
INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-02-19

EXAMENSARBETE Integration of a Cycle-approximate Model Into a Cycle-accurate Environment
STUDENT Andreas Hansson
HANDLEDARE Jörn Janneck (LTH), Reimar Döffinger (Arm)
EXAMINATOR Flavius Gruian (LTH)

Getting Simulated Hardware
Components to Work Together

POPULAR SCIENCE SUMMARY Andreas Hansson

Software models are used to aid the development of hardware components. To simu-
late systems with multiple components, multiple models can be connected together.
In our project we show how mistimed communication can complicate such setups, and
how this can be handled.

Over a billion phones are sold each year. The
phone market is very competitive, with customers
expecting constant improvements. As companies
compete to satisfy these demands there is a need
for optimised development processes. To speed up
the development of chips, software models that
mimic hardware behaviour are used. By hav-
ing virtual versions of the chips being designed,
designers and developers can try a lot of differ-
ent changes without having to rebuild the actual
parts. Different testing needs have led to the exis-
tence of a lot of different types of models, and the
degree to which they stay true to the hardware
behaviour varies.

In this investigation, we have looked at a model
simulating an Arm Mali GPU – a popular chip
used to handle graphics in many phone models.
When a graphics processing unit (GPU) runs, it
frequently needs to use data that is located in a
memory chip that is external to the GPU itself.
Transferring between these takes a bit of time, so
the GPU has to plan accordingly when it wants
to fetch data. However, this simulation model has
been implemented under the assumption that it
can instantly access the data when needed. This
makes a lot of testing easier, but makes the model
incompatible with memory models that only work

with timed communication channels and do not
allow for such instant access.

In order to enable compatibility our project has
looked at the different ways the GPU model tries
to access data before it has been fully transferred.
To address these we have created a mechanism
that tracks all transfers taking place and success-
fully identifies the incorrect data access attempts.
When we discover an incorrect attempt we send
out for the needed transfers and wait for these to
be handled before we continue with the compu-
tation. This ensures that the GPU model never
makes use of any different data than intended,
which is necessary for the result of the computa-
tion to be correct. As we successfully identify and
handle all the incorrect attempts taking place, we
can now connect the GPU model to simulated sys-
tems that require timed transfers - enabling new
test cases.

