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Abstract

This paper considers bivariate models of football match results,
where the expected number of goals scored by each team depends on
the estimated strength of the individual players. An important consid-
eration is whether there is some kind of dependence between the scores
for each team. We use copulas to try to answer that question. Models
with Poisson marginals and different parametric copula families are
applied to a large data set with tens of thousands of matches and play-
ers. It is found that the fitted models are able to forecast out-of-sample
match outcomes with an accuracy comparable to bookmakers. In com-
parison with a model assuming independence, there are indications of
a slight advantage in using copulas to model the dependence.
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1 Introduction

Quantitative analysis of sports is an interesting and growing field. Histori-
cally, association football, the most popular sport in the world, has arguably
lagged behind other sports such as basketball and American football in terms
of applications of statistical models. However, in recent years it has started
to attract more interest from people approaching it from an analytic point
of view. Advanced statistical metrics such as Expected Goals have gained
mainstream acceptance, while teams such as Liverpool have successfully ap-
plied quantitative modeling as support when making decisions on player
transfers involving tens of millions of euro.

When modeling the score of a football match, one has to assume that
some amount of randomness is involved. In fact, it has been claimed that the
high degree of uncertainty of how a given match will end is a major reason for
the popularity of the sport.. However, the skill levels of the teams also have
a crucial influence on the outcome. Most successful mathematical models
of football are based on some sort of estimation of team strength, offensive
and defensive.

One approach towards estimating team strength is to consider it to de-
pend on the quality of its individual players. While tactics, team organiza-
tion and many other factors are also important, it is probably not a stretch
to assume that having the better players is generally the most important
advantage one can have in football. Estimating the strength of individual
players in team sports can however be difficult. For sports like basketball
and ice hockey, an established method to get such estimates is to use so-
called plus/minus models. In recent years, such models have started to
become popular also for football. However, one can argue that the sport is
in many ways poorly suited for them. Large data sets are required to get
a good result, and usually the number of parameters to estimate gets very
large. Hence, a careful choice of estimation technique is needed to ensure
that the parameter estimates do not get drowned by noise resulting from
large standard errors in the estimates.

The score of a football match can be considered either as the univariate
difference between the number of goals scored by each team, or as the bivari-
ate variable consisting of both these numbers. In the latter case, one has to
consider a possible dependence between the marginal variables. It turns out
that the dependence has quite subtle properties. Generally, one finds a small
negative correlation which is related to teams being unequally good. How-
ever, after taking the varying team strengths into account, the conditional
dependence is instead slightly positive. Various methods for dealing with
the dependence have been suggested. Perhaps the simplest is to use ad-hoc
constructions to adjust the probability of match results to be more realistic
than those given by a model assuming independence. Other more elaborate
methods are to employ bivariate models that allow for dependence, such as
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so-called bivariate Poisson models, or to use a copula in conjunction with
some model for the marginals.

In this master’s thesis copulas are used together with an adjusted regu-
larized plus/minus model. The model is applied to forecast football match
results and try to find opportunities with positive expected value on the
betting market.

2 Modeling football matches

In this section we give some general background on quantitative models of
football matches, with examples from the scientific literature. While results
of football matches, due to the very low-scoring nature of the sport, tend to
be more decided by random chance than most other sports, the relative skill
levels of the teams involved also have a crucial impact on the final result.
Our approach in this paper is to consider the level of a team to be a function
of the skill of its individual players. This requires us to somehow define and
estimate an individual player’s skill level as a single number rating. The
basic idea of the approach we use is simple: a player is good if his team
achieves good results when he is playing. This idea is formalized in a so-
called adjusted plus/minus model.

2.1 Individual player ratings for football

Creating an accurate one-number measure of the ability of an individual
football player is a nontrivial problem with diverse applications ranging
from purely recreational to transfer decisions involving hundreds of millions
of euros. Ratings can be based on subjective expert opinion, like the ratings
used in computer game such as Football Manager and Fifa, or the mar-
ket value estimates provided by sites as Transfermarkt. They can also be
based on more objective quantitative measures. It can be useful to divide
performance-based objective rating methods into bottom-up and top-down
methods, respectively.

Bottom-up methods are based on registering individual actions per-
formed by a player during a match. The player is then evaluated based on
whether these actions are considered to have a beneficial or harmful effect
on the player’s team’s chance of winning the game. This gives a possibility
of getting a detailed picture of what exactly a particular player does well,
and can be useful for finding players capable of fulfilling a particular tactical
role in a team. A drawback with the approach is that it requires detailed
tracking data that is usually not freely available to the public. It can also
be somewhat hard to know exactly which actions performed by players are
important and why. In particular, there is probably a risk of overempha-
sizing spectacular offensive actions that are easily noticeable, whereas good
defensive positioning and marking can be harder too measure.
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Top-down methods in contrast are based upon the performance of the
team as a whole, which is distributed in some way to the individual players.
This allows one to take an agnostic stance towards exactly which actions
are beneficial, which gives a less detailed but potentially fairer picture of a
player’s contribution. However, since football is a sport with few substitu-
tions per match, the same player’s tend to play together in many matches.
For that reason it can be diffcult to distribute the team performances in an
accurate way to the right players. For example, there is a risk of overrating
players playing for good teams and underrating good players in less success-
ful teams. A clear advantage compared to bottom-up methods is that much
simpler data is required, generally only match results and team lineups.

2.2 Plus/minus models for football and other sports

A particular class of top-down models used for rating individual players in
team sports consists of the so-called plus/minus models, on which there have
been a surging interest in recent years. A comprehensive review of published
models of this kind is provided in [5]. Here we just review briefly some of
the key papers and ideas.

The first plus/minus models were invented for ice hockey in the late
1950’s. The basic idea is to estimate of a player’s ability by comparing the
performance of his team when he is playing compared to when he is not. In
the most basic form one simply counts the points scored by a player’s team
when he is playing and subtracts the points scored by the opposing team.
The cumulative score for a player over some set of matches is then taken as
his plus/minus rating, which is an estimate of his playing strength.

A more advanced form is the so-called adjusted plus/minus model. Here
one divides each match into segments where no changes of personnel occur,
and then fit a regression model (usually multiple linear regression) to the
observations made up by the segments. The model in [13], considered the
first published example of an adjusted plus/minus model, uses the equation

Yi = β0 +

k∑
j=1

βjXij + εi

to model basketball matches. Here Yi is the difference between home team
points per possession and away points per possession in observed segment i,
Xij = 1 if player j played for the home team in that segment and Xij = −1
if he played for the away team. The estimated parameter β0 models the
average home team advantage, while the parameter βj estimates the ability
of player j, and εi is an error term.

Since the same players tend to often play together in many matches there
may be difficulties with separating the contributions of individual players
from that of their team mates. In technical regression terms one may run into
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issues with multicollinearity, as noted in [10]. The solution to that problem
suggested there is to include match data from many different seasons. This
helps because players often transfer to different teams between seasons, thus
separating them from each other.

Another problem, noted in [15], is that in addition to multicollinearity
there tends to be an issue with overfitting when estimating the parameters.
In part that may be due to the large number of parameters that need to be
fitted, since there is at least one parameter for each individual player (two
if offensive/defensive contribution is estimated separately). They suggest
using ridge regression to deal with these problems, as is standard in modern
machine learning and other settings with multicollinearity and overfitting
issues. Ridge regression is performed by putting a quadratic penalty term
on the size of the parameters, thus shrinking them towards zero. In a linear
regression setting it can be interpreted from a Bayesian point of view as
putting a Gaussian prior distribution on the parameters.

Although not as well-established as plus/minus models for basketball
and ice hockey, these types of models have recently been applied to foot-
ball. Compared to these sports, one can argue that such models are less
suitable for football, as there are few substitutions per match, increasing
multicollinearity, as well as few goals per observation, i.e. a sparse output
variable. Nevertheless, as this thesis will hopefully demonstrate, a successful
application is possible.

2.3 Modeling results of football matches

There are many different ways to model the score of a football match. In
plus-minus models, it is common to define the output variable to be the
difference between the goals scored by the home team and away team, so
that one match has a single observed output variable per match/match
segment. However, in this paper we consider the bivariate output variable
(H,A) consisting of the number of home goals H and away goals A.

Models for the number of goals scored by a team in a football match
have been studied since at least the early 1950’s. The most commonly used
distribution used to fit such models is the Poisson model, which can be con-
sidered as a standard model for this application. While it was noted early
on that the Poisson distribution does not tend to provide a very accurate
fit to observed match scores (which tend to be closer to a negative binomial
distribution, i.e. a mixture of Poisson variables), the inclusion of relevant
covariates (modeling differing playing strength levels between teams), im-
proves the fit of the Poisson model significantly. An early example of a model
which can be considered as a standard model for football matches can be
found in [12]. There, the number of goals scored by the home team and
away team are modeled as Poisson variables whose means are conditional
on the attacking and defensive strengths of the teams.
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The Poisson model can be motivated by considering goals to arrive ac-
cording to a point process. A strong team, with a high offensive strength
parameter, will tend to attack more intensely, leading to a higher proba-
bility of scoring goals and thus a higher number of expected goals over the
match. If the opposing team is strong defensively, the probability of a goal
will on the other hand be decreased accordingly, as they will be capable of
mitigating the attacks. The Poisson assumption means that goals will arrive
in a uniform manner over the match, independent of other goals. This is
unlikely to be more than approximately true, as for example a team being
one goal down could be expected to start to attack more aggressively to get
even. An example of a point process model of football matches which is not
Poisson is found in [1].

2.4 Modeling dependence in football matches

In the previous section we discussed the bivariate variable (H,A) consisting
of the number of goals by the home team and by the away team, respec-
tively. A question one has to consider is if H and A can be considered to
be independent, or if there is some kind of dependence that has to be taken
into account. Given that the teams involved in a match interact with each
other, it is certainly reasonable to suspect that some kind of dependence
could be involved.

If one takes a sample of real-world match results and simply calculates
some kind of dependence measure for the sample, such as a the sample cor-
relation coefficient, ρ, or Kendall’s tau, τ , one usually finds a small negative
correlation. Indeed, for the sample of 67,949 matches in the data set used
in this paper, the sample correlation is ρ = −0.062 while τ = −0.0374. The
result makes some sense intuitively, because if a team scores a relatively high
number of goals in a match, there is an increased probability that it is facing
a relatively weaker opposing team, that will in turn tend to score relatively
fewer goals. A key assumption behind that reasoning is that the offensive
and defensive strength of teams will generally tend to be correlated, i.e.
teams that have stronger attacking ability than average are also more likely
to have a stronger average defense and vice versa. In [8], it is found that the
estimated offensive and defensive strength of teams are indeed correlated
in their model. When appylying the model to predict matches, it leads to
the predicted outcomes (H,A) being negatively correlated in a way that
corresponds closely to observed data, despite an assumption of independent
Poisson margins.

However, an interesting question is if there is still some dependence left
to model after the relevant covariates (i.e. team strengths) have been taken
into account, as described in the previous paragraph. Instead of the nega-
tive dependence described there, one usually anticipates some positive de-
pendence that would for example increase the probability of a match ending
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in a draw.
In [11], the authors study the question of dependence using a bivariate

Poisson regression model. In their basic bivariate Poisson model, it is as-
sumed that match results (H, A) are distributed as (P1 + P0, P2 + P0),
where Pi ∼ Poi(λi), i = 0, 1, 2, are independent. According to a well-
known elementary result, the marginal distributions are Poisson, with H ∼
Poi(λ1 + λ0) and A ∼ Poi(λ2 + λ0). The model allows for a positive co-
variance, since Cov(H,A) = Cov(P1 + P0, P2 + P0) = Var(P0) = λ0. After
fitting their model, it is found by means of a hypothesis test that λ0 > 0
with probability very close to 1. Furthermore their bivariate Poisson model
achieves a higher log-likelihood and lower AIC and BIC values than a model
they fit assuming independence. The difference seems rather slight, but by
putting covariates on λ0 and inflating the diagonal of the distribution (i.e.
increasing the probability that H = A, meaning a match ending in a draw),
they are able to achieve even better model fits.The level of dependence seems
to be corresponding to a correlation around 0.1, according to their results.

Another alternative to postulating a specific kind of bivariate model,
such as the bivariate Poisson model described above, is to use a copula to
model the dependence structure separately from the margins. This approach
is taken in [9], in which different copulas are applied to a Poisson regression
model in order to forecast match results in FIFA World Cup tournaments.
The quality of the forecasts are evaluated based on the basis of different
scoring rules, such as Rank Probability Score, RPS. Their copula-based
models improve the predictions compared to a model where independence
is assumed, but the difference is quite small. Again, small correlations on
the order 0.1 are suggested.

3 Copulas and dependence modeling

This section gives some background information on copula theory and spec-
ifications of some particular classes of copulas that are employed in this
paper. A useful introduction to copulas is provided in [7].

3.1 Definition and Sklar’s theorem

A copula is a multivariate cumulative distribution function whose marginal
distributions are uniformly distributed on the interval [0, 1]. We will mostly
consider bivariate copulas in this paper. A function C [0, 1]× [0, 1] → [0, 1]
is a bivariate copula if

• C(0, v) = C(u, 0) = 0

• C(1, v) = v, C(u, 1) = u
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• C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0, 0 ≤ u1 ≤ u2 ≤ 1,
0 ≤ v1 ≤ v2 ≤ 1.

The usefulness of copulas in modeling stochastic dependence is largely
due to a result known as Sklar’s theorem. The theorem states that every
multivariate cumulative distribution function

H (x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd)

can be written as

H (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd))

where C is a copula and Fi(xi) = P (Xi ≤ xi) is the marginal cumulative
distribution function of the ith marginal variable. Hence, the copula C
completely characterizes the dependence between the marginal variables.
The theorem further states that C is uniquely defined on

Ran (F1)× . . .× Ran (Fd) ,

i.e. the Cartesian product of the ranges of the marginal cumulative distri-
bution functions. Hence the copula C is uniquely determined in the case
that all marginal distributions are continuous. However, if some marginal
is not continuous, then C is not unique. This unidentifiability issue may or
may not be a problem in practice, depending on the application, but it is a
first example of many on how copula theory is more complicated in the case
of non-continuous marginal distributions.

3.2 Dependence measures

The most commonly used measure of the dependence between two random
variable is the Pearson correlation coefficient. For the random variables X
and Y it is defined as

ρX,Y =
Cov(X,Y )√
VarX

√
VarY

.

In spite of its popularity, it has certain drawbacks. It is only defined when
the variables have finite second moments, it can only measure linear depen-
dence and is not invariant under strictly increasing transforms.

3.2.1 Kendall’s tau

A dependence measure with some theoretical advantages over the Pearson
correlation coefficient is Kenndal’s tau. Let (X1, Y1) and (X2, Y2) be inde-
pendent copies of the random variable (X,Y ). The probabilistic definition
of Kendall’s tau for (X,Y ) is

τX,Y = P ((X1 −X2)(Y1 − Y2) > 0)− P ((X1 −X2)(Y1 − Y2) < 0) .
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Given a sample (x1, y1), . . . , (xn, yn) from (X,Y ) the definition suggests the
following estimator of τX,Y

τ̂X,Y =
c− d
c+ d

=
c− d(
n
2

) ,
where c is the number of pairs (xi, yi), (xj , yj) with i 6= j and (xi− xj)(yi−
yj) > 0. Similarly d is the number of such pairs where instead (xi−xj)(yi−
yj) < 0.

Kendall’s tau can also be defined analytically for a copula C as

τC = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1.

If the marginal distributions of X and Y are continuous, and the dis-
tribution function H of (X,Y ) has the copula representation H(x, y) =
C(F (x), F (y)), one can show that τX,Y = τC . Hence Kendall’s tau is com-
pletely determined by the copula and not influenced by the particular marginal
distribution. In the case of discrete margins, the value of Kendall’s tau will
depend on the marginal distributions, and the probabilistic and analytical
definitions will not coincide [6].

3.2.2 Spearman’s rho

A similar measure to Kendall’s tau is Spearman’s rho. If (X1, Y1), (X2, Y2)
and (X3, Y3) are independent copies of (X,Y ), it is defined as

ρX,Y = P ((X1 −X2)(Y1 − Y3) > 0)− P ((X1 −X2)(Y1 − Y3) < 0) .

The analytical copula definition is

ρC = 12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3.

If the marginal distributions are continuous, ρX,Y = ρC , similar to the
case with Kendall’s tau.

3.3 Families of copulas

In this section we present some types of copulas that are used in this master’s
thesis.

3.3.1 Parametric families of copulas

In parametric modeling using copulas, one assumes that the copula belongs
to some parametric family Cθ, where θ ∈ Θ, Θ ⊆ R is the parameter to
estimate. Often θ can be interpreted as governing the level of dependence.
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3.3.2 Archimidean copulas

A wide and often used class of copulas is the family of Archimidean copulas.
A bivariate archimidean copula is characterized by a generator functions Ψ,
in terms of which the copula can be written as

C(u, v) = Ψ
(
Ψ−1(u) + Ψ−1(v)

)
.

Necessary conditions that Ψ : [0,∞] → [0, 1] has to satisfy for C to be a
copula are

1. Ψ(0) = 1, limx→∞Ψ(x) = 0

2. Ψ is continuous

3. Ψ is decreasing in [0, 1] and strictly decreasing in [0, inf{x; Ψ(x) = 0}].

A sufficient condition in the bivariate case, provided the necessary conditions
listed above are fulfilled, is that Ψ is convex.

The table below presents the Archimidean copulas that are employed in
this paper.

Table 1: Archimidean copulas

Copula Definition

Clayton Cθ(u, v) = [max(u−θ + v−θ − 1, 0)]−1/θ, θ ∈ [−1,∞), θ 6= 0

Frank Cθ(u, v) = −1
θ

(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
, θ ∈ [−∞,∞], θ 6= 0

Gumbel Cθ(u, v) = exp
(
−[(− log u)θ + (− log v)θ]1/θ

)
, θ ∈ [1,∞)

AMH Cθ(u, v) = uv
1−θ(1−u)(1−v) , θ ∈ [−1, 1]

Joe Cθ(u, v) = 1− [(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ]1/θ, θ ∈ [1,∞)
FGM Cθ(u, v) = uv + θuv(1− u)(1− v), θ ∈ [−1, 1]

3.3.3 Elliptical copulas

An elliptical copula C is defined in terms of the distribution function of a
so-called elliptical distribution. The d-dimensional random vector X is said
to have an elliptical distribution if its characteristic function ϕ has the form

ϕX(t) = eit
TµΨ

(
tTΣt

)
,

where µ is a vector, Σ a non-negative definite matrix and Ψ some function.
The definition of an elliptical copula C in terms of the distribution function
H of an elliptic distribution is

C(u) = H(H−1
1 (u1), . . . ,H−1

d (ud))
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where u = (u1, . . . , ud) and Hi is the marginal distribution function of the
ith margin of H.

In this paper, the two elliptical copulas we use are the bivariate normal
copula and the Student’s t copula with υ degrees of freedom, where υ is
some positive number. The bivariate normal copula is defined as

Cθ(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− θ2
exp

(
−x

2 − 2θxy + y2

2(1− θ2)

)
dxdy,

where Φ−1 is the quantile function of the standard normal distribution. The
bivariate Student’s t copula with υ > 0 degrees of freedom is defined as

Cθ(u, v) =

∫ t−1
υ (u)

−∞

∫ t−1
υ (v)

−∞

1

2π
√

1− θ2

(
1 +

x2 − 2θxy + y2

2(1− θ2)

)−(υ+2)/2

dxdy

where t−1
υ is the quantile function of Student’s t distribution with υ degrees

of freedom. For both types of copulas, −1 < θ < 1.

3.4 Tail dependence

When two random variables exhibit concordance at extreme levels, we say
that they have tail dependence. If (X,Y ) are random variables, their upper
tail dependence coefficient λU (X,Y ) is defined as

λU (X,Y ) = lim
t→1−

P(Y > F−1
Y (t)|X > F−1

X (t))

and their lower tail dependence coefficient λL(X,Y ) as

λL(X,Y ) = lim
t→0+

P(Y ≤ F−1
Y (t)|X ≤ F−1

X (t)).

If the margins are continuous, their tail dependence coefficients can be ex-
pressed in terms of their copula CX,Y as

λU (X,Y ) = lim
t→1−

1− 2t− CX,Y (t, t)

1− t

and

λL(X,Y ) = lim
t→0+

CX,Y (t, t)

t
.

The table below presents tail dependence coefficients for the copulas used
in this thesis.
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Table 2: Tail dependence coefficients of different copulas

Copula λU λL

Normal 0 0

Student’s tυ 2tυ(
√
υ+1
√

1−θ
θ(1+θ) ) 2tυ(

√
υ+1
√

1−θ
θ(1+θ) )

Clayton 0 2−1/θ

Frank 0 0

Gumbel 2− 21/θ 0

AMH 0 =


0.5 if θ = 1

0.5 if θ < 0

0 otherwise.

Joe 2− 21/θ 0
FGM 0 0

3.5 Statistical inference for copulas

In this section, we describe four different methods for estimating parameters
of a bivariate distribution, where both parameters δ1 and δ2 of the marginal
distributions and a parameter θ for the copula need to be estimated. In
the following, we assume that we have a sample of N independent bivariate
observations {xn}Nn=1, xn = (x1,n, x2,n), from the bivariate random variable
X = (X1, X2)T . We assume that the ith margin of X has distribution
function Fi(·; δi). Provided the marginal distributions are continuous, we
let fi(·; δi) denote the probability density function for i = 1, 2. If they are
discrete, it instead denotes the probability mass function. The distribution
function is

FX(x, y) = Cθ{F1(x; δ1), F2(y; δ2)}.
If the margins are continuous, X has the density function

fX(x, y) = cθ{F1(x; δ1), F2(y; δ2)}f1(x; δ1)f2(y; δ2)

where cθ(u, v) = ∂
∂u

∂
∂vCθ(u, v) is the copula density. If the margins are

discrete we instead have the probability mass function

fX(x, y) = Cθ{F1(x; δ1), F2(y; δ2)} − Cθ{F1(x− 1; δ1), F2(y; δ2)}
−Cθ{F1(x; δ1), F2(y − 1; δ2)}+ Cθ{F1(x− 1; δ1), F2(y − 1; δ2)}.

3.5.1 Full maximum likelihood

In full maximum likelihood, one simultaneously estimates all the parameters
υ = (δ1, δ2, θ)

T . The likelihood function is

L(υ;x1, . . . , xN ) =
N∏
i=1

fX(x1,i, x2,i)
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and the log-likelihood is

`(υ) = `(υ;x1, . . . , xN ) =
N∑
i=1

log fX(x1,i, x2,i).

The parameters are estimated as

υ̂FML = arg max
υ

`(υ).

The main drawback with the method is that it is computationally heavy,
especially for distributions of high dimension. High dimensionality in that
sense is not a problem with the models in this paper, as we only consider
bivariate distributions. However, we use covariates with dimensions in the
tens of thousands for the marginal parameters δ1 and δ2, and full maximum
likelihood is thus not a very attractive choice.

3.5.2 Method of moments

In the method of moments method for copula fitting, the parameters of
the marginal distributions are fitted using standard method of moments
estimators. Hence one equates empirical moments from the observations
with theoretical moments that are functions of the parameters δ1 and δ2,
and then solves for the parameter values.

For the estimation of the copula parameter, we assume that Kendall’s
tau, τK , or Spearman’s rho, ρS , is a one-to-one function of the copula pa-
rameter θ, i.e. τK = φ(θ) or ρS = ψ(θ). The estimate of θ is calculated as
θ̂ = φ−1(τ̂K) or θ̂ = ψ−1(ρ̂K) where τ̂K and ρ̂S are sample values of τK and
ρS .

3.5.3 Inference for margins

The inference for margins method is conducted in two steps. The first step
is to find parameter estimates for the marginal distributions, δ̂1 and δ̂2.
Taking these estimates as given, one then estimates the copula parameter
θ by maximizing a pseudo log-likelihood function. Hence, the approach can
be summarized as

1. Estimate parameters δj , j = 1, 2, from the marginal distributions

δ̂j = arg max
δj

`j(δj) = arg max
δj

N∑
i=1

log fj(xj,i; δj).

2. Estimate the copula parameter θ as

θ̂ = arg max
θ

N∑
i=1

log f̂X(x1,i, x2,i),
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where

f̂X(x, y) = cθ{F1(x; δ̂1), F2(y; δ̂2)}f1(x; δ̂1)f2(y; δ̂2)

if the margins are continuous, and

f̂X(x, y) = Cθ{F1(x; δ̂1), F2(y; δ̂2)} − Cθ{F1(x− 1; δ̂1), F2(y; δ̂2)}
−Cθ{F1(x; δ̂1), F2(y − 1; δ̂2)}+ Cθ{F1(x− 1; δ̂1), F2(y − 1; δ̂2)}.

if they are discrete.

3.5.4 Canonical maximum likelihood

Canonical maximum likelihood is similar to inference for margins, except
one uses pseudo data consisting of normalized ranks

ûi = (rank(x1,i)/(n+ 1), rank(x2,i)/(n+ 1))

instead of
(F1(x1,i; δ̂1), F2(x2,i; δ̂2))

as arguments to the pseudo-likelihood function. Another way to see it,
is that one uses the empirical distribution function of the margins. An
advantage with this approach is that one does not have to assume a specific
parametric distribution for the marginals.

3.6 Copulas, discrete marginal distributions and regression

We have noted multiple times in this section that copula theory is in many
ways more complicated in the case when at least one of the marginal dis-
tributions has a discrete distribution. Concordance measures like Kendall’s
tau and Spearman’s rho will then depend on the marginal distributions and
not only on the copula. However, dependence properties will often be inher-
ited from the copula, and the parameter θ can still often be interpreted as
a dependence parameter [6].

Since copulas are only determined on Ran (F1) × . . . × Ran (Fd) , there
is, at least in theory, an issue with the identifiability of the copula in the
case of discrete margins. Even more worrisome, it is shown in [17] that
estimation of copula parameters often fails badly in the presence of discrete
margins. However, they claim that including covariates in the model helps
with identifying the copula parameter. The reason for that may be that the
expected means, obtained from the covariates, are continuous.
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4 The model

Our model for the final score of a football match is that the number of goals
scored by each team is Poisson distributed, with expected mean depending
on how strong the teams are. The team strengths are assumed to depend
linearly on the individual strengths of the participating players. These in-
dividual player strengths are the main parameters that are to be estimated
when fitting the model to a data set. We then use a copula to model the
dependence between the goals scored by each team.

4.1 Marginal distributions

The model for the marginal distributions is very similiar to the model used
in the author’s Bachelor’s thesis [4], and is inspired by [18]. We assume that
the number of goals scored by the home team, YH , and by the away team,
YA, are Poisson distributed with means λH and λA, respectively. The means
satisfy the equations

log (λH) = xTHβ (1)

and
log(λA) = xTAβ (2)

where β is the parameter vector to be estimated and the coefficient vectors
xH and xA depend on which players participate in the match. To explain
how these vectors look, we can expand log (λH) as

log (λH) = β0 + βHOME +
∑
i∈H

xiOi −
∑
j∈A

xjDj (3)

and log (λA) as

log (λA) = β0 +
∑
j∈A

xjOj −
∑
i∈H

xiDi (4)

where, for k = i, j,

Ok = β1k − c (ak − 27)2 βAGE +
∑

d∈DIV
pkdβd. (5)

The condition i ∈ H is satisfied if player i played for the home team in
the match, and j ∈ A is satisfied if player j played for the away team. xk is
the playing time (minutes played divided by 90) of player k in the match,
while Ok is his estimated offensive strength. The offensive strength depends
on different parameters as shown in (5).

The parameter β1k is the main part of the estimate of the offensive
strength of player k, based on the number of goals scored by his team in
matches he has played.
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The division parameters βd, d ∈ DIV, which are communal for all play-
ers, estimate the relative strength of different divisions. The set DIV con-
sists of all the represented divisions in the data set, and the coefficients
pkd denote the proportion of recorded minutes that player k has played in
division d. These division components help to better differentiate between
leagues with marked difference in average playing strength.

The parameter βAGE , which is also common for all players, allows a
player’s strength to vary through time. Here ai is the age in years of player
i in the given match. The constant c is an arbitrary scaling constant. If
it has the same sign as βAGE , the player will be assumed to achieve peak
performance level at age 27. When he is younger, his performances can
reasonably be assumed to be weaker due to insufficient accumulation of
experience. On the other hand, when he gets older, his physical capabilities
will decline.

In a similar way we have for the defensive strength Dk of player k

Dk = β2k − c (ak − 27)2 βAGE +
∑

d∈DIV
pkdβd, (6)

where β2k measure defensive performances.
In summary

β = (β0, βHOME , β11, β21, . . . β1p, β2p, βd1, . . . βdt, βAGE)T

is the parameter vector to estimate, where p is the number of players and
t the number of division. It is easy to derive from (1), (2), (3), (4) (5) and
(6) explicit formulas for the coefficient vectors xTH and xTA, but they are
awkward to write down.

It should be noted that we assume a priori that certain players have
offensive strength 0 or defensive strength 0. We classify players as either de-
fenders (including goalkeepers), midfielders or forwards. Offensive strength
is not estimated for defenders, while defensive strength is not estimated for
forwards. In practice this is achieved by setting the pertinent playing times
equal to 0. For example, if player i played is a forward and played for the
home team, xi would be set to his playing time in (3) but equal to 0 in (4).

4.2 Joint distribution and copula

According to Sklar’s theorem, the cumulative distribution function H of any
bivariate distribution with given marginal distribution functions F and G
can be written as

H(y1, y2) = C(F (y1), G(y2)),

where C is a copula. We will now apply this to the bivariate variable
(YH , YA), where YH and YA are as presented in the previous section. In
the following we assume that C is from some parametric family of copulas,
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and write it as C = Cθ where θ is the copula parameter to estimate. We
also assume that Cθ does not depend on the covariate vectors xTH and xTA.

The marginal distribution functions are

FYH (y1|β,xH) = e−e
xTHβ

by1c∑
k=0

(ex
T
Hβ)k

k!

and

FYA(y2|β,xA) = e−e
xTAβ

by2c∑
k=0

(ex
T
Aβ)k

k!
.

The distribution function Hθ of (YH , YA) is

Hθ(y1, y2) = Cθ(FYH (y1|β,xH), FYA(y2|β,xA)),

and the probability mass function hθ(y1, y2), which gives the probability of
a specific result (YH , YA) = (y1, y2), is

hθ(y1, y2) = Cθ(FYH (y1), FYA(y2))− Cθ(FYH (y1 − 1), FYA(y2))

− Cθ(FYH (y1), FYA(y2 − 1)) + Cθ(FYH (y1 − 1), FYA(y2 − 1)), (7)

where the conditioning on β, xH and xA has been dropped from the notation
for convenience.

4.2.1 Calculating probabilities of match outcomes

Often we are not interested in the exact result of a match, but rather the
coarser outcomes of a home win, a draw, or an away win. The probability
of a home win can be calculated as

P(YH > YA) =
∞∑
y1=1

y1−1∑
y2=0

hθ(y1, y2). (8)

In a practical setting, the series has to be truncated. The number of terms
that has to be included depends on the expected number of goals scored
and the desired accuracy. In general, a relatively low upper bound on the
number of goals, e.g. between 10 and 25, should be enough in most settings
with somewhat evenly matched teams. The probability of an away win or a
draw can in the same way be written as

P(YH < YA) =

∞∑
y2=1

y2−1∑
y1=0

hθ(y1, y2) (9)

and

P(YH = YA) =

∞∑
y=0

hθ(y, y). (10)
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4.3 Estimation and regularization

Assume that we have a set of n observed match results

(y11, y12), (y21, y22), . . . (yn1, yn2),

where yi1 and yi2 are the number of goals scored by the home team and
away team respectively, in match i, and that we also have corresponding
coefficient vectors xi1 and xi2 for each match. The log-likelihood of the
model is

`(β, θ) =
n∑
i=1

log hθ(y1, y2),

where

hθ(yi1, yi2) = Cθ(F1(yi1), F2(yi2))− Cθ(F1(yi1 − 1), F2(yi2))

− Cθ(F1(yi1), F2(yi2 − 1)) + Cθ(F1(yi1 − 1), F2(yi2 − 1)), (11)

with

Fj(yij) = e−e
xTijβ

byijc∑
k=0

(ex
T
ijβ)k

k!

for j = 1, 2. In principle, parameter estimates β̂ and θ̂ can now be found by
full maximum likelihood estimation as

β̂, θ̂ = arg max
β,θ

`(β, θ).

In practice, the numerical computations required to find the maximum might
be infeasible. For the data set used in this paper, β has dimension in the tens
of thousands, making the computations very heavy, especially for the elliptic
copulas (normal and Student’s t) which have distribution functions that are
computationally heavy in themselves. Instead we use inference for margins
to estimate the marginal parameters and copula parameters separately.

4.3.1 Fitting the marginal model

When fitting the marginal distributions, we first note that we can fit both
distributions (i.e. the one for home goals and the one for away goals) simulta-
neously since they are both Poisson distributed with the same covariates and
parameter vector. With the notation xT2∗i−1 = xTi1, xT2∗i = xTi2, y2∗i−1 = yi1,
y2∗i−1 = yi2, for i = 1, 2, . . . , n we have the likelihood function

L(β) =

2n∏
i=1

e−e
xTi β (ex

T
i β)yi

yi!
.
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By taking logarithms and simplifying, we get the log-likelihood function

`(β) =

2n∑
i=1

yix
T
i β − ex

T
i β.

Again, numerical optimization will be needed to find β̂, however in this case
standard computational packages can be used. The package glmnet for the
programming language R can very efficiently find an estimate through the
regularized optimization

β̂ = arg min
β

− 1

2n
`(β) + λ

(
(1− α)

p−1∑
i=1

β2
i /2 + α

p−1∑
i=1

|βi|

)
,

where the vector (β1, . . . , βp−1) contains the components of β that are to be
penalized. Generally the intercept β0 is excluded from the penalization, and
other parameters can be excluded as well. More generally, different param-
eters can be penalized using different weights, but we only use the weights
1 for full penalization or 0 for no penalization in this paper. The penalty
term, which is weighted by the tuning parameter λ, penalizes large values
of the parameters. The size of λ determines how heavily deviations from 0
are suppressed, and is subject to a bias-variance trade-off. If λ is very large,
the parameter estimates are pushed close to 0 giving low variance but high
bias. If, on the other hand, it is chosen to be very small, then bias is mini-
mized but variance in the estimates will tend to be high and overfitting the
parameters might become an issue. The value of α, which is chosen between
0 and 1, determines how much the penalization will come from a L2 penalty
term and a L1 penalty term, respectively. Using a linear combination of L2

and L1 penalization in this way is known as elastic net regularization. Pure
L2 regularization is known as ridge regression or Tikhanov regularization,
while pure L1 regression is known as the LASSO.

4.3.2 Fitting the copula

Given the estimated parameter vector β̂, we define two pseudo-samples as

(ûi1, û2i) = (F1(y1i; β̂), F2(y2i; β̂))

and
(v̂i1, v̂2i) = (F1(y1i − 1; β̂), F2(y2i − 1; β̂))

where

Fj(yij ; β̂) = e−e
xTij β̂

yij∑
k=0

(ex
T
ij β̂)k

k!
,
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j = 1, 2. We then fit the copula parameter θ as

θ̂ = arg max
θ

2n∑
i=1

log (Cθ(ûi1, û2i)− Cθ(v̂i1, û2i)− Cθ(ûi1, v̂2i) + Cθ(v̂i1, v̂2i)).

The approach is essentially inference for margins, except that the marginal
parameter vector β is fitted using an elastic net approach rather than stan-
dard maximum likelihood estimation.

5 The data set

Our data set contains 67,949 matches, including matches played by clubs as
well as national teams, in the years 2012-2019. The club matches include
matches played in 31 different league divisions, the UEFA Champions League
(including qualification matches), and UEFA Europa League. The national
team matches are from World Cups and Euro Cups (including qualification
matches) and from UEFA Nations League. The data recorded for each match
is the final result and the playing time of all players that participated in the
match.

The number of players in the data set who have at least one minute
played recorded, and for whom parameters are estimated, is 34,869. For
each player, their birth year and playing position is included in the data set.
The birth year is used for calculating each players age in every given game,
to fit the age component as in (5). The positional data is used to classify
players as either defenders, midfielders or forwards. As mentioned in 4.1,
defenders are a priori assumed to have offensive strength equal to 0 while
forwards in the same way are assumed to have defensive strength 0. Both
offensive and defensive strength is thus estimated only for midfielders. A
player’s position is defined as his assigned position on the Transfermarkt,
where the detailed positions (’left winger’, ’defensive midfielder’, etc.) were
classified as either defender, midfielder or forward according to following
scheme:

Table 3: Position classification

Model position Transfermarkt positions

Defender Goalkeeper, centre back, sweeper
Midfielder Left/right back, defensive/central/right/left midfield
Forward Attacking midfield, left/right winger, second striker, centre forward
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6 Results

6.1 Parameter estimates and interpretations

The model was fitted with α = 0, i.e. pure ridge regression, since trials
including LASSO penalties indicated significantly worse prediction quality.
The tuning parameter λ = 1.9788 was used for the penalization term.

The parameters β0, βHOME and βAGE were excluded from the penaliza-
tion. Excluding the intercept β0 is completely standard. There are many
good reasons for excluding βHOME . It shouldn’t be prone to overfitting, and
penalizing it would give it a downward bias with potentially large impact
on forecasts derived from the model. Excluding βAGE from the penaliza-
tion gave it a larger size, which seemed to give a more realistic expected
development curve for players. When penalized its effect was very minor.

The two parameters with the highest influence on the overall number of
goals predicted by the model are the intercept β0 and the home advantage
parameter βHOME . The fitted values are β̂0 = 0.1128 and β̂HOME = 0.2727.
Hence, if the offensive strength of each team exactly matches the defensive
strength of the other, the home team can be expected to score e0.1128+0.2727 ≈
1.47 goals and the away team e0.1128 ≈ 1.12 goals. As comparison, the
observed means in the data set are 1.52 goals for the home team and 1.15
for the away team.

6.1.1 Estimated division parameters

The table below presents division parameters for the European first division
leagues included in the data set. Recall that the division parameters are
part of the final player ratings and model different average player strengths
in different leagues, as described in section 4.1. As comparison, the Uefa
rankings from 2019 are included. The leagues known as the big five (Eng-
land, Spain, Italy, Germany and France) have the highest parameters by
far, which seems correct. In part this is due to these nations being the only
ones from which we also include second divisions in the data set. The es-
tablished first division teams generally tend to defeat teams promoted from
the second division, whose player’s division components are more weighted
towards the second division, which drives up the estimate of the first divi-
sion component. However, the high estimates are probably mostly an effect
of teams from these nations doing well in the Champions League and the
Europa League. Also included are estimated mean market values of the
clubs in each division, collected from Transfermarkt. The market value of a
club is here defined as the sum of the market value of all its players.
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Table 4: Division parameter estimates, European first divisions

Nation β̂d Uefa rank (2019) Mean market value per club (me)

England 0.0234 2 393.62
Spain 0.0211 1 254.08
Italy 0.0189 3 223.83
Germany 0.0188 4 231.22
France 0.0136 5 158.27
Turkey 0.00437 10 31.03
Russia 0.00432 6 57.69
Switzerland 0.00120 17 23.72
Belgium 0.000415 8 45.60
Portugal 0.000309 7 50.78
The Netherlands -0.000678 11 52.06
Austria -0.00153 12 20.27
Czech Republic -0.00316 13 11.50
Denmark -0.00331 16 13.30
Ukraine -0.00367 9 24.13
Sweden -0.00473 22 8.02
Norway -0.00503 23 6.75
Poland -0.00830 25 10.10
Hungary -0.00918 33 8.04
Croatia -0.0107 15 18.94
Scotland -0.0108 20 17.64
Finland -0.0125 38 2.80
Greece -0.0128 14 17.63
Iceland -0.0186 39 1.65

The corresponding parameters for the European second divisions can be
seen in the table below.

Table 5: Division parameter estimates, European second divisions

Nation βd Mean market value per club (me)

Germany -0.00422 20.42
England -0.00449 47.23
Spain -0.00486 17.22
France -0.0111 14.29
Italy -0.0122 15.46

The data set also contains data from the first leagues of two American
nations, USA and Brazil. Since teams from these nations are not compet-
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ing much against teams from other countries in the data set, and are thus
somewhat isolated, these division parameter estimates are probably a bit
less reliable.

Table 6: Division parameter estimates, American first divisions

Nation βd Mean market value per club (me)

Brazil 0.00990 44.31
USA 0.00939 23.30

6.1.2 Some player ratings

The most interesting parameters to consider are of course these related to
the estimated ratings of individual players. Since there are tens of thousand
such parameters, it is only possible to present small subsets. The table below
shows the best 15 players for each position, restricted to players who have
at least 10,000 minutes recorded (the condition is satisfied by 4182 players).
The rating is defined as their estimated peak rating, i.e. their estimated
rating at age 27 so that the age component in (5) is equal to 0 (the division
components are however taken into account for these presented ratings).
For some of the younger players on the lists, the rating is a forecast of their
future level, while for others it is based on performances after the age of 27
as well. Some of the players, such as Arjen Robben and Philipp Lahm, are
nowadays retired.

The list include many expected names, such as Kylian Mbappé and Ney-
mar, the two most expensive transfers of all time, and the two players gen-
erally considered to be the best in the world during the past 10-15 years,
Cristiano Ronaldo and Lionel Messi. Many others are also widely considered
to be or have been world-class players. However, the lists also include some
quite obscure names, such as José Giménez, Paulo Miranda, Emir Dilaver,
Óliver Torres and Lior Refaelov, who are all very unlikely to make lists of
top ranked players in the world based on consensus opinion.
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Table 7: Top ranked players with at least 10,000 minutes recorded in data
set, by position

Defenders Midfielders Forwards

Player Di Player Oi +Di Player Oi

1 Giorgio Chiellini 0.1247 Philipp Lahm 0.2361 Arjen Robben 0.1729
2 Keylor Navas 0.1197 Javi Mart́ınez 0.2315 Kylian Mbappé 0.1725
3 Andrea Barzagli 0.1148 Fernandinho 0.2238 Neymar 0.1575
4 Medhi Benatia 0.1148 Rafinha 0.2211 James Rodŕıguez 0.1434

5 Jan Oblak 0.1140 Óliver Torres 0.2189 Luis Suárez 0.1430
6 Alisson Becker 0.1135 Sami Khedira 0.2172 Karim Benzema 0.1396
7 José Giménez 0.1125 Benjamin Mendy 0.2170 Cristiano Ronaldo 0.1346
8 Vincent Kompany 0.1050 Mousa Dembélé 0.2109 Mohamed Salah 0.1259

9 Felipe 0.1037 Adrien Rabiot 0.2065 Ángel Di Maŕıa 0.1247
10 Diego God́ın 0.1027 David Alaba 0.2059 Lionel Messi 0.1234
11 Ederson 0.1007 Thiago Alcântara 0.2057 Kevin De Bruyne 0.1224
12 Paulo Miranda 0.0973 Marco Verratti 0.2056 Sadio Mané 0.1210
13 Manuel Neuer 0.0968 Ivan Rakitić 0.2018 Julian Brandt 0.1208
14 Nicolás Otamendi 0.0951 Thomas Meunier 0.2014 Donny Van De Beek 0.1154
15 Emir Dilaver 0.0927 Daniel Carvajal 0.1978 Lior Refaelov 0.1152

6.1.3 Estimated copula parameters

The table below presents the estimated parameter for each copula family
we use in this paper, after making the inferences presented in section 4.3.2,
together with the maximized log-likelihood and the values of the Akaike
information criterion (AIC). AIC is a well-known estimator of out-of-sample
prediction error derived from information theory. It is defined as

AIC = 2k − 2`(θ̂)

where k is the number of parameters and `(θ̂) is the maximized log-likelihood.
We have 48605 fitted parameters for the marginal distributions, and one ad-
ditional parameter for each copula except the Student’s t copula which has
two (the second being the degrees of freedom υ, which we set to υ = 5 as it
was found to be the integer value providing the best fit). The t copula has
the lowest AIC value, indicating it may be the most appropriate copula to
use.

It is interesting to note that the best fits, as measured by AIC, is obtained
from the Student’s t-, Gumbel- and Joe copulas. As indicated by table
2, these are the only copulas out of the ones considered that are able to
model an upper tail dependence. Hence a reasonable hypothesis may be
that dependence of that kind can be useful when modeling football matches.
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Table 8: Estimated copula parameters

Copula θ `(θ̂) k AIC

Independence copula - −182591.66 48605 462393.3129
Normal 0.0558 −182543.18 48606 462298.3636
Student’s t5 0.0600 -182308.63 48607 461831.2199
Clayton 0.0865 −182514.44 48606 462240.8722
Frank 0.319 −182535.23 48606 462282.4619
Gumbel 1.0482 −182490.76 48606 462193.5297
AMH 0.1549 −182534.66 48606 462281.3202
Joe 1.0694 −182496.74 48606 462205.4763
FGM 0.145 −182540.17 48606 462292.3314

6.2 Residual analysis of fitted model

An important method for assessing the overall fit of a regression model is
residual analysis. A graphical analysis of model residuals can be used to
identify discrepancies between the model and data.

A basic form of residual is the Pearson residual, which is defined as ri =
yi−µ̂i
σ̂2
i
, where yi is observation number i, while µ̂i is its estimated expected

value and σ̂2
i its estimated variance. In the case of a normal linear regression

model, the Pearson residuals will follow the standard normal distribution if
the model is correct. Hence checking if they do provides a diagnostic of
whether the model is correctly specified. The check can be made by means
of a normal Q-Q plot.

If the model is not normal, the Pearson residual will generally not follow
a normal distribution, and the method can not be used. However, if the
model is continuous one can easily obtain standard normal residuals by first
transforming the observations to a U [0, 1] random number via its probability
integral transform (the cumulative distribution function of the fitted model)
and then inputting the result to the quantile function of the standard normal
distribution.

If the model is not continuous, the method does not work because the
probability integral transform will not produce U [0, 1] numbers. In fact, an
additional source of randomness is needed to transform the discrete observa-
tions to a continuous distribution. For a Poisson distribution, one can show
that the numbers

r∗q,i = Φ−1(F (yi − 1, λ̂i) + uif(yi, λ̂i)),

where the ui are independent random variables uniform over [0, 1], are stan-
dard normal [14]. Here F (yi − 1, λ̂i) is the cumulative distribution function
of a Poisson variable with rate λ̂i, evaluated in yi, while f(yi, λ̂i) is the corre-
sponding probability mass function. These numbers are called randomized
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normalized quantile residuals, and can be used for model validation. The
plots below present a Q-Q plot and a histogram of these residuals for our
fitted model. The plots generally seem quite reasonable, although the Q-Q
plot suggests a left-skew. This might be related to teams scoring exactly 0
goals more often than a Poisson distribution would suggest. Indeed, zero-
inflated Poisson distributions, which put higher probability on a 0 outcome
than a regular Poisson distribution, have been suggested as appropriate for
modeling football match scores, eg. in [11].

Figure 1: Normal Q-Q plot of randomized normalized quantile residuals
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Figure 2: Histogram of randomized normalized quantile residuals with stan-
dard normal probability density function

7 Forecasting match results

Perhaps the most effective way to calibrate and test a model of this kind is
to evaluate its ability to forecast results in out-of-sample football matches.
Since the data set contains matches up to and including 2019, it is relevant
and interesting to use it to forecast match results in 2020. We have collected
starting lineups and results of 416 matches played in the ’big 5’ leagues
- the first divisions of England, Spain, Germany, Italy and France. The
forecasts of our model are based on the estimated strength of the players
in the starting lineups. For players with less than 2500 minutes recorded,
we assume a playing strength of 0. The estimated strength of players with
fewer minutes recorded is simply too volatile.

We make two different types of forecasts of the matches. The first type
is to try to forecast if the matches will end in a home win, draw or away win.
The probabilities of different outcomes are calculated according to (8), (9)
and (10), truncated at 25 goals. We call this type of forecasts 1X2 forecasts.
The second type of forecast we make is whether more or less than 2.5 goals
will be scored in the match. We call that type O/U 2.5 forecasts. The
probability of under 2.5 goals is of course easily calculated as the sum of the
probabilites of a 0-0, 0-1, 0-2, 1-0, 1-1 or 2-0 result, and the probability of
over 2.5 goals as its complement.
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7.1 Measuring forecast quality

We use four different scoring rules to evaluate the quality of our forecasts.
Below we present the definition of each scoring rule for a single match. The
overall value is defined as the mean over all considered matches.

The first is the so-called Rank Probability Score (RPS), a well-established
measure of prediction quality for football matches. The RPS value of a single
problem instance is defined as

RPSi =
1

r − 1

r−1∑
i=1

 i∑
j=1

(pi − ei)

2

,

where r is the number of possible outcomes, pi the forecasted probability of
outcome i, and ei = 1 if i is the observed outcome but ei = 0 otherwise.
For the 1X2 forecasts we have r = 3, while r = 2 for the O/U 2.5 forecasts.
When r = 2, the RPS is also known as the Brier Score. The lower the RPS,
the better the forecasts are. In the case of perfect predictions, i.e. when all
the forecast probability is put on the observed outcome, RPS is equal to 0.
RPS is quite a popular scoring rule for evaluating 1X2 forecasts, largely due
to [3]. The RPS is a non-local scoring rule if r ≥ 3 in that its value depends
on the whole distribution of the forecast, and not just the probability of the
observed outcome.

The second is the multinomial likelihood, which is defined as the proba-
bility of the observed outcome, as provided by the forecast.

The third is the classification rate, which is equal to 1 if the observed
outcome is the highest-probability outcome according to the forecast and
zero otherwise.

The fourth is the ignorance score, which is defined as − log2(pl), where
pl is the probability of the observed outcome. Similar to RPS, a lower value
is better than a higher in this case. The ignorance score is proposed as
an appropriate scoring rule for 1X2 forecasts in [19], which challenges the
arguments for RPS put forward in [3].

7.2 Bookmaker’s odds as benchmarks for forecast quality

The natural benchmark against which to test the quality of a model which
forecasts results of football matches is forecasts derived from bookmaker’s
odds. Especially for high-profile, high-liquidity leagues such as the top 5
leagues of Europe we consider here, the betting market can be expected
to be quite efficient in the sense that the odds reflect the true underlying
probability distribution rather well.

Assuming one has collected odds from bookmakers (both historical 1X2
odds and O/U 2.5 odds are easily available on various websites.), the problem
is then how to convert them to probabilities. We describe how it works for
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1X2 forecasts. Let OH , OD and OA be the bookmaker’s odds for a home
win, a draw, and an away win, respectively. As for odds in general, the
way to convert them to probabilities is to take their multiplicative inverses.
However, it will turn out that the sum of the inverted odds is not 1, but
instead slightly larger. This is because the bookmakers have a margin on
their provided odds. Let M denote the margin, so that

1 +M =
1

OH
+

1

OD
+

1

OA
(12)

where M > 0. Some different approaches to deal with the margin are
described in [2].

The most obvious way to remove the effect of the margin is to divide
the inverted odds by 1

1+M , so that one gets the estimated probabilities

PHU = 1
OH(1+M) , PDU = 1

OD(1+M) and PAU = 1
OA(1+M) of the three dif-

ferent outcomes. The probabilities will then obviously sum to 1. This is
probably the most common way to do it and is completely legitimate. How-
ever, it is not necessarily the best. The method assumes that the bookmaker
has the same margin on each outcome, and that assumption is not neces-
sarily accurate.

A more reasonable assumption is that the margin put on each outcome
is proportional to the ’fair odds’ of the outcome. Equivalently, it is assumed
to be inversely proportional to its probability. The assumption is related to
the so-called favorite-longshot bias, an observed phenomenon where bettors
are willing to take unfavorable odds for low-probability outcomes, due either
to risk preferences or to simply overestimating the probability of the rare
event [16] According to this assumption, we can write the inverted odds as

1

Ol
= PlP

(
1 +

c

PlP

)
(13)

for each outcome l ∈ {H,D,A}, where PlP is the sought implied probability
of the outcome, and c is a constant. The value of c can be determined as
follows. Putting the values (13) into equation (12) gives 1 + M = 1 + 3c,
hence c = M

3 . It is then seen from (13) that PHP = 1
OH
−M

3 , PDP = 1
OD
−M

3 ,

and PAP = 1
OA
− M

3 . Hence, instead of dividing with a common number, as
in case with the same margin on all outcomes, we subtract another common
number.

7.3 Evaluation of forecasts

We evaluate the different copulas, based on the fitted copula parameters
presented in table 8, by applying the RPS, multinomial likelihood, classifi-
cation rate and ignorance score to obtain 1X2 and O/U 2.5 forecasts The
odds used for deriving odds-based forecasts were collected from the website
Oddsportal.com, and are aggregated odds from many bookmakers.
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7.3.1 1X2 forecasts

The table below shows the performance of the different copulas, when used
to provide 1X2 forecasts for the considered matches. Compared to the model
assuming independence, there is a clear tendency towards better forecasts
with the copula-based models, although the differences are quite small. Es-
pecially the Student’s t copula with 5 degrees of freedom seems to work well.
The odds-based predictions clearly outperform the model-based predictions
overall. The ’naive’ forecast which is provided for comparison always places
the probabilities 0.45, 0.25 and 0.3 on a home win, a draw and an away win
respectively.

In [9], the predictive power of models for predicting football matches
based on different copulas are evaluated in a similar way. They also find a
small benefit in using copulas rather than assuming independence.

Table 9: Forecasting performance of different models, 1X2

Model RPS Likelihood Classification rate Ignorance

Odds 0.20041 0.41683 0.50962 1.42442
Naive 0.22762 0.35373 0.44471 1.54511
Independence 0.20491 0.39714 0.50721 1.44544
Normal 0.20478 0.39774 0.50721 1.44387
Student’s t5 0.20473 0.39806 0.50962 1.44348
Clayton 0.20476 0.39706 0.50721 1.44357
Frank 0.20477 0.39758 0.50721 1.44380
Gumbel 0.20474 0.39799 0.50721 1.44342
AMH 0.20477 0.39756 0.50721 1.44378
Joe 0.20476 0.39811 0.50721 1.44376
FGM 0.20478 0.39754 0.50721 1.44393
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7.3.2 O/U 2.5 forecasts

The table below presents the performance of the models when applied to
provide O/U 2.5 forecasts. In contrast with the 1X2 forecasts, there does
not seem to be an advantage at all to use copulas for these forecasts. The
forecasts are very competitive compared to the ones obtained from book-
maker’s odds, beating in on all scoring rules except the multinomial likeli-
hood. Since the model is fitted to model the number of goals scored rather
than 1X2 outcomes, it might not be so surprising that it performs relatively
better on this type of forecasting.

Table 10: Forecasting performance of different models, O/U 2.5

Model Brier score Likelihood Classification rate Ignorance

Odds 0.11908 0.52476 0.59759 0.96509
Independence 0.11868 0.52098 0.59759 0.96259
Normal 0.11878 0.52043 0.60000 0.96319
Student’s t5 0.11869 0.52118 0.59759 0.96262
Clayton 0.11870 0.52057 0.60000 0.96274
Frank 0.11879 0.52033 0.59759 0.96322
Gumbel 0.11887 0.52029 0.59759 0.96369
AMH 0.11878 0.52034 0.59518 0.96318
Joe 0.11889 0.52040 0.59759 0.96380
FGM 0.11878 0.52038 0.59518 0.96317
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7.4 Using the model to find profitable betting opportunities

While the forecast accuracy, as measured by e.g. RPS, is interesting in
itself, it can be argued that the most interesting thing is often not the
forecast probabilities themselves but rather functions of them, corresponding
to real-world payoffs. In particular, it is interesting to see if the model can be
used to find profitable betting opportunities in matches where the model’s
forecasts do not agree with the odds provided by bookmakers. To test this,
we use the model to place fictional bets on historical matches. Our approach
towards investigating this is again similar to investigations in [9]. We make
fictional bets on both the 1X2 market and the O/U 2.5 market.

For deciding whether to place a 1X2 be on a match, we consider the
odds OH , OD and OA and the model-derived probabilities PH , PD and PA
for the three outcomes. The expected return Rl, l ∈ {H,D,A} from betting
on outcome l is

E[Rl] = Pl ∗Ol − 1

according to the model. For each match we place a bet on the outcome with
highest expectation if the expected return is higher than a specified threhold
ε > 0, i.e. if

max
l∈{H,D,A}

E[Rl] > ε.

The approach for finding bets on the O/U 2.5 market is completely analo-
gous.

For simplicity we use a constant bet size of 1 unit in each case instead
of using a more elaborate sizing method such as e.g. Kelly betting.

7.4.1 Betting on the 1X2 market

The table below presents the result of applying the method of betting de-
scribed above to placing 1X2 bets on the same set of matches we evaluated
our forecasts on. The bets are generally quite successful, however given the
small sample size the results have to be interpreted a bit cautiously. The
model is quite prone to bet on high odds, and hence the result is heavily
influenced by whether or not a few low-probability outcomes occur or not.
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Table 11: Betting performance of different models, 1X2

ε = 0.15 ε = 0.30 ε = 0.45 ε = 0.60

Model #Bets Profit #Bets Profit #Bets Profit #Bets Profit

Independence 242 1.28 157 14.20 90 23.08 51 10.42
Normal 227 -0.72 143 20.15 84 29.08 44 17.42
Student’s t5 197 7.27 120 23.97 65 15.34 36 19.53
Clayton 220 -6.10 139 19.64 80 27.15 43 18.42
Frank 226 -4.26 142 21.15 83 30.08 44 17.42
Gumbel 218 -4.10 136 17.76 79 28.15 43 18.42
AMH 226 -4.26 142 21.15 83 30.08 44 17.42
Joe 221 -3.4 138 20.64 82 25.15 44 17.42
FGM 227 -0.72 142 21.15 84 29.08 44 17.42

7.4.2 Betting on the O/U 2.5 market

The bets on the O/U 2.5 markets are mostly fairly close to break-even.
Here, the odds are rarely very high on either outcome, so the variability
in outcomes is a bit lower. The O/U forecasts performed well compared
the odds-based forecasts when measured by scoring rules, but as the table
indicates that may not be enough to guarantee profitable bets, since the
bookmaker’s margin implies that the edge must be sufficiently large.

Table 12: Betting performance of different models, O/U 2.5

ε = 0.15 ε = 0.30 ε = 0.45 ε = 0.60

Model #Bets Profit #Bets Profit #Bets Profit #Bets Profit

Independence 172 3.47 102 -4.05 69 -8.87 49 -1.15
Normal 169 2.11 101 -3.05 69 -8.87 49 -1.15
Student’s t5 173 4.57 103 -2.82 70 -7.65 49 -1.15
Clayton 174 1.47 103 -2.24 69 -8.87 49 -1.15
Frank 171 2.37 101 -3.05 68 -7.87 49 -1.15
Gumbel 162 6.81 100 -2.05 67 -9.12 47 -2.15
AMH 171 2.37 101 -3.05 68 -7.87 49 -1.15
Joe 158 6.12 98 -3.04 67 -9.12 46 -3.97
FGM 171 2.37 101 -3.05 69 -8.87 49 -1.15
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8 Conclusions

This master’s thesis presents a bivariate model for football matches based
on individual player ratings obtained from an adjusted plus/minus model.
Thus, one can say that it derives from two separate traditions in football
modeling that are otherwise rarely combined. Bivariate models, often based
on Poisson distributions, date back several decades but generally estimate
team strengths directly at the team level rather than at player level. On
the other hand, models for estimating individual player strength, which can
generally be seen as variants of plus/minus models, are more recent. In
general, they tend to consider the univariate difference between goals scored
by each team as the output rather than the bivariate number of goals for
each team. The bivariate approach has some advantages in the flexibility
of how it can be applied. For example, 1X2 forecasts of the kind used in
this thesis are easily derived from a bivariate model, whereas deriving them
from a univariate model is significantly more involved. The difference is
even clearer when considering O/U forecasts, which are again easily derived
from a bivariate model, while it’s not really clear at all how they would be
derived from a univariate model. Whether univariate or bivariate output is
ultimately more suitable for a plus/minus model does not seem clear, but
both approaches are clearly viable.

A bivariate model requires considering a possible dependence. These
considerations are a major part of this thesis. The copula-based approach
we take has some advantages in flexibility compared to using a bivariate
model based on common additive errors, such as exemplified by the so-called
bivariate Poisson distribution.

Like some similar investigations, we find that using a copula provides a
better fit and more accurate out-of-sample forecasts compared to assuming
independence, but the difference is very slight. An interesting observation
is that copulas with upper tail dependence generally seem to fit quite well.
It could be interesting to investigate closer the importance of upper tail
dependence in modeling scores of football matches.
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