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ABSTRACT 

Background: Fetal Magnetic Resonance Imaging is an imaging technique that visualizes the fetus 

during pregnancy. It is used for assessing and diagnosing disease, for monitoring high risk pregnancies, 

and for conducting research. By segmenting three-dimensional fetal magnetic resonance (MR) images, 

volume estimation of intrauterine structures is possible. The quantification of fetal body volume and 

placental volume is of both clinical and scientific relevance. If performed manually, the segmentation is 

a time-consuming procedure. 

Purpose: The aim of this project was to create a fully automatic algorithm that segments and quantifies 

the volumes of the fetus and placenta in MR images. 

Method: Deep learning, or more specifically a two-dimensional U-Net, was used for solving the task. 

The data used for training, validation, and testing of the models were manually delineated volumetric 

MR images of 25 fetuses, which were considered as ground truth. In all images the fetus, placenta, 

umbilical cord and amniotic fluid were delineated. In addition to segmenting the fetus and placenta, the 

model was also trained to segment the umbilical cord and amniotic fluid. 

Result: For the automatic fetal body volume the median absolute volume difference was 2.3 % 

(std 4.9 percentage points) for five cases that were used for testing, when compared to the ground truth. 

For the placental volume, the median absolute volume difference was instead 23.9 % 

(std 34.4 percentage points). 

Conclusion: In conclusion, the results suggest that a fully automatic method based on the U-Net can be 

used for quantification of fetal body volume. However, the quantification of placental volume was not 

satisfactory.
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INTRODUCTION 

agnetic Resonance Imaging (MRI) can be 

used during pregnancy to investigate disease 

such as cardiovascular disease and for 

evaluating high risk pregnancies. Magnetic resonance 

(MR) images are excellent at displaying anatomy and can 

therefore be utilized to examine the anatomy of the 

intrauterine fetus and surrounding structures like the 

placenta [1]. Figure 1 shows a two-dimensional (2D) MR 

image of a fetus. 

The clinical standard method for fetal imaging is 

2D ultrasound. MRI may allow imaging in cases where 

ultrasound gives poor image quality [2, p. 348] and may 

offer additional information of relevance for investigating 

disease [3]. The disadvantage of MRI is that it is more 

complicated and expensive, less accessible and that the 

technique for fetal imaging is still evolving [3]. 

Since MRI generates three-dimensional (3D) images, it can be used for estimation of organ 

volumes – for instance fetal and placental volume. There are several reasons for estimating fetal body 

volume (FBV). For instance, fetal body volume can be used for estimation of fetal weight (EFW). This 

was first introduced by Baker et. al. [4] in 1994 using MRI. Since then, several studies have compared 

fetal weight estimation based on 3D MR images, with the more commonly used two-dimensional (2D) 

ultrasound method [4] [5] [6]. Normally ultrasound is used for estimation of fetal weight, in which case 

biometric measurements such as head circumference and femur length, among others, are used for 

making the estimate  [6]. However, in several studies MRI has been shown to be more reliable than 

ultrasound for EFW [4] [5] [6]. Another application of fetal body volume is for investigating whether 

the lungs are developing normally or not by indexing the lung volume to the fetal body volume [2, pp. 

230, 348]. Additionally, previous studies [7] [8] index blood flow to fetal weight (converted from fetal 

body volume) to enable comparison. 

  
Figure 2: 3D-models of a fetus and a placenta. The models are based on manual delineations of MR images. 

Estimation of fetal body and placental volume can be performed by manually delineating fetal MR 

images [9] [10], see example of manual delineations in Figure 2. However, manual delineation is a time-

consuming procedure [9] [11]. Beside manual delineation, semi-automatic methods [11] [5] [6] for 

segmenting fetuses exist. The repeatability of estimated fetal body volume when using a semi-automatic 

method is investigated in [12], where the inter- and intra-observer variability was found to be low. 

Furthermore, the same study indicated that the experience of the operator is not of particular importance 

when using a semi-automatic method [12]. With semi-automatic software presented in [11] and [5] fetal 

M 

Figure 1: An image slice of a three-dimensional 

fetal MR image. Arrows point toward the 

placenta, amniotic fluid and fetus. 
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segmentation is stated to take about 5-10 minutes. Nevertheless, it would be beneficial with a fully 

automatic method, that is fast and does not need any human interaction. An automatic method may open 

the possibility to integrate volume estimation in the MRI scanner protocol. To the authors best 

knowledge, no fully automatic method for segmenting fetal volume exists today. On the other hand, 

Torrents-Barrena et. al. [13] has presented a fully automatic method for delineating the placenta. 

With a fully automatic method, valuable time and resources could be saved and the use of fetal body 

volume could be further implemented in clinical practice and research. The use of estimated fetal body 

volume and placental volume could then lead to improved diagnostics and help answer research 

questions. 

High quality images are essential for accurate delineation and volume estimation and can be limited by 

the presence of artifacts in the images. Motion artifacts are caused by for instance movement of the fetus 

or maternal breathing. With movement the contours of the tissues can become blurred or multiplied – 

making delineation difficult. Other artifacts include noise and fold-over artifacts. Fold-over artifacts can 

complicate segmentation by making it hard to distinguish the affected parts in the image [2, pp. 29, 66-

70, 77, 78]. 

Another challenge with delineation is signal intensities of the tissues within the uterine cavity. The signal 

intensities differ between separate organs and tissues. For example, the brain and urine bladder have 

about the same intensity as the amniotic fluid, while the intensity differs from the skin, muscles, and 

amniotic sac. Therefore, simple thresholding cannot be used as a single method for delineation of the 

fetus [9]. 

Since the contrast between skin and amniotic fluid is high for fetal MR images of decent quality, 

thresholding tools can be used during delineation to identify the contours of the fetus by finding the 

border between the amniotic fluid and the skin. However, thresholding cannot be utilized if the amount 

of surrounding amniotic fluid is too small or the fetus is positioned close to the placenta or amniotic sac 

since the contrast will not be sufficient [9]. 

Research and clinical environment 
This Master’s Thesis project is associated with Lund Cardiac MR group and Medviso AB, which both 

closely work together. The Cardiac MR Group is situated at Clinical Physiology, Department of Clinical 

Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden, where both research and 

clinical diagnostics regarding cardiovascular disease is performed. One of the group’s expertise include 

advanced fetal cardiovascular magnetic resonance imaging (fetal CMR). Medviso AB is a medical 

software company that provides medical imaging software for both research and clinical purposes. 

Physicians (and researchers) at the department would like to index flow measurements to placental and 

fetal volumes to account for differences in size as to be able to compare values during fetal growth, and 

between different pathologies and healthy fetuses. To implement this in clinical practise and research, a 

quick and accurate method for estimation of fetal and placental volume is necessary. 
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Purpose 
The aim of this study is to investigate the possibility of using machine learning to create an algorithm 

that automatically segments MR fetal images and quantifies fetal body volume and placental volume 

accurately and reliably. The network architecture to be investigated is a convolutional neural network 

(CNN) called U-Net. The U-Net architecture was introduced by Ronneberg et. al. [14] in 2015 and has 

been successfully used in several biomedical imaging segmentation tasks and competitions [15]. 

Manually delineated fetal MR images will be used as ground truth.  

Specifically, the following four classes shall be segmented: 

• Fetus 

• Placenta 

• Umbilical cord 

• Amniotic fluid. 

Although there are four classes, the focus and goal are to successfully segment the fetus and placenta.  
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THEORY 

The aim of this section is to give an overview and explanation of concepts and theories of importance 

for the project. First, some of the fundamental concepts of magnetic resonance imaging are described. 

Then, theories and principles regarding machine learning and methods for evaluation of models are 

provided.  

Magnetic Resonance Imaging 
Magnetic resonance imaging (MRI) is an imaging technique commonly used in medical applications. 

The technique is based on quantum spin of nuclei, a strong external magnetic field with gradients, and 

radiofrequency (RF) pulses. Quantum spin is when a nucleus with an uneven number of neutrons or 

protons, such as 1H (a proton), spins around its own axis – generating a small magnetic field [16, pp. 1-

2].  

The strong external magnetic field changes the orientation of the otherwise unordered spinning nuclei 

by arranging them according to the external field. In addition, the nuclei start precessing around the axis 

of the field. The frequency of precession (𝜔) depends on the gyromagnetic constant 𝛾 and the magnetic 

field strength 𝐵0 according to the Larmor equation, 𝜔 = 𝛾𝐵0 [16, p. 2]. 

By sending RF-pulses of a specific frequency, the spinning nuclei with the corresponding precession 

frequency become flipped for a short period of time before re-aligning with the strong magnetic field. 

With the flip, a magnetic field orthogonal to the external field is produced and measurable for a short 

period of time. The flip angle is affected by the energy of the RF-pulse and its length. The repetition 

time (TR) and echo time (TE) describe how often a new RF-pulse is sent out and after how long the 

signal is registered, respectively. The time it takes for a flipped nucleus to go back to its “un-flipped” 

state is tissue dependent. As a result, it is possible to alter the contrast of MR images by changing the 

repetition and echo time [16, pp. 2-4].  

Machine Learning 
In machine learning (ML), algorithms (also referred to as models) are trained with data (that is, training 

data) to perform different tasks, for example classification. The models have learnable parameters, 

called weights and biases, which are updated during training. This project uses supervised learning 

where labelled data is used for training the models. The labelled data is considered as ground truth, and 

the models are trained to produce outputs as close as possible to the ground truth labels [17, pp. 96-98, 

103, 105, 106]. During training, a loss function is used to measure the closeness between the prediction 

and ground truth. This can have a large impact on the updating of the learnable parameters and on the 

outcome.  

Artificial Neural Networks 

Artificial neural networks (ANN) are inspired by, and constructed to somewhat resemble, the nervous 

system. The nervous system consists of connected cells called neurons that receive and transmit 

information. Signals are received through the dendrites of a neuron, while output signals travel through 

the axon of the neuron. The incoming signals can act either excitatory or inhibitory. If the sum of the 

incoming signals is strong enough, and thus exceeding a threshold, the neuron becomes triggered and 

sends out a signal. Likewise, an artificial neuron, also referred to as a node, receives inputs and based 

on the inputs produces an output [18, pp. 207-208]. A weighted sum of the inputs and an activation 

function determine the output from a node. 

The nodes can be organized into layers. In feed-forward neural networks, which are used in this project, 

output from neurons in one layer can be sent to neurons in the following layers. The layer that receives 
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input to the feed-forward network is referred to as the input layer, while the layer that produces the 

output of the network is called the output layer. The layers in between are known as hidden layers [17, 

pp. 164-165]. An example of a feed-forward network can be seen in Figure 3. The illustrated ANN is a 

fully connected neural network, which means each node is connected to the nodes in the subsequent 

layer. 

 
Figure 3: Fully connected feed forward neural network with four layers – first an input layer, then two hidden 

layers and lastly an output layer. Each node is connected to all nodes in the subsequent layer. 

Each connection in the ANN has a learnable weight that determines the effect the output of a node has 

on a subsequent node. The output of a neuron is produced by computing the weighted sum of the inputs 

and applying an activation function. By training the ANN, thus updating its weights and biases, the 

network can be trained to produce a desired output based on an input [17, pp. 164-171]. 

Activation functions are important for ANNs. The activation function determines if and what output that 

should be generated from a node based on its inputs. Additionally, non-linear activation functions are 

necessary for models to be able to solve more than linear problems [17, p. 168]. Rectifying linear unit 

(ReLU) is a common activation function, defined as 𝜙(𝑥) = max(0, 𝑥) [17, pp. 170, 171, 189]. Another 

activation function is the soft-max function, which can be used as output layer in models solving 

classification tasks. The soft-max function generates n values between 0 and 1 – one value for each class 

– where the sum of the values equals 1. The values represent a probability distribution given a specific 

input [17, pp. 180-181]. 

Deep Learning 

Deep learning (DL) is a subgroup of machine learning that during the last 5-10 years have found major 

applications in medical image analysis [19]. Deep learning is characterized by ANNs with many layers 

(i.e. deep networks). A common application is semantic segmentation, that is, pixelwise classification 

of images [19]. In deep learning, training incorporates feature selection that helps improve the 

performance of the model [20].  

Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a subgroup of feed-forward neural networks. Based on 

hundreds of papers on deep learning in medical image analysis Litjens, G. et al. [19] conclude that the 

use of CNNs is the most common approach for solving tasks within the subject.  
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Common layers in CNNs are convolutional layers, pooling layers, and fully connected layers. The 

convolutional layers are used for feature extraction and each convolution produces what is called a 

feature map. An example of a convolutional operation is 2D-convolution, which can be applied on 

images. 2D-convolution is completed by sliding a window (also known as filter or kernel) of a specified 

size over an image and performing a mathematical operation [21]. In convolutional layers the kernels 

contain the learnable weights and are updated during training to extract relevant features for the task at 

hand. This means that the weights are shared [19]. A convolutional layer can consist of several kernels, 

each producing its own feature map [20]. The operation for 2D-convolutions with a kernel of size 𝑁 × 𝑁 

is given by 

𝑋𝑚𝑛 = (𝒙 ∗ 𝑤)𝑚𝑛 = ∑ ∑ 𝑤[𝑖, 𝑗] ∙ 𝒙[𝑚 − 𝑖, 𝑛 − 𝑗]

𝑁−1

𝑖=0

𝑁−1

𝑗=0

, 

where 𝑋𝑚𝑛 is the resulting feature map, 𝑥 is the image, and 𝑤 is the kernel [18, pp. 226, eq. 9.24]. An 

illustration of a convolutional operation can be seen in Figure 4. 

Stride is the number of pixels a window moves over at a time. An image can be padded, which means 

that pixels are added around the image. The added pixels can for instance have intensity value zero [18, 

p. 226]. The stride and padding affect the dimensions of the resulting matrix when incorporated in a 

mathematical operation. 

 
Figure 4: Illustration of three of the steps of a 2D-convolution. The operation is performed on an image or feature 

map of dimension 3 × 3 with a kernel of dimension 3 × 3, padding and stride 1. The grey area around the original 

image/feature map represents the padding. Consequently, the resulting feature map has the same dimension 3 × 3. 

In contrast to the convolution layers, the pooling layers do not have learnable weights. Instead, the 

pooling layers are commonly used for height and width reduction of the feature maps [21]. Additionally, 

by reducing the dimensions of the feature maps the following convolutional layer will be able to extract 

new and larger structures/features [19]. The pooling operations are performed on grids (of a specified 

size) in the feature maps, where each grid operation results in a value [21]. For max pooling, which is 

the pooling operation that is most frequently used, the maximum value in each grid is selected and the 

rest are discarded, resulting in a new feature map [20]. An example of max pooling can be seen in Figure 

5. 

                                  3 × 3                          
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Figure 5: Illustration of a 2 × 2 max pooling operation with stride 2 and no padding. The left matrix represents a 

feature map with dimension 4 × 4, where the maximum value in each coloured grid is highlighted. To the right is 

the resulting feature map with dimension 2 × 2 after max pooling. 

Training of Deep Learning Models 

When training a model, its weights and biases are updated to optimize the performance of the model. 

How they are updated strongly depends on the chosen optimization method. 

Adam (adaptive moment estimation) [22] is a stochastic optimization method using momentum, where 

subsets of the training data, called minibatches, are used for updating the learnable parameters. 

Consequently, the weights and biases are updated in an iterative process. The vector of weights and 

biases are referred to as 𝜃. Furthermore, the parameters are updated to minimize a loss function 𝐸(𝜃), 

using its gradient ∇𝐸(𝜃) [22]. Basically, a loss function compares the output of the network with the 

ground truth – the lower the loss, the better. Cross entropy loss function is used for classification 

problems, such as semantic segmentation of images. Categorical cross entropy is defined as 

𝐸 = −
1

𝑁
∑ ∑ 𝑑𝑛𝑖ln(𝑦𝑛𝑖)

𝐾

𝑖=1

𝑁

𝑛=1

, 

where 𝑁  is the number of samples, 𝐾  is the number of classes, 𝑑  is the ground truth and 𝑦  is the 

prediction based on an input [23]. When using Adam, the weight updates are dependent on parameters 

called learning rate, gradient decay factor and squared gradient decay factor which are parameters in 

the optimization method. The learning rate influence how much the weights are updated at each iteration, 

and the gradient decay factor and squared gradient decay factor are decay rates of momentum estimates. 

The values of these parameters are set prior to starting a training [22]. 

Hyperparameters are parameters that control the training process or the network architecture, aside from 

weights and biases. The hyperparameters can be tuned to improve the performance of a model on unseen 

data [17, pp. 118, 119, 422, 423]. 

The learning rate can be divided into three separate hyperparameters – initial learning rate, learning 

rate drop factor and learning rate drop period. The initial learning rate is the learning rate at the start 

of the training, while the drop period and drop factor determines how often (in terms of epochs) and by 

how much the learning rate is decreased, respectively. An epoch is defined as the number of iterations 

it takes to go through a complete training set, and the maximum number of epochs determines for how 

many epochs the training will go on. 

Another hyperparameter is the L2 regularization strength. When applying L2 regularization, a term that 

penalizes large weights is added to the loss function. The penalty can be controlled with the L2 

regularization strength. By adjusting the regularization strength, overtraining, which is explained in the 

section Measure performance, can be prevented [17, pp. 117, 230]. 

    

    

    

    

  

  

           

         2 × 2
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Furthermore, the training data can be shuffled during training. By shuffling the data after each epoch, 

the order changes which reduce the risk of overtraining [24]. 

U-Net 

In 2015, Ronneberg et. al. introduced the U-Net architecture [14], which is a CNN that is developed to 

solve segmentation tasks, especially within the biomedical field. An explanation of the basics of the U-

Net is given below and a simplified version of the architecture is provided in Figure 6. 

As explained by Ronneberg et. al. “The architecture consists of a contracting path to capture context and 

a symmetric expanding path that enables precise localization.” [14]. The contracting path consists of 

repetitive steps, where every step includes convolutions with ReLU as activation function and max 

pooling after each convolution. Following each max pooling operation, the number of feature channels 

is increased by a factor two. The expanding path also consists of repetitive steps. However, each step 

includes up-sampling of the feature maps, “up-convolution”, concatenation, and convolutions instead. 

The “up-convolution” reduces the number of feature channels by a factor two. In the concatenation 

phase skip-connections are used – concatenating each feature map from the expanding path with the 

feature map from the corresponding step in the contracting path. The last step of the expanding path 

ends with a third convolution. This final operation produces the output of the network [14]. The encoder 

depth is a hyperparameter which determines the number of steps in the contracting (and expanding) 

path, thereby affecting the number of layers and weights of the U-Net [25]. 

 
Figure 6: U-Net architecture with encoder depth 4. Inspired by the first figure in the original U-Net article [14]. 

Measure performance 

By using evaluation metrics models can be optimized and their performance estimated. Furthermore, 

overfitting and underfitting can be detected. Overfitting means a model has adapted to noise in the data 

used for training. Consequently, an overfitted model has a high performance on the training data and 

low performance on previously unseen data. Signs of underfitting are on the other hand, both low 

performance on seen and unseen data [17, pp. 109-110].  

Generalization performance is a measure of how well a model performs on previously unseen data [17, 

p. 108]. In this project unseen data is referred to as either validation data or test data. The validation 

 ×                                                        
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data is used for hyperparameter tuning, while the test data is used for estimating the generalization 

performance. As validation data is used for optimizing the model, the validation performance is biased. 

Therefore, generalization should be estimated by measuring the performance on the test data [17, p. 

119]. 

K-fold cross-validation can be used for estimating the generalization performance. With k-fold cross-

validation, the training data is split into k parts i.e., folds. In an iterative process, the different folds are 

used as either training or validation data. First, k-1 folds are used for training the network, and the 

remaining fold is used for validation of the network. In the next iteration another fold is used for 

validation and the k-1 folds are used for training, and so on [17, p. 120]. The average performance can 

be considered as an estimate of the generalization performance.  

Several relevant metrics exist for evaluating the performance of a neural network. This section focuses 

on evaluating semantic segmentations, especially by looking at the classification on pixel level and 

comparing it with the ground truth.  

If a pixel is correctly labelled, it is either a true positive (TP) or a true negative (TN). If it is a TP it is 

correctly predicted to belong to a certain class, while if it is a TN it is correctly predicted to not belong 

to that specific class. In case a pixel is instead incorrectly classified, it is either a false positive (FP) or 

a false negative (FN) depending on if it was predicted to belong to or not belong to a certain class. 

Accuracy is a common evaluation metric that is defined as the percentage of correctly classified pixels, 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. The global accuracy is the overall accuracy and only registers if a pixel is correctly 

classified or not. For unbalanced multi-class problems, the global accuracy is not good as it becomes 

biased towards the more frequently occurring classes. In those cases, per-class accuracy is more relevant 

as it is the average of the accuracy for each individual class [26]. 

Another metric is the Jaccard Similarity Index (JSI) which is defined as 
𝐴∩𝐵

𝐴∪𝐵
, where 𝐴 and 𝐵 are two sets 

[26]. For instance, 𝐴 can be a predicted segmentation and 𝐵 the ground truth, see Figure 7. JSI can also 

be described as 
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  [26] [27]. A metric similar to the JSI, is the DICE Similarity Coefficient 

(DSC) which is defined as 
2|𝐴∩𝐵|

|𝐴|+|𝐵|
 or 

2∙𝑇𝑃

2∙𝑇𝑃+𝐹𝑃+𝐹𝑁
 [26]. 

Boundary F1 (BF) score is a metric used for evaluating how well the boundaries of two segmentations 

correspond to one another. It is defined as 

2 ∙ 𝑃 ∙ 𝑅

𝑃 + 𝑅
, 

where 𝑃 is the precision and 𝑅 is the recall [28]. In return, precision and recall are defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 

𝑇𝑃

𝑇𝑃+𝐹𝑁
, respectively [26]. 
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Figure 7: Venn diagram of two sets. The more overlap between the sets, the higher Jaccard Similarity Index. 

For classification problems a confusion matrix can be used to visualize the performance of a model by 

showing predicted labels on one axis and true labels on the other. In a normalized confusion matrix, the 

predictions are given as a percentage of the total number of true labels for each class, see Figure 8 [29]. 

  Prediction 

  Fetus Background 

G
ro

u
n

d
 t

ru
th

 Fetus 
TP

𝑇𝑓
 

FN

𝑇𝑓
 

Background 
FP

𝑇𝑏
 

TN

𝑇𝑏
 

Figure 8: Example of a normalized confusion matrix for a binary classification problem. 𝑇𝑓  is the total number 

of true fetus labels and 𝑇𝑏  is the total number of true background labels. 

Since the aim of this project is to automatically generate volume estimations, another relevant evaluation 

metric is the Absolute Volume Difference (AVD) which is defined as 

AVD =
|𝑉Segmentation − 𝑉Ground truth|

𝑉Ground truth
∙ 100 %, 

where the 𝑉Segmentation is the volume of a predicted segmentation and 𝑉Ground truth is the volume of the 

ground truth segmentation of an object [26]. Noteworthy, is that the AVD does not consider the overlap 

between segmentations. 

Data Augmentation 

To create machine learning models that perform well on unseen data, thus having a high generalization 

performance, it is desirable to have a large set of data for training the models [17, p. 236]. However, in 

medical applications, data is often limited due to the time-consuming procedure of acquiring and 

labelling data. A method for increasing generalization performance, especially in cases of limited data, 

is data augmentation [30] [17, p. 236]. Data augmentation can be performed either offline or on-the-fly 

– meaning it is performed before or during the training process, respectively.  

When a model is to be used in a medical application, it is important that it works in a clinical setting. 

When it comes to MR images, the properties of the images, such as appearance, quality, and spatial 

Prediction
Ground 

truth
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arrangement, can vary depending on for example acquisition protocol, scanner vendor and patient 

population [31]. Zhang et al. [31] propose a method for increasing domain generalization with data 

augmentation. 

Geometric transformations such as rotation, scaling, mirroring, and translation can be performed to 

augment the spatial arrangement of an image. Rotation is performed in either two or three dimensions. 

Mirroring and rotation can be applied to simulate different orientations of an object (such as the fetus). 

Scaling transformations and translation aim to make the model invariant to the size and position of an 

object, respectively. 

Brightness and contrast transformations are performed to augment pixel intensities, thereby affecting 

the image appearance. Furthermore, images can be blurred or sharpened, and noise can be added to 

simulate different image qualities [31].
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DATA 

The data used in this project consisted of volumetric (i.e., three-dimensional) MR images of 26 

intrauterine human fetuses in gestational week 29 to 39, acquired at Skåne University Hospital in Lund. 

The project had ethical approval and the data was pseudonymized to exclude patient specific data.  

A 1.5 T scanner (Aera, Siemens, Erlangen, Germany) was used for acquiring the volumetry fetal MR 

images. Steady-state free-precession (SSFP) was used as MRI sequence. During acquisition, the 

parameters for TE, TR and flip angle were typically 1.74 ms, 4 ms and 51 degrees, respectively. 

As inclusion criteria the quality of the cases had to be good enough to perform accurate manual 

delineations. This meant cases with too many artefacts, such as motion and fold-over artifacts, were 

excluded (9 out of 35). The anatomy within the uterine cavity had to contain no gross abnormalities, as 

the goal was for the model was to be able to segment “normal” cases. Furthermore, only singleton 

pregnancies were included in this study, except for one twin pregnancy. However, the twin pregnancy 

was not manually delineated like the rest of the datasets and was only included for visual assessment of 

performance. Consequently, the images in 25 of the 26 cases included in this study were manually 

delineated. 

Manual delineations of the data, performed with 

the software Segment 3DPrint (Medviso AB, 

Lund, Sweden), were used as ground truth, see 

example in Figure 9. The manual delineations 

were carried out by the author, a medical student, 

and a PhD student, under supervision of a 

physician expert in the field (one of the 

supervisors). The author did adjustments and 

corrections to all manual delineations before they 

were finalized. When using Segment 3DPrint to 

create manual delineations, tools such as, 

drawing, thresholding, smoothing and filling 

tools, amongst others, were used. For each case, 

manual delineations of the fetus, placenta, 

umbilical cord, and amniotic fluid were created. The amniotic fluid was created by delineating the 

amniotic sack and subtracting the other delineations from it – leaving only the amniotic fluid left in the 

delineation. As part of the final step of the manual delineations a closing (1 mm) and smoothing (2 mm) 

operation was applied to the delineations, to smooth the surfaces of the objects. Examples of manually 

delineated objects are seen in Figure 10. 

 

 

 

 

 

 

 

 

Figure 9: To the left is a 2D fetal MR image with adjusted 

signal intensities. To the right is the corresponding mask 

based on manual delineations, where the colours have 

been altered. White represents the fetus, green the 

placenta, yellow the umbilical cord, blue the amniotic 

fluid and black the background. 
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Furthermore, all volumetric images were made isotropic i.e., the resolution of the voxels were set to be 

the same in all dimensions. The images had different dimensions, but the median dimensions for the 25 

singleton pregnancy cases were 512 × 336 × 307. From these 25 cases 26,185 unique two-dimensional 

images could be extracted. Of all the pixels, 84.2 % are classified as background, 9.7 % as fetus, 2.9 % 

as placenta, 2.9 % as amniotic fluid and 0.3 % as umbilical cord.  

   
 

Figure 10: 3D-models of a fetus, a placenta and an umbilical cord. The models are based on manual 

delineations of a 3D fetal MRI image. 
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METHODS 

In this section the methodology of the study is presented. First, an overview is given, then a more in-

depth description is provided in the subsections. A visual overview of the project methodology is shown 

in Figure 11. 

Throughout the project, MATLAB [32] has been used as programming language. Several toolboxes, 

provided by MATLAB, has been used to process and transform data, as well as to train convolutional 

neural networks. Heavy computations, such as training of the neural networks have been performed on 

a compute server with four graphic cards, two NVIDIA Titan RTX and two NVIDIA GeForce RTX 

3090.  

Deep learning was used to perform automatic segmentation of fetal magnetic resonance images, 

allowing volumetry measurement of the classified objects. More specifically, a convolutional neural 

network (CNN) with U-Net structure [14] was trained to semantically segment fetal MR images. 

Semantic segmentation can be explained as classifying every pixel in an image, by assigning a class 

label to each pixel. The U-Net used a 2D-image as input and returned a semantically segmented 2D-

image as output. The pixel labels used for classification were: fetus, placenta, umbilical cord, amniotic 

fluid, and background. 

Since manual delineation of fetal MR images is time consuming and started at the initialization of the 

project, the manual delineations were carried out in parallel with the rest of the project.   

The manually segmented MR images were used as ground truth for training and testing of the networks, 

as well as for validation during the training process. Since the amount of available data was limited, data 

augmentation was performed to generate more data for training of the networks. Considering the varying 

positions and postures of intrauterine fetuses the networks were trained on 2D images from all three 

image-axes in the volumetry images, instead of being trained on images from a specific anatomical 

plane. 

Several experiments were carried out, on part of the data, to improve the performance of the automatic 

segmentation, for example by tuning hyperparameters, and testing different forms of pre-processing and 

data augmentation.  

When the manual delineations were complete, k-fold cross-validation on eight models was performed. 

Based on the result, a model was selected, trained, and tested. Then, the segmentations were post-

processed in different ways. The performance was evaluated using several metrics. 
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Figure 11: An overview of the process from start to finish, highlighting important steps in the methodology. 

Ground Truth 
As mentioned, manual delineations were used as ground truth. Each class (pixel label) corresponded to 

a pixel intensity value. As ground truth for each 2D image a "mask" was created by assigning the specific 

intensity values to every pixel based on the manual segmentations. Since the input of the U-Net was 2D 

images, image slices were extracted from the volumetry images. Because of the different postures and 

positions of prenatal fetuses, the image slices could not be extracted from a specific anatomical plane. 

Instead, 2D images were obtained from all three coordinate axes. This way the model could be trained 

on more data, hopefully generalize better, and become more robust. Figure 12 illustrates some of the 

differences that may exist between different fetal MR images.  

  
Figure 12: Slice planes for two different fetal MR images. Note the different positions of the fetuses, the 

different image dimensions and the brightness. 

Pre-processing 
Before the U-Net was applied, the images were pre-processed. Different methods for pre-processing 

were evaluated before settling with a final method for pre-processing. These experiments were 
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conducted under the same conditions, except for the method of pre-processing. For example, histogram 

equalization was performed on the images, either on the individual 2D images or on the complete 3D 

images. Histogram equalization adjusts the contrasts of an image by changing the intensities, making 

the histogram of the new image as flat as possible. Histogram equalization seemed to improve the 

performance of the networks and 3D histogram equalization was therefore used as part of the pre-

processing. In all cases the 2D images and masks were resized, transformed to the data type uint8, and 

exported to PNG-files before being fed to the CNN. When resizing, the dimensions of the images and 

masks were resampled to 256 × 256 pixels. 

Data Augmentation 
Various forms of data augmentation were used to make the algorithm more robust and increase its 

generalization performance. Augmentations were only performed on the training data, and not on the 

validation data or test data. Consequently, the models were evaluated on “real” data. The augmentations 

were performed off-line i.e., prior to training the models. Throughout this study, different methods and 

combinations of augmentations were used. In this section, one combination of augmentations is 

presented – namely the combination used in in the latter part of the process when all manual delineations 

were complete. An overview of the specific augmentation settings can be seen in Table 1. 

To decrease class imbalance, 2D images (and corresponding masks) containing foreground were 

oversampled 15 times, and then augmented in the same manner as the rest of the training data. Images 

containing only background were not oversampled. 

The methods, probabilities and magnitudes of the data augmentation were heavily inspired by Zhang et. 

al. [31] and Isensee et. al. [15]. Zhang et. al. [31] propose a method for increasing domain generalization 

with data augmentation, while Isensee et. al. [15] suggest a deep learning framework for semantic 

segmentation of biomedical images. 

The data augmentation included 3D rotation around an axis, with randomized rotation between -20 and 

20 degrees. The angle was drawn from a uniform distribution. With 3D rotation the number of datasets 

used for training was “increased” and the network could be trained on more positions (seeing the objects 

from new perspectives). When 3D rotation was applied, it was applied prior to any other augmentation. 

Furthermore, the 3D rotation was applied once for each axis and 2D images and masks were extracted 

from a randomly chosen plane each. The 2D images and masks were then augmented in the same manner 

as the “original” data. 

For the following augmentations, an individual probability and magnitude were set. The probability 

describes the likelihood of an augmentation being applied and the magnitude defines how much the 

augmentation is applied. Due to the probabilities and randomized magnitudes different combinations of 

augmentations were applied. Seeing that the images containing foreground were oversampled, many 

unique versions of these images were created. The augmentations were performed in the order described 

below. 

Two-dimensional rotation was performed with a 20 % probability. The angle for rotation was randomly 

drawn from a uniform distribution of values between -15 and 15 degrees, that is U(-15, 15). Furthermore, 

scaling was implemented with the same probability as for rotation and the magnitude, in this case the 

rescaling factor, was drawn from the uniform distribution U(0.7, 1.4). If the rescaling factor was smaller 

than one an out-zoomed effect was achieved, and zero-padding was performed to make the output the 

same size as the input. For the same reason centre-cropping was performed if the rescaling factor was 

larger than one (achieving a zoomed in version of the input). Then, mirroring along the axes was applied 
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with a probability of 0.1 for each axis. These geometrical transformations increased the variation of 

positions, orientations, and “sizes” of the objects in the data. 

To simulate cases of different image quality, data augmentation altering sharpness, blurriness and noise 

level was implemented. Sharpening was applied with a probability of 0.15. The magnitude was drawn 

from a uniform distribution of values between 0.7 and 1.3. The radius for the applied sharpening had a 

radius randomly drawn from U(1, 5). Blurring with Gaussian filter had a probability of 0.1 of being 

applied, and the magnitude was U(0.25, 1.5). Then, Gaussian noise was added with a probability of 0.15, 

mean zero, and standard deviation randomly chosen from the distribution U(0, 0.1). Furthermore, 

another form of noise called speckle, was added with probability 0.2 and standard deviation 

U(0.001, 0.1). 

Finally, to imitate cases of various image appearance, augmentation affecting the brightness and contrast 

was performed. The brightness of the images was transformed with a probability of 0.15. When 

transforming the brightness, the pixel intensities in the image were multiplied by a factor randomly 

chosen from the uniform distribution of values between 0.7 and 1.3. There was a probability of 0.15 to 

transform the contrast of the images. First, the minimum and maximum pixel intensity values were 

stored. Then, the image was multiplied with a factor that was randomly selected from U(0.65, 1.5). 

Following this, the values that were smaller or larger than the stored minimum and maximum value 

were changed to the stored minimum and maximum, respectively.   

Table 1: Data augmentation that was applied prior to training the presented models. The augmentations were 

applied with the specified probabilities and magnitudes in the order they are presented. U stands for uniform 

distribution. 

Data augmentation Probability Magnitude Other information 

3D-rotation - U(-20°, 20°)  

2D-rotation 0.2 U(-15°, 15°)  

Scaling 0.2 U(0.7, 1.4) Centre output 

Mirroring 0.5 - For each axis 

Sharpening 0.15 U(0.7, 1.3) Radius U(1, 5) 

Blurring with Gaussian filter 0.1 U(0.25, 1.5)  

Gaussian noise 0.15 U(0, 0.1)  

Speckle 0.2 U(0.001, 0.1)   

Brightness 0.15 U(0.7, 1.3)  

Contrast 0.15 U(0.65, 1.5)  

Tuning of Hyperparameters 
The hyperparameters were tuned to optimize the model. Due to limited amount of time and resources 

some hyperparameter settings were fixed, and a limited number of combinations of hyperparameters 

were tested. The CNN architecture U-Net and the optimizer Adam were used throughout the project. 

Like in [15], it was prioritized to use as large patch size as possible to extract as much context from the 

images as possible which resulted in using complete 2D images. Hyperparameters, such as learning rate, 

L2 regularization strength, encoder depth, minibatch size and maximum number of epochs were varied 

over the experiments. Furthermore, different kinds of pre-processing and data augmentations were used 

through the process, as explained in the section Pre-processing and the section Data Augmentation, 

respectively. 

While the manual delineations were under construction, preliminary versions of the manually delineated 

data were used for initial tuning of hyperparameters. For instance, eight datasets were used for training 
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and one for validation of several different models.  During the initial tuning, methods for pre-processing 

and data augmentation were evaluated, as well as different encoder depths, learning rate, learning rate 

drop period, learning rate drop factor, L2 regularization strength, minibatch size, and gradient decay 

factor. 

In one experiment, networks were trained using sets of different combinations of initial learning rate, 

learning rate decay factor and L2 regularization strength during one experiment. In another, it was tested 

whether the encoder depth, set to 3, 4, 5 or 6, affected the performance. A third example of an experiment 

was when the gradient decay factor was changed between 0.85, 0.9 and 0.95. 

When all manual delineations were complete, further hyperparameter tuning was performed, see Figure 

13. First, the data was randomly split into two parts: training data and test data. The training data 

consisted of 20 of the datasets, while the test data consisted of the 5 remaining datasets. 

K-fold cross-validation, or more precisely 4-fold cross-validation, was performed for model selection. 

This meant randomly splitting the training data into four parts, each part containing five different 

datasets. By splitting the data in this manner, each fetus existed in only one of the folds. Since the 

datasets varied in size, the different parts differed somewhat in size. 

The 4-fold cross-validation was performed in combination with grid search to optimize the 

hyperparameters and select a model. With grid search, sets of different combinations of hyperparameters 

are used and tested systematically [17, pp. 427-429]. For every fold, networks of each combination of 

non-fixed hyperparameters were trained and validated. Results from the initial hyperparameter tuning 

were used as a guideline when choosing which hyperparameters to include in the grid search. 

For each fold, a grid search with 8 combinations of hyperparameters were performed – i.e., 8 different 

models. Consequently, 32 (8 × 4) training processes were completed. Each training session took about 

42 hours on one GPU, which resulted in a total of 1344 GPU hours (~ 56 GPU days), aside from initial 

tuning of hyperparameters which was performed prior to the 4-fold cross-validation and grid search. 

The models are referred to as N1-N8.   

The hyperparameters that were changed during this grid search were initial learning rate, learning rate 

drop factor and L2 regularization strength, see Table 2. The other hyperparameters were fixed (see Table 

3). The data was pre-processed by performing 3D histogram equalization. 

Table 2: Hyperparameters that were changed during 4-fold cross-validation grid search. 

Hyperparameter  

Learning rate [0.001, 0.0005] 

Learning rate drop factor [0.1, 0.5] 

L2 regularization strength [0.0001, 0.0005] 

Table 3: Fixed hyperparameters during 4-fold cross-validation grid search. 

Hyperparameter  

Encoder depth 4 

Optimization method Adam 

Gradient decay factor 0.9000 

Squared gradient decay factor 0.9990 

Epochs 6 

Minimum batch size 32 

Shuffle Every epoch 
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The performance of the eight models from the grid search was measured by computing the average 

validation accuracy for the networks trained with the same set of hyperparameters. The model (with 

hyperparameter settings) that performed best on average was selected.  

Then, the selected model was trained on the training data (all four folds). The generalization 

performance was estimated by measuring the performance of the model on previously unseen data, in 

this case the part that is referred to as test data. 

When testing the selected model, it was also investigated whether the segmentations improved when 

implementing voting. With voting, the automatic segmentation was performed from all three planes, 

instead of one. Then, voting decided the class label for each voxel. Voting was implemented to make 

the model more robust. 

 
Figure 13: Process for tuning hyperparameters – illustrating splitting of the data and 4-fold cross validation. 

Post-processing 
To further improve the performance of the selected model various combinations of post-processing were 

performed on the segmentations from the models. Methods for post-processing that were investigated 

were 3D-filling and “Keeping the largest object”, which are available functions in Segment 3DPrint. 

With 3D-filling, three-dimensional cavities in the objects were filled. By using the function “Keeping 

the largest object”, all disjointed objects belonging to the same class were removed except for the largest 

one. These functions were only implemented on the classes fetus and placenta since they were the focus 

of this project. 

Evaluation methods 
Several metrics were used to evaluate the models. During hyperparameter tuning, the performance for 

each model was evaluated by computing the global validation accuracy. The validation accuracies for 

the classes fetus and placenta were also computed as part of the evaluation. Both the training accuracy 

(minibatch accuracy) and the global validation accuracy were used to detect overtraining.  

When evaluating the selected model and methods for post-processing, several more metrics were used, 

including JSI, BF score, AVD, and normalized confusion matrix. The final algorithm was chosen based 

on the results.
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RESULTS 

To begin with, the results for the initial tuning of hyperparameters are presented. The performance was 

higher for the networks that used histogram equalization as pre-processing, than for the ones that did 

not. Furthermore, when using a larger mini-batch size, such as 32, the accuracy fluctuated less between 

iterations during training than when using a smaller minibatch size such as 2 or 4. 

For the experiment where different combinations of initial learning rate, learning rate drop factor and 

L2 regularization strength were evaluated the validation performance of the networks were quite 

uniform. Similarly, the networks in the experiment with different gradient decay factors all had about 

the same validation performance. However, out of the networks that were trained with different encoder 

depths, the network with encoder depth 4 had the highest global validation accuracy. Although, all four 

networks had overall similar results. 

Next to be presented is the results for the models in the 4-fold cross-validation and grid search. During 

the training process, the average global training accuracy and corresponding average global validation 

accuracy for each network followed about the same curve, see Figure 14 and Figure 15 for comparison. 

Average validation accuracies for each trained network can be seen in Table 4, together with the standard 

deviation between the folds. As can be seen in Table 4, the performance was about the same for all 

networks and the standard deviation between the folds was relatively small. However, network N5 

(initial learning rate 0.0005, learning rate drop factor 0.1 and L2 regularization strength 0.0001), had the 

highest average global validation accuracy before rounding the values. 

 
Figure 14: Average global training (i.e. minibatch) accuracy at each epoch during the training process for the 

4-fold cross-validation. 
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Figure 15: Average global validation accuracy at each epoch during the training process for the 4-fold cross-

validation. 

Table 4: Average validation accuracy between the four folds for the trained models in the 4-fold cross-

validation, including the standard deviation. The selected model N5 is highlighted in bold. 

Model Average global 

accuracy (std) 

Average accuracy for 

the class fetus (std) 

Average accuracy 

for the class 

placenta (std) 

N1 0.967 (0.009) 0.947 (0.023) 0.682 (0.053) 

N2 0.964 (0.008) 0.938 (0.021) 0.663 (0.075) 

N3 0.967 (0.007) 0.949 (0.020) 0.651 (0.070) 

N4 0.962 (0.006) 0.906 (0.037) 0.624 (0.078) 

N5 0.967 (0.008) 0.948 (0.020) 0.664 (0.049) 

N6 0.965 (0.008) 0.947 (0.019) 0.683 (0.067) 

N7 0.967 (0.008) 0.949 (0.018) 0.654 (0.067) 

N8 0.964 (0.007) 0.932 (0.022) 0.631 (0.049) 

Moving forward, the results for the selected model i.e., network N5, is presented. Without voting or 

post-processing, the average global test accuracy was 96.8 % for the five test cases. In comparison, it 

was 97.3 % when voting was applied, for more details see Table 5. Similarly, the accuracy, JSI and BF 

score for each class were higher for all foreground classes when voting was used, as can be seen when 

comparing the test performance presented in
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Table 6 and Table 7. The normalized confusion matrix for when voting has been implemented is 

presented in Figure 16. The segmentations of the test cases and the twin case took between 29 and 91 

seconds each on one of the GPUs when using the model with voting.  

Table 5: Test performance for the selected model that was evaluated on five test cases. 

 Global accuracy Mean accuracy Mean JSI Weighted JSI Mean BF Score 

No voting 0.968 0.762 0.694 0.941 0.790 

Voting 0.973 0.778 0.733 0.948 0.826 

Table 6: Performance for the selected model on the test 

data for each class without voting. 

Class Accuracy JSI BF Score 

Fetus 0.924 0.888 0.769 

Placenta 0.595 0.522 0.437 

Umbilical cord 0.610 0.519 0.688 

Amniotic fluid 0.686 0.570 0.668 

Background 0.993 0.972 0.899 

Table 7: Performance on the test data for the selected 

model on each class with voting. 

Class Accuracy JSI BF Score 

Fetus 0.939 0.918 0.802 

Placenta 0.596 0.544 0.451 

Umbilical cord 0.658 0.614 0.776 

Amniotic fluid 0.701 0.615 0.699 

Background 0.996 0.974 0.895 

 

Figure 16: Normalized confusion matrix for the test data that was segmented using the selected model and voting. 

Now to the results for the individual five test cases and volume quantifications. 3D-models of the fetuses 

that have been segmented with the selected model using voting are seen in Figure 17 together with their 

respective AVD and JSI. More details regarding the performance of the model on the individual cases 

are visible in Table 8. 
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Volume estimations and the corresponding absolute volume difference for each test case are presented 

in Table 9. For the class fetus the mean and median AVD for the five test cases were 4.5 % 

(std 4.9 percentage points) and 2.3 %, respectively. In comparison, the mean and median AVD were 

3.3 % (std 2.7 percentage points) and 2.6 % (min 0.06 %, max 8.6 %) respectively for the 20 validation 

cases that were evaluated on the selected model with voting from the corresponding fold in the 4-fold 

cross-validation. A plot of the predicted fetal body volumes versus the ground truth is seen in Figure 18. 

For the class placenta the mean AVD was 31.2 % (std 34.4 percentage points) and the median AVD was 

23.9 % for the test cases. For the 20 validation cases the mean and median AVD were instead 26.6 % 

(std 25.3 percentage points) and 18.3 %. 

 

 
Figure 17: 3D-models of fetuses from the five test cases – test case 1 to 5 from the left. The segmentations have 

been generated with the selected model using voting. The absolute volume difference and Jaccard Similarity 

Index for each fetus is presented. 

Table 8: Evaluation of the performance of the selected model with voting on each test case. The performance 

metrics are the average per-class accuracy and JSI, the accuracy and JSI for the class fetus, and the accuracy and 

JSI for the class placenta. 

Test case Mean Fetus Placenta 

Accuracy JSI Accuracy JSI Accuracy JSI 

1 0.511 0.482 0.849 0.832 0.153 0.151 

2 0.829 0.773 0.963 0.948 0.806 0.695 

3 0.768 0.768 0.967 0.952 0.327 0.266 

4 0.815 0.766 0.978 0.929 0.704 0.666 

5 0.863 0.814 0.965 0.949 0.904 0.949 

Table 9: Ground truth and estimated volume of the fetuses and placentas in the five test cases. The absolute volume 

difference (AVD) is also included. 

Test case Fetus Placenta 

 Ground truth 

[ml] 

Model 

[ml] 

AVD 

[%] 

Ground Truth 

[ml] 

Model 

[ml]  

AVD 

[%] 

1 3627 3150 13.2 860 142 83.5 

2 2358 2304 2.3 456 441 3.3 

3 2665 2614 2.0 674 371 45.0 

4 2997 3081 2.8 844 642 23.9 

5 3441 3369 2.1 878 879 0.1 

AVD: 2.1 % 

JSI: 0.949 

AVD: 2.8 % 

JSI: 0.929 

AVD: 2.0 % 

JSI: 0.952 

AVD: 2.3 % 

JSI: 0.948 

AVD: 13.2 % 

JSI: 0.832 
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Figure 18: Fetal body volume estimated with model N5 with voting versus ground truth. Red represents the 

validation cases from the 4-fold cross-validation and blue the test cases. The datapoints should ideally be on the 

identity line (y=x) meaning the predicted volumes equal the ground truth. 

Furthermore, a 3D-model of the fetuses in the twin-case is seen in Figure 19. The segmentation of the 

twins was generated using the selected model with voting. 

 
Figure 19: 3D-model of twins. The segmentation was created with the selected model using voting. 

The average results for the selected model when implementing post-processing on the test cases is seen 

in Table 10. 
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Table 10: Results for the evaluation of post-processing methods. For the five test cases the average accuracy and 

JSI is presented for the classes fetus and placenta, respectively. In all cases, the selected model with voting has 

been used prior to any post-processing. 

An overview of the final algorithm for segmentation of fetuses in MR images and quantification of fetal 

body volume is presented in Figure 20, which illustrates all major steps from input to output. 

 

Figure 20: The figure shows an overview of the resulting model. A 3D image is used as input to the model. In the 

first step, the image intensities are modified as part of the pre-processing. Then, 2D images are extracted from all 

three dimensions and resized. The images are then fed to the U-Net one at a time – creating 2D masks. Thereafter, 

the masks are resized, and voting is implemented to select the final voxel labels. As a final step, a 3D segmentation 

of the class fetus is extracted from the 3D mask – enabling volume quantification.

             

            

                                          

     

      

Post-processing method Fetus Placenta 

Average 

accuracy 

Average 

JSI 

Average 

accuracy 

Average 

JSI 

No post-processing 0.939 0.918 0.596 0.544 

3D-filling 0.940 0.918 0.596 0.544 

Keeping the largest object 0.939 0.918 0.585 0.549 

3D-filling + Keeping the 

largest object 

0.939 0.918 0.585 0.549 
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DISCUSSION 

The 4-fold cross-validation showed a uniform result, indicating little dependence on single cases. Even 

though the hyperparameter settings differed, there was only small differences between the average 

validation performances of the networks. Furthermore, the standard deviation of the validation 

performances between the folds was relatively small, see Table 4. This indicates that the achieved 

performances of the networks are likely not due to randomness and that the measured performance is 

realistic.  

However, as the measure global accuracy is only representative for balanced classes it is important to 

analyse how the models perform for the individual classes. Since there is a class imbalance where a 

large proportion of the data is labelled as background, the global accuracy will be biased and strongly 

depend on the network´s ability to segment the background.  

From the 4-fold cross-validation (Table 4), it can be concluded that none of the models were successful 

at segmenting the placenta. The average placental validation accuracies for the folds were not 

satisfactory (~ 65 %) and varied between and within the folds. 

While the models in the 4-fold cross-validation did not manage to segment the placenta, they were far 

better at segmenting the fetus. The average validation accuracy for the folds for the class fetus, were 

above 90 % for all eight models and had a quite low standard deviation between the folds (Table 4). 

It was no clear choice which model was best since the models performed almost equally. However, the 

one with the highest average global validation accuracy was chosen. Although, the end result would 

probably not have differed much if another model would have been selected instead. 

The performance of the selected model on the test cases was, as expected, similar to the validation 

performance of the same model that had been trained during 4-fold cross-validation. Voting improved 

the segmentations (Table 5), and especially JSI and BF score, which seems reasonable as this utilizes 

more image information. Despite the benefits of voting, it is important to be aware of the added time 

factor, which is a factor of 3. However, as the automated segmentation is performed off-line and not on 

the scanner and took between half to one and a half minute it was clear that the advantages of voting 

outweighed the time factor and should be part of the algorithm. 

Using voting, the average accuracy and JSI for the class fetus were 93.9 % and 91.8 %, respectively. By 

looking at the result for the five individual test cases in Table 8, the accuracy was around 96-97 % for 

all fetuses except for one that had 84.9 % in accuracy. Additionally, the model generally had a much 

lower performance for that specific case, see Table 8. By looking at the 3D model of the segmented 

fetus in the left image of Figure 17, it is clear that the algorithm especially failed to segment part of the 

skull. It should be noted that this particular case was experienced as one of the more difficult datasets to 

manually delineate and that there was an artifact on part of the head making the delineation more 

difficult. 

The results indicate that the model is both accurate and reliable for quantifying fetal body volume – with 

a high accuracy and JSI, and low AVD and standard deviation. The results for the fetal body volume 

estimations can somewhat be compared with the results from studies where fetal weight has been 

estimated. Nevertheless, it is important to note that the estimated fetal weight includes an additional 

parameter of uncertainty – namely the density of the fetus which can vary. Therefore, a larger margin 

of error can be expected when estimating fetal weight. Furthermore, the time between MRI examination 

and birth influence the accuracy when estimating birth weight. In the studies [4] [33] [34] the average 

or median percentage error for EFW was between 2 % and 4.8 %. Similarly, the median AVD (or median 
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percentage error) for fetal body volume estimation was 2.3 % in this study. As can be seen in Figure 18 

the performance of the model seems to be independent of the size of the fetus. Due to the good results 

for the fetus, the algorithm has been integrated in Segment 3DPrint and is thereby available for the 

Cardiac MR-group to be used for quantification of fetal body volume in both research and clinical 

practise. The algorithm will be exclusively available to the Cardiac MR-group and to fetal MR images 

generated in the same manner as the ones included in this study until further testing has been performed. 

When utilizing the algorithm, visual assessment of the generated segmentation should always be 

performed to validate and ensure the quality of the prediction before using the quantified fetal body 

volume. If necessary, adjustments should be made to the segmentation.  

The segmentations of the placentas were inconsistent, with accuracies varying between 15 % and 90 % 

for the test cases. The normalized confusion matrix in  Figure 16 provides a clue to the result. On average 

37.1 % of the pixels that should have been labelled as placenta were falsely classified as background, 

which strongly indicates that the algorithm has trouble differentiating the placenta from the background. 

It is not completely clear why the result for the placenta was worse than for the fetus. Perhaps it is a 

more challenging imaging segmentation task due to the properties and varying shape and position of the 

placenta. The features of the fetus might be easier for the model to identify than the ones for the placenta. 

It would be interesting to investigate this further and compare inter-observer variability. 

When selecting which cases to include and exclude, it was sometimes challenging to determine whether 

the quality of the images was adequate – or if they contained too many artefacts. Which level of quality 

that is sufficient for inclusion is rather difficult to decide and could be further discussed. To further 

expand the application of the model, multiple pregnancy cases and cases with noticeable anatomical 

anomalies could be included in future models. Additionally, cases from other weeks of gestation could 

be incorporated. 

Post-processing did not seem to improve the performance particularly. For the class fetus, this suggests 

that the model is successful enough to mainly segment the fetus as a single object and to not create false 

cavities. On the other hand, the post-processing method “Keeping the largest object” seemed to affect 

the segmentation of the placenta. This could indicate that several objects are created when segmenting 

the placenta with the model, which was confirmed when visually assessing the predictions. 

Beside for quantification of fetal body volume, the method presented in this study could be used for 

other purposes such as 3D-modelling and 3D-printing of the fetus. For this reason, it would be interesting 

to investigate post-processing further. Post-processing could perhaps be used for other purposes – for 

example to generate more visually appealing 3D-models using smoothing. 

In this study, manual delineations were considered as ground truth. For the manual delineations, it would 

have been interesting to investigate the inter-observer variability and compare it with the automatic 

segmentations. Furthermore, this study focused on volume quantification of the fetus and placenta, since 

it is of clinical relevance and was requested by the physicians and researchers in the Lund Cardiac MR 

group. However, it would be interesting to explore volume quantification of the amniotic fluid further 

as it also can be of clinical interest. 

During this project, a single network architecture has been used. Perhaps other architectures could have 

yielded better results.  Furthermore, the optimal set of hyperparameters might not have been found 

during tuning of hyperparameters. This leaves room for further improvement of the model. It would for 

instance be interesting to investigate how a 3D U-Net performs on the task, since more spatial 

information is used than for the 2D U-Net. 
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Perhaps another loss function, such as dice loss, could have been used instead of cross entropy error to 

make up for the class imbalance. However, the excellent result in AVD indicates that although the class 

balance the segmentation have no clear bias. In addition, it the Jaccard Similarity Index possibly could 

have been used as evaluation metric when tuning the model. 

Furthermore, it would be interesting to use data from various sites, and data that has been collected using 

different MRI protocols and scanners from different vendors since the data used in this study was 

collected at a single hospital, using one specific acquisition protocol. Perhaps this could make the model 

even more robust.  

Ideally, all data would have been manually delineated before training, validating, or testing any of the 

deep neural networks. Then, the data could have been randomly split into training data, validation data 

and test data, with no overlapping or bias on how the data was split. However, in this case the 

delineations were not complete when starting this study. Instead, the manual delineations were 

performed in parallel with training and tuning the networks. It was first unsure how many datasets that 

would be possible to include. Therefore, the manual delineations were initially performed on the datasets 

that, by visual assessment, looked easiest to manually delineate. To make use of time, initial tuning of 

hyperparameters was performed using the delineated datasets available at that time. The datasets that 

were last to be delineated could then have been used for testing. However, the non-random order of 

delineation could in that case affect the estimated performance of the networks, introducing bias.  To 

avoid having the data split into parts considered more or less difficult, the data was randomly split before 

starting k-fold cross-validation. However, this meant that some of the datasets that had been used 

previously would now be used for testing. This could lead to an overly optimistic estimate of 

generalization performance. It is hard to say how much this will influence the results and reliability of 

the results, especially since the overlap was for initial tuning of hyperparameters and that the final model 

was solely selected based on the result from the k-fold cross-validation, from which there was no overlap 

between training, validation, and testing data.  
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CONCLUSION 

The aim of creating a fully automatic model was fulfilled. However, the model failed to segment the 

placenta and estimate its volume in a satisfactory manner. The model was considerably better at 

segmenting the fetus and was successful at quantifying fetal body volume. Furthermore, the results 

indicate that the method is both accurate and reliable for quantifying fetal body volume. Nevertheless, 

it would be interesting to test the model on MR images from other sites. The algorithm is integrated in 

Segment 3DPrint, and thereby available for the Cardiac MR-group to be used for quantification of fetal 

body volume in both research and clinical practise. This will most likely save time and resources and 

enable further implementation of fetal body volume estimation. In the end, this could lead to improved 

diagnostics.
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