
June 28, 2020

A Bayesian Filtering Approach to Incorporate Views

in Economic Scenario Generation

By Arvid Cederberg



Abstract

An economic scenario generator could be described as a tool used for simulating future paths of economies

and financial markets. It should illuminate the dynamics of risk elements within the economy which drive

financial variability, and usually includes models for variables such as sovereign interest rates, equity re-

turns, credit spreads, exchange rates and inflation. Economists are increasingly requiring that their own

views of the future market dynamics can be embedded in their economic scenarios, and this study pro-

poses a Bayesian filtering approach to incorporate these views with models calibrated to historical data.

With the vast amount of different processes one could choose to include in an ESG, providing a detailed

yet completely general method is difficult. To limit the scope, the variables within the economic scenario

generator are assumed to be modelled with (vector) autoregressive processes. However, it is shown that

the method can be extended to allow for views on variables modelled with general first-order Markov

chains, as well as memoryless linear state-space models such as the Dynamic Nelson-Siegel yield curve

model. While the main focus will lie on unconditional views, where the imposed views are independent

of previous observations and any other input parameters, the possibility of extending the model to allow

for conditional views is also discussed.

Keywords: Economic Scenario Generator, Views, Outlook Correction, Bayesian Filtering, Vector Au-

toregression, VARX, Hidden Markov Model, Dynamic Nelson-Siegel Model
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Glossary

ESG An Economic Scenario Generator (ESG) is used for simulating future paths of financial markets.

Its use ranges from outright forecasting to stress testing and calculation of capital requirements.

views A view (sometimes denoted outlook) is a belief about how the value of a variable, or a linear

combination of variables, will develop in the future. These views are assumed to be based on expert

knowledge.

baseline model A model without any incorporated views is denoted a baseline model. Similarly, a

baseline estimate would be an estimate where no views are incorporated. A model is a part of an

ESG.

external regressors When referring to external regressors in this study, it means external variables in

relation to a model within an ESG. This does not necessarily mean that they are external inputs

to the ESG, and in general they will have their own models.
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1. Introduction

1.1 Background

An economic scenario generator can take many forms, and Pedersen et al. [2016] describes it as a software

tool used for simulating future paths of economies and financial markets. It should illuminate the dy-

namics of risk elements within the economy which drive financial variability. Its use can range from tasks

such as simulating the impact on Swedish equity from a change of the US Federal Reserve Bank’s key rate

to investigating how a portfolio allocation performs over time under different financial landscapes. What

is important to model in an ESG will inevitably vary depending on the organization using it, but some

common variables are sovereign interest rates, equity returns, credit spreads, exchange rates and inflation.

Modelling other variables such as GDP, commodities, derivatives and mortgage-backed securities is also

an option (Pedersen et al. [2016]).

Economists are increasingly requiring that their own outlooks of the future market dynamics can be

embedded in their economic scenario generators. These views can be both short- and long-term and take

into account factors not present in the historical data, such as current macroeconomic events likely to

affect future trends. Embedding own views in statistical models is challenging, as textbooks usually only

describe how these models are calibrated to historical data. The best way of incorporating views may

depend on the models used in the ESG, the nature of the views and what is desired from the resulting

scenario. One could consider direct moment targeting, where parameters are optimized to minimize de-

viance from the views and maximize the likelihood of the historical data being generated by the model.

One could also consider ESGs only calibrated by user-provided parameters, which do not directly con-

sider historical observations. The main problem with these approaches is the large number of parameters

typically present in an ESG. Since analytical expressions for the time-varying moments generally are not

tractable, brute-force optimization where full re-simulations are made at each optimization step would

have to be used. This renders both direct moment targeting and individual calibration of parameters

problematic for large and complex scenario generators.

This study proposes a method where the model parameters do not change when views are incorporated.

Instead, two sources of information about the future distributions of the model variables are considered,

where the forecasted distributions take into account both the model calibrated to the historical data and

expert views. Thus, it is here assumed that the economic scenario generator is calibrated to optimally

fit historical data as a basis point, upon which views are imposed in the forecasting procedure. There

are two major drawbacks of the proposed method, whose implications and possible mitigations will be

discussed. The fact that the views are specified unconditionally is an issue for processes with significant

dependencies on previous lags. Furthermore, the method is difficult to apply on multi-level hierarchical

models.
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1.2 Aim and Scope

The aim is to find a practical method with good theoretical foundations for combining own outlooks with

models calibrated to historical data in long-term economic scenario generation. These outlooks could in

principle be of any variable present in the ESG, although there are some requirements on the assumed

processes. Describing how to construct a complete economic scenario generator is beyond the scope of

this study, although a simple example will be constructed to illustrate how the proposed method can be

applied. With the vast amount of different processes one could choose to include in an ESG, providing

a detailed yet completely general method is both difficult and questionable. The report will therefore

proceed from a more general setting to a more detailed method. First, the idea of considering the views

as observations in a hidden Markov model where the unconditional distribution is estimated by recur-

sive Bayesian filtering will be described. This idea of recursive filtering can be applied to fairly general

models. The special case where the transition of the state of the dependent variables in the baseline

model is described by linear operators and Gaussian errors will then be considered, resulting in a slight

modification of the well-known Kalman filter. A detailed method for incorporating views in ESGs based

on (vector) autoregressive processes will then be proposed. While the main focus will lie on unconditional

views, meaning that the imposed views are independent of previous observations and any other input

parameters, the possibility of extending the model to allow for conditional views will also be discussed.

It will be shown that the vector autoregressive model with external regressors and parameter restrictions is

a powerful tool when constructing ESGs. This, together with the fact that the recursive filtering approach

is easily applicable, is the reason for the large focus on the VARX model in this study. However, there

are certain economic variables which cannot directly be modelled with an autoregressive process. To

illuminate this, and to show how the proposed method could be generalized, a briefer description of how

views could be incorporated in the Dynamic Nelson-Siegel yield curve model is also given.
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2. Theoretical Background

2.1 Vector Autoregressive Process

The vector autoregressive process can be used to capture linear interdependencies of multivariate time

series. The model assumes that the conditional expectation is a linear function of past observations,

where predictions are based on each variable’s own lagged values and the lagged values of the other

model variables. Consider modelling a multivariate time series {xt} where xt ∈ Rn. Using a linear

dependence on the past p values in the prediction formula, the conditional expectation is given by

E[xt|Ft−1] = c + A1xt−1 + · · ·+ Apxt−p

where Ai ∈ Rn×n for i = 1, . . . , p. Denoting the forecast error, or innovation, et = xt − x̂t, the process

is given by

xt = c + A1xt−1 + · · ·+ Apxt−p + et

Or in compact notation

xt = c +

p∑
i=1

Aixt−i + et

If the innovations are serially independent, the above process is by definition a vector autoregressive

process, denoted VAR(p) (Lütkepohl [2005]). It is often assumed that the innovations are normally

distributed, i.e. et ∼ N (0,Σt) where Σt ∈ Rn×n. Similarly to the univariate autoregressive process,

the vector autoregressive process is stable, or stationary, if all roots of the characteristic polynomial lie

outside the unit circle (Lütkepohl [2005]). Thus, for stability, the condition

|In −
p∑
i=1

Aiz
i| 6= 0 for |z| ≤ 1

must be fulfilled. A useful property is that every n-dimensional VAR(p) process has an np-dimensional

VAR(1) representation. This representation is given by

x̃xxt = c̃cc+ Ax̃xxt−1 + ẽeet (2.1)
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where (see Appendix B.1 for a definition of the vec-operator)

x̃xxt = vec(xt, . . . ,xt−p+1) (np× 1)

c̃cc = vec(c,0, . . . ,0) (np× 1)

A =


A1 A2 . . . Ap−1 Ap

In 0 . . . 0 0

0 In . . . 0 0
...

...
...

...

0 0 . . . In 0

 (np× np)

ẽeet = vec(et,0, . . . ,0) (np× 1)

This means that any VAR(p) process can be converted to a first-order Markov process, meaning that the

conditional density only depends on the previous observation. This property is a requirement for the pro-

posed Bayesian filtering approach in the coming sections to be applicable, and thus of great importance

in this study. In some cases, the data may show a preeminent moving average structure, i.e. some clear

dependency on past innovations. In this case, a vector moving average (VMA) or a vector autoregressive

moving average (VARMA) process may better explain the data generating process.

A VMA(q) process is given by

xt = et + M1et−1 + · · ·+ Mqet−p

and a VARMA(p,q) process is given by

xt = c + A1xt−1 + · · ·+ Apxt−p + et + M1et−1 + · · ·+ Mqet−p

or with the lag-operator (see Appendix A)

A(L)xt = c +M(L)et (2.2)

where A(L) = In − A1L − · · · − ApL
p and M(L) = In + M1L + · · · + MqL

q. An MA(q) process is

invertible if

|In +

q∑
i=1

Mjz
j | 6= 0 for |z| ≤ 1

and a VARMA(p,q) process is stable and invertible if its autoregressive part is stable and its moving

average part is invertible (Lütkepohl [2005]). A VARMA process is not memoryless and is thus not

fulfilling the Markovianity condition. However, any invertible VARMA(p,q) process has a VAR(∞)

representation. Using the lag operator notation, the VAR(∞) representation is derived by multiplying

both sides of (2.2) from the left by the inverse MA operator and matching coefficients (see Appendix A

for more details)

M(L)−1A(L)xt = M(L)−1c + et

Naturally, an infinite order approximation is infeasible in practice, and the first p terms of the VAR(∞)

representation would be used as an approximation. Relatively low lags is sometimes enough to replicate

a the moving average part, as displayed with an example in the univariate case in Figure 2.1. Of course,

the finite order VAR(p) approximation of the VARMA(p0, q) process generated by this method is not

the optimal estimator of order p, e.g. in terms of maximum likelihood, and given enough observations,

fitting a VAR(p) process directly may be a better option. However, this would require a presample of

length p, resulting in the use of fewer observations in the fitting process.
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Figure 2.1: Finite order AR approximations of ARMA(1,2) process. Cumulative sum of squared de-

viance from ARMA(1,2) in-sample predictions.

Finally, it is noted that one may choose to include exogenous variables as predictors in the model, resulting

in the vector autoregressive model with external regressors (VARX). The VARX(p,q) model is given by

xt = c +

p∑
i=1

Aixt−i +

q∑
j=0

Bjut−j + et (2.3)

where ut ∈ Rm and Bj ∈ Rn×m. The term q is in this case the highest lag of the external regressors

included, and not a moving average order. This process can be converted to a VARX(1,0) process given

by

x̃xxt = c̃cc+ Ax̃xxt−1 + Bũuut + ẽeet (2.4)

where

ũuut = vec(ut, . . . ,ut−q) (m(q + 1)× 1)

B =


B0 . . . Bq

0 . . . 0
...

...

0 . . . 0

 (np×m(q + 1))

and x̃̃x̃xt, c̃̃c̃c, A and ẽ̃ẽet are defined as in (2.1). By definition, the variables ut are strictly exogenous if all

leads and lags are independent of all leads and lags of the error term et. It is also assumed that ut is

stationary. A maximum likelihood procedure for estimating the VARX(p,q) model is covered in Section

3.2. For a more extensive review of the vector autoregressive model, the reader is referred to the book of

Lütkepohl [2005].

2.2 Views and Recursive Bayesian Filtering

The Bayesian filtering approach covered in this section is to some degree inspired by the Black-Litterman

model originally proposed by Black and Litterman [1992], as well as the time-dependent extension pro-

posed by Steehouwer and van der Schans [2017]. However, there are some fundamental differences, and

there is no need for the reader to be acquainted with the Black-Litterman model to understand the

following theory. In contrast to the Black-Litterman model, this approach is not related to the CAPM
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framework. Instead, it is a proposed method for incorporating views in the estimation of the future dis-

tribution of discrete time Markov processes, and specifically the VARX process covered in the previous

section. The idea is that the views are considered as noisy observations of the conditional expectation

of the process at any given time. The fact that the views themselves are specified unconditionally –

independent of the previous path – while being considered as observations of the conditional expectation

is an issue for processes with a strong dependence on the previous observation. This could possibly be

solved by defining the views conditional on the previous observation in a sampling approach, as discussed

in Section 5.1.

In the following, a model already fitted to the historical data is considered, and the Bayesian filtering

is applied when simulating the future distribution. Thus, the aim is to estimate the future distribution

of the dependent variables, given some presample, a model estimated to the historical data and noisy

observations of the conditional expectations over the forecast horizon. Denote the model fitted to the

historical data the baseline model. This model can be any discrete-time first-order Markov chain of the

form xt = f(xt−1) + et, where xt ∈ Rn and et are independent and serially uncorrelated zero-mean

random variables, possibly with time-varying covariance. The views are defined as a time-varying vector,

specifying expert opinions of the expectations of one or more linear combinations of xt at time t. The

views are denoted ψψψt ∈ Rd, where d is the number of views. Furthermore, there is an uncertainty

associated with the views, specified by an error term ξξξt. This give rise to the model

ψψψt = Htµµµt + ξξξt

µµµt = f(xt−1)

xt = µµµt + et

(2.5)

where Ht ∈ Rd×n. It is assumed that ξξξt are serially uncorrelated zero-mean random variables independent

of et, and it is required that Ht has full rank. Note that this assumption will not exclude any views

which are not contradicting or redundant. This set-up allows for expressing views such as

Ht =

(
1 −1 0

0 0 1

)
ψψψt = (0.0001, 0.001)T

xt ∈ R3

meaning that, at time t, the mean of the first variable is expected to be one basis point above the mean

of second variable, while the mean of third variable is expected to be ten basis points. How to set ψψψt,

Ht and ξξξt will be discussed further in Section 3.3. The requirement that the baseline model is a Markov

chain is at glance restrictive. However, in practice it is often possible to augment the state equation as

x̃xxt =


xt

xt−1
...

xt−p+1


such that xt = f(xt−1, . . . ,xt−p) + et can be written as x̃xxt = f(x̃xxt−1) + ẽeet. See for example the VAR(1)

representation of the VAR(p) model given in the previous section. The alteration of the matrix Ht needed

in (2.5) is easily seen. Furthermore, any deterministic influence from other parameters is also allowed,

meaning that one could have e.g. µµµt = f(xt−1,ut, t) as a baseline model.

The model (2.5) has the form of the hidden Markov model given in Figure 2.2, and the recursive Bayesian

filter computes the distribution p(xt|ψψψ1:t) given a prior distribution of x0, the model in (2.5) and some

(noisy) observations ψψψ1, . . . ,ψψψt of the conditional expectations µµµ1, . . . ,µµµt.
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µµµ1 µµµ2 µµµ3 µµµ4 µµµ5

x1 x2 x3 x4 x5

ψψψ1 ψψψ2 ψψψ3 ψψψ4 ψψψ5Observable

Hidden

Figure 2.2: Hidden Markov Model

The general Bayesian filtering procedure can be outlined by

[1] Consider the filter density p(x0) at time t = 0 as given

[2] At time t, compute the predictive density p(µµµt+1|ψψψ1:t)

[3] At time t+ 1, calculate p(ψψψt+1|ψψψ1:t) and update filter density p(µµµt+1|ψψψ1:t+1)

[4] Repeat steps 2 and 3

The densities are here expressed in terms of µµµt. One could of course add a layer and express the densities

of xt, but since the values are always centered around the expectation (conditional on the path) with the

distribution given by et, it suffices to know the time-evolution of the distribution of µµµt to sample from the

distribution in practice. Furthermore, an analytical expression of the filter density of xt can be derived

in the Gaussian case (see Section 2.3). The predictive density p(µµµt|ψψψ1:t−1) of µµµt, using the information

from the observable views up to time t− 1, can be derived from

p(µµµt|ψψψ1:t−1) =

∫
p(µµµt|xt−1,ψψψ1:t−1)dxt−1

=

∫
p(µµµt|xt−1)p(xt−1|ψψψ1:t−1)dxt−1

=

∫∫
p(µµµt|xt−1)p(xt−1|µµµt−1)p(µµµt−1|ψψψ1:t−1)dµµµt−1dxt−1 (2.6)

and the filter density p(µµµt|ψψψ1:t) of µµµt, using the information from the observable views up to time t, can

be derived by using the fact that

p(µµµt|ψψψ1:t) =
p(ψψψt|µµµt)p(µµµt|ψψψ1:t−1)

p(ψψψt|ψψψ1:t−1)

=
p(ψψψt|µµµt)p(µµµt|ψψψ1:t−1)∫
p(ψψψt|µµµt)p(µµµt|ψψψ1:t−1)dµµµt

(2.7)

There is no closed form recursion in the general case. For non-linear f in (2.5) and/or non-Gaussian

innovations, the reader is referred to the unscented Kalman filter proposed by Julier and Uhlmann [1997]

and the Sequential Monte Carlo filter, or particle filter, described by e.g. Lopes and Tsay [2011]. Briefly,

the UKF and the SMC filter are similar in the sense that they generate a set of points via known non-

linear equations and combine the results to estimate the distribution of the state. However, the SMC

filter generates points randomly, while the UKF generates points according to a certain algorithm. This
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means that the number of points needed, as well as the computational cost, is higher for the SMC filter,

but also that the SMC filter will perform better given a large enough set of points, especially for non-

Gaussian errors. The estimation error converges to zero as the number of points approaches infinity,

which is not the case using the UKF. For Gaussian errors, the UKF computes a third order (Taylor

expansion) accurate approximation of the first and second central moments, and for non-Gaussian errors

the approximation is accurate to the second order (Julier and Uhlmann [1997]). If first order accuracy

is enough, typically when the system is almost linear and the errors are Gaussian, an extended Kalman

filter (Lee and Ricker [1994]) may yield comparable accuracy at a lower computational cost than both

the UKF and the SMC filter. These methods are formulated for state-space models, and some alterations

are needed due to the form of the model in (2.5).

2.3 Filtration of Linear Gaussian Models

Again, consider the model given in (2.5), now with

µµµt = c + Axt−1 + But

xt = µµµt + et, et ∼ N(0,Σt)
(2.8)

where ut is modelled externally and seen as a non-random control vector. This does not mean that ut
cannot be sampled from a stochastic process, it just means that each filter recursion is done conditional

on one path of {ut}. The process given in (2.4) is of this form, and the theory below will thus apply

when considering views on variables modelled by a VARX(p,q) process with Gaussian innovations. Also

assume that ξξξt ∼ N (0,Ωt). Due to the linearity of the prediction formula and the Gaussianity of et
and ξξξt, analytical expressions of the densities in (2.6) and (2.7) above can be derived. Denote Px

t the

(unconditional) covariance of xt and Pµ
t the covariance of µµµt. The indices t|t − 1 and t|t refer to the

predictive and filter estimates respectively at time t. Assume an initial distribution x0|0 ∼ N (µ̂µµ0|0,P
x
0|0).

The predictive density of µµµt at time t is given by

µµµt|ψψψ1:t−1 ∼ µµµt|c + Aµ̂µµt−1|t−1 + But

d
= N

(
µ̂µµt|t−1,P

µ
t|t−1

)
where

µ̂µµt|t−1 = c + Aµ̂µµt−1|t−1 + But

Pµ
t|t−1 = APx

t−1|t−1A
T

and µ̂µµt−1|t−1 is the expectation of the filter density at time t− 1. Furthermore, the joint distribution of

µµµt and ψψψt given the information at time t− 1 (see Appendix C) is given by

(
µµµt|ψψψ1:t−1
ψψψt|ψψψ1:t−1

)
∼ N

((
µ̂µµt|t−1

Htµ̂µµt|t−1

)
,

(
Pµ
t|t−1 Pµ

t|t−1H
T
t

HtP
µ
t|t−1 HtP

µ
t|t−1H

T
t + Ωt

))

Again using Appendix C, this leads to the filter density of µµµt

µµµt|ψψψ1:t ∼ N
(
µ̂µµt|t−1 + Pµ

t|t−1H
T
t (HtP

µ
t|t−1H

T
t + Ωt)

−1(ψψψt −Htµ̂µµt|t−1),

Pµ
t|t−1 −Pµ

t|t−1H
T
t (HtP

µ
t|t−1H

T
t + Ωt)

−1HtP
µ
t|t−1

)
d
= N

(
µ̂µµt|t−1 + Kt(ψψψt −Htµ̂µµt|t−1),Pµ

t|t−1 −KtHtP
µ
t|t−1

)
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Since xt is normally distributed around µµµt, the filter density of xt is given by

xt|ψψψ1:t ∼ N
(
µ̂µµt|t,P

x
t|t)

where

Kt = Pµ
t|t−1H

T
t (HtP

µ
t|t−1H

T
t + Ωt)

−1

µ̂µµt|t = µ̂µµt|t−1 + Kt(ψψψt −Htµ̂µµt|t−1)

Px
t|t = Pµ

t|t−1 −KtHtP
µ
t|t−1 + Σt

An apparent issue is that the covariance of the predictive density of the conditional expectation, Pµ
t|t−1,

is not always invertible, for example if A = 0. A somewhat crude, but practically feasible, solution is

to add a small value to each diagonal element of Pµ
t|t−1. Since Ht has full rank by definition, and since

Pµ
t|t−1 is positive semi definite, adding a small value to the diagonal will result in a feasible value of Kt

for any valid covariance matrix Ωt. This is a common approach, and it is essentially the same as adding a

small noise to the conditional expectation in (2.8). Thus, the filtration procedure for the linear Gaussian

process in (2.8) is done by the following steps:

[1] Initialize:

Set ε to a very small value, e.g. 10−10. Let x0|0 ∼ N (µ̂µµ0|0,P
x
0|0). Here, the initial

distribution is chosen as Px
0|0 = 0 and µ̂µµ0|0 = x0 where x0 is the last known observation,

since this gives the same initial predictive density as the baseline model.

[2] Predict:

µ̂µµt|t−1 = c + Aµ̂µµt−1|t−1 + But

Pµ
t|t−1 = APx

t−1|t−1A
T + εIn

[3] Update:

Kt = Pµ
t|t−1H

T
t (HtP

µ
t|t−1H

T
t + Ωt)

−1

µ̂µµt|t = µ̂µµt|t−1 + Kt(ψψψt −Htµ̂µµt|t−1)

Px
t|t = Pµ

t|t−1 −KtHtP
µ
t|t−1 + Σt

This is just a slight modification of the well-known discrete time Kalman filter, originally derived by

Kalman [1960], and perhaps, easier understood by reading the Bayesian derivation of Särkkä [2013]. The

matrix Kt ∈ Rd×n is denoted the Kalman gain. To understand how the moments will be affected by

the views, first consider the case where views of the expectations of every variable are considered, i.e.

Ht = In. The Kalman gain is then given by Kt = Pµ
t|t−1(Pµ

t|t−1 + Ωt)
−1, which makes it easier to

realize that the ratio between the uncertainty of the model and the uncertainty in the views will impact

how much the original process is affected. As the magnitude of the covariance matrix Ωt approaches

infinity, the Kalman gain will approach zero. This means that if the views are considered as completely

uncertain, the views will be ignored, and the filter density will be the same as the predictive density.

On the contrary, if the covariance matrix Ωt approaches zero, meaning that the views are considered as

certain, the views will be fulfilled completely, i.e. the distribution of the specified linear combination will

be given by Htxt ∼ N (ψψψt,HtΣtH
T
t ). Thus, the magnitude of the change of the expectation at time t

induced by the views is determined by Ωt.

While the limitations and advantages of this approach will be discussed further in Chapter 5, it is impor-

tant to understand what is happening to the posterior distribution. The views are adding information

to the estimation procedure and the uncertainty of the conditional expectation will be lower than those

implied by both the baseline model and the views (see Figure 2.3). Consider the case where views about
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the expected values of some individual assets are specified, i.e. not linear combinations of multiple vari-

ables, and where the residual covariance of the values around the conditional expectation is constant.

In the limit Ωt → 0 for all t, the posterior covariance of the future values of the variables with views

will approach the estimated residual covariance over the whole horizon, i.e. the values in e.g. 50 years

are just as uncertain as the values tomorrow. Under the assumption that both the distribution from

the baseline model and the distribution from the views are correct, meaning that the baseline model is

correctly specified and that the views are observations of the true expectations with the supplied mea-

surement error, the estimated filter density would be the true density of the future values. This is a

far-fetched assumption however, and the issue of the loss of conditionality will be discussed in Section

5.1. For now, it is noted that this issue increases with both the magnitude of the elements in A and the

amount of influence from the variables ut. When modelling processes which are noisy in comparison to

the prediction power of previous lags and the external regressors, this issue is of less concern since the

volatility is mainly driven by the uncertainty around the conditional expectation. Furthermore, the issue

could possibly be handled at its core by formulating conditional views, as discussed in Section 5.1.

p(µµµt|ψψψ1:t)

p(µµµt|ψψψ1:t−1)

p(ψψψt|µµµt)

Figure 2.3: Illustration of how the filter density combines information from the views with information

from the original process
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2.4 Views on Yield Curves and the Dynamic Nelson-Siegel Model

It is clear that not all variables can be modelled directly (or after a simple transformation) with an

autoregressive process, or any first-order Markov chain in general. To provide some guidance to the

practitioner, a less detailed description of how to incorporate views in a yield curve model will be given.

This is to illustrate the flexibility of the proposed method, and in the example with data in Chapter

4, a yield-curve model will not be included as the filtering procedure is best illustrated with a simpler

example. Furthermore, the proposed methods for setting the level and uncertainty of the views are based

on (vector) autoregressive processes, meaning that they will not directly apply to the state-space model

described below. A classic yield curve model is the Nelson-Siegel curve, originally suggested by Nelson

and Siegel [1987]. Let m denote the time to maturity and y(m) the yield to maturity. The Nelson-Siegel

curve is given by

y(m) = β0 + (β1 + β2)
1− exp(−m/τ)

m/τ
− β2 exp(−m/τ)

where the parameters β0, β1 and β2 determines the shape of the curve. β0 is simply a constant and does

not require any explanation, but it is noted that this would correspond to the long-run level of interest

rates. β1 can be seen as a decay parameter, since the term

1− exp(−m/τ)

m/τ

starts at 1 and exponentially decays to zero as m : 0+ → ∞. The term β2 could instead be seen as the

size of a ”hump”, since the term

1− exp(−m/τ)

m/τ
− exp(−m/τ)

starts at zero, increases fast and then decreases slowly to zero. τ controls the rate of exponential decay,

and a larger value gives slower decay. Together, these terms have the ability to form many of the typical

shapes seen in yield curves. Usually, one is interested in modelling the yield to a number of different

maturities, which can be written as

y =


y(m1)

y(m2)
...

y(mN )

 = Gβββ (N × 1)

where

G =



1 1−exp(−m1/τ)
m1/τ

1−exp(−m1/τ)
m1/τ

− exp(−m1/τ)

1 1−exp(−m2/τ)
m2/τ

1−exp(−m2/τ)
m2/τ

− exp(−m2/τ)
...

...
...

1 1−exp(−mN/τ)
mN/τ

1−exp(−mN/τ)
mN/τ

− exp(−mN/τ)


(N × 3)

βββ = (β0, β1, β2)T (3× 1)

This model can be extended to let the parameters vary with time, leading to the Dynamic Nelson-Siegel

model (Koopman et al. [2010]). The choice of model for the parameters varies across the literature, but
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let us assume that they follow a vector autoregressive process of order 1 – the analogy for a VAR(p)

model should be clear from Section 2.1. The model could then be represented as

βββt = c + Aβββt−1 + et

yt = Gβββt + ηηηt
(2.9)

where et and ηηηt are assumed to be independent, serially uncorrelated zero-centered Gaussian random

variables with covariances Σe and Ση respectively. The estimation can then be done by using the

(non-modified) Kalman filter (Särkkä [2013]), and maximize the likelihood conditional on the historical

observations yt. Denoting ŷt|t−1 = Gβ̂ββt|t−1 the one-step prediction and Py
t|t−1 its covariance, the optimal

parameters can be found by maximizing

logL(θ|y0) = −1

2

T∑
t=1

(
log|Py

t|t−1|+ (yt − ŷt|t−1)T[Py
t|t−1]−1(yt − ŷt|t−1)

)
+ const

with the method of choice (Lindström et al. [2015]). Assuming that the parameter τ is fixed could simplify

the optimization procedure. Thus, before any views are imposed, the baseline model in (2.9) is assumed

to have been estimated. Consider imposing views on the conditional expectation of the yield to maturity,

giving the model

βββt = c + Aβββt−1 + et et ∼ N (0,Σe)

µµµt = Gβββt

ψψψt = Htµµµt + ξξξt ξξξt ∼ N (0,Ωt)

yt = µµµt + ηηηt ηηηt ∼ N (0,Ση)

(2.10)

Denote Pβ
t , Pµ

t and Py
t the covariances of the variables βββt, µµµt and yt respectively, and the indices t|t− 1

and t|t the predictive and filter estimates respectively. The predictive densities of βββt and µµµt are given by

βββt|ψψψ1:t−1 ∼ βββt|c + Aβ̂ββt−1|t−1
d
= N (β̂ββt|t−1,P

β
t|t−1)

µµµt|ψψψ1:t−1 ∼ µµµt|Gβ̂ββt|t−1
d
= N (µ̂µµt|t−1,P

µ
t|t−1)

where

β̂ββt|t−1 = c + Aβ̂ββt−1|t−1 (3× 1)

Pβ
t|t−1 = APβ

t−1|t−1A
T + Σe (3× 3)

µ̂µµt|t−1 = Gβ̂ββt|t−1 (N × 1)

Pµ
t|t−1 = GPβ

t|t−1G
T (N ×N)

The filter density of µµµt can be calculated similarly as in Section 2.3 (following Appendix C.1) since

ψψψt|µµµt ∼ N (Htµµµt,Ωt), yielding

µµµt|ψψψ1:t ∼ N
(
µ̂µµt|t,P

µ
t|t)

where

µ̂µµt|t = µ̂µµt|t−1 + Kµ
t (ψψψt −Htµ̂µµt|t−1) (N × 1)

Pµ
t|t = Pµ

t|t−1 −Kµ
t HtP

µ
t|t−1 (N ×N)

Kµ
t = Pµ

t|t−1H
T
t (HtP

µ
t|t−1H

T
t + Ωt)

−1 (N × d)
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Since yt is normally distributed around µµµt, the filter density of yt is given by

yt|ψψψ1:t ∼ N
(
µ̂µµt|t,P

y
t|t)

where

Py
t|t = Pµ

t|t + Ση

What remains to specify to complete the recursion is the posterior of βββt. Using the fact that ψψψt|βββt ∼
N (HtGµµµt,Ωt) together with Appendix C.1, the posterior of βββt is given by

βββt|ψψψ1:t ∼ N
(
β̂ββt|t,P

β
t|t)

where

β̂ββt|t = β̂ββt|t−1 + Kβ
t (ψψψt −HtGβ̂ββt|t−1) (3× 1)

Pβ
t|t = Pβ

t|t−1 −Kβ
t HtGPβ

t|t−1 (3× 3)

Kβ
t = Pβ

t|t−1G
THT

t (HtGPβ
t|t−1G

THT
t + Ωt)

−1 (3× d)

The filter recursion is thus complete, which shows that the method may be generalized to more complex

models than the VARX model, although the process must still be memoryless. Once again, some small

value would be added to the diagonal of the predictive covariance of µµµt. While the proposed method of

setting the covariance matrix Ωt in Section 3.3 would have to be altered, it could easily be extended by

applying the same idea.
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3. Method

3.1 Model Construction

As mentioned, the aim of this study is not to show how to construct a complete ESG. However, a simple

example will be considered to highlight why the VARX model is of a convenient form, and to illustrate

how views can be incorporated. For simplicity, only the US market is considered. For a multi-economy

ESG, foreign exchange rates would have to be modelled to link the simulation results and aggregate

portfolio outcomes across economies. The example ESG is sketched in Figure 3.1, where arrows indicate

input type dependencies, i.e. not just noise correlation.

S&P 500 implied

volatility

IG credit

spread
Inflation

Large cap equity Small cap equity

Figure 3.1: High-level sketch of a simple ESG

Now consider the vector autoregressive model with external regressors described in Section 2.1, given by

xt = c +

p∑
i=1

Aixt−i +

q∑
j=0

Bjut−j + et (3.1)

where et ∼ N (0,Σt) and where xt has length n and ut has length m. This model assumes multiple inter-

acting dependent variables and a set of external regressors. This is a convenient process for constructing

ESGs, since it provides a basis for controlling input type dependencies by imposing restrictions on the

parameters Ai and Bj , and since it allows for structural analysis (Lütkepohl [2005], Chapter 9). Fur-

thermore, adding any deterministic (or Gaussian driven) influence to capture e.g. bias or a deterministic

trend would not pose an issue when applying the filtering procedure described in Section 2.3. This makes

it a flexible model. The external regressors, ut, would in this case be the S&P 500 implied volatility,

the investment grade credit spread and inflation (modelled as consumer price index) after appropriate

transformations. Furthermore, small cap equities are allowed to be dependent on large cap equities, but

not the other way around, and small cap equities are not allowed to be dependent on each other. To

clarify, no small cap equity is allowed to have a direct impact on another (large or small cap) equity,

although noise correlation is allowed.

Adding some detail to the sketch in Figure 3.1, the dependency structure is depicted in Figure 3.2. This

simple ESG can thus be modelled with a VARX(p,q) model with parameter restrictions, combined with
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univariate models for inflation, interest rate and volatility. To build more complex economic scenario

generators, having one or more parallel VARX(p,q) model may not be sufficient, and one could also

consider cascade type ESGs where dependent variables xt are used as external regressors ut at a lower

level. However, incorporating views at a higher level would then be difficult, and to directly apply the

proposed Bayesian filtering method, all variables with views must be endogenous (See Section 3.4.2).

While this model is not necessarily appropriate for all possible variables in an ESG, the Bayesian filtering

procedure for incorporating views can be applied to more general processes, although it may require a

more computationally costly approach such as Sequential Monte Carlo filtering in some cases.

S&P 500
implied

volatility

IG credit
spread

Inflation

LC A LC B LC C LC D SC A SC B SC C SC Dx

u

Figure 3.2: Detailed sketch of a simple ESG. Unbroken arrows are dependencies from external regres-

sors and dashed arrows are dependencies from other dependent variables. The dash-dotted arrow is a

dependency modelled externally.

In this study, the only source of uncertainty considered is the random error term et. However, Hildebrand

et al. [2019] states that when observing past observations, it only gives information about one previous

state of the world, or one regime. With this point of view, the uncertainty should capture the fact that

the data generating process may change in the future. Other sources of uncertainty to consider is the

uncertainty from the parameter estimation and the uncertainty from the model choice. Quantifying the

uncertainty arising from the possible discontinuation of the historical data generating process and the

uncertainty due to the choice of model is difficult, and one may argue that keeping this in mind when

analyzing prediction intervals is more sensible than trying to incorporate these uncertainties in the model.

However, the bootstrapping procedure outlined in Section 3.2.5 can be applied to account for parameter

uncertainty.

The models for volatility, credit spread and inflation used in the example ESG will be briefly described.

The S&P 500 implied volatility is modelled with historical data from the VIX index. The process is

modelled as an AR(p) process with mean reversion after a log-transformation for positivity

ṽt = log vt

θ =
1

T

T∑
t=1

ṽt

ṽt = c(ṽt−1 − θ) + a1ṽt−1 + a2ṽt−2 + · · ·+ apṽt−p + et, et ∼ N(0, σ2)

This is of course the same as

ṽt = c∗ + a∗1ṽt−1 + a2ṽt−2 + · · ·+ apṽt−p + et, et ∼ N(0, σ2)
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with c∗ = −cθ and a∗1 = a1 + c, and the mean reversion coefficient is merely for interpretation. The

investment grade credit spread is modelled directly, i.e. the risk-free rate and the investment grade yield

are not modelled individually. The uncertainty is assumed to be driven by the S&P 500 implied volatility,

and leverage from the volatility offset is also included as a predictor. Once again, an AR(p) model is

chosen, and the model is thus given by

µ =
1

T

T∑
t=1

log yt

ỹt = log yt − µ
ỹt = a1ỹt−1 + a2ỹt−2 + · · ·+ apỹt−p + b(vt − v̄) + vtet, et ∼ N(0, σ2)

The inflation is differenced before being modelled with an AR(p) model with constant volatility and no

external predictors.

3.2 Estimating the Model

The estimation of the models for the external regressors will not covered here, but since they are all

(univariate) autoregressive processes, the analogy is clear. The parameters to be estimated are thus the

vector c and the matrices Ai and Bj . First, the Maximum Likelihood estimates without parameter

restrictions are derived. An iterative Maximum Likelihood procedure where parameter restrictions are

included is then presented. In other sections in this study, the covariance is allowed to be time-varying,

since the practitioner may want to include a stochastic model for the volatility. However, due to the

difficulty of fitting a stochastic volatility process to high-dimensional VARX models, a constant covariance

is assumed in the estimation procedure below. In the following, it is therefore assumed that the data is

homoscedastic and that transformations have been applied to ensure (sufficient) stationarity of xt and

ut. For a volatility clustering model, where the same (historically observed) volatility process is assumed

to drive all dependent variables, see Section 3.2.3.

3.2.1 Unconstrained Maximum Likelihood Estimation

To estimate the parameters in (3.1), the representation in (3.2) given an appropriate presample is con-

sidered.

X = ZΓ + E (3.2)

where

X =

xT
1
...

xT
T

 (T × n)

Z =

1 xT
0 . . . xT

1−p uT
1 . . . uT

1−q
...

...
...

...
...

1 xT
T−1 . . . xT

T−p uT
T . . . uT

T−q

 (T × k)

Γ = (c,A1, . . . ,Ap,B0, . . . ,Bq)
T (k × n)

E =

eT
1
...

eT
T

 (T × n)
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and k = 1 + np+m(q + 1). Using the fact that vec(E) is normally distributed with covariance Σ⊗ IT ,

the likelihood can be expressed as (see Appendix C.2)

L =
1

(2π)nT/2|Σ|T/2
exp

(
−1

2
tr
[
Σ−1ETE

])
= (2π)−nT/2|Σ|−T/2exp

(
−1

2
tr
[
Σ−1(X− ZΓ)T(X− ZΓ)

])
(3.3)

⇒

logL = −nT
2

log(2π)− T

2
log|Σ| − 1

2
tr
[
Σ−1XTX− 2Σ−1XTZΓ + Σ−1ΓTZTZΓ

]
Using the rules given in Appendix B.2, the partial derivatives are calculated as

∂logL
∂Γ

= −1

2

[
− 2Σ−1XTZ + 2Σ−1ΓTZTZ

]T
∂logL
∂Σ

= −T
2

Σ−T +
1

2
Σ−T(X− ZΓ)(X− ZΓ)TΣ−T

This leads to the maximum likelihood estimates

Γ̂ = (ZTZ)−1ZTX

Σ̂ =
1

T
(X− ZΓ̂)T(X− ZΓ̂)

3.2.2 Constrained Maximum Likelihood Estimation

Due to the large number of parameters, n(1 + np + m(q + 1)), in comparison to the typical number

of historical financial time series observations, an unconstrained Maximum Likelihood estimation is un-

likely to perform well for higher dimensions n and m. One solution could be to use Lasso (Tibshirani

[1996]) or some other technique to mitigate the curse of dimensionality. However, when constructing an

ESG, the ability to manually specify which parameters to include is often desirable. When modelling

the returns of an ETF based on a large index together with a few small cap stocks, it is reasonable to

set restrictions to only allow the stocks to depend on the ETF and not the other way around. When

using e.g. Lasso, this is no guarantee, and which parameters are estimated to be zero may vary with the

estimation window. The purpose of an ESG is not only to predict future returns, but also to provide a

deeper understanding of the market dynamics. It is therefore argued that user provided parameter restric-

tions, possibly with the help of e.g. Lasso, to sparsify the parameter matrices is the most flexible solution.

A constrained maximum likelihood estimation can be done by considering the vectorization of the pa-

rameter matrix Γ. The constraint is formulated as

ααα = vec(Γ) = Rγγγ

where ααα ∈ Rkn×1, R ∈ Rkn×ι, γγγ ∈ Rι and ι denotes the number of unrestricted parameters (Lütkepohl

[2005]). The matrix R determines which parameters are set to zero by having one entry in each column

set to 1 and all the other entries in that column set to 0. As an example, consider n = 2, m = 1, p = 2

and q = 1, and the desired parameters

Γ =

(
c(1) A1(1, 1) A1(1, 2) A2(1, 1) 0 B0(1) 0

c(2) 0 A1(2, 2) 0 0 B0(2) B1(2)

)T
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The restriction would then be formulated as

ααα =



c(1)

A1(1, 1)

A1(1, 2)

A2(1, 1)

0

B0(1)

0

c(2)

0

A1(2, 2)

0

0

B0(2)

B1(2)



=



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





c(1)

A1(1, 1)

A1(1, 2)

A2(1, 1)

B0(1)

c(2)

A1(2, 2)

B0(2)

B1(2)



Vectorizing equation (3.2) and inserting the restriction gives (see Appendix B.1)

vec(X) = (In ⊗ Z)vec(Γ) + vec(E)

= (In ⊗ Z)Rγγγ + vec(E)

Again, using the fact that vec(E) ∼ N (0,Σ⊗ IT ) the likelihood can be expressed as

L =
1

(2π)nT/2|Σ⊗ IT |1/2
exp

(
−1

2

[
(vec(X)− (In ⊗ Z)Rγγγ)

T
(Σ⊗ IT )

−1
(vec(X)− (In ⊗ Z)Rγγγ)

])
Using the rules given in Appendix B.1, this gives a log-likelihood

logL = −nT
2

log(2π)− T

2
log|Σ| − 1

2

[
(vec(X)− (In ⊗ Z) Rγγγ)

T
(Σ⊗ IT )

−1
(vec(X)− (In ⊗ Z) Rγγγ)

]
= −nT

2
log(2π)− T

2
log|Σ|

− 1

2

[(
vec(X)T

(
Σ−1 ⊗ IT

)
− γγγTRT

(
Σ−1 ⊗ ZT

))
(vec(X)− (In ⊗ Z) Rγγγ)

]
= −nT

2
log(2π)− T

2
log|Σ|

− 1

2

[
vec(X)T

(
Σ−1 ⊗ IT

)
vec(X)− 2γγγTRT

(
Σ−1 ⊗ ZT

)
vec(X) + γγγTRT

(
Σ−1 ⊗ ZTZ

)
Rγγγ
]

The partial derivative with respect to the parameter vector is then given by

∂logL
∂γγγ

= RT(Σ−1 ⊗ ZT)vec(X)−RT(Σ−1 ⊗ ZTZ)Rγγγ

yielding the maximum likelihood estimate

α̂αα = Rγ̂γγ = R[(RT(Σ̂−1 ⊗ ZTZ)R)−1RT(Σ̂−1 ⊗ ZT)vec(X)]

The maximum likelihood estimate of the covariance matrix is again given by

Σ̂ =
1

T
(X− ZΓ̂)T(X− ZΓ̂)

Unfortunately, there is no analytic solution since the estimation of the coefficients is commingled with

the estimation of the covariance matrix. Thus, an iterative procedure has to be applied. However, each
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estimation of the parameter vector α̂αα can be done in reasonable time unless ι is very large (>> 1000). If

encountering long run-times, it is likely due to sub-optimal matrix chain multiplications – how the prod-

ucts are parenthesized matters! It is suggested that the iteration is initialized by choosing the covariance

estimate generated by the unconstrained maximum likelihood parameters. Since the problem is convex,

the iteration should be stable and converge to an optimum.

3.2.3 Volatility Clustering

Consider the model

xt = c +

p∑
i=1

Aixt−i +

q∑
j=0

Bjut−j + vtet, et ∼ N (0,Σ) (3.4)

where all dependent variables are assumed to be driven by a global volatility process {vt}. The represen-

tation in (3.2) can then be written as

X = ZΓ + v ◦E

where

v = (v1, . . . , vT )T

and ◦ denotes element wise multiplication of the rows. Denoting Ẽ = v ◦ E, the error distribution is

given by vec(Ẽ) ∼ N (0,Σ⊗V)), where V = diag(v ◦ v). First consider the unconstrained estimation.

From Appendix C.2, the likelihood in (3.3) now evaluates to

L = (2π)−nT/2|Σ|−T/2|V|−n/2exp

(
−1

2
tr
[
Σ−1ẼTV−1Ẽ

])
= (2π)−nT/2|Σ|−T/2|V|−n/2exp

(
−1

2
tr
[
Σ−1(X− ZΓ)TV−1(X− ZΓ)

])
giving the log-likelihood

logL = −nT
2

log(2π)− T

2
log|Σ| − n

2
log|V|

− 1

2
tr
[
Σ−1XTV−1X− 2Σ−1XTV−1ZΓ + Σ−1ΓTZTV−1ZΓ

]
and the partial derivatives are

∂logL
∂Γ

= −1

2

[
− 2Σ−1XTV−1Z + 2Σ−1ΓTZTV−1Z

]T
∂logL
∂Σ

= −T
2

Σ−T +
1

2
Σ−T(X− ZΓ)V−1(X− ZΓ)TΣ−T

The maximum likelihood estimate of the parameters is thus the same as before, while the new maximum

likelihood estimate of the covariance is given by

Σ̂ =
1

T
(X− ZΓ̂)TV−1(X− ZΓ̂)

Some tedious calculations yield a similar result in the case with parameter constraints. Essentially, this

means that if the innovations of all dependent variables are assumed to be driven by an historically

observed global volatility process, the residuals can be standardized with the supplied volatility in the

estimation procedure, and the new log-likelihood can be calculated by subtracting n
2 log|V|. The diag-

onal elements in V may be very small, leading to the determinant being evaluated as zero in practice.

This can be overcome by applying LU-factorization, and some programming languages provide robust

implementations for calculating log-determinants.
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3.2.4 Graphical Lasso

The Graphical Lasso estimator is a sparse penalized maximum likelihood estimator for the precision

matrix (inverse covariance matrix) of a multivariate elliptical distribution. When the sample size is rela-

tively small in comparison to the number of features, the non-penalized Maximum Likelihood estimator

of the covariance matrix is likely inducing spurious dependencies, and Graphical Lasso solves this issue

by penalizing the sum of absolute values of the precision matrix. The Graphical Lasso estimator of the

precision matrix is given by

arg max
Θ

(log|Θ| − tr(SΘ)− ρ||Θ||1) (3.5)

where Θ is positive semi definite and S is the empirical covariance matrix (Friedman et al. [2008]). In

this case the empirical covariance matrix (of the residuals) is the Maximum Likelihood estimate. The

objective function in (3.5) is the (penalized) Gaussian log-likelihood of the data, partially maximized

with respect to the parameters. To see why this is the case, take the logarithm of (3.3) and remove the

constant, yielding

− T

2
log|Σ| − 1

2
tr
[
Σ−1(X− ZΓ)T(X− ZΓ)

]
∝ log|Σ−1| − tr

[
Σ−1

1

T
(X− ZΓ)T(X− ZΓ)

]
Partially maximizing with respect to Γ, and denoting

S = Σ̂ =
1

T
(X− ZΓ̂)T(X− ZΓ̂)

and Θ = Σ−1, this simplifies to

log|Θ| − tr(SΘ)

The penalizing parameter ρ determines the sparsity of the resulting estimate. Figure 3.3 illustrates the

result of applying Graphical Lasso with ρ = 0.1 to the sample covariance estimated from 300 observations

of a 30-dimensional multivariate normal distribution.

(a) Empirical covariance (b) GLasso estimate (c) True covariance

Figure 3.3: Illustration of Graphical Lasso estimation of the covariance matrix

3.2.5 Parameter Inference

Under some certain conditions, the parameters are asymptotically normally distributed (Lütkepohl [2005]).

However, for high dimensional data with relatively few observations, a bootstrapping procedure may be

more reliable, especially if the normality assumption is violated. While multiple bootstrapping methods

for time-series have been applied in the literature, the method proposed below is based on the one out-

lined by Lütkepohl [2005], Appendix D.3. Consider the parameter estimates Γ̂ and the residuals ê1:T

obtained from one of the estimation procedures above. Also consider some quantity of interest ŷ = y(Γ̂).

The usual residual bootstrap procedure then proceeds as:
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[1] Estimate the parameters Γ̂ given x1:T and an appropriate presample, where ê1, . . . , êT are the

resulting residuals

[2] Compute the centered residuals ê1 − ē, . . . , êT − ē, where ē =
∑

1
T êt. Obtain bootstrap residuals

e∗1:T by randomly drawing with replacement from the centered residuals

[3] Calculate a bootstrap time series as x∗t = ĉ +
∑p
i=1 Âix

∗
t−i +

∑q
j=0 B̂jut−j + e∗t , initialized by the

same presample as in the estimation procedure.

[4] Re-estimate the parameters given the bootstrap time series to obtain Γ∗

[5] Calculate a bootstrap version, y∗, of the quantity of interest

[6] Repeat [2]-[5] to obtain a sufficiently large sample y∗1:N

Of course, the procedure above is only valid for serially uncorrelated residuals. For parameter confidence

intervals, the quantities of interest are simply ŷij = Γ̂ij .

3.2.6 Selection of Hyperparameters

Possible hyper parameters in the estimation procedures above are p, q, R and ρ. How to set the Graphi-

cal Lasso penalization parameter ρ will not be discussed, but the Python library scikit-learn provides an

implementation of Graphical Lasso with cross-validation (scikit-learn developers [2019]).

If there are no parameter restrictions, p and q can easily be selected according to e.g. AIC. When includ-

ing parameter restrictions however, restrictions must be set for each combination of p and q. For certain

parameters, there may be clear restrictions according to economic theory. However, there may also be

a large number of parameters which are allowed to vary in theory, but where imposing restrictions may

yield better results.

One approach is to

[1] Specify some requirements on the restrictions, e.g. always include intercept or always set certain

restrictions to zero. Economic theory should be taken into consideration.

[2] For each combination of p and q, find the restriction matrix R which gives the lowest AIC among

matrices fulfilling the requirements in [1].

If R is large, brute force estimation in [2] where each combination of possible restrictions is tested is

infeasible. Instead, one could use Lasso, which optimizes the parameters by minimizing the sum of

squared residuals with a penalty on the absolute value of the coefficients (Tibshirani [1996]). This will

result in a number of zero coefficients, the number of which depends on a provided penalty parameter.

A specified number of values of the penalty parameter can then be tested for each combination of p and

q by combining the result with [1] and calculating AIC. With this approach, there is no guarantee of

finding the optimal (in terms of AIC) parameter restriction matrix. However, the algorithm can give an

initial restriction matrix with a relatively short run-time. The parameters could then further be tested

for significance with the bootstrap procedure outlined in Section 3.2.5, or the restriction matrix further

optimized by e.g. random perturbations.

3.3 Defining Views

Following the method proposed in Section 2.2, the user should provide ψψψt ∈ Rd, Ht ∈ Rd×n and the

distribution of ξξξt ∈ Rd. For simplicity, the linear process given in (2.8) will be considered – it was shown

in Section 2.1 that the model given in (3.1) can be represented similarly. In the most general case, i.e.

where the modelled process may be non-linear and/or non-Gaussian, the following methods would have
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to be extended, although the same underlying reason could be applied. The same goes for the Dynamic

Nelson-Siegel model. Thus, the system is assumed to be given by

ψψψt = Htµµµt + ξξξt ξξξt ∼ N (0,Ωt)

µµµt = c + Axt−1 + But

xt = µµµt + et et ∼ N (0,Σt)

(3.6)

Providing ψψψt and Ht is theoretically straightforward (how to set ψψψt in practice is discussed in Section

3.3.2). Consider an example where the log returns of 5 investable assets are modelled, i.e. xt ∈ R5. The

inputs

ψψψt = (0.0004, 0.0003, 0.00015)T

Ht =

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0


would then imply views that the conditional expectation of the log-returns of the first, third and fourth

asset at time t are expected to be 4, 3 and 1.5 basis points respectively, while

ψψψt = (0.0001, 0.00005)T

Ht =

(
1 −1 0 0 0

0 0 1 0 −1

)
would imply views that the conditional expectation of the log-return of the first asset is one basis point

higher than that of the second asset and that the log-return of the third asset is 0.5 basis points higher

than that of the fifth asset at time t.

3.3.1 Setting the Covariance Matrix Ωt

The covariance matrix is more difficult to define. The interpretation of Ωt is that it defines the covariance

of the distribution of ψψψt around the true conditional expectation of the specified linear combination of

variables. While this provides flexibility for someone with a strong opinion about the future covariance

of the views, a reasonable assumption could be that it relates to the covariance of the forecast of the

conditional expectation indicated by the baseline model. The forecast of the conditional expectation

means the prediction made today about the expectation at time t given an observation at t − 1. It will

become clearer below, but the covariance of the forecast of the conditional expectation would be the

forecast error covariance of the value minus the noise covariance. In the following proposed value of Ωt,

it is assumed that

[1] Ωt is a function of the covariance of the forecast of the conditional expectation indicated by the

baseline model

[2] The trust in the views in relation to the trust in the model is a deterministic function of the number

of steps into the future, possibly constant

The effects of macroeconomic shocks, such as the one induced by Covid-19 in 2020, will have a limited

effect on the long-term behavior of the process (decades ahead), and one may argue that the process

fitted to the historical data will provide the best estimate far into the future. This motivates why the

relative trust in the views may vary over the forecast horizon in assumption [2]. For long-term views

however, one may exclude dependence on the number of steps into the future, h, since the trust in the

views in comparison to the trust in the baseline model would likely be similar 40 years into the future as

50 years into the future.
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Denote Cov[µµµt=t0+h] = Σ̃t=t0+h the forecast error covariance of the conditional expectation at time t

assuming no views, where t is h steps into the future from today. To clarify what this means, assume

that today’s values of the dependent variables are x0, i.e. t0 = 0. The conditional expectation of x1 is

given by

µµµ1 = c + Ax0 + Bu1

and is thus deterministic, i.e. Σ̃t=1 = 0. However, x1 is uncertain with covariance Σ1. Thus, the

covariance of the forecasted conditional expectation at time t = 2 is given by

Σ̃t=2 = Cov[c + Ax1 + Bu2]

= ACov[x1]AT

= AΣ1A
T

Recall Section 2.3, where a very small value was added to the diagonal elements of the covariance of the

predictive density. The same must be done in this case, and the reason why will become apparent below.

Thus, the forecast error covariance of the conditional expectation can be calculated recursively as

Σ̃t=t0+h = ACov[xt=t0+h−1]AT + εIn

Cov[xt=t0+h] =

{
0 if h = 0

ACov[xt=t0+h−1]AT + Σt if h > 0

The small value ε must be the same value as used in the filtering procedure for consistency. Now that the

uncertainty of the forecasted conditional expectation implied by the baseline model has been specified, it

is proposed that Ωt is set to

Ωt =

{
τ(h)HtΣ̃t=t0+hH

T
t if t ∈ Iψ

∞Id, otherwise
(3.7)

where Iψ is the interval, belonging to the forecast horizon, on which the views are defined. This means

that the covariance Ωt is set to infinity, resulting in no Kalman gain, outside of the interval where the

views are set. There is now an interpretation of Ωt – it is the baseline model covariance of the forecasted

conditional expectation of the linear combination of variables where views are specified, multiplied by

a scalar determined by the function τ(h). This reduces the non-trivial task of choosing an appropriate

covariance matrix of the views to the choice of a scalar-valued function τ(h) describing the relative

uncertainty of the views to the uncertainty of the baseline model over a specified interval belonging to

the forecast horizon. To further understand how the estimated density will evolve given this specification

of Ωt, recall the filtering procedure in Section 2.3, where

µµµt|t−1 = c + Aµ̂µµt−1|t−1 + But

Pµ
t|t−1 = APx

t−1|t−1A
T + εIn

Kt = Pµ
t|t−1H

T
t (HtP

µ
t|t−1H

T
t + Ωt)

−1

µ̂µµt|t = µ̂µµt|t−1 + Kt(ψψψt −Htµ̂µµt|t−1)

Px
t|t = Pµ

t|t−1 −KtHtP
µ
t|t−1 + Σt

Thus, the Kalman gain at time t ∈ Iψ given the matrix in (3.7) is

Kt = Pµ
t|t−1H

T
t (HtP

µ
t|t−1H

T
t + τ(h)HtΣ̃t=t0+hH

T
t )−1
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and zero for t /∈ Iψ. The initial covariance of xt0 is set to Px
t0|t0 = Cov[xt0 ] = 0. Thus

Kt0+1 = εInHT
t0+1(Ht0+1εInHT

t0+1 + τ(h)Ht0+1εInHT
t0+1)−1

=
1

(1 + τ(1))
HT
t0+1(Ht0+1H

T
t0+1)−1

This means that the Kalman gain at time t0 + 1 is inversely proportional to 1 + τ(1). It is also noted

that since Σ̃t=t0+h ≥ Pµ
t|t−1 for all t > t0, the Kalman gain would reduce over the forecast horizon until

reaching a steady-state if τ(h) was constant. This is due to the fact that the uncertainty in the predictive

density is lower than the uncertainty indicated by the model (or the views) alone. Deriving the Kalman

gain at a given time for general matrices A and τ(·) is difficult. For relatively small magnitudes of the el-

ements in A however, the Kalman gain will always be approximately inversely proportional to (1+ τ(h)),

or specifically HtKt(1 + τ(h)) . 1 where . would mean less than and almost equal. The larger the mag-

nitude of the autoregressive coefficients, the smaller the Kalman gain. For a more extensive description

of the Kalman filter and its steady-state, the reader is referred to the work of Crassidis and Junkins [2012].

This gives two interpretations of τ(h) ∈ [0,∞)

[1] τ(h) is the relative uncertainty of the views and the baseline model prediction of the conditional

expectation, where τ(h) = 1 would indicate similar uncertainties at time t = t0 + h

[2] The Kalman gain at time t = t0 + h is approximately proportional to 1
τ(h)+1

In Chapter 5, the prospect of having historical data of views is discussed. In a situation where τ(h) is

tuned, or where biases are estimated, it would be appropriate to choose a simple function e.g. τ(h) = τ0,

τ(h) = τ0h or τ(h) = τ0log(h). For a more in-depth discussion about the case where historical views are

available, the reader is referred to Section 5.4.

3.3.2 Setting the Views ψψψt

In this section, some practical considerations when setting the views ψψψt throughout the forecast horizon

are discussed. Some informal requirements on the views are proposed. These are based on reason, and do

not relate to the stability of the filter procedure. First, consider what properties would be expected from

a forecast generated by the model with incorporated views. One may expect that the resulting forecast

is reasonably close to the baseline model prediction. Secondly, one would expect that the behavior of the

forecast is not changing dramatically from one time step to another. Considering that the model includes

external regressors with generic models, there is no analytically tractable expression for the forecasted

mean of the baseline model in the general case. However, it is assumed that routines are implemented to

calculate the approximate h-step prediction interval from the baseline model.

In principle, there are no restrictions on the general form of the views, and the user could provide a sine

wave if that is the belief. Since the attributes of what could be seen as a ”reasonable” view will vary

depending on which variable is modelled, the curvature of the views is not discussed, and it should be

decided by the user according to economic theory. However, two informal restrictions are proposed. Let

t = t0 denote today and denote N the length of the forecast horizon IN = {t0 + 1, t0 + 2, . . . , t0 + N}.
Let Iψ = {t0 + a, . . . , t0 + b} ⊆ IN be the interval on which the views are given. It is required that views

are set at each time step within Iψ, i.e. intervals such as Iψ = {t0 + 1, t0 + 2, t0 + 4, . . . } are not allowed.

Consider a baseline model prediction region Iµµµt,α at a specified significance level, α, centered at µ̄µµt. Note

that µµµt is the conditional expectation given some path until that point, and the uncertainty of µµµt far into

the future may be approximately the same as the uncertainty of xt for some models, whereas µ̄µµt is the

mean of the conditional expectation at a given time calculated from a large number of simulated paths,

i.e. the unconditional mean. The proposed restrictions are then
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ψψψt ∈ Iµµµt,α (3.8){
||ψψψt0+a −Ht0+aµ̄µµt0+a||2 < ε2 ∀a
||ψψψt0+b −Ht0+bµ̄µµt0+b||2 < ε2 if b < N

(3.9)

where ε2 is some small value in relation to the magnitude of the values of {µµµt}. Setting the values of ε2
and α is left to the implementer, and the rationale behind the restrictions is instead discussed. Restriction

(3.8) is simply saying that the view of the expected value at a given time is reasonably close to the forecast

from the baseline model. If a view lies outside, say, the 90% quantile of the baseline model prediction,

one may consider reevaluating the model choice. In some cases, this restriction may have to be loosened.

Consider a random walk where the conditional expectation is always zero. Restriction (3.9) means that

if the views are set on an interval which does not end at the last time step, the transition should be

smooth. Likewise, the transition into the region where views are imposed should be smooth, whether

or not the interval starts at the next time step or further into the forecast horizon. These restrictions

alone are obviously no guarantee for ”reasonable” views, and the user needs to take into account variable

specific theory and assumptions.

Two approaches upon which a user interface could be based are discussed. Neither of them by themselves

guarantee that the restrictions above are fulfilled, meaning that some alterations to make sure that

the bound and end point conditions are satisfied would have to be implemented. Furthermore, these

approaches are assuming that the views are specified unconditionally, i.e. independent of the path until

that point.

3.3.2.1 Nelson-Siegel Approach

Often the views may either be beliefs about the long-term mean, where the view could be expressed as

a gradual change from the long-term mean indicated by the baseline model to the new mean, or beliefs

about a short-term shock. This could for example be a shorter period of increased volatility and decreased

mean returns, in other words a short-term shock to the market. In this case a view of the expected return

could be described by some sort of short-term negative impulse, after which the expectation gradually

returns to its long-term value.

One proposed method for constructing views of these types is the Nelson-Siegel curve, already introduced

in Section 2.4.

The curve would now be given by

y(h) = β0 + (β1 + β2)
1− exp(−h/τ)

h/τ
− β2 exp(−h/τ)

where h again denotes the number of time steps into the forecast horizon (maturity in the original yield-

curve model). Given some data points, this curve can be fitted by e.g. OLS. If there is no data, the

Nelson-Siegel curve can still be used as a tool for expressing the views as a smooth function of h. As

previously seen, the three parameters are describing a constant, an exponential decay and a ”hump”.

This provides a framework for constructing views about both long-term mean and short-term shocks, as

illustrated in Figure 3.4. In a practical application, the user may be asked to either use a slider for each

parameter, or to enter, say, 50 points, upon which the least squares estimate of the curve is returned.
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[β0, β1, β2] =

[0.0, 0.25, 1.5]

[β0, β1, β2] =

[0.0, 0.25, 0.0]

[β0, β1, β2] =

[0.37,−0.12,−1.2]

[β0, β1, β2] =

[0.5,−0.25, 0.0]

Figure 3.4: A few realizations of Nelson-Siegel curves. Top: τ = 10, Bottom: τ = 3.

3.3.2.2 Gaussian Process Regression

In some cases, the views may be more general than what could be described by a Nelson-Siegel curve.

An example could be views about business cycles. A suggested practical approach for dealing with more

general views is Gaussian process regression. By definition, a Gaussian process ”is a collection of random

variables, any finite number of which have (consistent) joint Gaussian distributions” (Rasmussen [2003]),

which means that a GP describes a distribution over functions and can be seen as an extension of the

multivariate Gaussian distribution to infinite dimensionality. A GP is completely described by a mean

function and a covariance function, given by

m(x) = E[f(x)]

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))]

and denoted f(x) ∼ GP (m(x), k(x,x′)). A common choice is m(x) = 0 and k(x,x′) = exp
(
− 1

2l |x− x′|2
)

where l is a length-scale factor. This is denoted the squared-exponential covariance function, squared-

exponential kernel or Radial basis function kernel. In this case, the GP would be univariate and defined

over time, and thus given by fi(t) = ψi,t ∼ GP (mi(t), ki(t, t+ τ)) where i = 1, . . . , d. Furthermore, if

the observations are considered noisy, the squared-exponential covariance function can be extended as

Cov(ψi,t, ψi,t+τ ) = k(t, t+ τ) = σ2
f exp

(
− 1

2l
|τ |2
)

+ σ2
nδτ (3.10)

where δτ is the Kronecker delta function which is 1 if and only if τ = 0 and zero otherwise. A detailed

description of Gaussian processes is beyond the scope of this study, but the general idea is that given a

set of known function outputs f(t), unknown values f∗ = f(t∗) can be inferred from the joint probability

(
f

f∗

)
= N

((
µ

µ∗

)
,

(
k(t, t) k(t, t∗)

k(t∗, t) k(t∗, t∗)

))
The covariance function, or kernel, defines the similarity measure between points, in this case the auto-

covariance. There are many types of covariance functions with different characteristics. Furthermore,

new covariance functions can be constructed by summing and multiplying kernels. This means that the

GP can capture characteristics such as linear trends, quadratic trends, seasonality and randomness by

combining kernel functions, making it a very flexible tool. In (3.10), a White noise kernel, σ2
nδτ , is added

to the squared-exponential kernel (Rasmussen [2003]). Figure 3.5 shows a Gaussian process fitted to 100

data points.

27



Figure 3.5: Gaussian process regression with m(x) = 0 and the kernel function given in (3.10)

with l = 100, σf = 1 and σn = 0.15. Estimate and 95% prediction interval.

In a practical implementation, the user could interactively place points and see how the distribution of

{ψi,t} evolves over the forecast horizon. The covariance matrix Ωt could then either be calculated as in

(3.7) or by constructing a diagonal matrix from the variances estimated by the GP regression for each

individual view. This approach could also be used to include views from external sources with lower

granularity, e.g. yearly outlooks of GDP produced by IMF.

3.3.2.3 Transformations of Views

There are mainly two common transformations of time series data, namely differentiation and the log-

transformation. Regarding differentiation, the distribution is still Gaussian. This means that if one has

views {ψψψ∗t } of the expectation of variables which are differenced in the baseline model, the input views

can simply be calculated as ψψψt = ψψψ∗t −ψψψ∗t−1. The log-transformation is a bit more intricate. If

x ∼ N (µµµ,Σ)

then y = exp(x) has a log-normal distribution with expectation

E[y]i = exp(µi +
1

2
Σii)

First consider a univariate time series, {yt}, where the log-level is modelled as xt = log(y) ∼ N (µt, σ
2
t ).

Further assume that views ψ∗t are formulated as the expected value of yt. Since E[yt] = E[exp(xt)] =

exp(µ+ 1
2σ

2), the views should then be transformed as ψt = log(ψ∗t )− 1
2σ

2. In the multivariate case, the

views would be transformed as

ψψψt = log(ψψψ∗t )−
1

2
diag(HtΣtH

T
t )

since the views are specified as the expected value of a linear combination of the conditional expectation,

Htµµµt, where xt ∼ N (µµµt,Σt).

Another common way of expressing views is annualized returns over different horizons, e.g. five, ten and

twenty years. Here, one method would be to calculate the implied mean prices at the end of each horizon

as

pt0+h = pt0(1 + yt0+h)h
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where yt0+h denotes the h-year annualized return and pt the price at time t. These values can then be

interpolated with a method of choice, after which views of log-returns can be constructed. The trans-

formed views would of course in this case indicate a stronger assumption than the original views, and

these types of transformations should therefore be handled carefully.

3.4 Generating Scenarios

This section gives a walk-through of how the filtering procedure given in Section 2.3 can be applied to the

model given in (3.1). In cases where the external regressors are also variables of interest themselves, as

in the example ESG in Section 3.1, it may be relevant to impose views on them as well as the dependent

variables. However, the proposed method would have to be extended to allow for views on external

regressors, and the possibilities and difficulties of this are discussed in Section 3.4.2.

3.4.1 Views on Dependent Variables

Consider the VARX(1,0) representation given in (2.4) of the VARX(p,q) model in (3.1). By constructing

the matrix Λt = (Ht,0, . . . ,0
)
∈ Rd×np, the system

ψψψt = Htµµµt + ξξξt ξξξt ∼ N (0,Ωt)

µµµt = c +

p∑
i=1

Aixt−i +

q∑
j=0

Bjut−j

xt = µµµt + et et ∼ N (0,Σt)

has the representation

ψψψt = ΛΛΛtµ̃µµt + ξξξt ξξξt ∼ N (0,Ωt)

µ̃µµt = c̃cc+ Ax̃xxt−1 + Bũuut

x̃xxt = µ̃µµt + ẽeet ẽeet ∼ N (0,diag(1, 0, . . . , 0)⊗Σt)

where µ̃µµt = vec(µµµt,µµµt−1, . . . ,µµµt−p+1) and everything else is defined as in (2.4). This dynamic system of

equations can be treated with a modified Kalman filter as seen in Section 2.3. Denoting Qt the np× np
covariance matrix diag(1, 0, . . . , 0)⊗Σt, the filter recursion is thus given by

ˆ̃µµµt|t−1 = c̃cc+ Aˆ̃µµµt−1|t−1 + Bũuut

Pµ
t|t−1 = APx

t−1|t−1A
T + εInp

Kt = Pµ
t|t−1Λ

T
t (ΛtP

µ
t|t−1Λ

T
t + Ωt)

−1

ˆ̃µµµt|t = ˆ̃µµµt|t−1 + Kt(ψψψt −Λt
ˆ̃µµµt|t−1)

Px
t|t = Pµ

t|t−1 −KtΛtP
µ
t|t−1 + Qt

and, to facilitate implementation, the dimensions of all vectors and matrices in the filter recursion are

given in Table 3.1.

What remains to specify is how to set Ωt according to (3.7) in this case. This can now done with the

recursion

Σ̃t=t0+h =
[
ACov [x̃xxt=t0+h−1] AT

]
1:n,1:n

+ εIn

Cov[x̃xxt=t0+h] =

{
0 if h = 0

ACov[x̃xxt=t0+h−1]AT + Qt if h > 0

29



Object(s) Dimensions
ˆ̃µµµt|t−1, ˆ̃µµµt|t, c̃cc np× 1

ũuut m(q + 1)× 1

A np× np
B np×m(q + 1)

Pµ
t|t−1, Px

t|t, Qt np× np
Kt np× d
ψψψt d× 1

Λt d× np

Table 3.1: Dimensions of all objects in the filter recursion

where M1:n,1:n would denote the n× n matrix consisting of the first n rows and columns of M. This is

due to the fact that Cov[xt] = Cov [x̃xxt,1:n].

3.4.2 Views on External Regressors

The external regressors are modelled externally and if there are no views of ut, these could simply be

sampled from their respective processes and the filtering procedure for the dependent variables outlined

in the previous section would be done conditional on each sample. Incorporating views when estimating

the future distribution of the external regressors does not pose an issue. If ut are simulated from one or

multiple autoregressive processes with Gaussian innovations, the same filtering approach as outlined in

Section 2.3 can be applied. If a process is non-linear or non-Gaussian, the methods mentioned in Section

2.2 could be applied. All external regressors are in this case modelled as AR(p) processes. The same way

as a VAR(p) process can be represented as a VAR(1) process, the AR(p) model can be reformulated as

an VAR(1) model. The representation is given by

ut = γ + α1ut−1 + · · ·+ αput−p + ηt

⇐⇒
ũt = γ̃ + α̃ũt−1 + η̃t

where ut is one of the external regressors and

ũt = (ut, . . . , ut−p+1)T (p× 1)

γ̃ = (γ, 0, . . . , 0)T (p× 1)

α̃ =


α1 α2 . . . αp−1 αp
1 0 . . . 0 0

0 1 . . . 0 0
...

...
...

...

0 0 . . . 1 0

 (p× p)

η̃t = (ηt, 0, . . . , 0)T (p× 1)

Thus, the approach outlined in Section 2.3 could be applied when estimating the future distribution of

these variables given views. The issue is that while the distribution of the values at any given time is

given by the filter density, it is not possible to sample paths given the views. It may be tempting to

sample from the process (assuming no views on the dependent variables) as

x̃xxt = c̃cc+ Ax̃xxt−1 + Bũuut|t + ẽeet

where ũuut|t ∈ Rm(q+1)×1 is sampled from the posterior density of ũuut given views, and the variables are

defined as in the previous section. This is however not a valid approach. Assume for simplicity that the
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external regressors are all modelled as AR(1) processes, or possibly together as a VAR(1) process. The

system

ũuut = γ̃γγ + α̃ααũuut−1 + η̃ηηt

x̃xxt = c̃cc+ Ax̃xxt−1 + Bũuut + ẽeet

where

ut = γγγ +αααut−1 + ηηηt (m× 1)

and

γ̃γγ = vec(γγγ,0, . . . ,0) (m(q + 1)× 1)

α̃αα =


ααα 0 . . . 0 0

0 Im . . . 0 0
...

...
...

...

0 0 . . . Im 0

 (m(q + 1)×m(q + 1))

η̃ηηt = vec(ηηηt,0, . . . ,0) (m(q + 1)× 1)

would then have to be considered from the start, upon deriving the filter recursion. When considering

views on both the dependent variables and the external regressors, the filter recursion would be difficult

to derive. The simplest approach to set views on the external regressors would of course be to include

these variables as dependent variables (making them internal). This means that instead of modelling the

VARX(p,q) model, the VAR(p) model

(
xt
ut

)
=

(
c

γγγ

)
+

p∗∑
i=1

(
Ai Bi

0 αααi

)(
xt−i
ut−i

)
+

(
et
ηηηt

)
((n+m)× 1)

would be assumed, where p∗ is the maximum lag used in any individual process. Whether joint estimation

is used or not is a matter of preference, but the parameters would of course have to be re-estimated.

Naturally, this model would generally result in less influence from the (previously) external regressors,

since the simultaneous values typically would have the most predictive power. Therefore, it is not a

perfect solution to the issue.
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4. Example with Data

4.1 Data

The data consists of 362 monthly observations from 1990-03-01 to 2020-04-17. The S&P 500 implied

volatility is modelled with observations from the VIX index [Yahoo Finance] and the credit spread is

modelled with observations from Moody’s seasoned Aaa corporate bond yield relative to yield on 10-Year

treasury constant maturity [Federal Reserve Bank of St. Luis]. The inflation is modelled with data from

the consumer price index for all urban consumers [Federal Reserve Bank of St. Luis].

(a) Volatility (VIX) (b) Aaa credit spread (c) Inflation (CPI)

Figure 4.1: Historical observations of volatility, credit spread and inflation

The equity data consists of 12 large cap stocks from S&P 500 and 20 small cap stocks from S&P SmallCap

600 [Yahoo Finance]. The log-returns are for simplicity equally weighted (at any given time), to create

two indices. These are not very representative as general small/large cap indices due to both the small

number of stocks and the weighting method, and could instead be viewed as two dynamically reweighted

portfolios. In a global economy ESG, one could instead choose to model a similar number of major global

stock indices together with foreign exchange rates. Figure 4.2 shows the historical levels of the two in-

dices and Table 4.1 shows historical means and standard deviations of the log-returns of all constituents,

where the column Code shows the trading name of the stock (e.g. DIS = Walt Disney Company). The

indices have actually performed very similarly in terms of aggregate return over the whole period. The

log-returns of the two indices also have similar volatilities, 4.6% and 4.7% respectively, even though the

average volatility over the horizon is significantly larger for the small cap index. This could be explained

by the large cap equities being more correlated, while the returns of the small cap equities equalize each

other to a larger extent. Again, a larger number of stocks would be needed to accurately describe the

general market movements in the two segments.
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Equity Code Mean Return (%) Standard deviation (%) Market Capitalization 2020 ($B)

LC1 BAC 0.2 11.2 194.2

LC2 DIS 0.7 7.3 186.1

LC3 HD 1.3 7.4 243.5

LC4 INT 1.1 10.4 252.7

LC5 JNJ 0.8 5.5 394.4

LC6 JPM 0.7 9.5 275.4

LC7 KO 0.6 5.8 193.7

LC8 MRK 0.5 7.1 197.0

LC9 MSF 1.5 8.7 1392

LC10 PFE 0.7 6.4 215.4

LC11 PG 0.7 5.7 285.4

LC12 T 0.2 6.3 207.6

Average - 0.77 7.6 336.5

SC1 MLAB 1.6 10.4 1.0

SC2 LNN 0.8 10.0 0.9

SC3 PDCE 0.9 17.1 1.2

SC4 AWR 0.8 6.2 2.8

SC5 AXE 0.6 10.5 3.2

SC6 B 0.6 8.8 1.8

SC7 PLXS 1.1 14.7 1.7

SC8 CBU 0.8 7.1 3.1

SC9 CVBF 0.6 8.5 2.6

SC10 CWT 0.6 5.9 2.2

SC11 GBCI 0.9 7.8 3.5

SC12 INDB 0.6 11.0 2.1

SC13 JJSF 0.9 8.7 2.3

SC14 KWR 0.6 10.5 2.5

SC15 MDC 1.1 13.8 1.7

SC16 SFNC 0.7 9.0 1.8

SC17 EE 0.2 9.6 2.8

SC18 UNF 0.7 8.6 3.0

SC19 WDFC 0.7 6.5 2.3

SC20 COKE 0.6 8.0 2.2

Average - 0.78 9.7 2.2

Table 4.1: Mean and standard deviation of historical log returns of each modelled stock.
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Figure 4.2: Historical observations over the period 1990-03-02 - 2020-04-17 of the log-level of constructed

large cap and small cap indices, both starting at 1 in 1990-03-01.

4.2 Estimating the ESG

A training subset of the data is constructed from the first 300 observations, and major outliers are re-

moved (only for SC17, or EE, in this case). Selection according to AIC yields an AR(4) model for the

volatility and an AR(2) model (with volatility leverage) for the credit spread. The inflation data, how-

ever, shows a prominent moving average structure, and an AR(10) approximation of the ARMA(1,2)

model giving the minimum AIC is calculated. The autocorrelations of the resulting residuals are shown

in Figure 4.3. There seems to be some dependency on the previous year left in the residuals from the

inflation model, but including a lag of 12 months did not lower the resulting AIC. Confidence intervals

of the parameters are given in Table 4.2. The parameters in the inflation model are referring to the

coefficients in the ARMA(1,2) model, and all parameters for the other two models are described in Sec-

tion 3.1. The volatility model shows a large dependence on the previous observation, and the negative

sign of c indicates mean reversion. The credit spread model also indicates large dependence on the previ-

ous observation, as well as a positive dependence on volatility, which is in line with what one would expect.

(a) Volatility (VIX) (b) Aaa credit spread (c) Inflation (CPI)

Figure 4.3: Autocorrelation of residuals
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Volatility model

Parameter [α/2 1 − α/2]

θ −1.8400 −1.5276

c −0.1874 −0.0679

a1 0.6691 0.8606

a2 −0.0934 0.1405

a3 −0.1024 0.1298

a4 −0.0179 0.1731

σ 0.1514 0.1799

Credit spread model

Parameter [α/2 1 − α/2]

µ 0.0836 0.4065

a1 1.0215 1.1834

a2 −0.2456 0.0833

b 0.0535 0.3810

σ 0.3917 0.4744

Inflation model

Parameter [α/2 1 − α/2]

intercept 0.3860 0.7965

a1 −0.9189 −0.3859

b1 0.9759 1.4664

b2 0.3714 0.6216

σ 0.2003 0.2353

Table 4.2: Confidence intervals of fitted parameters at significance α = 0.05

The VARX(p,q) model with parameter restrictions is first selected in terms of lowest AIC according to

the method proposed in Section 3.2.6, where the volatility and inflation are both differenced when used as

external regressors. Furthermore, no influence from small cap stocks on other stocks is allowed. Including

volatility clustering from the VIX index is both reducing AIC and giving better residual structure (more

like white noise) for most of the constituents. A comparison of the distribution of the log-returns from

2 000 simulated paths with and without volatility clustering is displayed in Figure 4.4. The AIC search

yields p = 1 and q = 0, with parameter restrictions such that there are 32 free parameters in c, 272 free

parameters in A1 (of which 16 are on the diagonal) and 85 free parameters in B0, meaning that 859

of 1248 parameters are set to zero. Since this could still be considered as an overparameterized model,

only significant parameters are included. After bootstrapping parameter confidence intervals with 5 000

bootstrap time series according to Section 3.2.5 and imposing restrictions on any insignificant parameters,

there are 111 free parameters left. Graphical Lasso is applied to the covariance matrix with ρ = 0.05. A

summary of the parameter restrictions is given in Table 4.3. As one might expect, the simultaneous values

of the (differenced) VIX index seem to have most explanatory power. Some suspicions of multicollinearity

may be raised, since VIX is derived from an index containing the large cap equities, but analysis shows

that the dependence is not large enough to be of any concern. Furthermore, the average B0 coefficient for

VIX is -0.68 for the large cap equities and -0.66 for the small cap equities, suggesting that the explanatory

power of the volatility processes in not only due to the fact that it is partly derived from the large cap

equities. The impact of differenced S&P 500 volatility on small cap equities is also large in the training

data, although less prominent since the magnitude of the returns are larger in the small cap segment.

Figure 4.5 shows the structure of the standardized residuals of both indices. The assumption is that the

standardized errors have a multivariate normal distribution, which implies that any weighted sum should

be normally distributed. It seems plausible that the weighted sums are normally distributed, although

there are a few major outliers. This is however no guarantee for the multivariate normality to hold, since

that is a stronger assumption. The estimated covariance matrices of the standardized residuals before

and after Graphical Lasso are displayed in Figure 4.6.
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(a) No volatility clustering (b) Volatility clustering

Figure 4.4: Distribution of all log-returns. Histogram of training data and distribution fitted to 2 000

simulated paths of same length and with same presample.

Object Possible parameters Free parameters

c 32 17

A1 1024 58

diag(A1) 32 9

B0 96 36

(VIX) 32 32

(Aaa) 32 3

(CPI) 32 1

Γ 1248 111

Table 4.3: Summary of parameter restrictions.

37



(a) PP plot: Large cap index (b) PP plot: Small cap index

(c) ACF plot: Large cap index (d) ACF plot: Small cap index

Figure 4.5: Probability-probability plots and autocorrelation plots for the standardized log-returns of

both indices.

(a) Empirical estimate (b) Graphical Lasso estimate

Figure 4.6: Covariance of standardized residuals
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Figure 4.7 shows prediction intervals at a few different significance levels of the two indices, two of

the individual stocks and the external regressors over the tuning period. One simulated path, the true

historical values over the tuning horizon and historical observations over the training period are also

displayed. To test the forecast accuracy of the model, a rolling window could have been used. This could

also have been used to examine whether the assumption that the parameters are time-invariant holds.

The main focus is however to illustrate how views can be incorporated, and nothing about the behavior

of the simulated paths or prediction bounds (over the tuning horizon) suggests that the model is severely

misspecified.

39



(a) Large cap index: log-returns (b) Small cap index: log-returns

(c) Large cap index: log-level (d) Small cap index: log-level

(e) LC5 (JNJ): log-level (f) SC5 (AXE): log-level

(g) Volatility (VIX): Level (h) Aaa credit spread: Level (%)

(i) Inflation (CPI): Index

Figure 4.7: Historical observations over whole period are displayed in black. Simulated paths over

forecast horizon are displayed in red. Shaded areas are prediction intervals at significance α = 0.3,

α = 0.1 and α = 0.05 respectively.
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4.3 Simulating Future

Using the ESG fitted to the training period, the aim is now to simulate the future development of the

modelled variables. The horizon is chosen to 700 months, i.e. almost 60 years. Before any views are

imposed, the baseline model estimate of the future is analyzed. Figure 4.8 shows prediction intervals

of the levels of the two indices as well as the external regressors over the horizon. One simulated path

over the horizon and all historical values are also displayed. The prediction of the small cap index seems

too low judging from the historical trend. Furthermore, the prediction intervals of the returns of both

indices could be considered a bit narrow, especially for the small cap index. Reviewing the model should

normally be the starting point. Should intercepts be included for all variables due to the long-term na-

ture of the forecast? Is there more or less comovement in the data than what is induced by the external

regressors? Is the Graphical Lasso penalization removing too much of the noise correlation, resulting

in more equalization of returns and smaller prediction intervals of the indices? However, for illustrative

purposes, the predictions will instead be altered by imposing views.
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(a) Large cap index: log-level (b) Small cap index: log-level

(c) Large cap index: log-return (d) Small cap index: log-return

(e) Volatility (VIX): Level (f) Aaa credit spread: Level (%)

(g) Inflation (CPI): Index

Figure 4.8: Historical observations are displayed in black. Simulated paths over forecast horizon are

displayed in red. Shaded areas are prediction intervals at significance α = 0.3, α = 0.1 and α = 0.05

respectively.
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There are thus two beliefs that could be considered, namely higher weighted sum of the returns of the

small cap equities and slightly higher standard deviation of returns in general. To alter the standard

deviation of returns, views about the volatility process would have to be imposed. The question is how-

ever whether or not the actual views are about the volatility process, or about the magnitude of the

covariance matrix. The volatility process is in this case also affecting the credit spread prediction due

to the model configuration, and in an ESG, the volatility process is not just a driver of other variables,

but also an important variable to study in itself. This is one of the limitations of the proposed method

– it does not provide a framework for imposing views about neither the functional relationship between

variables, nor the noise covariances. It does not make sense to impose views about the distribution of

one variable only to change the distribution of another! Furthermore, the filter recursion would not be

analytically tractable when imposing views on the volatility process. As seen in Section 3.4, the method

is only easily applicable when considering views on the dependent variables. Therefore, only views about

the expectation of the small cap index will be imposed.

First, the belief about the expectation of the (equally weighted) log-returns of the small cap equities over

the horizon needs to be specified. In this case, let us start by formulating a belief about the log-level

of the index. For simplicity, the baseline model estimate is going to be merged with views that the

expectation of the log-index is going to follow a linear trend fitted to the historical observations. Thus,

the views about the log-level of the index, together with the implied log-return, are given in Figure 4.9.

The matrix specifying the linear combination of variables on which the views are set is in this case just

the small cap weight matrix, i.e.

Ht =

(
0, . . . , 0,

1

20
, . . . ,

1

20

)
∈ R1×32

As seen in Section 3.3.2, the views should be transformed to account for the fact that the log-returns are

modelled. Denote ψ∗t the views about the log-level of the index. The views, ψt, which should be imposed

in the filtering procedure are then given by

ψt = ψ∗t − ψ∗t−1 −
1

2
diag(HtΣ̂tH

T
t )

Σ̂t = vtΣ̂

where vt is the (simulated) value of the volatility process and Σ̂ is the estimated covariance matrix

of the standardized errors. In line with the proposed restrictions in 3.3.2, the interval Iψ is set to

[t0+10, . . . , t0+700] to ensure a smooth transition. For the covariance matrix, τ(h) = 1 for h = 1, . . . , 700

is chosen.

Figure 4.9: Left: Historical observations, together with the baseline model expectation and the views

(log-level). Right: Baseline model expectation and views (log-return).
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Since the log-returns are heavily dependent on the volatility process, it would be false to say that the

process is close to being described by a random walk (conditional on observed values of the external

regressors). Thus, specifying views unconditionally will reduce the uncertainty of the forecast (see Section

5.1). Therefore, views conditional on ut are also considered. Denote ψkt the views and ukt the values of

the external regressors of path k. With the unconditional views ψt = 0.008038 for all t, the conditional

views are set to

ψkt = 0.008038 + HtB0u
k
t − δ

where δ is the average impact on the log-return from the external regressors in the baseline prediction,

i.e.

δ =
1

N

N∑
k=1

HtB0u
k
0,t

where uk0,t are the values of the external regressors in one of the simulated paths from the baseline model

and N is the number of paths. This would indicate beliefs that the conditional expectation will have

the same dependence on the external regressors as in the baseline model, but where the unconditional

expectation is higher. The adjusted predictions with unconditional and conditional views respectively

are shown in Figure 4.10. It is clear that the conditional views result in wider prediction intervals than

the unconditional views.

(a) Unconditional views: log-level (b) Conditional views: log-level

Figure 4.10: Predictions of the small cap index with unconditional and conditional views respectively.

Historical observations are displayed in black. Simulated paths over forecast horizon are displayed in red.

Shaded areas are prediction intervals at significance α = 0.3, α = 0.1 and α = 0.05 respectively. Note

that the paths are sampled from the filter density.
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5. Discussion

There are four main issues with the suggested approach. The possibility of having contradicting views can

be removed by imposing relevant restrictions on the views, while model validation and bias correction

may be applied as a sufficient amount of data on views becomes available. The other two issues are

more difficult to handle. As seen in Section 2.3, the views add information in the estimation procedure,

resulting in a posterior covariance lower than what is implied by the baseline model if τ(t) <∞ for any

t. If τ(t) is relatively small, the width of the prediction intervals could reduce significantly depending on

the amount of memory in the original process. In certain settings this is desirable. If the assumption that

the error terms ξt and et are independent, and both the view-distribution and the baseline model are

correctly specified, the posterior density would be an accurate estimation of the future development of

the variables. Consider for example a robot receiving noisy inputs about its position from both a sensor

and a satellite with (presumably) independent noise. However, making these assumptions is in this case

far-fetched, since the distribution of the views is just a theoretical construction. Furthermore, the fact

that the method can be used to estimate the posterior distribution, but not for generating paths, is an

issue for hierarchical models.

5.1 Loss of Conditionality

The first main issue stems from the fact that the views are not specified conditional on previous values,

while the baseline model typically is. Furthermore, the baseline model will usually influence the views.

Consider an example where an economist looks at the baseline model prediction over the forecast horizon

and considers it to be reasonable in terms of uncertainty, but with a slightly low expectation. The belief

is therefore that the unconditional expectation is higher than what was originally estimated, and the

economist imposes this view with similar uncertainty as implied by the baseline model (i.e. τ(h) = 1).

Should the resulting estimate of the unconditional expectation then be more certain than then original

prediction? This is of course only an issue if there is a significant dependence on previous lags and/or

external regressors, meaning that there is some non-negligible uncertainty of the conditional expectation

in the baseline model. As an extreme case where this is no issue, consider a random walk. The conditional

expectation would then always be zero, meaning that the uncertainty is only driven by the error term et,

and that imposing views of the type mentioned above will yield similar widths of the prediction intervals

as the original forecast.

Since the views are not specified conditional on previous values, they are independent of the path until

that point. Consider setting the uncertainty of the views according to (3.7). For an autoregressive

process with a large dependence on previous values, i.e. where the magnitudes of the AR-coefficients are

large, this would mean that the h-step forecast error covariance generally would be lower than what is

implied by the baseline model. It would also give a resulting expectation at time t closer to the views

than the baseline estimate, even though τ(h) = 1 for all h. First consider the case where there is no

dependence on previous observations. In this case, one would always have HtKt(1 + τ(h)) = Id, and

given τ(h) = 1 for all t = t0 +h, the prediction would lie in between the baseline estimate and the views.
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This will approximately be the case when imposing views on processes which are mostly described by

noise, e.g. when modelling log-returns without external regressors. However, this is not the case when

there is a larger dependence on previous lags, such as when modelling log-volatility without differencing.

Although setting the parameter τ(t) = 1 implies that the uncertainty of the views is the same as that of

the unconditional prediction of the baseline model, the fact that the views are unconditional on previous

values will result in the views dominating the prediction. This poses an issue since the expert’s beliefs

in practice will be about the unconditional expectation at a given time – the path until that point is

unknown. As an illustration, consider the (univariate) AR(2)-process given by

xt = −0.18 + 0.8xt−1 + 0.1xt−2 + et, et ∼ N (0, 0.152)

x0 = 0.3

This process is stationary, although one of the roots of the characteristic polynomial is close to the unit

circle, and the expectation is relatively heavily dependent on previous observations. Setting τ(t) = 1

and ψt = 0.1 for all t, the resulting prediction after incorporating the views, together with the baseline

prediction, is given in Figure 5.1. Notice that, even though the variance of the distribution around the

conditional expectation is the same, the forecast error covariance is reduced when applying the views.

The resulting expectation is also closer to the views than the baseline model estimate. The evolution of

the Kalman gain is also displayed. It starts at 1/(1 + τ) = 0.5 and decreases until reaching its steady

state. This is in line with what is expected. When setting the covariance of the views according to (3.7),

larger magnitudes of the AR parameters give a smaller Kalman gain.

Figure 5.1: Illustration of the loss of lag dependence when incorporating views. Shaded areas are within

95% empirical quantiles.

There is no easy solution to this issue in the general case. One option is to calibrate the function τ(h)

– in this case the function τ(h) = 1 + 0.18h would result in a predicted mean approximately in between

the view and the baseline prediction over the whole forecast horizon. This would however mean that the

value of the covariance matrix of the views is less interpretable. If possible, modelling the differenced

time series would reduce the loss of lag dependence. However, when modelling e.g. log-volatility, the

mean reversion property would disappear when modelling the differenced series. A possible option would

be to penalize deviance from the mean, and model e.g. the process
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µµµt = Axt−1 − c(yt −m)

xt = µµµt + et

yt = y0 +

t∑
i=0

xi

where {yt} is the logarithm of the modelled time series, {xt} is the log-return and m is a global mean to

which the logged time series is expected to revert. However, this would complicate both the estimation

and the filtering procedure. Furthermore, it may not be possible to specify the model such that it behaves

similarly as a model which assumes an autoregressive process for {yt}. Since the process is assumed to be

mean reverting, the views of the differenced process would also have to approach, or be centered around,

zero – setting views about a long-term mean would be impossible.

A final option which may be worth to investigate further would be to set conditional views. When mod-

elling processes which sometimes drift far from the global mean (e.g. the volatility and the credit spread

processes modelled Chapter 4), providing views conditional on previous values would be more reason-

able. Naturally, our views about next month’s volatility depend on the current value, while it would

not be as far-fetched to say that our views about the expected values of next month’s equity returns are

independent of the current values. Even in a case where log-returns are modelled, setting conditional

views may sometimes be a better option. If some external regressor has a large impact on the predictions

in the baseline model, formulating views based on the observed value of that variable could be appropriate.

Specifying views conditional on the external regressors ut does in principle not pose an issue – the value

of ut is considered as known at each filter recursion. Consider a linear Gaussian system and a similar

assumption as in Section 4.3, where the views are specified as the expectation with the influence from

the external regressors excluded. This is exactly the same as considering the system

ψψψt = Htµµµt −HtBut + ξξξt ξξξt ∼ N (0,Ωt)

µµµt = c + Axt−1 + But

xt = µµµt + et et ∼ N (0,Σt)

where ψψψt are the views about the expectation discarding influence from the external regressors. Since

the values of ut are considered as deterministic at each filter recursion, this could be rewritten as

ψψψt = αααt + Htµµµt + ξξξt ξξξt ∼ N (0,Ωt)

µµµt = βββt + Axt−1

xt = µµµt + et et ∼ N (0,Σt)

where αααt and βββt are both deterministic, and the filter recursion is thus easily found. If the regressors

have their own stochastic models, which is generally the case unless they would be known beforehand

(e.g. weekdays), the realized views ψψψt would of course also be stochastic. A drawback of this is that

the actual moments of the prediction would be more difficult to derive. However, for general processes

of ut, specifying the moments of the forecast may be difficult anyway. Conditioning the views on past

observations is less trivial – the paths of the dependent variables are not known. An option that may

be considered is sampling the views according to some belief about the process. Consider the setting

where the expected value of the baseline prediction is believed to be too low. The views of conditional

expectations could then be constructed iteratively by generating paths (of µµµt) from the baseline model

and adding the believed shift in expectation to each generated path ψψψt. Again, this would mean that the

moments of the forecasted distribution are not easily tractable, and that simulation is needed. Further-

more, the interpretation of Ωt discussed in Section 3.3.1 would not hold. Assume that the belief is that
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the process will behave exactly the same as the baseline model, meaning that for each simulated path k,

the views are set as

ψψψkt = µµµkt (Ht = In)

where

µµµkt = c + Axkt−1 + Bukt

xkt = µµµkt + et, et ∼ N(0,Σt)

The filter recursion would then be done for each sampled path of the views, upon studying the empirical

distribution (sampled from the posterior at each iteration). If the covariance Ωt is always zero, the

forecasted distribution would be exactly the same as for the baseline model. This would obviously be

the case when the uncertainty of the views approaches infinity as well. The question is what happens in

between, and maybe more importantly, what would be the interpretation?

Thus, further research would have to be made to give a clear interpretation for how the uncertainty of

the views would affect the resulting moments in a sampling approach. Furthermore, requiring the user to

specify some functional dependence on previous values may not always be a practical solution. However,

it would allow for more flexibility, and for processes which sometimes drift far from the unconditional

mean before returning (while still stationary), it would give a clearer interpretation.

5.2 Paths are Unattainable

The Bayesian filtering approach is a way of estimating the distribution over the forecast interval. This

means that at each point in time, the expectation and uncertainty are known (or the approximate density

for general processes). However, sampling from the filter density would not yield a plausible future path.

Although we are typically only interested in the moments, and in turn an expectation and a prediction

region, studying the generated paths could be considered as one step in validating the model. If a sim-

ulated path looks unrealistic given the historical observations, it would indicate that the model may be

misspecified. However, by validating the baseline model, and by fully understanding the filter recursion,

interpreting the results should not be a concern. A bigger issue is the fact that economic scenario gen-

erators often are specified hierarchically. This means that paths simulated from some variables may be

used as predictors for other variables. As seen in Section 3.4.2, this makes it difficult to impose views on

variables which are not lowest in hierarchy. Depending on the complexity, it may be an option to specify

the filter recursion for the whole ESG (although maybe not analytically). In the general case however,

this may be difficult.

There is a simple, although imperfect, solution. This is to only allow for lagged dependence between the

variables. For the VARX(p,q) model, this would mean that any (previously) external regressor where

there may be views is added to the dependent variables, i.e. modelled as internal. This would of course

mean that dependence on the simultaneous value cannot be modelled, which would typically result in less

dependence. On the other hand, when making long-term forecasts, there is another crude but sometimes

practical solution: estimate a VARX(p,q) model and construct a VAR(p) model (or VAR(q) if q > p)

where the parameters of the previously external variables are shifted. Letting the estimated parameters

B0 be the corresponding parameters in A1 and B1 be the corresponding parameters in A2 etc. and

adjusting the covariance matrix would not result in a noticeable difference in the resulting forecast far

into the future. As an example, one could consider respecifying the system

xt = axt−1 + ext

yt = byt−1 + βxt + eyt

zt = czt−1 + γyt + ezt

(5.1)
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as xtyt
zt

 =

a 0 0

β b 0

0 γ c

xt−1yt−1
zt−1

+ et (5.2)

where

et ∼ N

0,

σ2
x 0 0

0 σ2
y 0

0 0 σ2
z


without re-estimating the parameters, such that the three-level hierarchy is approximated by a single

level. The predictions for yt and zt would of course have to be shifted one and two time-steps respectively

assuming the same presample. Although the distributions would converge asymptotically, it is impossible

to specify the presample such that the (5.1) equals (5.2) in the short-term for all three variables. Assuming

monthly intervals, the resulting distributions may differ significantly multiple years ahead. Thus, the

resulting distributions would have to be studied thoroughly before making predictions with the re-specified

system, and this cannot be regarded as a valid solution in general unless short-term predictions are

considered as irrelevant.

5.3 Contradicting Views

The third issue is the possibility of contradicting views. Since it is required that Ht has full rank, no

views which are theoretically impossible are allowed. However, if the difference between the views ψψψt
and the expectation of the predictive density is large in comparison to the uncertainty of the predictive

density and the uncertainty of the views, the expectation of the filter estimate would be far into the tails

of both distributions (See Figure 5.2). This would suggest that either the distribution according to the

baseline model or according to the views (or both) is misspecified, and that the uncertainty of the filter

estimate should be large due to the model uncertainty. However, the posterior estimate of the covariance

is independent of the level of ψψψt. To some extent, the proposed method of setting Ωt solves this. If the

uncertainty of the views is large, the distribution around ψψψt is wide. On the other hand, if the uncertainty

is small, the predictive density will converge to the views fast. Furthermore, by applying the informal

restrictions on the views proposed in Section 3.3.2, the initial densities would always be consistent for

small enough ε2. Those restrictions also make sure that the views and the baseline model estimate of the

unconditional expectation are reasonably close.

Another possibility in a complete economic scenario generator is that contradicting views on different

processes are imposed. Consider as an extreme case modelling a EUR-based ETF on the S&P 500 index

(e.g. VUSA.AS) and a USD-based ETF on the same index (e.g. SPY) in the same economic scenario

generator. Imposing views that the expected return of the EUR-based ETF will be higher than the

expected return of the USD-based ETF, together with views that the currency exchange rate EUR/USD

will decrease over the period, would of course not be reasonable. However, with the model specification

in (2.5), there are no views which are infeasible.
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p(µµµt|ψψψ1:t)

p(µµµt|ψψψ1:t−1)

p(ψψψt|µµµt)

Figure 5.2: Large difference between the imposed view and the expectation of predictive density in

comparison to the assumed uncertainties.

5.4 Model Validation and Bias

The final issue is partly due to the lack of data of historical views and partly due to the bias of the

practitioner. Everyone has biases, and beliefs about the future development of assets and macroeconomic

factors may depend on the individual’s experiences and, in some cases, even mood. As staded by Parker

[2019], ”all kinds of day-to-day activities are primarily driven by behavioral patterns. These same behav-

ioral patterns can also influence investing actions.” There are two main categories of investment biases.

Cognitive biases involve making decisions based on established concepts that may be inaccurate, while

emotional biases typically occur impulsively based on personal feelings at the time a decision is made.

These biases can to some extent be mitigated by understanding and identifying them.

When there is no historical data on views, identifying and accounting for these biases is difficult. However,

in a situation where there are some historical observations of views, biases can be incorporated in the

model. Furthermore, one could also choose to include biases when there are no historical views available

by dynamically updating the bias coefficients over time as data on views accumulate. Including bias

correction, the model (2.5) could look like

ψψψt = Hµµµt + ξξξt + bψt

µµµt = f(xt−1) + bµt

xt = µµµt + et

(5.3)

Note that the baseline model is biased as well. One could say that it has a cognitive bias in assuming

that the data generating process will not change. It is assumed that Ht = H, i.e. that the views are

imposed on the same linear combination of variables over time. Since one of the issues with the model

without bias correction is that similar uncertainties of the views and the baseline model prediction results

in less uncertainty than what is historically observed, it is proposed that both the bias of the baseline

model estimate and the bias of the views are random. Letting bµt ∼ N (mµ,Θµ) and bψt ∼ N (mψ,Θψ),

the filtering recursion is easily extended when f is linear and et and ξξξt are Gaussian. How to estimate

the bias, and how to dynamically update the model over time, is however non-trivial. One could use the

following chain of events

[1] Fit the model f to the window t ∈ [t0, t1].

[2] Impose views and forecast on the window [t1, t2] with no bias.
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[3] Estimate bias

[4] Fit the model f to the window t ∈ [t0, t2].

[5] Impose views and forecast on the window [t2, t3] given bias

[6] Re-estimate bias

[7] Fit the model f to the window t ∈ [t0, t3].

[8] . . .

The model may of course be used to make predictions decades ahead, but a forecast would have to be

made more often to update the bias. Naturally, τ(h) used to set Ωt could be estimated as well, although

this would complicate things further. If τ(h) is not estimated (or constant), it should always be set by

the same person according to the same rationale (with the same bias) over time. Consider the linear

Gaussian case. The model in (5.3) could then be written as

ψψψt = Hµµµt + ξξξ∗t , ξξξ∗t ∼ N (mψ
t ,Ωt + Θψ

t )

µµµt = Axt−1 + But + bµt bµt ∼ N (mµ
t ,Θ

µ
t )

xt = µµµt + et et ∼ N (0,Σt)

(5.4)

The new information on which the biases should be estimated are the observations of xt. Unlike typical fil-

tering procedures, where the process of some hidden variable is estimated, the objective is to maximize the

likelihood of the process in (5.4) having generated the new observations. The problem is that he Bayesian

filtering procedure generates (long-term) forecasts of the moments, and not paths. One approach could

be to maximize the likelihood of the posterior, but this would require data on views at each time step and

it would not be able to catch long-term biases, since the biases would be estimated to correct one-step

predictions. Another approach could be to manually tune the biases. This would mean reformulating the

views of both the expectation and the covariance given the observed data, and correct both the views

and the baseline model estimate by tuning the bias parameters. This approach may however result in

the introduction of new biases, and the corrections should be based on careful statistical analysis of the

observed data. A third option may be to formulate the process such that e.g. Gibbs sampling can be

applied, where some initial priors are assumed, and the biases are sampled conditional on the previously

observed biases and observations. To be able to include biases, some practical considerations would have

to be made. Letting Ht be time-varying may not be an option and letting τ(h) be constant could also

increase the interpretability in the case where biases are included. In a full ESG, possibly with more than

one (vector) autoregressive process, different individuals may set views on different variables. If not, each

user should use its own bias corrections, in which case the biases will most likely differ between individuals.

Considering views from different investors on the same linear combination of variables may also be

interesting. In Section 2.2, the matrix Ht is said to be required to have full rank. This would mean

that having multiple views on the same linear combination of variables is not an option. Using the

approach to set Ωt outlined in Section 3.3.1, specifying a linear combination Ht without full rank would

result in a singular matrix in the expression of the Kalman gain in the filter recursion. However, when

formulating views of the same linear combination of variables by different investors, the approach to

setting the covariance of the views would clearly have to be changed. Instead, the covariance of the views

should explain both the relative trust in the views by each investor and the relative trust of the views

and the baseline model. Since the recursion would be tractable also for rank-deficient matrices Ht as

long as Ωt is positive definite, this opens up some possibilities. One approach could be to assume that

Ωt is diagonal, where the magnitude of the diagonal elements may be time-varying and dependent on the

financial landscape. One investor may for example be more reliable in volatile markets, while another

investor performs better in more stable financial landscapes. Another way of letting investors specify

views on the same combinations of variables could be a two-step approach, where the level of the views

ψψψt is specified by some weighted sum of investor views, where the weights may be time-varying.
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6. Conclusion

The proposed method has some clear advantages in comparison to targeting the moments when estimating

the parameters. Due to the form of the process in (2.5), the only requirement is that any variable in the

ESG upon which views are to be imposed can be modelled as a first-order Markov chain and is lowest in

hierarchy. This means that the distribution of the current value is completely determined by the previous

value, and that the current value of the variable is not a predictor for another variable. Furthermore, the

filter recursion has a closed form for linear Gaussian models, including the vector autoregressive model

and the Dynamic Nelson-Siegel (state-space) model. Although the VARX(p,q) process can only model

linear dependencies, the possibilities of including external regressors, deterministic trends and Gaussian

driven influences makes it a fairly flexible model. For more general models, the computational costs of

applying a Sequential Monte Carlo based filtering would still be substantially lower than direct moment

targeting with re-simulation at each optimization step. However, the method is of course not directly

comparable to directly targeting the moments when estimating the model. While the moments can be

derived for each input with the proposed method, the second moment cannot be targeted. On the other

hand, the results could be considered as more interpretable since the model parameters are still the Max-

imum Likelihood estimates.

As discussed, there are four main issues with the proposed method. The issue of contradicting views

can to a large extent be solved by imposing relevant restrictions, possibly dependent on which variable is

modelled. While the proposed informal restrictions could be seen as a starting point, one may also have

to consider relationships between variables modelled in different process within the ESG – which are not

present in the same VARX(p,q) model. Regarding the issue of bias and model validation, introducing

dynamically updated (random) biases could illuminate the tendencies to over- or underestimate certain

parameters by individuals, as well as correct for this when producing forecasts. While a suggestion of how

a bias correcting model may look is proposed in Section 5.4, practical considerations of how to estimate

or specify the biases and dynamically update the model would have to be taken. Estimating the biases

to account for long-term forecasts is difficult. Furthermore, some restrictions may have to be considered,

such as always imposing views on the same linear combinations of variables.

The most problematic issues are the loss of conditionality, where the baseline model may be heavily de-

pendent on previous observations as well as external regressors, and the difficulty of applying the method

on hierarchical models. The incorporation of the views in the process (2.5) is formulated such that the

views are seen as noisy observations of the conditional expectation of the specified linear combination of

the dependent variables at a given time point. The actual views will however generally be unconditional.

An expert may think that the credit spread is expected to be on a certain level with some uncertainty at a

given time in the future. However, since he cannot observe the path until that point, manually specifying

conditional views is impossible. While specifying conditional views with functional relationships could be

a possibility with a sampling approach to setting the views, further investigation of the resulting moments

would have to be made to form clear interpretations for how to set the level and the uncertainty of the

views. Furthermore, specifying unconditional views over the whole forecast horizon is difficult in itself,

and requiring the user to enter functional inputs will not always be an option. However, formulating the
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views as any function of the external regressors is easily done, since the filter recursion is done conditional

on one path of {ut}.

The fact that the method cannot be used to sample paths means that the dynamics of all variables

with views must be accounted for in the filter recursion. With multiple hierarchical levels, and possibly

views on the volatility process, this gets complicated fast even in the case with linear dependencies and

Gaussian errors. In the general case, it may be impossible to even formulate the likelihoods. Whether

the complexity is justified in these cases is questionable, since the results may be difficult to interpret.

However, for linear models without views on the volatility process, there is the possibility of modelling

the previously external regressors as internal, and only allow for lagged dependence. In a setting where

long-term forecasts are of interest, one may even choose to rewrite the VARX(p,q) model as a VAR(p)

model without re-estimating the parameters, since the asymptotic distribution would be the same.

The proposed method may be seen as blueprint at this stage, and some suggestions for further research are

therefore given. Investigating the prospect of setting the views conditionally, and how unconditional views

about future moments can be transformed into conditional views for specific values of the VARX(p,q)

parameters. How can the conditional expectations be filtered such that the views about unconditional

moments do not interfere with the conditional behavior of the process? In a setting where some historical

views are available, or where views are stored over time, introducing biases to the model would provide

useful information and likely yield better results. Investigating how these biases can be estimated,

and how the model can be updated when data becomes available, would therefore be another topic

for research. Finally, extending the method such that views can be incorporated on all variables in

models with multiple hierarchical levels and possibly also volatility processes would make the method

more directly applicable to general ESGs. However, constructing a plug-and-play approach for complex

economic scenario generators with general processes would not be possible analytically.
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A. Lag Operator

The lag operator (L), sometimes denoted the backshift operator (B), is a time series operation which

retrieves the previous observation. For a given (multivariate) time series {xt} and a constant (vector) c,

the following equalities hold

Lxt = xt−1

L−1xt−1 = xt

Lkxt = xt−k

Lc = c

Thus, the vector autoregressive moving average model in section 2.1 can be written as

A(L)xt = c +M(L)et

where A(L) = In −A1L − · · · −ApL
p and M(L) = In + M1L + · · · + MqL

q. Therefore, the VAR(∞)

representation given by

xt = πππ0 +

∞∑
i=1

Πixt−i + et

can be calculated by (Lütkepohl [2005]) comparing coefficients in

xt −
∞∑
i=1

Πixt−i = M(L)−1A(L)xt = M(L)−1c + et

=⇒

In −
∞∑
i=1

ΠiL
i = M(L)−1A(L)

The intercept is given by

πππ0 = M(L)−1c

Finding M(L)−1 is however non-trivial, and it involves matching coefficients in

M(L)M(L)−1 = (In + M1L+ · · ·+ MqL
q)(M−

0 + M−
1 L+ M−

2 L
2 + . . . ) = In
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where a large number of lags in M(L)−1 may be needed depending on the desired tolerance level. Taking

the simple example of a univariate MA(1) lag polynomial, the inverse is calculated as

M(L)M(L)−1 = (1 + bL)(b−0 + b−1 L+ b−2 L
2 . . . )

= b−0 + (b−1 + bb−0 ) + (b−2 + bb−1 )L2 . . .

= 1

giving

(b−0 , b
−
1 , b
−
2 , . . . ) = (1,−b, b2, . . . )
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B. Matrix Operations

B.1 Vectorization and Kronecker Products

Definition (Kronecker product). The Kronecker product of two matrices A ∈ Rn×m and B ∈ Rp×q is

denoted A⊗B ∈ Rnp×mq and given by

A⊗B =

a11B . . . a1mB
...

. . .
...

an1B . . . anmB


The Kronecker product has the following properties (Brandt Petersen and Syskind Pedersen [2012])

(A⊗B)(C⊗D) = AC⊗BD (B.1)

(A⊗B)−1 = (A−1 ⊗B−1) (B.2)

|A⊗B| = |A|rank(B)|B|rank(A) (B.3)

(A⊗B)T = AT ⊗BT (B.4)

Definition (Vectorization). The vectorization of a matrix A ∈ Rn×m is denoted vec(A) ∈ Rnm and

given by

vec(A) =



a11
...

an1
...

a1m
...

anm


The vec operator has the following properties (Brandt Petersen and Syskind Pedersen [2012])

vec(AXB) = (BT ⊗A)vec(X) (B.5)

tr(ATB) = vec(A)Tvec(B) (B.6)

vec(A) + vec(B) = vec(A + B) (B.7)
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B.2 Matrix Derivatives

All of the following derivative rules are given by (Brandt Petersen and Syskind Pedersen [2012]).

If F (X) is differentiable function of each of the variables of X, then

∂tr(F (X))

∂X
= f(X)T

where f(·) is the scalar derivative of F (·). Other derivative rules used in this paper are

∂|X|
∂X

= |X|X−T

∂Y−1

∂x
= −Y−1

∂Y

∂x
Y−1
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C. Multivariate Gaussian

C.1 Conditional Distribution

Let x ∈ Rn and y ∈ Rm be two multivariate Gaussian random variables with expectations µxµxµx and µyµyµy
respectively. Then, the random variable z = (x1, . . . , xn, y1, . . . , ym) is distributed as

(
x

y

)
∼ N

((
µxµxµx
µyµyµy

)
,

(
Σxx Σxy

Σyx Σyy

))
(C.1)

Further consider the case where x ∼ N (µµµ,Σ) and y|x ∼ N (Ax,Σy|x). Formula (C.1) then gives

(
x

y

)
∼ N

((
µµµ

Aµµµ

)
,

(
Σ ΣAT

AΣ AΣAT + Σy|x

))
The conditional distributions of x given y is then given by (Brandt Petersen and Syskind Pedersen [2012])

x|y ∼ N
(
µxµxµx + ΣxyΣyy

−1(y −µyµyµy),Σxx −ΣxyΣ−1yyΣyx

)
d
= N

(
µµµ+ ΣAT(AΣAT + Σy|x)−1(y −Aµµµ),Σ−ΣAT(AΣAT + Σy|x)−1AΣ

)
C.2 Matrix Normal Distribution

Definition (Matrix normal distribution). Let X ∈ Rn×m be a random matrix such that vec(X) ∼
N (vec(M),Ω⊗Σ) where Ω ∈ Rm×m and Σ ∈ Rn×n are positive definite. Then, the matrix X has the

probability density (Ding and Cook [2014])

fX(X) = (2π)−
nm
2 |Ω|−n/2|Σ|−m/2exp

(
−1

2
tr
[
Ω−1 (X−M)

T
Σ−1 (X−M)

])
This is called a matrix normal distribution and is often denoted MNn×m(M,Σ,Ω)

Proof. Using B.2, B.7, B.5 and B.6 in the written order, the exponent can be rewritten as

−1

2
(vec(X)− vec(M))

T
(Ω⊗Σ)

−1
(vec(X)− vec(M)) = −1

2
vec(X−M)T

(
Ω−1 ⊗Σ−1

)
vec(X−M)

= −1

2
vec(X−M)Tvec

(
Σ−1 (X−M) Ω−1

)
= −1

2
tr
[
Ω−1 (X−M)

T
Σ−1 (X−M)

]
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Using B.3, one has

|Ω⊗Σ|−1/2 = |Ω|−n/2|Σ|−m/2
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