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Abstract

Software models can simulate hardware components to varying degrees of ac-
curacy. On the extreme ends, there are purely functional models which have
no concept of time and execute requests right away, and cycle-accurate models
which capture all the implementation details and clock the time they take. In
this thesis we study a model of an Arm Mali GPU which is a cycle-approximate
model, meaning it is somewhere between the two. The model has some time-
keeping abilities, but still accesses data in a functional untimed way. This creates
compatibility issues if we want to connect it with cycle-accurate models which
expect timed memory requests. To bridge this gap, we implement a scheme to
convert untimed requests into timed when needed by employing a scheme of
coroutines to switch context until timing requirements can be satisfied. We find
that our scheme enables the model to work correctly in an environment that de-
mands timed requests, but at the cost of accuracy loss in the model’s performance
estimations.

Keywords: Cycle-approximate, Cycle-accurate, TLM, Coroutine, GPU, SystemC, C++,
Modelling, AXI
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Chapter 1

Introduction

As part of its operation, a graphics processing unit (GPU) often needs to read from and write
to a system level memory that is located external to the GPU itself. As with all operations
taking place inside of a computer, this transaction of data will take a certain amount of
time to complete. When designing a simulator of a hardware component such as a GPU,
physical properties become implementation choices, and depending on the simulator needs
this allows for the handling of memory to be done in many di�erent ways. A functional
approach would be to disregard the mechanisms of the transactions and act on the memory
directly. However, if we also care about getting performance data out of the simulation we
would need to simulate the transaction mechanisms as well.

In this project we will look at a model simulating an Arm Mali GPU. The model mixes
functional- and performance aspects, by letting the model directly act on the memory while
simulating transaction delays separately (in the form of a request-response mechanism) but
without functionality (meaning that the simulated transactions do not move any data). This
creates challenges when integrating the model into an environment where the model no
longer has functional access to the emulated memory. Not only do we have to tie the data
access to our simulated performance transactions, but we also need to rely on the accuracy
of an implementation that was done with approximativeness in mind.

1.1 Problem Statement
We have a GPU model that is implemented on the basis of having direct functional access to
system memory. In order to get performance estimates the model also has a system in place
to simulate the delays that memory transactions would have induced. However, this system
relies on manual implementations of individual requests, and is incomplete. In a full system
simulation it is assumed that the model no longer has direct functional access. Instead the
data connection is tied to the manually implemented requests which were previously used
for performance estimates. The consequence of this is that the data correctness of the model
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1. Introduction

now relies on a request system that is incomplete.
This restriction is illustrated in Figure 1.1. To the left we have the model as given to us.

To the right a setup with an external memory is shown. In the beginning of a simulation run,
the memory that was previously loaded into the model will now be loaded into the external
memory. Our goal is to make the result of any given test vector run in the setup to the left to
be identical to the result when run in the setup to the right.

Figure 1.1: Left: The setup of the model.
Right: The setup this project aims to enable.

1.1.1 Research Questions
With the problem above in mind, our thesis will investigate and answer the following ques-
tions:

• How can incorrect data being consumed as a result of missing or mismanaged memory
requests be identified?

• What is the current state of the model’s management of memory requests?

• Is it possible to set up a way to automatically handle all the missing/mismanaged re-
quests?

• How would such a handling impact the performance estimates given by the model?

1.2 Overview of the Thesis
In this thesis, we will start out by providing background on a couple of technical concepts
that will be used throughout the project. These include a description about model types,

8



1.2 Overview of the Thesis

the SystemC simulation environment, an introduction to coroutines, and the AXI protocol
which is used for communication between the GPU and memory systems. Following this, we
describe the properties of the specific Mali GPU model that we are looking at. We define
the target behaviour we want the model to have in Section 3.2. We then spend the rest of
Chapter 3 to reflect on di�erent approaches for achieving this target.

An approach that answers the first and third research question is set up in Chapter 4.The
correctness of this implementation is verified in Chapter 5, along with an evaluation of the
second and fourth research questions. Finally, the outcomes of these evaluations, along with
some discussion on alternative approaches, is done in Chapter 6.
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Chapter 2

Theoretical Background and Related Work

In this chapter we will briefly present some technical concepts and definitions which will be
used throughout investigation. The topics covered may seem unrelated to each other, but we
will find that they all end up central to the project.

2.1 Computer Components
The model we are working with is a model of a graphical computational unit (GPU). In many
ways it could be likened to a highly specialised central processing unit (CPU) - the component
responsible for computer computations in general. Just like a CPU, a GPU operates in terms
of clock cycles, which is the smallest unit of time in which the component performs actions.
It is these cycles which are referred to when talking of the more commonly used term clock
frequency, where for example a component operating on 1 GHz means that it performs 1
billion clock cycles per second.

The GPU is an advanced component containing multiple sub-components performing
di�erent tasks related to graphical computation. These computations use memory, and to
speed up this access the GPU contains memories called caches which tend to be fast but small.
Since these memories cannot fit everything that the GPU might need, and because the GPU
might wish to share memory outputs with other components, there is a need to frequently
read and write to a larger memory located outside of the GPU. This memory is usually of
the type random access memory (RAM) and typically has a size in the range of gigabytes. The
random-property in its name refers to the fact that the access time is fairly uniform no matter
which part of the memory one tries to access - meaning that reading two randomly located
parts should take roughly the same time. This is a contrast to a hard drive where the physical
properties of its mechanical components makes it so that moving to di�erent parts of the
data might take di�erent amounts of time.

Cache memories are hierarchical, with the terms L1, L2, etc denoting their proximity to
a component, and the system-level RAM could be seen as highest up in this chain of work-
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2. Theoretical Background and Related Work

memory. As a rule of thumb, a lower number memory is smaller but faster. Since a com-
ponent will read data from the closest memory having the desired contents, the question of
coherency between memory sources becomes important (since a di�erent component might
have modified the data on a higher level). To this end, our model performs two key actions :

• Flushing, meaning that when a cache has a certain amount of data written to it that has
not been passed up, it performs a write-back of this.

• Invalidation, meaning that data is cleared/removed from a cache.

2.2 Modelling Concepts
By model, we refer a piece of software that simulates the behaviour of a hardware component.
Such models can vary widely in both accuracy and use cases. The accuracy to which they
represent the hardware can be down to the wire, or they might just give the same output but
arrive to it in a completely di�erent way.

2.2.1 Transaction Level Modelling
Transaction level modelling (TLM) is a type of modelling where the details of communica-
tion between components in a model are separated from the components themselves. In-
stead, there exists abstractions in form of channels which interface with the model’s compu-
tational components and thus act as a separation between computational and communica-
tional aspects[1][2]. The level of precision of both the communicational and computational
aspects of a model can vary a lot. Cycle-accurate as well as untimed (also known as "functional")
models are at opposite ends of the precision spectras. Cycle-approximate however covers a
wide range between these which is often not so well-defined. [3] In an attempt to define
these properties in terms of computation and communication, Cai and Gajski[2] introduce
the terms bus-arbitration model and bus-functional model as shown in Figure 2.1. The process of
going from approximate to accurate in either aspect is referred to as refinement.

12



2.2 Modelling Concepts

Figure 2.1: TLM classifications according to Cai and Gajski[2]

The given classifications are as follow:

• Bus-arbitration model: Channels between computational components have some rep-
resentation, but the bus protocols can be simplified as blocking and non-blocking I/O
and lack all semblance of cycle-accuracy. The transactions on the channel have time
estimations specified by a wait statement.

• Bus-functional model: Contains time/cycle accurate communication and approximate-
timed computation.

Our model would best be characterised by something in between C and D, likely closer to
D. It does not represent communications down to the wire and the channels very much con-
sist of higher level abstractions, but it largely adheres to the given communication protocol
including handshake mechanisms and meta-data fields (though notably not the data itself).
It should be noted that the cause of our problems is not related to any timing inaccuracies by
the communication channels themselves, which do provide a reliable request-response mech-
anism. Rather, our problems are caused by the endpoints initiating these mechanisms in the
wrong stage coupled in the pipeline, or not initiating them at all.

2.2.2 SystemC
SystemC is a C++-based class library and design environment for system-level design[4]. It
adds timing, concurrency, and hardware data types to the standard C++ language, and is a
popular choice for system level modelling. The GPU model is not written in SystemC, but
it might be used in a SystemC-scope. In this project we will make use of a SystemC program
that acts as a top-level that loads the model and drives its execution via interaction with the
model’s interface.

Methods in SystemC can be run as a SC_METHOD or as a SC_THREAD. The di�erence
between these is that a SC_METHOD is started each time it is used whereas a SC_THREAD
is started only once and can then suspend itself at will using a wait [5]. SC_THREAD is a
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2. Theoretical Background and Related Work

sequentially executing construct working much like a coroutine / user level thread. This
means that using a SC_THREAD does not create any risk of race conditions, as only one of
them can execute at the time.

For both of these method types, what drives execution is one or more sensitivities which
are registered for each such instance. These sensitivities could be items such as custom events
raising notifications, but they could also stem from a clock. The notion of time in SystemC
covers clockability and lets one define a clock that can fire at every discrete amount of time
elapsed. In our case, the simulation processes bound to the clock are the clocking of the
model itself as well as the clocking of the interfaces managing model requests.

2.3 Context Management
As later described in Section 3.4, we will be faced with the need of returning from the middle
of functions and then returning to them at a later point. To this end we will make use of a
type of control structures called coroutines. These are powerful and versatile abstractions
with a range of use cases[6]. In this project, we will not make use of the full range of these
capabilities, and we will therefore not provide a description of all these either. Below is a
summary that relates to the aspects that we will be useful for us, or that are likely to be useful
in some extension of this work.

2.3.1 Call Stacks
A call stack is a contiguous section of memory set aside for a program[7]. It is made up of
entries called stack frames (also known as activation records) which are structures containing
information about function calls, typically local variables, parameters passed, and where it
should return. This structure works based on the "last in, first out"-principle, meaning that
the currently executing function in a program is on top of the program’s call stack, and when
it returns it is popped from it.

With that in mind, we can see the stack as a representation of the current chain of events
in a program. One of the key parts of threading is to have multiple chains of events going
on at the same time, which in turn means having multiple stacks. When using system level
threads (also known as kernel level threads), the system will change back and forth between
these, which is commonly referred to as context switching. However, it is not necessary to have
system threads in order to have multiple stacks - they can also be managed on application level
as part of a user level thread. Since these do not need system-level management they also do
not need as many unique resources, leading to less overhead and faster context switching[8].
User level threads can take shape in di�erent semantics and are commonly used as part of
coroutines.

2.3.2 What is a Coroutine?
A coroutine is a generalisation of the concept of a subroutine. To understand this relationship,
let us first consider the idea of a subroutine. The invocation of a subroutine consists of three
basic parts:

14



2.3 Context Management

• The invocation itself

• A range of actions that make up the subroutine, that get executed from start to end

• Returning the result of the subroutine (possibly void), and moving back the execution
to the caller

We take notice of the fact that the middle part has to run to completion before control
can be given back to the caller. This is one of the key di�erences to coroutines, which do not
have this requirement. Instead, a coroutine can return control to the caller without having
run to completion, and if it is given back control later, it will resume execution from the
point it stopped as shown in Figure 2.2. The action of returning control in the middle of
execution will henceforth be referred to as yielding or suspending. The other part which is
central to the idea of coroutines is the idea of cooperative scheduling, meaning that rather than
having a central dispatch for which coroutine should be executing at a given moment, the
control is explicitly passed back and forth between the coroutines themselves (meaning the
coroutine is symmetric), or always back to the caller (meaning the coroutine is asymmetric)[6].

Figure 2.2: Coroutine control passing (Tevfik AKTUĞLU, Wiki-
media Commons, https://commons.wikimedia.org/wiki/
File:Coroutine.png)

2.3.3 Difference Between Stackful and Stackless Corou-
tines

One of the main distinctions between coroutines types is whether they are stackful or stackless.
These phrases are easy to get confused, because stackful is in reference to the coroutine having
its own stack. Whether this stack is actually stack- or heap-allocated with regard to the system
is inconsequential and a question of optimisation.

The Boost library’s documentation of coroutines notes that in contrast to stackless corou-
tines, stackful coroutines allow invoking the suspend operation out of arbitrary sub-stackframes,
enabling escape-and-reenter recursive operations[9]. This means that if a coroutine A calls
a subroutine B, then it is possible to suspend the coroutine A from inside B, because the
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2. Theoretical Background and Related Work

frame of B is located on this separate stack. When the coroutine is then resumed, the con-
text including local variables is then resumed from where it was suspended inside of B. As a
contrast, stackless coroutines can not suspend from any call depth deeper than the coroutine
function itself.

2.3.4 Difference Between Coroutines and Fibers
Coroutines and fibers have a lot in common and might even share implementation-level de-
tails. They are both user level threads (meaning they have no kernel interaction in their
switching, and run on a single kernel level thread), and they can both be used for asyn-
chronous operations by yielding (or in the case of fibers, "blocking"). The principal di�erence
is that when a coroutine yields, it either leaves the control to the caller (in the case of asym-
metric coroutines), or to another coroutine (in the case of symmetric coroutines). Fibers on
the other hand have a scheduler which determines the next execution context[10].

2.3.5 Methods For Context Preservation in C++
Let us now consider the di�erent ways we can go about to freeze a process from a specific
line, do something else from the same top-level context, and then resume where it was left o�.
We want this done with as little overhead and as few dependencies as possible. We o�er no
precise metrics for measuring these properties, but instead try to reason with how di�erent
specifications align with the context of our model. After doing so we end up selecting two of
them, and will make two similar but separate versions of the implementation in Chapter 4.

Until C++20 there was no native support for coroutines in the C++-standard. For this rea-
son, a number of third party libraries provide di�erent variants of coroutine functionality[11].
Perhaps the most widely used of these is Boost’s implementations of the library which pro-
vide stackful, first-class coroutines (meaning they have an passable handle) building on top
of their library Boost.Context. Additionally, the library Boost.Fiber also builds on top of
Boost.Context, making the underlying functionality of their coroutine- and fiber-libraries
very similar. In addition to this, there exists a number of lesser known libraries proving
di�erent variations of coroutine functionality.

Additionally, there exist lower-level constructs which could be used to create custom
coroutines and/or context management facilities. For POSIX-systems these functionalities
include setjmp, which saves various information about the calling environment and then per-
forms a non-local jump restoring this context with longjmp, as well as (o�cially deprecated)
makecontext and setcontext which o�er user-level context switching [12] [13]. In addition to
this, there is a Windows-equivalent mechanism called Win32 Fiber.

Threads
One possibility would be to use separate threads, as each thread has its own call stack. A
regular system-level thread could be created to start from the desired point of invocation,
and then be used together with locks to make sure that only one thread execute at a given
time (ensuring a sequential flow of operations). Should the C++ std::thread library be used
for this, the library type condition_variable could be used along with a mutex to facilitate
communication and synchronisation between the threads[14].
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2.3 Context Management

Threads however introduce overheads in other ways. A context switch might induce
a delay in the range of multiple microseconds[15]. Running one work item like this each
computation cycle in the model, that would result in two switches per cycle. Given that
our model executes between 5000 and 10000 computation cycles per real-world second on
our host machine, this means inducing up to 20000 switches per second of computation,
which might not be negligible. Should some additional modification require finer granularity
than our current scheme (such as running each subcomponent in its own context rather than
having a single context from the top-level runner), then the number would be even larger.
In addition to this, having a system-level thread creates unpredictability if the user expects
the program to execute in a certain way, for example if some tests rely on a fixed number of
threads interacting for which these might interfere. A few strengths and weaknesses of this
approach are listed in Table 2.1.

Strengths Weaknesses
Widely known Cost of context switching

Quick to implement Synchronisation mismanagement risk
- Possible interference with other behaviours relying on specific thread setups

Table 2.1: Strengths and weaknesses of using system threads

C++20 coroutines
A newly introduced feature in the C++20 revision of the C++-standard is native coroutine
functionality as a language construct. It added three new keywords to the language; co_await,
co_yield, and co_return. This new functionality integrates well with a few established stan-
dard library features often associated with std::thread-functionality, such as std::future which
is a type that can hold a promise, which could be likened to a placeholder of sorts for the
result of an asynchronous operation. While it would be welcome to not have any external
dependencies, it does require C++20 which is not yet widely adopted, and incompatible with
the default build of our model which is compiled with C++11. Most importantly of all, this
implementation is stackless. This e�ectively means that in order to suspend from an arbitrary
point in a nested chain of calls, every routine in this chain would need to be a coroutine of
its own. Since we are dealing with hundreds of di�erent routines in the potential call paths
from which we might need to yield, this would require a huge reworking of definitions all
across the model - in addition to an unknown computational overhead induced by running
every invocation this way. For this reason we will not consider this a viable candidate. A few
strengths and weaknesses of this approach are listed in Table 2.2.

Strengths Weaknesses
Native language construct Stackless, needs to be chained to suspend nested calls

Future proofing C++20 only
- Requires large code overhaul

Table 2.2: Strengths and weaknesses of using C++20 coroutines
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Boost coroutines
The Boost library[9] o�ers two implementations for coroutine functionality - Boost.Coroutine,
which is now deprecated, and its successor Boost.Coroutine2. They are stackful, as well as
first-class objects giving an advantage to ease of syntax as the handles can be passed around
at will. Additionally, the model already uses other Boost libraries reducing the expense of
introducing another third party library. It is computationally fast, with the o�cial docu-
mentation giving a reference figure of 26 ns for a context switch[9]. A few strengths and
weaknesses of this approach are listed in Table 2.3.

Strengths Weaknesses
Stackful -

Well-documented -
Model already uses Boost libraries -

Table 2.3: Strengths and weaknesses of using Boost.Coroutine2

Note: For library versions up until 1.60, Boost.Coroutine2 required C++14. In subsequent
versions, this requirement is relaxed to C++11. At the time of running tests in our experi-
mental section we had missed this detail and as a result excluded the use of these when doing
runs in an environment which did not support C++14. Changing the library version to a more
recent one than 1.60 would have solved our presumed incompatibility issues.

Fibers
Returning once again to the Boost library, it provides a Fiber library that builds on top of the
same implementation of Boost.Context which provides the underlying mechanics for stack
management and context switching. Comparing this to Boost.Coroutine2 it comes down
to a matter of syntactic preference. The Fiber requires an explicit scheduler which could
potentially be implemented to always resume the caller in order to achieve the same as an
asymmetric coroutine.

SystemC SC_THREAD
As touched upon in Section 2.2.2, SystemC provides a coroutine-like functionality of its own
by allowing user-level processes suspend to the caller and then resume at a later point. Since
we call the entire model as a single SC_METHOD, we could swap this out for a SC_THREAD
to allow for the wait-functionality to be used. Since this would suspend the entire GPU
model, including the memory channels, the state checking that pertains to the suspension
state would have to be moved to the SystemC environment side. This creates a dependence
on SystemC-specific facilities, but would be very convenient when these are available. A few
strengths and weaknesses of this approach are listed in Table 2.4.

Strengths Weaknesses
Easy to implement and manage Creates SystemC dependency

- Requires that the whole model process is suspended as an atomic

Table 2.4: Strengths and weaknesses of using SC_THREAD
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Custom solutions
As mentioned in Section 2.3.5, low-level facilities may be used to craft a custom equivalent to
the aforementioned alternatives. While this might result in the solution with the least over-
head, it would require a larger initial e�ort to set up as compared to alternatives. Addition-
ally, the most interesting candidate - the ucontext-functions makecontext, setcontext, and
getcontext were o�cially deprecated from the POSIX standard in IEEE Std 1003.1-2001/Cor
2-2004 [16]. For these reasons we decided not to pursue these options for the scope of this
project. A few strengths and weaknesses of these approaches are listed in Table 2.5.

Strengths Weaknesses
Potentially optimal performance Di�cult implementation

Adds no extra dependencies Partially deprecated
- OS-specific

Table 2.5: Strengths and weaknesses of using custom solutions

Conclusion
The two solutions provide our necessary functionality in terms of quick and simple context
switching are Boost.Coroutines2 and SC_THREAD / sc_cor. The noted disadvantage of the
latter in that state management and request handling would have to be moved to a SystemC
externality could actually be an advantage in the testing phase, as the lightweight and simple
SystemC program we are dealing with allows for quicker tests and changes when looking at
request-specific functionalities. For this reason we will start out with SC_THREAD in the
testing phase, and then move onto a version based on the Boost library for wider coverage
once all the other parts are working.

2.4 AXI Protocol
The AMBA AXI protocol is a communication protocol for memory transfers[17]. It is a quite
comprehensive protocol covering a lot of functionalities and conditions, but only a few are
necessary to understand for the scope of what is being investigated in this paper.

The protocol has five channels - write address, write data, write response, read address, and
read data (includes the control data for the response). These are all uni-directional, as shown
in Figure 2.3 and Figure 2.4. In addition to addresses and data content, these contain a few
auxiliary fields, the most important being the handshake signals VALID and READY which
work in such a way that the source generates the VALID signal to indicate when the address,
data, or control information is available. The destination generates the READY signal to
indicate that it can accept the information. Transfer occurs only when both the VALID and
READY signals are HIGH[17]. In addition to this, each memory transaction also has an ID.

Reads are always covering all bytes in a range. Writes however can be strobed, where strobe
is a field on write data that specifies which bytes contain valid information. The strobe works
similarly to a mask, and contains one bit of information per byte transferred. If for example
the data on the bus is [0xAA 0xBB 0xCC] and the corresponding strobe is [0 1 0] that would
mean that only [0xBB] is valid information.
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Figure 2.3: AXI Read Channels[17]

Figure 2.4: AXI Write Channels[17]

In the model these are implemented in such a way that the signals in write address and
write data are conflated into one object, having the data-field of the write data-channel as
optional (the alternative being making the functional write separately). For reads, the data-
field is always omitted in the read data-channel (leaving only meta-data fields such as valid-
and ready-indications) and the response is largely treated as an acknowledgement as well
as simulation of pipeline delays, while the actual memory access uses a di�erent method of
direct access (usually following this response).

2.5 Related Investigations
In a paper titled "Integrating GPGPU computations with CPU coroutines in C++"[18], Pavel A.
Lebedev investigates possibilities of using coroutine semantics to facilitate asynchronous I/O
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operations in C++, something he describes as a "recently rediscovered solution to elegant
asynchronous processing", which in this case involves calling GPU operations from a CPU
which are blocking but do not consume any resources in the CPU itself. In this investigation
the author reflects over the fact that native language facilities are lacking and makes use of
Boost.Context in combination with an asio networking library derivative [19] to demonstrate
a use case, motivating the library choices as "readily available, not depending on any particular
compiler or operating system, and representing the least e�cient library-based approach"
(with respect to getting a lower bound on performance numbers). These demonstrations
consist of a few code examples showing that the syntax modifications needed when making
I/O operations asynchronous can be quite small, as well the run-time performance impact
being relatively small.

Since these use cases share similarities with our need of control flow management, it gives
confidence in using coroutines as an abstraction for the handling of blocking I/O in C++.
Especially the following description from this paper sums up a characteristic that we will
benefit a lot from in our own implementation: "Traditional asynchronous code in C++ contains
lots of relatively small functions that specify each other as a point at which the algorithm should
continue once an invoked asynchronous call completes. This quickly complicates program structure
in comparison with blocking synchronous code that doesn’t need to split algorithms with multiple
asynchronous calls into pieces. Coroutines can be used as the primary means of reverting tangled and
piecewise asynchronous code back to serial and readable form."

An interesting industrial case study exploring parallel simulation of loosely timed Sys-
temC/TLM programs has been done by Becker, Moy and Cornet[20]. Though their inves-
tigation is directed towards parallelisation of multiple SystemC processes, it does bring up
the role of concurrency in a SystemC context and the limitations caused by loose timing.
They conclude that these limitations are quite severe, making is very hard to implement par-
allelisation schemes for SystemC models. A related work Samuel Jones titled "Optimistic
Parallelisation of SystemC"[21] goes further on this by exploring ways to use temporal decou-
pling, which is the idea of letting di�erent parts of a simulation be in di�erent places of the
virtual time. In this work the synchronisation mechanisms are between threads communicat-
ing over SystemC directly. There are two key di�erences between our investigation and this
- first o�, Jones’ investigation focuses on improving host speed, while we try to find ways to
decrease our impact on virtual time. Secondly, since we are not using SystemC for the com-
munication between di�erent parts of our model (we are just using it to bridge the model
with other external components) we cannot use the suggested SystemC-native synchronisa-
tion constructs. The core concepts of time decoupling stay true though, and we will find that
our ideas for a speed-up heuristic is a type of time decoupling. In addition to this, their work
also touched on the di�culties of using roll-back mechanisms in SystemC, which will be a
limitation for us in our heuristic exploration.
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Chapter 3

Challenges and Objectives

In order to understand the nature and constraints of the problem, we will give a brief ex-
planation on how a few aspects of the GPU model are set up. This understanding will help
motivate design choices we make for our approaches. We will then go on to describe how
we aim to make a modified version that satisfies a couple of added constraints. We will also
outline some limitations that a�ect our possibilities to do so.

3.1 How the GPU Model Works
The GPU model replays known scenarios by taking a test vector as input. A test vector is
loaded from file and contains previously captured system memory along with a list of in-
structions to drive the execution. The replay is managed by a small program which we will
refer to as the replay driver. This driver interfaces with the GPU model by reading and writing
memory and registers as per the instructions of the test vector. The memory in the test vector
represents content that would have been present in a system-level memory, i.e. external to the
GPU. However, we do not simulate this memory component separately. Instead, the replay
driver will load the full contents of the file directly into the GPU model immediately when
the replay starts. Inside the GPU model the memory will then be kept in a structure that is
functionally accessible throughout the model. At the end of the simulation, an output will
be written to disk containing the resulting frame bu�er along with a range of performance
estimates. The expected output is known for a replay, so the output of a given simulation run
can be compared to this known result to verify the functional correctness that is expected of
the model.

The key performance estimates of the model are the clock cycles that have elapsed in the
model, and the memory bandwidth consumed. These both have an accuracy target of 5% as
compared to the numbers of the real GPU. In order to stay so close to the numbers of the real
GPU the model has a block-based design resembling it. Each clock cycle a top level function
will invoke these blocks to perform one cycle worth of computation, pass communication,
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and update performance counters. The version of the model we work on in this thesis is
implemented as single-threaded, although a multi-threaded version also exists.

Although the model performs the data access itself functionally and untimed, meaning
an access does not a�ect the model’s notion of time, there is a system in place to simulate this
delay separately. The way this works is that in the places where memory accesses are taking
place, AXI requests are manually issued. Once a response has been attained for these, the
model goes ahead with the untimed functional read. This is not always the case though, and
in some places functional memory access takes place without a corresponding AXI response.

In summary, the properties of the model are the following:

• Written in C++, using the C++11 standard

• Functionally accurate

• Deterministic

• Performance approximate with a target of being within 5% from the real GPU in terms
of cycle count and memory bandwidth

• Block-based design with clockable blocks

• By default running self-contained without being connected to any other system com-
ponents

• Functional data access

• Simulated AXI requests which are timed. Implemented in most places, but not all.

• Has an interface exposing some functionality, such as passing memory performance
requests and clocking the model. This opens up for external components in a shared
setup driving its execution.

The general flow of the model is shown in Figure 3.1.

GPU Model

Computational components

Untimed memory structure

Data access

Request system

Performance request

Loopback

External AXI

Main clock

Test vector

Figure 3.1: High-level layout of model
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3.1.1 Overview of the Memory System
As shown in Figure 3.4a, the model contains a memory structure that holds the entire mem-
ory contained in the test vector, representing what is supposed to be system level memory.
Each cell of this memory is made of a custom type that can hold either an 8-bit unsigned
integer (a regular byte), or a value representing an unknown state which will be denoted
as X. This unknown state is what the memory is initialised to, and then in the beginning
of the simulation run the model will load whatever values are in the test vector file into it.
Additionally, the type is set up in such a way that if it contains a value it can be implicitly
converted to a regular char-type, but if it is marked as unknown this attempted conversion
will trigger a hard fault, upon which a backtrace prints and the simulation halts.

The memory structure has a number of access methods that allow for reads and writes
of this underlying data. What these access methods all have in common is that they act
directly on the underlying memory and are instant, as shown in Figure 3.3. It is for this
reason - that they are instant - that this memory structure will be referred to as the untimed
memory throughout the text. Other than this, the di�erent access methods vary a bit in their
properties. One key di�erence is that some take in a physical address as argument, while
others use virtual addresses. In this context, physical refers to the address space provided by
the memory test vector file, after which the untimed memory is set up. If a virtual address is
passed in, the access method must first make a secondary read for a page table entry, or PTE
for short, to resolve the physical address it should read from or write to. For this reason a
functional write can cause a read to happen.

Another di�erence which will have even greater importance for our problem is the fact
that a few of the methods take in a regular char-type for the destination bu�er, while others
take in a reference to a bu�er with the extended type described in the previous paragraph.

One last di�erence is that writes can optionally have a strobe attached to them, acting as
a mask for the sequence following the given address. Reads have no option for this.

These methods are accessible in almost all parts of the model, and is in fact the only
way that data is fetched from the memory system. The model contains a number of cache
memories, but the underlying data has no separation – instead of the caches keeping a copy
of the data they purportedly hold, they reference line addresses as shown in Figure 3.2. This
means that the same functional access methods are used to consume both cached and non-
cached memory.

Lastly, as part of the caches’ memory coherency, they contain an invalidation mechanism
as well as a flushing mechanism. These are implemented in such a way that they are done
globally, meaning that the entire cache will be invalidated or flushed at once.
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Figure 3.2: Cache-untimed memory relationship

Figure 3.3: Functional read invocation

GPU Model

Computation components

Untimed memory structure

Data access

Internal request passing

Formal request
(no data; optional)

GPU internal caches

Loopback
(if no external receiver; default)

Outgoing AXI channels

External AXI receiver
(optional)

Miss

Memory trace (dump)

Transfer on initialisation (replay mode)

(a) Model flow before

GPU Model

Computation components

Untimed memory structure
(blank-initialised)

Data access

Internal request passing

Formal request
(no data; optional)

GPU internal caches

Outgoing AXI channels

External AXI receiver

Miss

External system memory

Trigger fetch

Memory trace (dump)

Transfer on initialisation (replay mode)

Copy requested data

(b) Model flow after

Figure 3.4: Flow of memory reads and writes in the model
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3.2 Target Behaviour
The golden standard will be the GPU model as it was given to us. Whenever our modified
version makes a functional read or write, we wish for the data in question to be identical
to what it would have been in the unmodified build. This is the only hard rule we set with
respect to the changes we are about to introduce: any memory consumed by the model must
at all times be identical to the memory consumed by that same operation in the unmodi-
fied build. Should the model consume memory with di�erent content than intended, it will
be considered undefined behaviour which is likely to lead to unpredictable crashes of the
simulation or corruption of the output.

Comparing Figure 3.4b with Figure 3.4a, we have that:

• The model’s memory is initialised as unknown instead of pre-loaded with test vector
contents.

• The content that would otherwise be pre-loaded is now only loaded upon proper mem-
ory requests

This is another way of saying that the model memory will only be correct if is also makes
correct requests for it.

3.3 Identifying Problems
By problem, we refer to a functional read of data where the underlying memory is di�erent
than it would have been in our reference build. In this section, we will reason around how
these problems can be identified. Additionally, we also look at what happens when functional
writes are not guaranteed to reach the target memory. Once we know the factors a�ecting
data states, we will combine these rules into a component which we will refer to as the coher-
ence checker throughout the text. The coherence checker will be a just-in-time detection tool
returning the state of any given address of the internal memory.

3.3.1 Sensitivity and Specificity
An illegal read might consume memory that by chance is the same as the intended content,
but with no knowledge of the context we can make no such guarantees. In order to adhere
to the principle we set up regarding never consuming invalid memory, this can only be guar-
anteed by detecting every single instance prior to it occurring. In other words, any false
negative in the detection might be fatal for the output coherency of the process. On the
other side, a false positive would not be a fatal problem – it would cause a duplicate read or
write of memory. However, while not an immediate problem, this would cause unnecessary
performance impact so it is also not desired. Should performance not be a concern at all, a
simple but valid solution would be to explicitly generate a new AXI request for every single
functional memory access.
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3.3.2 Pre-existing Checking Method
A checking tool to identify functional reads with no matching performance request existed
prior to this investigation. It was implemented to be fast and does not cover all cases, meaning
it has false negatives. It works by creating a second functional memory in the model, meaning
we now have two copies of of the untimed memory. Denoting these two memories A and B,
memory A is the one receiving the contents from the test vector file(s) upon initialisation, and
memory B is the one that the model sub-components access when they use their functional
read and write methods. B will be initialised to be blank, with all the entries being marked X
rather than having a definite default value such as zero. Should any method attempt a read
from a piece of memory marked X into a destination that does not support this extended
type, the attempted conversion will trigger a run-time crash (however, some destinations do
support this type). When an AXI read request comes through the simulated memory system
it will copy the underlying data for requested memory content from memory A to memory B.
Should any of this memory be marked X, then a run-time crash is triggered giving two pieces
of information - the fact that at least one problem was present, and a stack trace showing the
call path in order to identify the code component responsible for this undesired behaviour.
Conversely, if an AXI write request comes in, it will trigger a copy in the other direction. The
idea is that this would cause the final output of the simulation to be di�erent than expected
should some portion not have been copied at any point, indicating that some incorrect write
operation had occurred.

In order to map out existing problems, we first changed the behaviour to not crash to get
the relevant information out of it, by reading the data into an intermediate bu�er and then
verifying that this bu�er does not contain any X-values. If it does, copy the relevant portion
from A to B in order to make it as the data already was there, so the model can move on to
identify the next problem present. Progressing this way the model would eventually run into
some odd crashes though, indicating that at some point it had consumed incorrect data. This
helped highlight a few missing parts that would be needed for full coherency checking.

What counts as valid?
Whenever a functional read is done, we need to make sure that there exists initialised data
and that this data is not architecturally outdated. Data can exist in the model’s memory as a
result of either of the following things:

• AXI read response, triggering data copying from an external source to the model’s
internal memory

• Internal functional write

If either of these have happened for a memory location, that memory is considered valid.
We treat anything that is read into the model as possibly cached. The invalidation of cache

memory in the model is done for the entire memory at once, upon which anything possibly
cached is invalidated. When this happens, the set of valid memory is cleared.
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Dirty Data
By dirty data, we refer to data which has been written to the model’s untimed memory, but
not to the external system memory. When a functional write is done, it might make sense to
expect that the performance request (as seen from the point of the external outgoing AXI bus)
follows shortly. What complicates this is that the same functional write methods that are used
for the main memory representation are shared with the internal caches, as shown in Figure
3.2. If it were not for this, an idea to catch the cases of missing performance requests/responses
following a functional write would be to keep track of whether they appear as expected in
the outgoing bus within the immediate time-frame. However, since we do not know if this
functional write was intended to go out directly or to be an intermediate cache placement,
which might not flush for some time, this cannot be relied on. We have no easy way to iterate
over all the caches in the model to verify the intentions, and/or presence of a generated AXI
request which might have been held up at some point in the request pipeline. A solution to
this would be to keep a record of all the dirty data, wait until the caches flush - at which
point performance requests are generated by the caches for all outstanding writes - and for
each outgoing request remove them from the dirty set. Anything left on this set at the end
of a flush cycle could be assumed to have the matching performance request either missing
or unordered. For these a request could be generated for it and appended to the end of the
flush cycle as shown in Figure 3.5.

Figure 3.5: Appending outstanding dirty writes at the end of a flush
cycle

Data Precedence
Because the model’s internal memory might have a more recent copy of some data than the
external memory, an AXI read request overlapping with this should not cause the newer
memory to be overwritten. A scenario like this could occur (and it does): the model writes
to just a few bytes of a previously unread and unwritten line, and then calls on the functional
read to read the whole line before the dirty bytes have been flushed. Since parts of the line are
invalid still, the request mechanism will cause a formal read request for it. The data written
along with the read response will then have to be filtered against the dirty bytes in that same
interval, so that the necessary new bytes are fetched, but the dirty ones are not overwritten.

For example, if the model was to generate a read request for eight bytes starting from
0xdef, we would exclude the third and fourth byte from being overwritten.
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3.3.3 Unordered Write Requests
There is one additional case that needs to be handled in order to not cause problems. Accord-
ing to the AXI protocol specification, a write transaction occurs in the following order: write
request information, write data, wait for response acknowledging a completed transaction
on the receiving end. The first two could be treated as atomic in the model implementation,
usually happening in the same cycle in either order. No matter the internal ordering of these
two the functional event, which is instant, will happen before the AXI write request comes
to the outgoing as it will take at least one cycle to get into the system. When the functional
write takes place the a�ected bytes are marked as dirty, and when the AXI write response
comes back they will be de-marked. However, one of two things might also happen:

• (1) A functional write is done without sending any AXI write request at all, as discussed
in the previous section where it was addressed by appending them to the next flush
cycle.

• (2) A component erroneously waits for the AXI write response before performing the
functional write.

The latter case can be especially insidious, because when the AXI request goes to the ex-
ternal interface, it will trigger a copy of the underlying data from the model’s internal mem-
ory to the external memory. Since the functional write has not taken place yet, the underlying
piece of memory in the model internal memory will either be uninitialised or outdated. To
handle this we added a filter in the model’s request endpoint before it forwards the request
externally. Since an uninitialised X-state cannot be down-cast to a definite datatype it will
first check the underlying content for this, and mask out any bytes with X-state in the outgo-
ing strobe - for these we can with certainly say that the write operation has been unordered.
For bytes with initialised data there is no way of knowing this though, and the external mem-
ory will copy from the old data source. This is not a big problem however, because when the
functional write occurs (presumably shortly afterwards) this is essentially the same as (1),
and will leave the bytes marked as dirty. Since data marked as dirty has precedence when the
model is reading, the model will always consume this data instead of the outdated piece in
the external memory even if that one happens to be requested.

Putting it Together
At the end of this endeavour, we can set up a problem detection with the following rules:

• Before a functional read is done, verify that all the bytes encompassed have either been
externally fetched, or internally written to (i.e. that they are valid)

• When a functional write is done, mark it as dirty until a matching performance request
has gone out. Additionally, mark it as valid for the model to use

• When a performance read is done, mark its content as valid for the model to use

• When memory gets invalidated, mark this as no longer valid for the model to use
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• When the model flushes, generate requests for any outstanding dirty data at the end
of it

• When a copying is called as result of a write request, make sure the model actually had
the data for it

3.4 Handling Problems
In Section 3.3 we defined a problem as an instance of a functional read of underlying memory
di�erent than would have been read in the unmodified reference build. We then laid out rules
for how these are identified in Section 3.3.3. Now that we know how to spot the problems,
we will go on to find a way to automatically handling them.

3.4.1 Just-in-time suspension
The invalid data detection outlined in Section 3.3.3 relies on making checks when the model
is about to perform a functional read. This means that the read detection is "just in time".
The sequence typically looks look like in Figure 3.6.

Figure 3.6: Functional read invocation

Prior to the invocation of the functional read function, which could be from anywhere
in the model, it would not be known to us that it was about to be invoked without knowing
subcomponent-specific behaviour. If the validity check states that the memory that will be
read in the next line is uninitialised or outdated, it will break model functionality as incorrect
data will be passed into the system. This means that we have to request the data from the
external interface, but the problem is that this is not immediate (in the simulated case, it
costs us a minimum of 170 cycles).

This is a problem with two possible solutions

• Notify the caller that the data cannot be consumed at this point in time

• Wait for the data to come in before returning it

The first option is made very di�cult by the fact that the caller is opaque leaving us with
no information on how and when the returned memory will be consumed. A typical case
might look something like Figure 3.7:
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Figure 3.7: Invocation flow from toplevel

A full handling of the situation via that route would mean explicit state-checking in every
component that calls the functional read. As highlighted in Figure 3.8 this involves a lot of
hops, and would require a massive code overhaul.

Figure 3.8: Returning to toplevel

Changing data types for the destination bu�ers could provide some advantage. This
could be achieved by creating a datatype that contains a byte as well as a status indication
of whether it is valid to consume or not. The overload for implicit conversion to a regular
char would then be conditional on this status indication, potentially raising a custom flag if
an invalid byte was about to be consumed. This could be useful in a case such as
f u n c t i o n a l _ r e a d (A)
f u n c t i o n a l _ r e a d ( B )
d o _ s o m e t h i n g (A , B )

where the flag would not have to be raised until both had been read. This would however
only accomplish a packing together of reads taking place back to back before consuming any
of the contents (which should be a rare occurrence, if even happening at all), reducing it to a
single suspension fetching the external content at once.

We will now look at the second option, waiting for the data to get back before returning.
The request mechanism is not a concurrent procedure, but one of the things that get handled
in every clock cycle. Pushing a request through the system takes many steps, and these steps
all require cycling. However, we cannot cycle if we do not return, because as long as we have
not returned we are holding up the whole model of which the memory system is also part.
Assuming we do indeed intend to pause the process here, it means we got to do one of two
things with respect to the request

• Clock only certain parts of the model (the parts necessary to get a request through the
system) while keeping the subcomponent that made the request in suspension
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• Find a way to get the request out without having it pass the internal systems

To better understand the situation we are in, consider the flow shown in Figure 3.9.

Figure 3.9: Flow showing the context from which we must yield

In this example, a chain of calls from component B lands in a functional read for which the
coherency checker will report that the data is invalid. We wish to suspend execution before
the next operation - the read - is performed, and not resume until the condition is satisfied
that the correct data has arrived to the memory. The problem is that this condition can never
be satisfied if we do not leave our current context and return to top-level. Additionally, we
face the following circumstances:

• Any action performed in the model in the current cycle up until this point may have
a�ected the model state. This means we cannot safely repeat the partially executed
cycle without having saved the entire state of the model before.

• Because we cannot re-run the sequence that just occurred, we need to save the local
variables along the current call path if we want to return to resume it from the same
point.

3.4.2 Creating Syntax-friendly Abstractions
We now make an example using the Boost.Coroutine2 library to show how it can satisfy our
desired properties. An analogous version of this will be used in our implementation. This
means that it should conform to the idea of clockable objects in such a way that

• Whenever the object is called, it should start from the beginning if it had run to com-
pletion in the last iteration, and resume from where it left o� otherwise.

• After being called, it should run to completion or to it yielding, whichever comes first.

In order to instantiate a coroutine object with Boost we create a pull type, which a calling
type ("run it and pull something out of it") but leave the provided template type to void as we
do not need any data passing between the point of invocation and the clockable object. We
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note that we will need to pass data out of the coroutine to give information about conditions
of when it can resume, but in our case it will need to be passed to a di�erent place than the
caller for which we will use a shared object. For places where the data would be needed in the
caller’s scope, adding the type to the coroutine directly would be the most straightforward
way.

The input argument to pull_type takes in a method reference which we will create with
bind, passing in an additional argument to the destination which must take a matching push
type as its input argument. This is shown in Listing 3.1:

Listing 3.1: Instantiating a coroutine handle
c o r o u t i n e < vo id > : : p u l l _ t y p e A { b o o s t : : b in d (& S o m e _ c l a s s : : some_method ,

& i n s t a n c e _ o f _ c l a s s , b o o s t : : p l a c e h o l d e r s : : _ 1 ) } ;

The first problem that we run into is shown in Listing 3.2. Once some_method runs to
completion, nothing happens on subsequent calls - the entry point is not reset. Additionally,
it is also run once on creation which is not desired in our case.

Listing 3.2: Calling a coroutine
S o m e _ c l a s s : : some_method ( c o r o u t i n e : : p u s h _ t y p e &pt )
{

c o u t < < " I n s t a n c e  c r e a t e d " < < e n d l ;
p t ( ) ; / / y i e l d s
c o u t < < " some_method  i n v o k e d " < < e n d l ;
r e t u r n ;

}

main ( )
{

S o m e _ c l a s s i n s t a n c e _ o f _ c l a s s ( ) ;
a u t o A { b i nd (& S o m e _ c l a s s : : some_method ,

& i n s t a n c e _ o f _ c l a s s , p l a c e h o l d e r s : : _ 1 ) } ;
/ / p r i n t s " I n s t a n c e c r e a t e d "

A ( ) ; / / p r i n t s " s o m e _ m e t h o d i n v o k e d "
A ( ) ; / / p r i n t s n o t h i n g

}

Fixing the run-once behaviour has two solutions, either regenerating a new coroutine
object for each iteration of its contents, or retaining the frame by making it reset itself. To
avoid the computational cost of regeneration, we opt for the latter. This behaviour is shown in
Listing 3.3. By pointing the entry point of the coroutine object to an intermediary that never
runs to completion the object is retained, and by having it yield between each invocation of
the target method we get our desired behaviour.

Listing 3.3: Looping a coroutine
S o m e _ c l a s s : : method_hook ( c o r o u t i n e : : p u s h _ t y p e &pt )
{

c o u t < < " I n s t a n c e  c r e a t e d " < < e n d l ;
w h i l e ( t r u e )
{

p t ( ) ;
some_method ( ) ;

}
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}

S o m e _ c l a s s : : some_method ( )
{

c o u t < < " Method  i n v o k e d " < < e n d l ;
r e t u r n ;

}

main ( )
{

. . .
A ( ) ; / / p r i n t s " M e t h o d i n v o k e d "
A ( ) ; / / p r i n t s " M e t h o d i n v o k e d "
A ( ) ; / / p r i n t s " M e t h o d i n v o k e d "
. . .

}

Now the only part missing is making any subroutine called from the hook able to use the
push type to yield, and for this reason we set it in a place that all such calls will be able to
access. This could be a class base if there is a shared one for all subsequent calls, otherwise
some other shared space. In the case of the latter, the handle would have to be uniquely
associated with the component in some way if we want to have multiple coroutines in place
at the same time. In Listing 3.4 the use of a shared handle is shown.

Listing 3.4: Using yield handle

S o m e _ c l a s s : : method_hook ( c o r o u t i n e : : p u s h _ t y p e &pt )
{

i f ( ! y i e l d )
{

y i e l d = &pt ;
}
w h i l e ( t r u e )
{

p t ( ) ;
some_method ( ) ;

}
}
S o m e _ c l a s s : : some_method ( )
{

c o u t < < " B e g i n n i n g  o f  method " < < e n d l ;
( * y i e l d ) ( ) ;
c o u t < < " End  o f  method " < < e n d l ;
r e t u r n ;

}

main ( )
{

. . .
A ( ) ; / / p r i n t s " B e g i n n i n g o f m e t h o d "
A ( ) ; / / p r i n t s " End o f m e t h o d "
A ( ) ; / / p r i n t s " B e g i n n i n g o f m e t h o d "
A ( ) ; / / p r i n t s " End o f m e t h o d "
. . .

}
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c o r o u t i n e : : p u s h _ t y p e * y i e l d ;

We now have a setup in such a way that we only need to create the handle in our top-level
once, and then we can go ahead and call it as usual. In any function invoked from A, we can
freely make a call to yield.

Performance impact of reusing a frame
In the previous section we made the design decision to instantiate the coroutine to an in-
finitely looped proxy function instead of creating a new instance for each invocation. To
verify that this was indeed the right call, we created a small clockable dummy class which we
applied both approaches on, and found that the frame-retaining version was about 24 times
faster than rebuilding it on each iteration.

3.5 Heuristics
In this section we will take a look at how applying di�erent heuristics might a�ect cycle- and
bandwidth counters.

3.5.1 Filtering Out Duplicate Requests
In the case of unordered requests triggering a suspension state, the SC wrapper will generate
an AXI request that it will pass to the external AXI interface. When this request returns to
the SC wrapper, the wrapper will write the raw underlying data to the GPU model’s internal
memory so that it can act on it when resuming. A short while later the GPU will reach the
point of generating and sending out its own AXI request however, which will be passed on the
regular outgoing AXI channel to the SC wrapper. This makes an impact to the bandwidth
numbers of the external interface. Since it is unnecessary to bother the external memory
system twice for the same request, these can be filtered out. If the model makes a request for
the same address as one generated by our problem handling within a short given time-span
afterwards, we can return a fake response as we know the data has already been written to
the model. The reason to give such a fake response would be to update the internal statistics
of the model correctly. This flow is shown in Figure 3.10
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Figure 3.10: Duplicate request being filtered out

3.5.2 Some Easy Pre-fetching
An inspection of the address logs of the lines being requested through the suspension mech-
anism showed that they were highly clustered with large continuous swats. This indicates
that fetching blocks of adjacent memory might prove beneficial. One of the easiest ideas
would be to fetch the whole page the faulty read address was contained in. Disregarding
the bandwidth consumed for a second, the cycle counter would benefit from even a low hit
rate. Considering that making a single request has an expected latency of 170 cycles, with an
additional cycle per 128 bits requested. Not considering any other stalls in the pipeline, or
hardware behaviour relating to sequential fetching in SDRAM, this creates an expectation
for 174 cycles penalty when suspending to fetch a single 64 byte line, compared to a 426
cycle penalty when suspending to fetch a 4k-block of 64 lines. This means that if only two
more lines in that whole page turns out to need a critical suspension, it would be worth it in
terms of active cycles.

For reasons discussed in Section 5.2.4, this track was not pursued in depth and no further
block-fetching heuristics were tested.

3.5.3 Exploring Speeding up the Simulation
If the GPU has no interaction with the outside world for a period of time, this period of time
could hypothetically run inside a single SC-cycle. This could be leveraged to find information
about critical states ahead of time which could then be compensated by leveraging the ahead-
state and not clock the model while the requested information is in-flight externally. For
example, if the model does not have any inputs in the time period between some time T
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and T + 100, then there would be no di�erence in advancing the model one clock cycle for
each environment cycle, or advancing the model 100 cycles inside a single environment cycle
(meaning that the environment is still in time T , but the model is now in time T + 100) and
then advancing only the environment excluding the model for its next 100 cycles. Should
there have been any output from the model, let’s say at time T +50 from its perspective, then
this could be held back in a bu�er between model and environment until the environment
is also in time T + 50. If this event is that the model at some time Ti suspends itself because
it requires some information which would take 170 environment cycles to fetch, and the
environment would be at say Ti − 250 relative to model time, then the environment could
handle that request while not clocking the model bringing down the relative di�erence to
250 − 170 ≈ 80 cycles.

An input event however would require the time of the model to be equal to that of the
environment. For read and write request, these are preceded by output events - the outgoing
requests - which can be used to anticipate this. If the request return time can be accurately
predicted, that time frame could also be added to the leverage - the point where the model
and the environment need to be in sync is at the point of return. Should this be unpredictable,
the safe bet would be to have the requests as sync-up points (where sync-up means having the
run-ahead reduced to zero). Additionally, not all input events are predicated by an output
action from the model. Should there be an interrupt sent from the system to the model, then
this would e�ectively have an added latency equal to whatever the model’s run-ahead is.

We did not do an implementation of this scheme itself, however we ran an estimation of
the time frames to get an idea of the I/O down-times in order to get an idea of what results
it might have yielded. To this end we generate an estimation, where we keep a tab of the time
elapsed between events requiring the model and the environment to be synced and deduct
max(runahead, suspension request time) from the total cycle count if a suspension request
event happens under these conditions. Additionally, we set a limit of 1000 cycles for the
run-ahead. It should be noted that we leveraged the assumption of known (fixed) response
time for this test, meaning that the numbers might be favourable as compared to proper full-
system conditions. We have two separate versions of this measure, one where timing is only
synced up for read responses, and one where timing is synced up both for read and write
responses. The results of these estimates are presented in Section 5.2.2.
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Implementation

4.1 Setting up the Testing Environment
In order to test the model together with an external memory we set up both in a co-simulation
environment. This is done using a SystemC program which we will refer to as the SystemC
wrapper throughout the text. The SystemC wrapper will interface with the GPU model, the
Replay Driver, and a memory structure that we set up. The wrapper has its own clock and it
is this clock we will refer to when we talk about system time.

4.1.1 Prior Setup
Parts of the needed setup were already available to us and set up according to Figure 4.1.
These parts include the following:

• A SystemC wrapper, containing logic to interact with the model’s AXI channels (but
with no data transfer).

• AXI TLM library, proving a back-end for request mechanisms. It is set up to work as a
fixed-latency loop back that has a default delay of 170 cycles for read requests and 90
cycles for write requests, along with a throughput of 16 bytes per cycle.

• Replay Driver, which includes a C-interface.

• The GPU model itself. Provides interface functions needed for the interactions listed
above. Contains a pre-existing implementation of callbacks for the replay driver.
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Figure 4.1: Connection between components

4.1.2 Changes to the Setup
We will add an external memory to the setup. We also want to have the GPU model simula-
tion be controlled from the co-simulation environment. In order to do so we make a couple
of changes to the parts listed in Section 4.1.1. The connection between components after
these changes is shown in Figure 4.2.

• Add data passing between the SystemC wrapper and the GPU model. Tie the transfer
event to the AXI responses that are in place.

• Add a data structure to act as an external system memory. This memory will be an
intermediary between the Replay Driver and the model when running replays.

• Connect the Replay Driver to the SC wrapper instead of to the model itself.

Figure 4.2: Connection between components, modified

4.1.3 Connecting the Replay Driver
The replay driver is provided as a library with a C-interface providing the callbacks for a few
device-host interactions. From the driver side, this means to read and write memory, read
and write registers, clear memory blocks.From the device side, this means to request a new
command (which could make any of the aforementioned functionalities being called), or to
report an interrupt.

Previously these functions have been implemented in a subcomponent of the GPU model
responsible for test vector interaction, and in this case the functions of reading, writing, and
clearing memory have acted directly on the untimed memory.

To migrate these callbacks, we use the pre-existing implementations as inspiration and
switch out the memory calls to point to our external memory container. Should a proper
memory component, such as a real RAM model, be added in the future this is where that
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interaction should be handled. For callbacks relating to functionalities that have not been
moved externally, such as register reads and writes, the internal function calls are simply
swapped with externally exposed ones in the model’s interface. The locations of the callback
implementations, and the places from which they are called, are shown in Figure 4.3 .

Figure 4.3: Replay driver callback flow after migration

4.1.4 Adding a Memory Container
Now that data can move between the model and the wrapper, it needs to have a place to be
stored. We do not have any real system memory model at our disposal, so we create a more
simple representation. To do so we set up a simple sparse type of memory, where we allocate
4k-pages on demand. We set up a fixed table to keep the page entries on, meaning that we
need 232−12 = 220 entries to track 12 bit wide page addresses in a 32 bit memory space. This
naturally scales rather poorly for bigger memory representations, and it would make sense to
change approach if this is needed. It does however cover our test cases and provides us with
easy debugging by having all functionality directly accessible in our immediate scope.

4.1.5 Data Passing
Via the GPU model’s interface, we can interact with the functional read- and write methods
in order to pass data between SC wrapper and the GPU model. We tie calls to these to the
SC wrapper’s AXI management logic, which forwards requests and responses between the
AXI TLM system the the GPU model. When an AXI read response comes through, the SC
wrapper copies data from the system memory to the model’s internal one. Conversely, when
an AXI write request comes in, data will be copied from the model’s internal memory to the
system memory. The separation of memories is shown in Figure 4.4.

4.2 Scheme to Catch Problems
When we talk about our scheme to catch problems we refer to the setup outlined in Figure
4.5. The parts in red are newly introduced by us, orange has been modified in a major way,
and black ones are left untouched.

The scheme involves two principal parts – checking the functional data reads to make sure
the target data is valid, and handling the cases where it is not. If all the data the functional
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Figure 4.4: Memory copied upon AXI requests

data read tries to access is valid it will be returned as normal. If it is not, it will inform the
request management that AXI requests covering the missing parts will have to be generated.
It will also inform the state checking mechanism that the responses to those requests are
requirements to allow computation to resume. After doing these two things, it will suspend
the state of the current unfinished computation.

In subsequent cycles, the request management will push out the requests while the in-
vocations of the main clock entry function returns early. Once the matching responses are
back, the previously half-finished computation will be completed.
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Clock generator

Request management

Model entry

End of cycle

State checking:

Suspended

Exiting suspension

Not suspended

Keep waiting

Subcomponent
computations

Resume previous computation Begin new computation

Functional data read

Data checker

Legal; allow return

Check/create requests

Await responses

Illegal

Suspend state

Figure 4.5: High-level layout of scheme to handle and detect prob-
lems

4.2.1 Data Checking
In order to set up the data checker shown in Figure 4.5, we create two classes we call dirty data
manager and valid data manager. Each of these provide access methods to mark, or check the
state of, data which is being referenced to. These methods are bound to model functions in
accordance with Figure 4.6. These actions are summarised as follows:

• When a functional write is done, mark it as dirty until a matching performance request
has gone out. Additionally, mark it as valid for the model to read.

• When a performance read is done, mark its content as valid.

• When memory gets invalidated, mark it as no longer valid for the model to use.

• When the model flushes, generate requests for any outstanding dirty data at the end
of it
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Functional accesses Memory events

Write to model memory
(called from model)

Mark data as dirty Mark data as valid

Execute

Read from model memory
(called from model)

Check if marked valid
(includes dirty)

Write to model memory
(called from external source)

Exclude dirty data

Read from model memory
(called from external source)

Write request response

Mark data as non-dirty

Read request response Memory flushMemory invalidation

Mark data as invalid

All data valid

Generate request and suspend

Data partially valid Data not valid

Figure 4.6: Events a�ecting the data checker

Underlying Data Containers
To track the valid- and dirty-states we chose to work with underlying containers of std::unordered::_map,
containing addresses to 64-byte lines and their associated bit masks. We recognise that this
is likely to be computationally ine�cient when reaching large amounts of entries, but chose
it for reasons of easier debugging involving frequent inspections of specific lines. Within
limits of practicality, we do not seek to optimise our checker with respect to computational
resources at this point - our primary objective is to make it functionally correct. This same
functionality could be implemented in multiple di�erent ways, some of which would pre-
sumably be faster, as touched upon in Section 6.3.3.

Modifying Access Methods
Inside the functional read endpoints, we now insert a call to check the content that is about
to be read. For convenience, we set up the checker method in such a way that when passing
in the address and size of the desired read, it will output only the lines in the span for which
the range is not fully valid in order to reduce redundancy. The output of this function, if any,
represents the lines that should be fetched in order to make the read operation return the
expected data.

The write methods also gets a modification. When data is written, it will mark it in both
the set of dirty data and the set of valid data.

We do not want to trigger the checks and allocations when interacting with the replay
driver. Any call to the functional access methods which are called from the model’s external
interface (which will be used by the system integration later in this chapter) is given a sep-
arate analogue of the functional read and write which is identical, but with the coherency
component removed. Additionally, it is in this input method we chose to out our filtering of
reads overlapping with dirty bytes.

Duplicate Request Filtering
As touched on in Section 3.5.1, model-generated requests for which we have already generated
our own requests can get a fake response. We let the cut-o� of what is considered "close in
time" to be 10000. This arbitrarily chosen number should be high enough that it catches most
of the unordered request duplicates, but low enough that it would not accidentally disregard
an unrelated request for the same address.

In order to not throw o� the model’s performance numbers for these requests, the fake
response is sent after a delay equal to the delay incurred by the matching previous request.

44



4.2 Scheme to Catch Problems

4.2.2 Handling
Add logic to handle a suspended state and manage the additional requests. This is done in
two analogous variants, one where this functionality is placed in the SC wrapper, and one
where it is placed in the GPU model itself. The reason for this duplication is that the SC
wrapper, having less overhead than the GPU model, is easier to modify to quickly try di�er-
ent tests. However, to not make the functionality heavily dependent on the co-simulation
environment, we also make a version in which these parts are placed inside the GPU model
itself. For this one Boost coroutines will be used for the context management.

Both versions start the same way, as shown in Listing 4.1. A call to the coherence checker
is inserted into the functional read method. If the checker does not report the data to be
valid, the execution suspends. Depending on the variant, this is done either by notifying
event_suspend_model as seen in Figure 4.8, or by invoking the yield handle for the Boost corou-
tine instance. In addition to this, addresses of the invalid portions of data is forwarded.

Listing 4.1: Function read intercepted by check
f u n c t i o n a l _ r e a d ( a d d r e s s A , d e s t i n a t i o n b u f f e r )
{

[ c h e c k i f d a t a a t A i s marked v a l i d ]
[ i f not :
i n v o k e y i e l d h a n d l e OR c a l l w a i t i n SC ] −−−> e x e c u t i o n s u s p e n d s h e r e
[ r e a d from A i n t o d e s t i n a t i o n b u f f e r ] <−−− e x e c u t i o n r e s u m e s h e r e
[ r e t u r n t o c a l l e r ]

}

After this step the two variants diverge slightly.

4.2.3 Variant 1: Boost
The top-level caller has been divided up from a flow as shown in Listing 4.2 to the flow
shown in Listing 4.3. When the coroutine suspends the toplevel function will also imme-
diately return and not perform any remaining actions. For subsequent cycles where the
main_clock_function is invoked, it will also immediately return as long as the suspended state
remains in place.

Listing 4.2: Toplevel
m a i n _ c l o c k _ f u n c t i o n ( )
{

m i s c
main GPU c o m p u t a t i o n
m i s c

}

Listing 4.3: Toplevel with coroutine
m a i n _ c l o c k _ f u n c t i o n ( )
{

i f ( s u s p e n d e d )
r e t u r n ;

i f ( ! f i r s t c y c l e p o s t s u s p e n s i o n )
m i s c
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c o r o u t i n e : main GPU c o m p u t a t i o n
i f ( s u s p e n d e d )

r e t u r n ;
m i s c

}

As shown in Figure 4.5 the Request management is called independently of the main
clock function. This interaction is shown as Get outputs and Set inputs in Figure 4.7. The
call to Get outputs will push out the requests for the needed data as soon as the receiving end
(i.e. the SC wrapper) can accept them. The IDs of these requests are remembered to form
the condition for when the suspension state should end. At the same time the call to Set
input will feed in responses. If a response has a corresponding ID to one sent out, it will be
ticked o�. If an incoming response has an unrelated ID, this request is stored in a separate
bu�er. Once all the matching responses have come in, the suspension state is cleared. Once
the model is active again, any response that might be in the input bu�er is popped ahead of
any new responses coming in. The whole state of the partial computation has been saved in
the coroutine object and resumed from the data return as shown in Listing 4.1.
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Shim
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Figure 4.7: Transaction handling in the outermost layer of our mod-
ified model

4.2.4 Variant 2: SystemC wait
Our second variant manages the suspension by calling a wait on the SC_THREAD the model
has been launched on. The principal di�erence between this flow, shown in Figure 4.8, and
the one previously shown in Figure 4.7 is that while suspended no functions inside the GPU
model will be called, not even the clock function. Aside from this the actions performed are
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analogous.
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Figure 4.8: SC Logic

48



Chapter 5

Experimental Setup and Results

In this chapter, we will run a number of test vectors on models containing our changes. De-
pending on the aspects tested di�erent variations of our changes are be applied, as specified
in Section 5.1.

The first test we will perform is verifying that the output files generated by the modified
models are identical to the output files generated by the unmodified model. In addition to
functional correctness, simulated performance impact will be looked at. As stated in Chap-
ter 3.1, the two key indicators the GPU model aims to stay close to are the cycle count of
the computation and the memory bandwidth it consumes. For this reason we will see how
our changes a�ect these counters. We will also look at how the wall-clock run time of the
simulation is a�ected by our changes.

Lastly we will present some statistics on how many causes of problems are currently
present in the model as was given to us. This will help to give some context to both the
results of the simulation performance, and the actions we can take for future work.

5.1 Setup
Six di�erent builds are used in order to measure di�erent performance aspects:

1. Variant 1 from Chapter 4.2.3. Model connected to the SystemC interface. Applies Boost
coroutines. Manages request states inside the model. Returns duplicate requests and
emulates their delay, otherwise has no additional heuristics.

2. Variant 2 from Chapter 4.2.4. Model connected to the SystemC interface. Suspends
the model via parent SC_THREAD. Manages request states inside the SystemC wrap-
per. Returns duplicate requests and emulates their delay, otherwise has no additional
heuristics.

3. Clean model build, not connected to the SystemC interface. The results of this build
are used as the baseline figures to which the other builds are compared.
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4. Clean model build, connected to the SystemC interface, but with none of our added
functionality.

5. Model build applying Boost coroutines for the main computation. Invoked the corou-
tine once each computation cycle. Does not apply coherence checking. The purpose of
this build is to get an idea of how much run time performance impact the coroutines
are responsible for.

6. Same as Variant 2, but for any read requiring a suspension it will fetch the whole page
of the a�ected address. This is done in order to get an idea of the kind of changes that
just a simple pre-fetch heuristic can yield.

In addition to this, Variant 2 also measures the potential savings that a speed-up scheme
could have achieved. For reasons of time limitation this heuristic is not actually implemented,
so the results should be considered an unverified guess, but might still contribute with an
indication of whether it might be an interesting thing to pursue in the future.

The following variables are being measured:

• GPU active cycles

• Setup total cycles, which is the total cycles the GPU has been active as well as inactive

• Bandwidth, read and written

• Wall-clock run time of the tests

• The code locations of functional read calls deemed illegal, in order to find out whether
the problems are caused by a few broken request sources, or many unique ones

• The ratio of the transactions requiring suspension that got a proper request shortly
afterwards, to determine how many of the problematic reads were caused by late re-
quests as compared to completely missing ones.

These performance indicators were logged on a set of 20 randomly selected test vectors
with relatively long run time, assumed to be representative of general content.

5.1.1 Tooling Version Information
As the test vectors had long run times, a remote cluster was used to run them in parallel. Due
to some di�culties with file management, all tests could not be easily run on this. For these
tests, a laptop machine was used instead. For the laptop, the following tools were used:

• GCC 10.2

• SystemC 2.3.1

• Boost 1.74

For the cluster build, the following was used:

• GCC 4.8.5

• SystemC 2.3.1

• Boost 1.60
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5.2 Results
5.2.1 Verifying Functional Correctness
As mentioned in Chapter 3.1, at the end of a simulation run an output file will be generated
containing the memory that would have been written to a connected system. When running
the modified builds, the outputs of both the SC_THREAD version and the Boost version were
identical to the reference outputs. For the SC_THREAD version all 20 test vectors were tested
and showed no di�erence to expectation. For the Boost version it was verified on three ran-
domly selected model test vectors. The reason for the smaller number for the latter was due
to version incompatibility on the cluster. For this reason the dumps were run on the laptop
computer instead and due to the long run times of the tests not all could be tested.

5.2.2 Simulated Performance Impact
Model Active Cycles
The model’s active cycles is the number of times the GPU model’s computational components
have been clocked. To measure the e�ect our changes made to this, the set of test vectors
were first run on the clean build (3) to get a baseline. Afterwards, they were run on Version 2.
Comparing the results of Version 2 to baseline gave a deviation of mean −0.35%, SD 0.49%.

Environment Total Cycles
The environment total cycles refers to the times the SystemC clock that drives our wrapper
has run. In the case where the GPU model is never suspended, this figure is identical to the
active counter of the GPU, which is our baseline figure (meaning that no suspension would
yield a deviation of 0%). On the set of our 20 tests, shown in Table 5.1, we got a mean
deviation of 181%, with a standard deviation of 245%.

17% 21% 22% 25% 42%
57% 67% 73% 94% 103%
105% 159% 160% 171% 190%
219% 222% 285% 498% 1098%

Table 5.1: List of the total
active deviations in ascending order

Running the list on build (6), the average deviation was reduced from 181% to 20%,
o�ering a hit rate of 26% on average. The reduction estimates for the speed-up hack dis-
cussed in Section 3.5.3 landed on 5% when constraining both reads and writes, and 55%
when constraining reads only.

Bandwidth Change
To test the bandwidth change, the total bandwidth read and written to the external memory
was counted in the SystemC-wrapper, and compared to the figure reported in the internal
counter of the clean build (3).
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Running the list, the average change to baseline was 5% (min 4.9%, max 5.1%). It was
also measured if this change was induced by extra requests generated by the wrapper, or
by an increased amount on the AXI request channels between the model and the wrapper.
This showed that 96% of the change to baseline was caused by change on the AXI channels
between the model and the wrapper.

Additionally, the bandwidth induced when running build (6) was also compared to base-
line, showing an average increase of 70% (min 37%, max 177%).

5.2.3 Run Time of the Simulation
By run time of the simulation, we refer to the real world seconds elapsed on the host machine
from the start of the simulation to the end of it. For this metric, we ran two sets of tests:

• All 20 tests were run a single time each on Variant 2, and the baseline build (3).

• A single test (randomly picked) was run ten times on builds 1-5.

For the full set of tests, the runs showed an average increase of 19% (min 5%, max 36%)
when comparing Variant 2 to the baseline build. The individual results can be seen in Table
5.4.

For the second test, we found that neither connecting the model to the SC environment,
nor making use of Boost coroutines, had any performance impact outside the confidence
interval. We also found that applying our scheme on the model gave an increase of about 6%
for this test, and that there is no significant di�erence between the run times of Variant 1 and
Variant 2. The results for all five runs are shown in Table 5.2.

Build Mean (s) SD 95% CI
1 172 2.6 1.6
2 170 3.6 2.2
3 161 5.7 3.5
4 160 4.5 2.8
5 162 7.1 4.4

Table 5.2: Results in seconds of 10 runs for a single test

5.2.4 Characteristics of the Underlying Problems
In order to get an understanding of the amount of problems currently present in the model
we measure the number of incorrect data access attempts taking place. The circumstances of
these are also looked at to determine if they are the result of the underlying requests being
missing, or merely unordered. In addition to this, we also enumerate all the lines of code
that at any point call the functional read methods in order to identify which may cause such
incorrect attempts, and the frequency of how often they do so.
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Unordered Versus Missing
To determine whether an improper functional read was due to the matching request being
wrongly ordered or completely missing, a circular bu�er keeping a reference to each line that
has recently been requested in suspension mode. As a length for what should be considered
recent, 10000 cycles was chosen. This means that if an illegal functional read takes place,
and then an AXI request for this same address is generated by the model in the next 10000
cycles, it is considered to be matching but unordered.

Running the full set of 20 tests on build (3), it showed that on average 99.4% (SD 0.39%)
of the requested lines in suspension mode got a matching request in the immediate period
afterwards. This result means that almost all the problems present in the model have a cor-
responding mechanism implemented to send out AXI requests, but that these do not occur
at the right state in the pipeline.

Proportion of the Total Reads That Induced a Problem
To give a sense of scale to what proportion of the external reads in the model that were causing
issues, we take a look at the ratio of total reads that triggered a suspension. Our metric for this
number is A

A−B+C where A is the number of memory lines read via the suspension mechanism,
B is the number of suspension events induced, and C is the amount of total transactions
coming in to the proper channel. This shows that approximately 46% of the functional reads
did not have a correctly timed AXI request corresponding to it.

Distribution of Problems Throughout the Model
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Figure 5.1: Distribution of unique locations in the model code that
trigger a suspension

For this test, each code instance in the model performing any functional memory access
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was enumerated by preceding the call with setting an id that then would be added to a counter
in the read methods.

The results in Figure 5.1 show that two single instances cause almost all the problems. The
third, which happens to be the PTE-resolving, is also closely related to these as unordered
requests, in most cases stemming from the first two, will trigger unordered PTE look-ups
also.

An interesting thing to note is that there is a large number of problems which have an
extremely low frequency, occurring only a handful of times throughout the tests. Assum-
ing that the verification method is correct, this would indicate that there are a number of
otherwise correctly implemented request mechanism which get wrongly handled under rare
circumstances.

5.2.5 Lines of Code
As a measure of code complexity, we show lines of code amended to pre-existing components.
We exclude blank lines.

Type LOC
Coroutine-
specific 34

State checking 114
Calls to checker 18
Coherency checker 332

Table 5.3: Lines of code by type

As seen in Table 5.3, the total lines of code is concentrated to the coherency checking
part itself. This has been implemented as a separate self-contained class, limiting the added
complexity. The other entries are scattered, but smaller in number.

5.2.6 Full Table of Results
We now present Table 5.4 containing the deviations for key indicators for all 20 test vectors.
When collating the results the file containing the run time for test number 17 was acciden-
tally overwritten and is therefore missing.

54



5.2 Results

Tst
Active
cycles (%) ∆

Total
cycles(%) ∆

Bandwidth
(%) ∆

Bandwidth
no dual (%) ∆

Host
run-time (%) ∆

# unique
causes
(w/ di�)

AVG -0.35 181.49 32.07 5.09 19.42 16.45 (10.10)
1 −0.45 105.15 16.53 5.03 20.9 11(10)
2 0.08 22.12 17.03 5.13 19.69 11(10)
3 0.02 73.13 26.97 4.99 8.45 10(10)
4 −0.04 20.58 17.79 5.33 14.72 10(10)
5 −0.39 160.47 36.24 4.94 22.92 11(10)
6 −0.7 285.21 45.65 5.02 23.35 21(10)
7 −0.35 94.05 28.73 5.14 10.55 20(10)
8 −0.07 16.93 8.27 5.08 4.61 10(10)
9 −0.65 1097.94 64.84 4.89 30.49 10(10)

10 −2.2 497.55 78.01 5.15 15.81 9(9)
11 0 42.19 14.25 5.41 17.41 10(10)
12 −0.4 222.05 40.52 5.21 36.03 22(10)
13 −0.26 159.41 45.07 5.03 17.22 20(10)
14 −0.16 103.44 31.67 5.19 19.27 21(10)
15 −0.27 219.17 42.74 5.2 22.72 21(10)
16 −0.39 190.23 34.15 5.05 20.32 21(10)
17 0.01 25.17 12.77 4.76 11(10)
18 −0.14 57.43 34.98 5.13 20.58 22(10)
19 −0.16 170.94 25.41 5.13 28.41 29(10)
20 −0.5 66.69 19.68 4.93 15.52 29(13)

Table 5.4: Key indexes for all test vectors
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Chapter 6

Conclusions and Future Work

All in all, this case study has shown that the examined model can be suspended by corou-
tines with no e�ect to functionality and little e�ect to run-time. Additionally, an exhaustive
mechanism to identify memory accesses that lack corresponding AXI requests was imple-
mented. Together these allow the model to run in an environment with a timed external
memory without changes to any underlying behaviour, other than a few top-level checks.
The invariance to the underlying model behaviour could make our setup (Figure 4.5) a useful
catch-all.

With the current amount of optimistic memory access done by the model, applying this
scheme imposes delays that are outside of the range of deviation that would give useful perfor-
mance data from the model. However, since a few problematic instances are responsible for
the vast majority of cases, fixing just these would bring the numbers down to an acceptable
range (counter deviation < 5%). Once in an acceptable range, the catch-all could provide a
useful tool to make sure that minor occurrences do not break simulation functionality while
having a very minor impact to the performance data.

6.1 Research Questions
In the beginning of this thesis we posed four questions which we have now examined. We
will go through these one by one and briefly reflect over the conclusions we have reached.

• How can incorrect data being consumed as a result of missing or mismanaged memory
requests be identified?

When the model tries to read data, we want two things to hold: there should be data to
read, and that data should not be architecturally outdated. To cover this, we consider that
there are two ways for there to be data in the model’s memory: either an AXI read request has
been performed, or the model itself has made an internal write. Without knowing whether
the model intends to actually cache incoming memory, we treat any memory resulting of
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these two actions as possibly cached. As the model performs cache invalidation for the entire
cache at once, we can then clear the set of possible cached data alongside this event. When
the model at any point performs a functional read, we look at the set of possibly cached data
and if it is there the functional read is considered legal.

In order to also identify the missing AXI write requests we use to our advantage that the
cache flushing is also a memory-wide event in the model. By keeping a set of all the functional
writes that have been performed since the last flush event, we let the next flush event deduct
from this set. Any entries that remain in this set at the end of the flush event is assumed to
be the result of an missing AXI write request.

• What is the current state of the model’s management of memory requests?

Currently 46% of the read accesses performed by the model do not handle corresponding
AXI requests correctly. Out of these instances 99.4% are caused by the functional access
happening before the corresponding AXI response, and the remaining 0.6% are caused by
the corresponding AXI read request not being issued in the first place.

There are 29 unique places in the model code where incorrect calls to the functional read
functions are made. To ensure whether these are true problems the underlying data was also
looked at. In 13 of the places the read resulted in data that was di�erent from expectation, as
shown in Table 5.4. This means that these are guaranteed to be correctly identified problems.
Since there was no observed data di�erence for the remainders, we cannot say for certain
whether they are caused by mismanaged AXI requests, or if they are false positives caused by
incorrect constraints. In case the model’s use of flushing and invalidation should be incorrect,
false detection could follow as the constraints are based on these.

• Is it possible to set up a way to automatically handle all the missing/mismanaged re-
quests?

Yes, such a setup was shown to be possible. By coupling an exhaustive detection of missing
and wrongly ordered AXI requests with coroutines, the computation can be frozen in the
middle of a cycle whenever a problem is detected. When the needed data has returned to
the model, the frozen computation can be resumed in the next clock cycle. The flow of this
scheme is outlined in Figure 4.5. Two functionally identical implementations of this scheme
was made, as detailed in Chapter 4. The implementation referred to as Variant 2 launches the
entire model instance as a SC_THREAD and suspends it using the SystemC command wait.
The state management is then done in the SystemC wrapper component, which is external
to the GPU model (see Figure 4.2). By contrast, the implementation referred to as Variant
1 keeps both the suspension of the computation and the state management inside the GPU
model itself. The suspension itself is accomplished by launching the main computational
event as a Boost coroutine. For technical details on these implementations, see Figure 4.7
and Figure 4.8.

• How would such a handling impact the performance estimates given by the model?

There are two performance indicators that we deem important - clock cycles of the sim-
ulation run, and the memory bandwidth consumed. For the clock cycle count, there will be
an increase correlating directly with the amount of incorrect requests that need to be han-
dled. It will roughly follow a formula of average delay× suspensions needed +

data per suspension
data throughput ,
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which for our constants becomes 170× suspensions needed+4×memory lines covered. Our
measured results deviated only by 0.4% from this formula, indicating that there is nothing
else in the model having any significant e�ect on the delay.

Bandwidth on the other hand can be handled without increase in the case of incorrectly
ordered AXI requests. Our scheme will generate new AXI requests for memory accesses
that do not have a corresponding one already. However, by comparing these with the ones
generated by the model shortly afterwards, the ones generated by the model could be blocked
if matching. Since most of the problematic memory accesses were the result of incorrectly
ordered rather than fully missing AXI requests, we did not see any significant change in the
memory bandwidth in the tests.

6.2 Comparing the Two Variants
As outlined in Section 4.2.3 and Section 4.2.4 respectively, we made two versions of the mod-
ified setup. They are functionally identical in terms of output and model performance statis-
tics. The di�erence between them is where in the code certain events are handled. The results
shown in Table 5.2 showed that there is no measurable performance impact between the two
variants.

A principal di�erence is that in Variant 1 the main clock function of the model still gets
invoked, potentially allowing for the resumption of some model functionality in the sus-
pended state. In Variant 2’s suspension, the entire GPU model is treated as a single entity.
Another advantage of Variant 1 is that the solution is portable, since the state behaviour is
contained within the GPU model itself. This means that no extra work would be needed
if it were to be set up using a di�erent simulation environment than that provided by the
SystemC wrapper.

The reason we attempted Variant 2 was due to ease of debugging by having request and
state management placed in a small isolated section of the code-base. This proved very useful
in our initial e�ort to get the problem identification working right. Additionally, the setup
can provide a template for di�erent models with the same properties being connected to the
SystemC wrapper. However, if there is no need for this, there is no obvious benefit of Variant
2 over Variant 1.

In conclusion, Variant 2 is a bit easier for fast modifications, but Variant 1 is portable
which is a desirable property.

6.3 Future Work
There are several aspects of this project which could have been done di�erently or be ex-
panded upon. Here follow a few ideas that come to mind that might be interesting for future
investigations:

6.3.1 Testing in a System With Real Memory Models
In the tests conducted with the replay driver, the GPU model’s internal active counter de-
viated very little from what was expected given the fixed latencies of the simple memory
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used. This is a good indication that our changes do not induce any unexpected behaviours
by themselves. However, it is possible that stalling the GPU might give di�erent perfor-
mance numbers with a more complex memory system, in particular with one that also has
system caches. It would for that reason be very interesting to observe up the same scheme in
a full-system setup in order to test both how system performance is a�ected by intermittent
down-times of the GPU, and to explore if it changes the ability to exploit any heuristics.

6.3.2 Threading Compatibility
Our proposed scheme in its current form (see Figure 4.5) is incompatible with the multi-
threaded version of the model. The multi-threading strategy for the multi-threaded version
of the model revolves around spawning worker threads on the level of the component runner.
If we are running the entire component runner parent as a coroutine, this means the model
will attempt to spawn multiple threads from within a coroutine context which breaks the idea
of having an specific context to yield from. A solution to this might be to launch coroutines
inside each thread and suspend that one instead of the thread it runs on. Since the Boost
library does not support migration of coroutines between threads, a new frame would have
to be reconstructed every time the thread pool re-balances. Aside from this, functionality
could be left mostly intact.

6.3.3 Improving the Efficiency of Underlying Contain-
ers

As mentioned in Section 4.2.1, the data types we use for the coherency checking are not well
optimised for e�ciency, and as shown in Section 5.2.3 they are roughly responsible for a 10%
increase in host run-time. Even a small e�ort could likely improve this. One idea would be to
set up an extra sparse memory where each byte representation could contain two bits, one to
indicate the valid state and the other to indicate the dirty state. Another option would be to
include these two status bits directly in the extended byte type which makes up the memory
representation.
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Software models are used to aid the development of hardware components. To simu-
late systems with multiple components, multiple models can be connected together.
In our project we show how mistimed communication can complicate such setups, and
how this can be handled.
Over a billion phones are sold each year. The
phone market is very competitive, with customers
expecting constant improvements. As companies
compete to satisfy these demands there is a need
for optimised development processes. To speed up
the development of chips, software models that
mimic hardware behaviour are used. By hav-
ing virtual versions of the chips being designed,
designers and developers can try a lot of differ-
ent changes without having to rebuild the actual
parts. Different testing needs have led to the exis-
tence of a lot of different types of models, and the
degree to which they stay true to the hardware
behaviour varies.
In this investigation, we have looked at a model

simulating an Arm Mali GPU – a popular chip
used to handle graphics in many phone models.
When a graphics processing unit (GPU) runs, it
frequently needs to use data that is located in a
memory chip that is external to the GPU itself.
Transferring between these takes a bit of time, so
the GPU has to plan accordingly when it wants
to fetch data. However, this simulation model has
been implemented under the assumption that it
can instantly access the data when needed. This
makes a lot of testing easier, but makes the model
incompatible with memory models that only work

with timed communication channels and do not
allow for such instant access.

In order to enable compatibility our project has
looked at the different ways the GPU model tries
to access data before it has been fully transferred.
To address these we have created a mechanism
that tracks all transfers taking place and success-
fully identifies the incorrect data access attempts.
When we discover an incorrect attempt we send
out for the needed transfers and wait for these to
be handled before we continue with the compu-
tation. This ensures that the GPU model never
makes use of any different data than intended,
which is necessary for the result of the computa-
tion to be correct. As we successfully identify and
handle all the incorrect attempts taking place, we
can now connect the GPU model to simulated sys-
tems that require timed transfers - enabling new
test cases.
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