Gaussian) 256 512
Time-step between two spectrum calculations 16 16
Reassignment level 0.01 0.01

Table 3.4: The inputs for the periodogram, the spectrogram and the scaled
reassigned spectrogram. C1 is case 1, C2 is case 2 and C3 is case 3 for
the simulated data. Real is all real data. For the periodogram the only
used input parameter is the number of FFT-samples, for the spectrogram
all except the reassignment level are used and for the scaled reassigned
spectrogram they are all used.

as for the spectrogram. Both the spectrograms and the scaled reassigned
spectrograms were inserted into the CNN in table 3.3b for cases 1 and 2,
and the CNN in table 3.3d for case 3.

The chosen validation frequency for the first two cases of data was 7, the
number of epochs was 20 and the mini-batch size 20. For case 3 the vali-
dation frequency was 10, the number of epochs was 50 and the mini-batch
size was 25.
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Figure 3.3: An illustration of the different parts of the EEG data. The
second and third box from the left is where a word is showed on a screen,
and in the third box, a word is spoken in the persons left or right ear. In
the fourth box, the person gets to guess which ear they heard the word in,
and in the fifth box, they get to know the correct answer.

3.3 Real Data

The data of 352 measurements are real EEG data measured from a single
person. Each signal consisted of 4501 samples with a sampling frequency
of 500 Hz, originally 1000 Hz but was then downsampled. The EEG data
were recorded using a Neuroscan SynAmps RT (Compumedics) amplifier,
Curry 7 software and 64 active Ag/AgCl electrodes. These were mounted in
an EasyCap using the 10% system covering the 10/20 area with 60 channels.

The recording of the EEG was during approximately 9 seconds, where the
first 2 seconds consists of solely noise. In the next 0.6 seconds, a word is
showed on a screen in front of the person. The word is a class, for exam-
ple, ”Dance”. After this, there are 3 seconds where the word is left on the
screen, but now the person hears a spoken word in either the left or the
right ear. The spoken word is an item in the class shown on the screen, for
example, ”Salsa” in the class ”Dance”. If the person hears the word in the
left or the right ear is random, and after these 3 seconds the person has 1.5
seconds to decide whether the sound was in the left or the right ear. Under
the following 1 second, the person gets to know if they answered correctly.
The recording stops after an additional 0.5-0.75 seconds. The arrangement
of the signal can be seen in figure 3.3.

The data was preprocessed with a high-pass filter at 0.1 Hz and baseline
corrected based on the average of all the different parts of the data (figure
3.3) to minimize offsets. Line noise, or random electrical impulses, at 50 Hz
were reduced, and other flaws caused by equipment were removed by visual
inspection. Independent component analysis (ICA) was applied to remove
artefacts caused by the eyes or muscles.
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Figure 3.4: An EEG map of the 60 channels in the data set. The EEG map
should be viewed as seen from the top of the head, and the arrow is placed
where the nose would be. The small red circles are the main channels used
in this thesis, and the orange circles are other channels that are used. The
blue circles are the channels in the data set that are not used in this thesis.

In the data set used in this thesis, there are 60 channels and these are named
as seen in figure 3.4. It is seen in the figure that the channels are positioned
evenly over the scalp to be able to see activity in as many parts of the brain
as possible. The hearing centres of the brain are positioned close to the ears,
these are called the auditory cortex [16].

3.3.1 Approach

The first step was to decide how much of the original signal of 4501 samples
should be used. The choice was based on where the sound occurred, which
was from sample 1301 to sample 2800, and the choice was from sample 1001
to sample 3000. This was done to capture the entirety of the signal, in case of
small time-shifts in the data. Firstly two cases of data were constructed; one
with channel T7 near the left ear and one with channel T8 near the right ear.
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Consider the dimensions of the data inputs to the CNNs. For the raw data
and the periodogram, the data consists of vectors sizes m, where m = 2000
for the raw data and m = 4096 for the periodogram data. There is also the
number of data measurements, 352, which leaves the 2-dimensional input
m × 352. For the spectrogram and the scaled reassigned spectrogram, the
data consists of matrices sizes 490 × 125. Adding the number of measure-
ments, the 3-dimensional input 490× 125× 352 is obtained.

At this point, only data containing information about one ear was used for
the input to the CNNs, either channel T7 near the left ear or channel T8
near the right ear. Another dimension was added, which enabled the usage
of information about both ears simultaneously. For the raw data and the
periodogram, the inputs were 3-dimensional and had the sizes m× 2× 352.
For the spectrogram and the scaled reassigned spectrogram, the inputs were
4-dimensional and had the sizes 490× 125× 2× 352. This was firstly used
for the data sets of channel T7 and channel T8.

The next step was to use more than one channel near each ear. The choice
was four channels near each ear; T7, FT7, TP7 and C5 for the left ear, and
T8, FT8, TP8 and C6 for the right ear. Firstly these were combined using
a simple mean value for channels near the left ear, channels near the right
ear as well as channels near the left and the right ear combined. Then the
SVD was used by laying the four data vectors as columns in a matrix and
applying SVD to this matrix. The first column in U times 1000 was the one
that was used, because it looked similar to data vectors as seen in figure
3.5. This was done for channels near the left ear, channels near the right
ear and channels near the left and the right ear combined. A comparison of
the mean value data and the SVD data can be seen in figure 3.6.

In conclusion, nine cases of real data were created; the channel T7, the chan-
nel T8, the channels T7 and T8 combined, the mean value of channels near
the left ear, the mean value of channels near the right ear, the mean value of
channels near both the left and the right ear, channels near the left ear com-
bined using SVD, channels near the right ear combined using SVD, as well
as channels near both the left and the right ear combined using SVD sepa-
rately. For all of these nine cases, the data was first inserted into the CNN
seen in table 3.3c, using a test set size of 102. Secondly, the periodograms
for the nine cases were computed, the mean values were subtracted and the
periodograms were inserted into the same neural network as the raw data
(3.3c). Thereafter the spectrogram was computed for the nine cases using
the inputs seen in table 3.4. The scaled reassigned spectrogram was com-
puted using the same inputs as the spectrogram as well as the reassignment
level also seen in table 3.4.
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Figure 3.5: The channel T7 and the first column of U in the SVD of the
channel T7 of one single data point where in the SVD plot, the first column
of U is multiplied by the first singular value found in S.

After the spectrogram and the scaled reassigned spectrogram were created
they were cut in frequency, from originally a maximum frequency of 250
Hz to the maximum frequency of 30 Hz. This was done because nothing of
interest was seen above 30 Hz and capacity of the neural network was saved.
After this both the spectrograms and the scaled reassigned spectrograms
where inserted into the CNN in table 3.3d. The number of epochs used for
the real data was 50, the mini-batch size was 25 and the validation frequency
10.

All values in table 3.4 were evaluated due to the performance they provided.
The window length was decided by looking at plots with different window
lengths and finding that 256 or 512 would be the best choices. Both were
tested in the neural network and 256 performed slightly better for SVD data
while 512 performed better for the rest of the cases. Because the data was
not stationary, the mean of the data was subtracted before applying any
spectral methods to the data. For the spectrogram and the scaled reas-
signed spectrogram, this was done using the Matlab functions created by
Maria Sandsten.

The CNN was mainly optimised with respect to the average of both ears
and the SVD of both ears. This should be the optimal CNN for all methods
due to the fact that the problem is very similar for all the methods, what
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Figure 3.6: The mean value and the first column of U in the SVD of the
channels T7, FT7, TP7 and C5 of one single data point. In the SVD plot
the first column of U is multiplied by the first singular value found in S,
and −1 for comparison reasons.

is put into the network is data sets that are very similar to each other for
all methods. However, there is a difference between the raw data and the
periodogram, and the spectrogram and the scaled reassigned spectrogram.
This is because of the difference in dimensions of the transforms, which
means that the inputs into the CNNs and the convolutional filters will have
different sizes.
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Chapter 4

Results and Discussion

In this chapter, the classification results are presented. In the following
tables, ”Raw” stands for the unprocessed data, ”Per” is the periodogram,
”Spec” is the spectrogram and ”ScReSp” is the scaled reassigned spectro-
gram.

For comparison with the accuracies presented in this chapter, the upper
percentiles of the Binomial distribution with a success rate of 0.5 were cal-
culated at a significance level of 0.05. The number of trials is the same as
the sizes of the test sets, which is 60 for the simulated data in cases 1 and
2, and 102 for case 3 and the real data. For the simulated data in cases 1
and 2, the percentile is 59.76%. For the simulated data in case 3 and the
real data, it is 57.64%. When the real data is run three times the number of
trials is 306 and the percentile is 54.54%. Classification results larger than
the percentiles are considered as being significant.

4.1 Simulated Data

The simulated data can be categorized into three cases; data that has dif-
ferences in time, in frequency and one that only has signals present in one
of the classes. The results for SNR are presented in a logarithmic scale and
has the maximum SNR at 13 dB for cases 1 and 2. 13 dB is the lowest SNR
where the signal clearly can be seen with the eye.

In table 4.1 the classification results for the time difference of 0.1 seconds
between the classes are presented. In table 4.2 the results for the difference
in frequency is shown, where the first class had frequencies 4, 8 and 12 and
the second class had frequencies 5, 10 and 15. The results for the data set
where one class had signals and one class had no signals at all is presented
in table 4.3.
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SNR Raw Per Spec ScReSp

13 83.33% 48.33% 85.00% 80.00%
10 50.00% 50.00% 53.33% 55.00%
7 51.67% 46.67% 51.67% 46.67%
4 58.33% 53.33% 65.00% 53.33%
2 60.00% 51.67% 51.67% 43.33%
0 53.33% 30.00% 53.33% 46.67%

Table 4.1: Classification results where there is a difference in time.

SNR Raw Per Spec ScReSp

13 83.33% 100.00% 98.33% 100.00%
10 55.00% 96.67% 98.33% 90.00%
7 45.00% 70.00% 71.67% 63.33%
4 48.33% 55.00% 40.00% 48.33%
2 46.67% 48.33% 55.00% 55.00%
0 50.00% 48.33% 50.00% 50.00%

Table 4.2: Classification results where there is a difference in frequency.

From table 4.1 we get that the raw data and the spectrogram are the two
transforms that gave the best classification results. The scaled reassigned
spectrogram gave a slightly worse result than these two. In the table, it is
seen that the periodogram should not show any recognition. This is because
the periodogram does not depend on the time, which can be seen in figure
2.1.

For all the transforms in table 4.1 it can be seen that when the SNR de-
creases the classification results also decreases. A quite large difference in
the results for SNR 13 and SNR 10 can be seen. However, this can partly
depend on the random shuffling of the data, which is done when the SNR is
changed. At SNR 2 there is a significant recognition for the raw data, but not
for the other transforms. At SNR 0 there are no applicable results. For the
scaled reassigned spectrogram there are no significant results below SNR 10.

In table 4.2 it is seen that the transforms with the best results are the pe-
riodogram, the spectrogram and the scaled reassigned spectrogram, where
the scaled reassigned spectrogram performed slightly worse than the other
two. The raw signal did have a significant result, but only for SNR 13. At
SNR 2 the spectrogram and the scaled reassigned spectrogram has almost
applicable results, but below this, there are none for all of the transforms.
The last significant results are found at SNR 7.
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SNR Raw Per Spec ScReSp

4 62.75% 50.98% 54.90% 52.94%
2 47.06% 57.84% 54.90% 46.08%
0 52.94% 50.98% 48.04% 48.04%
-1 52.94% 46.08% 44.12% 44.12%

Table 4.3: Classification results where one class has no signals.

Comparing table 4.1 and table 4.2 it can be seen that at SNR 13 the results
in table 4.2 are better than the results in table 4.1. When the SNR decreases
the classification results decrease for both, but faster for the data where one
class has different frequencies, and at a low SNR both data sets have similar
classification results.

The best results obtained when mimicking the real data with simulated data,
seen in table 4.3, seem to be from using raw data. All of the data trans-
forms gave at least one applicable result each, except possibly the scaled
reassigned spectrogram. The results at SNR 4 are only slightly better than
those for SNR 0 and SNR -1, but the only significant results in table 4.3 are
found for the raw data at SNR 4 and the periodogram at SNR 2.

Comparing the results in table 4.3 to the results in table 4.1 and table 4.2
we see that the results are quite similar. Both in table 4.3 and table 4.1
some significant results for SNR 4 and SNR 2 are seen, but none for SNR 0.

Looking at the training processes for the four transforms in figure 4.1, fig-
ure 4.2, figure 4.3 and figure 4.4 it can be seen that the raw data and the
scaled reassigned spectrogram seem to converge the fastest. The spectro-
gram does not seem to converge fully during the 50 epochs of training. The
periodogram converges quite quickly. Overfitting is seen in all the plots.

23



Figure 4.1: The training process of the unprocessed data for case 3 with
SNR 0 dB and a classification result of 52.94%.

Figure 4.2: The training process of the periodogram data for case 3 with
SNR 0 dB and a classification result of 50.98%.

Figure 4.3: The training process of the spectrogram data for case 3 with
SNR 0 dB and a classification result of 48.04%.
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Figure 4.4: The training process of the scaled reassigned spectrogram data
for case 3 with SNR 0 dB and a classification result of 48.04%.

4.2 Real Data

For all the classification results on real data, the network was run three
times. All the results are presented as well as the mean values and the
standard deviations of the three runs. The results for the nine cases of data
are presented in the tables below. In table 4.4 the classification results for
solely channel T7 is presented and in table 4.5 the results for channel T8.
In table 4.6 the results for the channels T7 and T8 combined are seen.

The results for the mean values of the channels T7, FT7, TP7 and C5 are
presented in table 4.7 and the mean values of T8, FT8, TP8 and C6 are
shown in table 4.8. For the mean values of the channels T7, FT7, TP7 and
C5 together with the mean values of T8, FT8, TP8 and C6 the results are
presented in table 4.9. The results for the SVD of the channels T7, FT7,
TP7 and C5 are shown in table 4.10 and in table 4.11 the results of the
channels T8, FT8, TP8 and C6 are shown. In table 4.12 the results for the
SVDs of the channels T7, FT7, TP7 and C5, and the channels T8, FT8,
TP8 and C6 are presented.

Comparing the classification for the channels T7 and T8 near the left and
the right ear, it can be seen in table 4.4 and table 4.5 that the classification
for the channel T8 does better for all the four transforms. Though the classi-
fication for channel T8 has a higher standard deviation than for channel T7,
it still seems to be the better choice. The difference in standard deviation
is small and the difference in accuracy is quite large.

Looking at the difference between the transforms it is seen that the raw
data and the scaled reassigned spectrogram does much better than the pe-
riodogram and the spectrogram. While the spectrogram has higher accu-
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Raw Per Spec ScReSp

1 54.90% 40.20% 44.12% 52.94%
2 49.02% 47.06% 48.04% 52.94%
3 53.92% 47.06% 50.00% 50.98%

Mean 52.61% 44.77% 47.39% 52.29%
Std 3.15% 3.96% 2.99% 1.13%

Table 4.4: Classification results for channel T7 near the left ear.

Raw Per Spec ScReSp

1 58.82% 40.20% 50.00% 59.80%
2 57.84% 42.16% 57.84% 60.78%
3 63.73% 49.02% 48.04% 56.86%

Mean 60.13% 43.79% 51.96% 59.15%
Std 3.16% 4.63% 5.19% 2.04%

Table 4.5: Classification results for channel T8 near the right ear.

racy than the periodogram, the spectrogram only has a classification accu-
racy that is slightly above 50.00% (51.96%) and a large standard deviation
(5.19%). It seems like none of the classifications for the periodogram and
the spectrogram using the channels T7 and T8 gives any applicable results.

The raw data and the scaled reassigned spectrogram gave the best results
for the channels T7 and T8, and the raw data gave slightly better results.
However, the raw data had a higher standard deviation than the scaled re-
assigned spectrogram, and because of this, the raw data might not be the
better choice of the two. For channel T7 none of the transforms gave any
significant results, but for channel T8 both seem to be useful. The reason
for this could be due to fault in connection between the person’s scalp and
the EEG cap.

The results for the classification of channel T7 and T8 combined, in table
4.6, seem to be similar to the ones for the two channels separately. One
difference found is that the spectrogram performed slightly worse than the
periodogram. There is no clear reason for this, and it might just be a coinci-
dent, because the standard deviation for the spectrogram is quite large. The
periodogram performed almost the same as it did for the single channel T8,
except with slightly higher accuracy, and with a higher standard deviation
as well. The spectrogram performed worse than it did for both the single
channels.
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Raw Per Spec ScReSp

1 57.84% 44.12% 49.02% 56.86%
2 51.96% 36.27% 40.20% 51.96%
3 60.78% 41.18% 48.04% 56.86%

Mean 56.86% 40.52% 45.75% 55.23%
Std 4.49% 3.97% 4.83% 2.83%

Table 4.6: Classification results for the channels T7 and T8.

The accuracies for the raw data and the scaled reassigned spectrogram is
somewhere in between the ones for the raw data and the scaled reassigned
spectrogram of the two single channels. As for the single channels, the raw
data has a better classification accuracy, but it also has a higher standard
deviation. Overall the combination of the two channels had a higher stan-
dard deviation than for both the single channels.

Looking at the results for the mean values near the left ear and near the
right ear in the tables 4.7 and 4.8, it can be seen that the raw data and the
scaled reassigned spectrogram still gave the best results. The periodogram
and the spectrogram gave no significant results, though they had a quite low
standard deviation. For the mean value near the left ear the raw data had
a somewhat higher accuracy, but a much higher standard deviation than
the scaled reassigned spectrogram. For this reason, the scaled reassigned
spectrogram might be the better choice here.

For the mean value near the right ear, the raw data performed a lot better
than the scaled reassigned spectrogram, and it also had a lower standard
deviation.

The classification of the mean values near the left ear and the right ear
combined, seen in table 4.9, has no significant results for the periodogram
and the spectrogram. For the raw data, the accuracy is low, meaning no
significant results, and the standard deviation is fairly large. The accuracy
of the scaled reassigned spectrogram is quite large, but the standard devia-
tion is large as well. The results for the combination of the mean values are
overall neither better nor worse than for the mean values separately. For
the raw data, the combination is worse, but for the three other transforms
it is slightly better.

Comparing the results for the mean values of four channels to the ones of
single channels it seems like the single channels give more stable results.
Patterns between the three versions of it can be seen while not so many
patterns can be seen for the mean values. The single channels seem to give
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Raw Per Spec ScReSp

1 56.86% 48.04% 49.02% 56.86%
2 61.76% 49.02% 50.00% 56.86%
3 52.94% 43.14% 48.04% 56.86%

Mean 57.19% 46.73% 49.02% 56.86%
Std 4.42% 3.15% 0.98% 0.00%

Table 4.7: Classification results using mean values for channels near the left
ear.

Raw Per Spec ScReSp

1 56.86% 42.16% 45.10% 53.92%
2 52.94% 43.14% 45.10% 55.88%
3 60.78% 41.18% 45.10% 47.06%

Mean 56.86% 42.16% 45.10% 52.29%
Std 3.92% 0.98% 0.00% 4.63%

Table 4.8: Classification results using mean values for channels near the
right ear.

Raw Per Spec ScReSp

1 51.96% 42.16% 50.98% 61.76%
2 49.02% 40.20% 52.94% 50.98%
3 53.92% 44.12% 42.16% 55.88%

Mean 51.63% 42.16% 48.69% 56.21%
Std 2.47% 1.96% 5.74% 5.40%

Table 4.9: Classification results using mean values for channels near both
ears.

better accuracies than the mean values, though the difference is very small.

In table 4.10 where the results for the SVD near the left ear is showed, it can
be seen that the only significant result is for the scaled reassigned spectro-
gram. All the others have accuracies below 50%, though the spectrogram is
close to an accuracy of 50%. The raw data and the periodogram have large
standard deviations and the spectrogram has a lower standard deviation.
The scaled reassigned spectrogram has one of the highest accuracies in this
thesis and a quite low standard deviation.

From the results for SVD near the right ear seen in table 4.11 it seems
like the raw data performed somewhat better than the other methods, the
standard deviation is only fairly larger than for the scaled reassigned spec-
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Raw Per Spec ScReSp

1 42.16% 51.96% 47.06% 57.84%
2 51.96% 48.04% 50.00% 57.84%
3 50.98% 50.98% 50.00% 60.78%

Mean 48.37% 50.33% 49.02% 58.82%
Std 5.40% 2.04% 1.70% 1.70%

Table 4.10: Classification results using SVD for channels near the left ear.

Raw Per Spec ScReSp

1 55.88% 47.06% 49.02% 52.94%
2 53.92% 46.08% 54.90% 52.94%
3 53.92% 47.06% 49.02% 53.92%

Mean 54.57% 46.73% 50.98% 53.27%
Std 1.13% 0.57% 3.39% 0.57%

Table 4.11: Classification results using SVD for channels near the right ear.

Raw Per Spec ScReSp

1 54.90% 50.00% 50.00% 59.80%
2 62.75% 48.04% 58.82% 57.84%
3 50.98% 50.00% 48.04% 60.78%

Mean 56.21% 49.35% 52.29% 59.47%
Std 5.99% 1.13% 5.74% 1.50%

Table 4.12: Classification results using SVD for channels near both ears.

trogram. The scaled reassigned spectrogram performed quite well too and
has a low standard deviation. For both the SVD near the left ear and the
SVD near the right ear, the periodogram and the spectrogram gave no sig-
nificant results.

The best classification result for the SVD near both ears, seen in table 4.12,
is for the scaled reassigned spectrogram. It has an accuracy close to 60% and
a fairly low standard deviation. The raw data has a quite good accuracy,
but a large standard deviation. The spectrogram has an acceptable accu-
racy but a large standard deviation and the periodogram has low accuracy,
so they are both not very beneficial.

Overall the SVD for both ears combined performed better than the SVDs
separately. The most stable case of data still seems to be the single data.
Comparing the results for the SVD to the results for the mean value and
the single data as seen in figure 4.13, it is seen that the single channels
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Ear Raw Per Spec ScReSp

Single Left 52.61% 44.77% 47.39% 52.29%
Right 60.13% 43.79% 51.96% 59.15%
Both 56.86% 40.52% 45.75% 55.23%

Mean 56.53% 43.03% 48.37% 55.56%

Mean value Left 57.19% 46.73% 49.02% 56.86%
Right 56.86% 42.16% 45.10% 52.29%
Both 51.63% 42.16% 48.69% 56.21%

Mean 55.23% 43.68% 47.60% 55.12%

SVD Left 48.37% 50.33% 49.02% 58.82%
Right 54.57% 46.73% 50.98% 53.27%
Both 56.21% 49.35% 52.29% 59.47%

Mean 53.05% 48.80% 50.76% 57.19%

Total mean 54.94% 45.17% 48.91% 55.95%

Table 4.13: Summary of the classification results, with mean values, within
the three versions of the data and the total mean values.

performed better overall for the raw data and the periodogram, and the
SVD data performed better for the spectrogram and the scaled reassigned
spectrogram. The overall best results come from using the scaled reassigned
spectrogram.

Figure 4.5, figure 4.6, figure 4.7 and figure 4.8 shows the training processes
that gave the highest accuracies from each data transform are shown. From
the training processes, it can be seen that the most stable data transform
seem to be from using the scaled reassigned spectrogram. The least stable
training process seems to be from using the spectrogram. All the loss func-
tions are similar and do decrease compared to the initial loss, except for the
periodogram where the final loss is greater than the initial loss.
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Figure 4.5: The training process of the unprocessed channel T8 with a
classification result of 63.73%.

Figure 4.6: The training process of the periodogram on SVD data for the
left ear with a classification result of 51.96%.
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Figure 4.7: The training process of the spectrogram on SVD data for both
ears with a classification result of 58.82%.

Figure 4.8: The training process of the scaled reassigned spectrogram on
mean value data for both ears with a classification result of 61.76%.
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Chapter 5

Conclusion

The two best results regarding the real data in this thesis are for the chan-
nel T8 using raw data and for the channels combined using SVD near both
ears using the scaled reassigned spectrogram. The single channel T8 gave a
slightly better classification result than the channels combined using SVD,
but the single channel T8 had a higher standard deviation.

A reason for preferring the method of using channels combined using SVD
near both ears with the scaled reassigned spectrogram is that it is more
robust and seem to be the method that would work the best if the exper-
iment was to be done on new but similar data. When using an EEG cap
one can never be sure that all the channels are connected properly to the
scalp and that no information will get lost. By using several channels near
each ear and combining them using SVD it does not matter as much if a
channel is missing information, because the other channels can still contain
this information.

Comparing the data set with channels combined using SVD and the mean
value data it can be seen that the SVD method performed better for all data
transforms except for the raw data. The scaled reassigned spectrogram per-
formed the best when using the SVD method.

Looking at the simulated data in table 4.3, which is constructed to look like
the real data, some similarities and some differences between this and the
real data in table 4.4 and table 4.5. A similarity is found when looking at
the training processes in the tables 4.1, 4.2, 4.3 and 4.4 for the simulated
data and the tables 4.5, 4.6, 4.7 and 4.8 for the real data. It can be seen
that for both simulated and the real data, the training processes of the raw
data and the scaled reassigned spectrogram did both converge fast, while the
spectrogram did not converge properly during the entire training process.
The periodogram converged faster for the simulated data, but still not as
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fast as for the raw data and the scaled reassigned spectrogram.

The overall performances of the real data are better than for the simulated
data with low SNRs. The raw data performed the best for both the simu-
lated data and the real data. Some differences between the simulated data
and the real data are the performances of the periodogram, the spectro-
gram and the scaled reassigned spectrogram. For the simulated data the
periodogram was the second best method after the raw data, while the pe-
riodogram was the worst method for the real data. For the real data the
scaled reassigned spectrogram performed better than the spectrogram, but
it was the other way around for the simulated data.

This indicates that the simulated data might not be very similar to the real
data. Indications of this can also be seen in figure 3.2 where the real data
seem to look more like white noise while the simulated data looks more
structured.

The purpose of working with simulated data was to find out how well the
network could classify the data with different levels of noise, and as a con-
clusion, it was quite difficult for the CNNs at low SNRs. As EEG data is
known to carry a large amount of noise, classifying it can be quite a chal-
lenge. The neural network did a good job to classify for certain transforms
of the data and combinations of channels, and worse for others.

An issue with the data when training was to avoid overfitting. A solution to
this is to simplify the network by removing features [17]. A neural network
with only one convolutional layer gave the best test accuracy as well as less
overfitting compared to more complex networks. Early stopping and using a
dropout layer was also tested. Early stopping gave worse results, but adding
a dropout layer improved the result, and was therefore used.

Fewer filters and higher dropout was tested but gave worse accuracy and
not much less overfitting. For the scaled reassigned spectrogram with SVD
on both ears, when only using two filters and a dropout of 0.6 the accuracy
was 51.96%, and when using four filters and dropout 0.5 the accuracy was
56.86%. These are both worse in comparison to the accuracy of 59.47% for
the used CNN.

Looking at confusion matrices the distribution of the classification can be
seen for the two classes. This distribution varies quite a bit and does not
seem to follow any noticeable patterns. However, in most of the training
processes, the distribution between the two classes are quite even.
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A difference between the training process for the spectrogram and the scaled
reassigned spectrogram is that the one for the spectrogram does not reach
100% for the training data in a stable manner. It is possible that the train-
ing process for the spectrogram would reach higher results if it had been
trained for a longer time.

Several windows for the periodogram were tested, including Kaiser, rectan-
gular, Gaussian and Hamming as well as no window at all, but the Hann
(Hanning) window performed the best. Different numbers of FFT-samples
were also tested, and the ones that gave the best classification results are
the ones that are used.

5.1 Final Conclusion

The best way to classify this type of EEG data seems to be by using the
scaled reassigned spectrogram and SVD, with an accuracy of 59.47%. This
is the most stable method that can be used if the experience would be re-
done. The scaled reassigned spectrogram along with the unprocessed data
performed better for all cases of the data. The SVD data performed bet-
ter than the mean value data and the single channels for most of the data
transforms.

Comparing the simulated data to the real data there are a few differences.
The classification results look different within the transforms, though the
training processes have similar behaviours.

5.2 Further Studies

One of the greatest issues in this thesis was the overfitting that occurred in
all the training processes. Further measures to prevent this could be consid-
ered. Cross-validation is a way of preventing overfitting that is not tested in
this thesis, it uses the training data to generate multiple smaller train-test
splits. Having more data to train on would also reduce the overfitting.

As seen in figure 4.7 the spectrogram does not converge properly. Training
the spectrogram for a longer time could possibly improve the classification
result.

Other time-frequency methods could be tested. An interesting example is
the Wigner distribution, it has strong cross-terms unlike the time-frequency
methods used in this thesis.
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Improving the simulated data seem to be necessary, and is something that
could be done in the future. The noise in the simulated data looked a bit
different from the noise in the real data, and the classification was quite
different between the two data sets. However, this could be because of how
the data in this thesis looked, and that the simulated data looks similar to
other EEG data.
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