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Abstract

In the 2017 paper by Arévalo and Söderlind [2] a framework was established
for creating linear multistep methods of various classes based on a polynomial
formulation which includes variable step size adaptivity. These classes are: k
step explicit and implicit methods of order k and k+ 1 respectively for nonstiff
problems (such as Adams methods), and k step implicit methods of order k for
stiff problems (such as BDF methods). For each method class and order, all
multistep methods of maximal order, including those which lack zero stability,
are given by a parametrization depending on the method class and order. In this
paper we conduct a pre-study on low order methods, comparing the properties
of methods of the same class and order, and present experimental results when
these methods are applied to simple test problems. We are motivated by the
possibility of using method changes as a primary means of error control in solvers
alongside traditional error control tools such as step size variability and order
control. This paper also discusses some of the difficulties encountered during
the research and concludes with questions for future study.
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Chapter 1

Introduction

The study of ordinary differential equations (ODEs) and initial value problems
(IVPs) has been around since at least the 1700s. IVPs arise naturally in many
different fields of science and engineering and understanding how to solve them
is necessary for the development of these subjects. However, most IVPs have
no readily available theoretical solution. Therefore it is important to develop
numerical methods that can give a “sufficiently good” approximation of the
solution.

The simplest numerical method for solving IVPs is the Explicit Euler method,
dating back to the 1768 work by Leonhard Euler [7]. This is a time-stepping
scheme where solution values are approximated at grid points in an iterative
fashion, using data from the previous time point to approximate the solution
value at the next. In order to work, this procedure only requires the ODE and
initial value, as well as a choice of step size. In theory, this is the only infor-
mation that should be required, since Picard’s Theorem states that any IVP
satisfying some mild continuity requirements will have a unique solution [20,
Thm 12.1]. However, since this is a numerical scheme, some amount of error is
incurred in each step, and so mathematicians have sought to develop methods
to improve the quality of the results. The two main types of numerical methods
are Runge-Kutta methods, which take stage derivatives between the grid points
in order to approximate the average rate of change more accurately, and linear
multistep methods, which use some of the previous time steps to more accurately
interpolate the objective function. This paper focuses on the latter.

There is a distinction to be made between a numerical method and a nu-
merical solver. A numerical method is simply a formula for approximating the
solution at the next time point. However, this approximation can vary in qual-
ity, depending on the size of the step, the quality of the previous estimates,
and the properties of the IVP itself. Thus, it is necessary to develop numerical
solvers, which attempt to take an error estimate at each step, and use various
heuristic schemes to control this error.

Since the choice of step size is somewhat free, most solvers use dynamic
step size changes to control the quality of the approximation. It is important

5



CHAPTER 1. INTRODUCTION 6

to point out the difference between variable step size multistep methods which
can account for non equidistant grids, and solvers using fixed step-size methods
which can vary the grids. A solver using the former can change the step size, in
any step if desired, with some degree of liberty, while a solver using the latter
implements a fixed step size method locally, then must perform some type of
re-gridding and interpolation when a step size change is deemed necessary. An
overview of how step size control works is presented in [3].

It is also common for solvers to perform order control, see [9, 13, 17]. This
means selecting a different method of a different order, although it may be a
method from the same family, such as Adams or BDF. Since the goal is usually to
maximize the step size, therefore minimizing the total number of steps and work
to be done, while maintaining a desired degree of accuracy, the typical scheme
for order control is: when the solver is ready to consider an order change, it
will simulate the next step with a method of one order higher, and a method of
one order lower. Then the solver will estimate errors for all methods (current,
higher, and lower order) and determine the next step size for each. Whichever
method is able to take the largest step is chosen.

While a solver implementing a variable step size multistep method can
change step size continuously, many solvers choose to keep the step size fixed
until a change is deemed necessary, for example see [13, 17]. This usually hap-
pens when the error estimate becomes too large or sufficiently small, but it can
also be triggered by issues in other parts of the integration, such as a nonlinear
iteration failing to converge. It has been observed that this scheme can lead to
unpredictable work-accuracy results: sometimes, a small change in solver pa-
rameters or IVP properties can lead to unpredictable changes in total steps and
performance, see [23, 24]. Furthermore, method changes are usually carried out
only in the form of order changes, which are therefore discrete. Thus a solver
will in practice only ever implement a small handful of methods.

Until recently, variable step size multistep methods were limited to specific
implementations, usually Adams-like implicit methods for nonstiff problems and
BDF-like implicit methods for stiff problems, see [4, 5, 11, 15, 17]. However,
the new work by Arévalo and Söderlind in [2] generalizes this idea to allow con-
struction of variable step size implementations of all relevant multistep methods
of maximal order for a given method class.

The purpose of this paper is to study these new classes of methods and
determine some basic properties about them in order to motivate the possibility
of using method changes through a continuous parametrized class as a primary
means of error control. In Chapter 2 we present the mathematical background
of linear multistep methods and describe the basic properties of solvers which
utilize them. In Chapter 3 we introduce the parametrized classes of methods
and discuss the MODES software by Arévalo et al., a Matlab software pack
implementing these methods for the solution of IVPs. In Chapter 4 we present
properties of several low order method classes and experimental results of these
methods applied to test problems. Finally in Chapter 5 we discuss some of the
difficulties which arose during the course of this research and present questions
for future study.



Chapter 2

Background

2.1 Linear Multistep Methods

An ordinary differential equation (ODE) is an equation of the form

ẏ = f(t, y). (2.1)

An initial value problem (IVP) is a problem of finding a differentiable function
y satisfying an ODE and initial value of the form

ẏ = f(t, y), y(t0) = y0, t ∈ [t0, tf]. (2.2)

With some simple restrictions on the function f , the IVP will have a unique
solution [20, Thm. 12.1].

A linear multistep method (LMM) is a type of formula used to compute a
sequence of pointwise approximations {yn}Nn=0 to the solution of (2.2) where
yn ≈ y(tn) is an approximation to the solution at each time point and {tn}Nn=0

is some gridding of the interval [t0, tf]. An LMM uses k previous estimates and
their function evaluations to compute an estimate for the next time point. In
this case it is called a k step method. If tn− tn−1 = h for all n and some fixed h,
we say that the method is fixed step size, in which case it is usually represented
as

k∑
i=0

αk−iyn−i − h
k∑
i=0

βk−iy
′
n−i = 0 (2.3)

For variable step size methods, hn−i−1 = tn−i − tn−i−1 will be inside the
sum and the α and β coefficients will depend on the previous k step size ra-
tios hn−i/hn−i−1. Here y′i = f(ti, yi) is a sample of the vector field defining
the ODE. This is different from the time derivative of the solution, since the
numerical solution often does not lie on a single trajectory. Note that the index-
ing convention chosen here may differ from other literature. The polynomials
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CHAPTER 2. BACKGROUND 8

defined by

ρ(z) =

k∑
j=0

αjz
j (2.4)

σ(z) =

k∑
j=0

βjz
j . (2.5)

are called the characteristic polynomials of the method and will be useful for
analysis.

The normalization αk = 1 is often used. If βk = 0 the method is called
explicit. In this case, the values yn−k, . . . , yn−1 and y′n−k, . . . , y

′
n−1 are “plugged

in” to the equation to solve for yn in each step. If βk 6= 0 then the method is
called implicit, in which case a nonlinear equation for yn must be solved in each
step since y′n depends on yn. This is often solved using fixed-point iteration or
Newton iteration [6]. Some solvers like CVODE have several choices of nonlinear
solvers and many options for their parameters [13].

2.1.1 Error

Obviously it is important that the values {yn} returned by the method are a
reasonable approximation to the function y(t), the actual solution to the IVP.
To measure how good of an approximation it is, we measure the error. For
a given method and problem, this is formulated as a function of the (newly
calculated) time point (tn, yn) and the step size hn = tn− tn−1. There are three
different types of errors:

� Global Error - En = |yn−y(tn)| is the difference between the computed
solution and the exact solution at point tn. Ideally, the goal is to minimize
this, however if the exact solution is not known, this is impossible to
evaluate. Therefore the global error can only be used as a research tool
to study the quality of numerical methods on IVPs with known solutions.

� Local Error - Ln = |yn − ỹ(tn)| where ỹ is the solution to the IVP
ẏ = f(t, y), y(tn−1) = yn−1. This means the error at the newly computed
point, assuming the solution at the last point was exact. Since the global
error is an accumulation of local errors, the global error can in theory be
controlled by controlling the local errors.

� Local Truncation Error - Tn = |yn−ỹ(tn)| where ỹ is as before, but now
yn is the result of applying the k-step LMM to the points {yn−k, . . . , yn−1}.
The distinction is that since the points are themselves approximations,
they often do not lie on the same solution curve. Therefore this is the
error of the LMM assuming that the last k points are all exact. This
error can be estimated, and so it is the most useful quantity to consider
when discussing error control. Therefore throughout the rest of this paper,
when discussing error, the local truncation error will always be used unless
specified otherwise.



CHAPTER 2. BACKGROUND 9

Sometimes error per unit step is used instead and these values are divided
by hn.

2.1.2 Order of Consistency

The following derivations are from [20, Ch. 12] but multiplied through by h to
use error instead of error per unit step. Alternate derivations can be found in
[6, Ch 4.1.4], [9, Ch 8.1] or [10, Ch III.2]. A method of form (2.3) is said to
be consistent of order p if p is the largest positive integer such that, for any
sufficiently smooth solution y(t) of (2.2),

Tn = O(hp+1) (2.6)

for the truncation error produced by the method at any point tn. This is
equivalent to the method being exact whenever the solution y(t) is a polynomial
of at most degree p. A method is said to be consistent if it is consistent of at
least order one. To determine the order of a method, we write the truncation
error (neglecting absolute value) as

Tn = yn − ỹ(tn) (2.7a)

=

∑k
j=0 αjy(tn−k + jh)− h

∑k
j=0 βj ẏ(tn−k + jh)∑k

j=0 βj
. (2.7b)

Note that the indices are now reversed, since the next step is to expand this
formula in a Taylor series around the point tn−k, the furthest point back. This
results in a series of the form

Tn =
C0y(tn−k) + C1hẏ(tn−k) + C2h

2ÿ(tn−k) + · · ·∑k
j=0 βj

. (2.8)

The constants Cq can now be given explicitly as

C0 =

k∑
j=0

αj , (2.9a)

C1 =

k∑
j=0

jαj − βj , (2.9b)

Cq =
1

q!

k∑
j=0

jqαj − qjq−1βj . (2.9c)

Then it is clear that a method is of order p if and only if Cq = 0 for q = 0, . . . , p
and Cp+1 6= 0. This means that for a method to be consistent, it must be the
case that C0 = C1 = 0, and therefore ρ(1) = 0 and ρ′(1) = σ(1) ( 6= 0).

Since
∑k
j=0 βj = σ(1), the error can be written as

Tn =
Cp+1

σ(1)
hp+1y(p+1)(tn−k) +O(hp+2) (2.10)
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The constant
Cp+1

σ(1) is called the error coefficient of order p. For an order p

method, this is normally just called the “error coefficient” or “error constant.”
We make a slight distinction here since we will typically be dealing with k
step methods of orders depending on k: for explicit methods, p = k, and for
implicit methods p = k or p = k+1. However there will be a few instances where
methods which are expected to have a certain order will attain higher order, and
in these situations we would like to consider these methods as having zero error
coefficient for their “designated” order, while having some other error coefficient
for the higher order. Although this coefficient can be negative depending on how
it is defined, we will always refer to its absolute value.

2.1.3 Stability

A method is said to be stable if small perturbations in starting values do not
cause the results of the numerical method to change without bound. Formally, a
method is said to be stable if for every IVP (2.2), there exists a constant K such
that if (x0, . . . , xk−1) and (y0, . . . , yk−1) are two different sequences of starting
values generating the sequences (xn), (yn), then

|xn − yn| ≤ K ·max{|x0 − y0|, . . . , |xk−1 − yk−1|} (2.11)

for tn ≤ tf and K not depending on h [20, Def. 12.3].
This condition is known as zero stability since it is sufficient to prove that it

holds for the trivial equation y′ = 0. Fortunately, there is an easy way to check
whether or not a method is zero stable. The following theorem is known as the
Root Condition

Theorem 2.1.1. A linear multistep method is zero stable if and only if the
roots of the characteristic polynomial ρ(z) all have magnitude less than or equal
to one, with those having magnitude one being simple roots.

A proof of this theorem can be found in [20, Thm. 12.4]. Since ρ(1) = 0
for consistent methods, there is always at least one root of magnitude one. A
method is called strongly stable if this is the only such root, and weakly stable
if there is at least one other (simple) root of magnitude one. In this paper,
when referring to stable methods we always mean strongly stable, except when
stated otherwise. We will see in the next section that zero stability is extremely
important.

Another important concept is the stability region of a method. This is deter-
mined by applying the method to the Linear Test Equation y′ = λy with step
size h. Doing so produces the linear recurrence relation

k∑
i=0

αk−iyn−i − hλ
k∑
i=0

βk−iyn−i = 0, (2.12)

which can be written as
AYn = Yn+1, (2.13)
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where Yn is the vector of points, Yn = (yn, . . . , yn−k)T . Then the top row of
this matrix is (αk − hλβk, . . . , α0 − hλβ0) and everything underneath is a shift
matrix consisting of ones below the main diagonal and zeros elsewhere. This
matrix has characteristic polynomial

π(z;hλ) = ρ(z)− hλσ(z) = 0 (2.14)

and therefore the iteration is stable precisely when this polynomial satisfies the
Root Condition. The set of hλ ∈ C for which the method is stable is called the
stability region of the method. A method which is stable in the entire negative
half plane is called A-stable. Zero stability is equivalent to zero being in the
stability region of the method.

2.1.4 Convergence

A method is said to be convergent if the global error at every point in the
approximation goes to zero as the step size decreases. This means that the
approximation begins to approach the true solution as the step size decreases
and more grid points are used.

The Dahlquist Equivalence Theorem says that a method is convergent if and
only if it is both consistent and stable [20, Th. 12.5]. Furthermore, a method
which is consistent of order p has global error En = O(hp).

The Dahlquist Barrier Theorem states that the maximum order a convergent
k step method can attain is:

k for explicit methods

k + 1 for implicit methods with k odd

k + 2 for implicit methods with k even.

(2.15)

A proof of this theorem can be found in [10, p. 385].

2.2 Solver Properties

While a multistep method gives a scheme for computing a sequence of pointwise
approximations to the solution of a differential equation, a solver is a standalone
algorithm whose job is to return “good” approximations to IVPs. What makes
for a “good” solution involves several components and tradeoffs must be made to
balance each consideration. We present here some of the fundamental properties
that a solver should satisfy.

2.2.1 Error Control

Fundamentally, the job of a solver is to return a solution which is an accurate
approximation to the solution of the IVP. It is important that the user should
be able to expect the global error to be sufficiently small. To do this, the solver
must take as input a specified tolerance TOL. The solver then estimates the
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truncation error and then makes adjustments to the integration in an attempt
to keep this error reasonably close to TOL. Although the solver may not be able
to actually keep the truncation error less than TOL, it is usually the case that
the global error can be kept approximately proportional to it, and therefore by
changing the tolerance by a factor of M , the global error will also change by
approximately a factor of M . This principle is called tolerance proportionality.
The purpose of tolerance proportionality is to give the user the choice between
a faster, less accurate solution, or a slower, more accurate solution.

Usually, the primary control scheme is the step size. If the estimated error
is too large, the solver will reduce the step size in order to reduce the error.
Similarly if the estimated error is sufficiently small, the solver will increase the
step size in order to speed up the computation.

Another common control scheme is order control, which allows the solver to
select a higher or lower order method, if such a change can produce better re-
sults. Furthermore, if there is a problem at any step, such as the error controller
suggestic a drastic step size change, or a nonlinear convergence failure, the order
of the method can be reduced to one in an attempt to overcome problematic
areas in the IVP.

2.2.2 Stability

Generally speaking, a stable solver is one which is able to return a “well-
behaved” solution to a “well-behaved” problem. This means that small de-
viations encountered during the integration process should not cause large de-
viations in the results. This requires all parts of the solver to work together:
for example, the solver must use stable methods in order to be convergent, but
it must also choose step size sequences which are within the stability regions
of the methods. It should also be the case that a small change in the step size
sequence does not cause a large change in the solution. This could occur if the
starting values are slightly changed, or if a different error controller is chosen.

However, stability clearly depends on the properties of the IVP itself. For
example, if a step size is chosen which is a multiple of an oscillatory frequency
in the problem, then the solver will encounter resonance and this component of
the solution will grow instead of oscillating. It is the job of the solver to try to
avoid these pitfalls wherever possible.

It is extremely important that solvers are stable since errors will be incurred
during the integration process. If a small error can lead to a large change in the
accuracy of the solution, then the results of the solver are unreliable.

2.2.3 Computational Efficiency

It is important for a solver to be able to perform its task with a reasonable
amount of computational resources. If a solver is more efficient, it can produce
higher quality results faster. Even assuming software is running on a “modern”
computer, the solution of an IVP can take milliseconds or days, depending on
the difficulty of the problem and the efficiency of the solver. It is also usually
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important for a solver to be able to halt computation when the workload is
too much. This is usually done by checking if a maximum number of steps has
been reached, or if a designated amount of time has passed. A solver may also
give up if results become too large. This may be the result of instability or a
convergence failure. These limits are clearly situational and therefore must be
controllable by the user.

2.2.4 Stiff Tolerance

The concept of stiffness has multiple definitions. One definition is the presence
of factors which decay many orders of magnitude faster than the time scale of
the problem. Stiff problems challenge the stability and efficiency of solvers. Not
all methods nor all solvers are suitable for stiff problems, but stiff problems
arise in real life scenarios and so stiff tolerant solvers are necessary for practical
computations.



Chapter 3

Trigonometric
Parametrization of Methods

Following the construction in [2], we build k-step methods as polynomial meth-
ods. This means that in a typical step from tn−1 to tn we construct a polynomial
Pn which approximates the solution point by

yn = Pn(tn). (3.1)

A polynomial of degree p will define a method of at most order p. By the
Barrier Theorem, the degree of a k step method is limited, and so they will be
constructed to achieve at most order k + 1 if the method is implicit, or order
k if the method is explicit. Therefore instead of interpolating at all previous
points we leave a “slack” at a few of them characterized in the following way:

For given sequences {(tn−i, yn−i)}ki=1 and {y′n−i} = {f(tn−i, yn−i)}, and
polynomial Pn, the state slack sn−i and derivative slack s′n−i at tn−i are defined
by

sn−i = Pn(tn−i)− yn−i, s′n−i = Ṗn(tn−i)− y′n−i. (3.2)

For a given θk−i, the polynomial Pn is said to satisfy the slack-balance condition
at tn−i if

sn−i cos(θk−i) + hn−is
′
n−i sin(θk−i) = 0 (3.3)

where hn−i = tn+1−i − tn−i
In addition, we have the interpolation condition sn−1 = 0 and the explicit

collocation condition s′n−1 = 0, as well as the implicit collocation condition

Ṗn(tn) = f(tn, Pn(tn)), which can be considered as s′n = 0.
These conditions can be used to describe one step methods. The unique one

step explicit method is the Explicit Euler method, where the (linear) polyno-
mial used to determine the next point satisfies the interpolation and explicit
collocation conditions. By allowing the method to be implicit, the order can be
raised to two by requiring the polynomial to also satisfy the implicit collocation

14
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condition: this is the Trapezoidal Rule. By removing the order two require-
ment, the interpolation and explicit collocation conditions can be replaced by
a slack-balance condition, giving the one step implicit Theta Methods. When
the slack-balance condition degenerates to only an interpolation condition, the
Implicit Euler method is obtained.

Interestingly, all higher order methods can be constructed from this template
by adding slack-balance conditions to the points tn−2, ..., tn−k. This leads to the
definitions of the following three classes of multistep methods:

� Ek methods - Explicit methods of at least order k, nθ = k − 1. The
polynomial Pn is uniquely determined by the conditions:

sn−1 = 0

s′n−1 = 0

sn−i cos(θk−i) + hn−is
′
n−i sin(θk−i) = 0 i = 2, . . . , k

(3.4)

� Ik methods - Implicit methods of at least order k, nθ = k. The polyno-
mial Pn is uniquely determined by the conditions:

Ṗn(tn) = f(tn, Pn(tn))

sn−1 cos(θk−1) + hn−1s
′
n−1 sin(θk−1) = 0

sn−i cos(θk−i) + hn−is
′
n−i sin(θk−i) = 0 i = 2, . . . , k

(3.5)

� I+k methods - Implicit methods of at least order k + 1, nθ = k − 1. The
polynomial Pn is uniquely determined by the conditions:

Ṗn(tn) = f(tn, Pn(tn))

sn−1 = 0

s′n−1 = 0

sn−i cos(θk−i) + hn−is
′
n−i sin(θk−i) = 0 i = 2, . . . , k

(3.6)

In practice, θk−i can be chosen in whichever interval of length π is most
convenient. In this paper, we choose θk−i ∈ [0, π], with redundancy at the
endpoints.

In [2] it is shown that all I+k methods are at least order k + 1 and proofs
that methods from the other two classes are at least order k can be constructed
similarly. However, although all methods achieve at least the designated order,
not all methods generated in this fashion are zero stable.
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3.1 Parametric Equivalence Theorem

In [1, Thm 2.1] the following theorem is given:

Theorem 3.1.1 (Parametric Equivalence). For a particular method with poly-
nomial formulation (3.4), (3.5), or (3.6), and constant step-size formula (2.3),
the following parametric relations hold:

tan(θj) = −βj
αj
, j = 0, . . . ,K, (3.7)

with K = k − 2 for Ek and I+k methods, or K = k − 1 for Ik methods.

Thus, given a k-step method of proper order in fixed step size form (2.3),
one can determine the method class and θ parametrization using this theorem.
To go the other way however is slightly more complicated; given a method class
and θ vector, one must solve the consistency equations to determine the fixed
step size formula. This means setting C0 = · · · = Cp in Equation (2.9) and
solving for the α and β coefficients, which is a system of size p+ 1.

3.2 Common Methods

There are several common multistep methods which have been developed and
used in commercial solver software. The following derivations are detailed in
[8], other good references include [10, 14, 18]. We use the notation fn−i =
f(tn−i, yn−i) to denote function evaluations of previous time points, whether
computed via a numerical scheme or given as initial data.

3.2.1 One Step Methods

Discussions of multistep methods usually begin with the Explicit and Implicit
Euler methods. The Explicit Euler Method is given by the formula:

yn = yn−1 + hfn−1. (3.8)

This is a one step explicit method, which only uses the approximation at the
previous time point and its function value to calculate the next point. Replacing
the function value at the previous point with the function value at the next point,
we obtain the Implicit Euler Method :

yn = yn−1 + hfn. (3.9)

As this is now an implicit method, a nonlinear system must be solved in each
step for yn. As mentioned before, this is usually done through an iterative
method. The Implicit and Explicit Euler methods are both order one methods.
However, by taking an average of function values one can obtain the Trapezoidal
Rule:

yn = yn−1 +
h

2
(fn−1 + fn). (3.10)

The Trapezoidal Rule is the unique one step method of order two.
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3.2.2 Adams-Bashforth Methods

Moving on to methods which are more traditionally considered “multistep,” we
have the family of explicit Adams-Bashforth methods. These are derived by
writing (2.1) as an integral from tn−1,

y(t) = yn−1 +

∫ t

tn−1

f(τ, y(τ))dτ, (3.11)

and then substituting a polynomial approximation for the integrand. To calcu-
late a given yn, we assume the previous k approximations {yn−k, . . . , yn−1} and
time points {tn−k, . . . , tn−1} are given. We can then calculate the respective
function values {fn−k, . . . , fn−1} and form the unique interpolating polynomial
πk−1 of degree k − 1 with the property πk−1(tn−i) = fn−i for i = 1, . . . , k. We
write this polynomial using the Lagrange basis polynomials, defined by

lik−1(t) =

k∏
j=1
j 6=i

t− tn−j
tn−i − tn−j

, (3.12)

with the property lik−1(tn−j) = δij (Kronecker delta), so that πk−1 can be
written as

πk−1(t) =

k∑
i=1

lik−1(t)fn−i. (3.13)

Putting this approximation into Equation (3.11), we have:

y(t) ≈ yn−1 +

k∑
i=1

(∫ t

tn−1

lik−1(t)

)
fn−i. (3.14)

The right hand term is a degree k polynomial which we evaluate at tn to ap-
proximate yn, so it is of the form (3.1). This polynomial satisfies

Pn(tn−1) = yn−1, (3.15a)

Ṗn(tn−1) = fn−1, (3.15b)

Ṗn(tn−i) = fn−i, i = 2, . . . , k, (3.15c)

and therefore the Adams-Bashforth methods are the family of Ek methods (3.4)
with θk−i = π/2 for i = 2, . . . , k.

For a fixed step size h = tn+1−i−tn−i the basis polynomials can be integrated
directly to give the formulas for the Adams-Bashforth k step Methods (AB-k).
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Below are the formulas for 1 ≤ k ≤ 5:

yn = yn−1 + hfn−1 (Explicit Euler) (3.16a)

yn = yn−1 + h

(
3

2
fn−1 −

1

2
fn−2

)
(3.16b)

yn = yn−1 + h

(
23

12
fn−1 −

16

12
fn−2 +

5

12
fn−3

)
(3.16c)

yn = yn−1 + h

(
55

24
fn−1 −

59

24
fn−2 +

37

24
fn−3 −

9

24
fn−4

)
(3.16d)

yn = yn−1 + h

(
1901

720
fn−1 −

2774

720
fn−2 +

2616

720
fn−3 −

1274

720
fn−4 +

251

720
fn−5

)
.

(3.16e)

Since the Adams-Bashforth methods are the unique k step explicit methods of
order k with α = (1,−1, 0, . . . , 0), the θ vector can also be determined by the
Parametric Equivalence Theorem 3.1.1.

3.2.3 Adams-Moulton Methods

By removing the explicitness requirement and including tn as an interpolating
point, we can raise the order of the method by one to obtain the Adams-Moulton
methods. We now include tn in the basis polynomials as

lik(t) =

k∏
j=0
j 6=i

t− tn−j
tn−i − tn−j

(3.17)

and similarly define πk as

πk(t) =

k∑
i=0

lik(t)fn−i. (3.18)

Similar to Equation (3.14), the basis polynomials can be integrated to create
the formula

y(t) ≈ yn−1 +

k∑
i=0

(∫ t

tn−1

lik(t)

)
fn−i. (3.19)

This is now an implicit scheme and so the formula for yn must be solved it-
eratively. The right hand side is a degree k + 1 polynomial of the form (3.1)
satisfying

Ṗn(tn) = yn, (3.20a)

Pn(tn−1) = yn−1, (3.20b)

Ṗn(tn−1) = fn−1, (3.20c)

Ṗn(tn−i) = fn−i, i = 2, . . . , k, (3.20d)
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and therefore the Adams-Moulton methods are the family of I+k methods (3.6)
with θk−i = π/2 for i = 2, . . . , k.

For a fixed step size, we obtain the Adams-Moulton k step methods (AM-k).
Below are the formulas for 1 ≤ k ≤ 4:

yn = yn−1 + h

(
1

2
fn −

1

2
fn−1

)
(Trapezoidal Rule) (3.21a)

yn = yn−1 + h

(
5

12
fn +

8

12
fn−1 −

1

12
fn−2

)
(3.21b)

yn = yn−1 + h

(
9

24
fn +

19

24
fn−1 −

5

24
fn−2 +

1

24
fn−3

)
(3.21c)

yn = yn−1 + h

(
251

720
fn +

646

720
fn−1 −

264

720
fn−2 +

106

720
fn−3 −

19

720
fn−4

)
.

(3.21d)

In an identical situation to the Adams-Bashforth methods, the Adams-Moulton
methods are the unique k step implicit methods of order k + 1 with α =
(1,−1, 0, . . . , 0), and therefore θ can be determined from the Parametric Equiv-
alence Theorem 3.1.1.

3.2.4 BDF Methods

By instead considering an interpolation polynomial on the solution points, we
derive the following scheme to construct the Backwards Differentiation Formu-
las. We would like to construct a degree k polynomial πk satisfying the following
conditions:

πk(tn−i) = yn−i, i = 0, . . . , k (3.22a)

π̇k(tn) = ẏn = fn, (3.22b)

where yn is computed by (implicitly) evaluating πk(tn) = yn. We start by
writing the interpolation polynomial

πk(t) =
k∑
i=0

lik(t)yn−i, (3.23)

and then differentiating the Lagrange basis polynomials to get the equation

π̇k(t) =

k∑
i=0

l̇ik(t)yn−i, (3.24)

and then evaluating at tn to obtain the formula

fn =

k∑
i=0

l̇ik(tn)yn−i. (3.25)
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This formula is again implicit and requires an iterative scheme to determine the
new point yn. The polynomial πk itself now fits the form (3.1), and so Pn = πk
satisfies:

Ṗn(tn) = yn, (3.26a)

Pn(tn−1) = yn−1, (3.26b)

Pn(tn−i) = yn−i, i = 2, . . . , k, (3.26c)

and therefore the BDF methods are the family of Ik methods (3.5) with θk−i = 0
for i = 1, . . . , k.

For a fixed step size h, the Lagrange basis polynomials are differentiated to
obtain the Backwards Differentiation k-step Formulas (BDF-k) for 1 ≤ k ≤ 6.

hfn = yn − yn−1 (Implicit Euler) (3.27a)

hfn =
3

2
yn − 2yn−1 +

1

2
yn−2 (3.27b)

hfn =
11

6
yn − 3yn−1 +

3

2
yn−2 −

1

3
yn−3 (3.27c)

hfn =
25

12
yn − 4yn−1 + 3yn−2 −

4

3
yn−3 +

1

4
yn−4 (3.27d)

hfn =
137

60
yn − 5yn−1 + 5yn−2 −

10

3
yn−3 +

5

4
yn−4 −

1

5
yn−5 (3.27e)

hfn =
147

60
yn − 6yn−1 +

15

2
yn−2 −

20

3
yn−3 +

15

4
yn−4 −

6

5
yn−5 +

1

6
yn−6.

(3.27f)

The BDF methods are the unique implicit methods of order k with β = (βk, 0, . . . , 0).
The normalization of the highest term depends on the choice to set αk = 1,
which it is not in the above formulas, but the conclusion about θ from the
Parametric Equivalence Theorem 3.1.1 remains the same.

The BDF methods are only zero stable for k ≤ 6. The advantage to using
these BDF methods is that they are stiff-stable: for each of these methods, the
stability region contains the entire negative real axis.

These are the most common multistep methods. They are used in industrial
solver software such as ODEPACK, SUNDIALS, and other solvers [4, 5, 11,
12, 13, 15, 17]. They also appear in just about every academic text which
discusses multistep methods [6, 8, 9, 10, 14, 18, 19, 20]. Their ubiquity makes
them excellent reference methods from each class, and therefore it is valuable
to consider the performance of other multistep methods in comparison to the
corresponding Adams or BDF method of the same step number and order.

3.3 The MODES software

MODES is a Matlab software package for solving IVPs using parametrized mul-
tistep methods of variable step size and order. It is documented in [1] and can
be downloaded here: https://github.com/mss1972/MODES_v1.0. The main
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feature of MODES is the modes function which takes as input a right-hand side
function f, an initial value y0 and a time interval tSpan and returns the result
of the simulation as two vectors t and y. The modes function has a number of
optional parameters, most importantly the ’methodclass’ variable which can
be ’E’, ’I’ or ’Ip’, designating the class of method to use. This variable is set
in conjunction with ’methodfunc’, which should be a function of the variable
p, the order, that returns the θ vector of the appropriate length, determining
the method for each order.

Since this paper focuses on comparing methods from the same class and
order, the order control feature is not used, and instead a fixed order is set
during integration with methodfunc being set to a function returning a constant
value. There is also the possibility to choose ’methodname’ which selects a
named family of methods for various orders, such as Adams-Bashforth, Adams-
Moulton, BDF, or other named families such as EDF, dcBDF, or Nyström
methods.

MODES has the option to set a filter for step size control, as well as error
weight parameters and norm function. The theory behind MODES’ step size
control features is discussed in [1] as well as [3, 21, 22]. Most importantly, the
step size is changed in every step, with the step size ratio being limited to the
interval [0.8, 1.2] by default. The purpose of this is to try to keep the step
size sequence relatively “normal” and avoid drastic changes in step size. Since
the step size controller itself is not the focus of this paper, it is left on default
settings when step size adaptivity is required. It is assumed that the step size
controller does not influence the results “too much” and that the comparisons
of method performance are not significantly affected by this choice, but this is
a confounding factor that could be subject to future investigation.

MODES uses a Newton iteration to solve implicit equations. At the time
of writing, there is currently no option to choose any other nonlinear solver or
set nonlinear solver options. Similarly to the assumption made for the step size
controller, it is assumed that the choice of nonlinear solver does not significantly
influence results.

The MODES package also has several useful tools. The first is theta2coeff,
which converts a method class and θ vector to α and β coefficients. Next is
errorConstant which takes as input α and β vectors as well as number of steps
k and order p and returns the error coefficient of order p. Perhaps most useful is
the tool stabRegion, which draws the outline of the stability region for a given
method class and θ vector. To do this, θ is converted into α and β coefficients
and the characteristic ρ and σ polynomials are determined. The boundary of
the stability region is hλ ∈ C where the stability polynomial ρ(z) − hλσ(z)
has a root of magnitude one. Therefore the points hλ = ρ(z)/σ(z) are plotted
for z in the complex unit circle. This tool only works for zero stable methods.
These tools are helpful for determining method properties and creating graphs
to compare.



Chapter 4

One and Two Parameter
Classes

In this chapter we examine six low order method classes, and for each class
we compare the properties of methods within that class. We will begin by
finding explicit formulas to compute the fixed step size coefficients α and β
from the method class and θ vector. From these coefficients we compute the
error coefficient, and take roots of the ρ polynomial to determine stability. This
will allow us to make predictions about how the methods will compare against
each other when solving ODEs. Although this can be done using the MODES
tools mentioned earlier, it is a straightforward process for low order methods
to determine these formulas directly, and the calculations are much faster when
the explicit formulas for the coefficients are used instead. Finally, we simulate
some basic test problems to see how the methods compare in practice. Our
primary goal is to motivate the possibility of changing methods within the same
class and order as a means of improving solver results, at least in some simple
scenarios.

Throughout this chapter we use the shorthand notations T1 = tan(θ1) and
T0 = tan(θ0). Furthermore, all coefficients within a method class have a common
denominator, which is the determinant of the consistency matrix. This will be
denoted D and factored out. This should make the formulas more pleasant to
look at.

4.1 Determining Method Properties

First, to analyze the theoretical properties of each method, we use the fixed
step size formula and consistency conditions for each method class to determine
explicit formulas for the coefficients in terms of the θ parameters.

For each given method class and parameters {θi}, we determine the α and
β coefficients of (2.3) by solving the system of order conditions. Although
the multistep methods are not fixed step size, and the coefficients should in

22
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theory also depend on the step size sequence {hn}, this analysis will help us
to determine which methods are zero stable and compute error coefficient. We
determine zero stability from the roots of the characteristic polynomials, and
error coefficient from Formula (2.10). The set of θ for which the methods are
zero stable will be called the zero stability region of the method class; this is
not to be confused with the stability region of a method, as defined in Section
2.1.3.

We begin with three lemmas, which when used in conjunction with the Root
Condition, Theorem 2.1.1, will help us to quickly identify when methods of three
or less steps are zero stable. The first lemma regarding zero stability of one step
methods is rather trivial:

Lemma 4.1.1. All consistent one step methods are zero stable.

Proof. For a one step method, the characteristic ρ polynomial is linear, and is
therefore of the form ρ(z) = z− c. Since the method is consistent, ρ(1) = 0 and
therefore ρ(z) = z − 1. Since this polynomial satisfies the Root Condition, the
method is zero stable.

For a two step method, determining zero stability is similarly easy:

Lemma 4.1.2. For a consistent two step method, the roots of the characteristic
ρ polynomial are one and α0.

Proof. The characteristic ρ polynomial for a two step method is given by: ρ(z) =
z2 + α1z + α0. Since the method is consistent, ρ(1) = 0 and therefore this will
factor as ρ(z) = (z − 1)(z − α0).

As a corollary, α1 = −(α0 + 1).

Lemma 4.1.3. For a consistent three step method, the roots of the characteristic
ρ polynomial are one and

(α1 + α0)±
√

(α1 + α0)2 + 4α0

2
.

Proof. Since ρ(1) = 0, the polynomial factors:

ρ(z) = z3 + α2z
2 + α1z + α0

= (z − 1)(z2 + cz − α0).

By examining the quadratic term, we can determine that c = (α2 + 1). By
examining the linear term, we can conclude that

α0 + α1 = −(α2 + 1).

The conclusion then follows from the quadratic formula on the second factor.



CHAPTER 4. ONE AND TWO PARAMETER CLASSES 24

4.2 Experiments

In order to compare method performance in practice, we focus on only two
simple problems: The first problem is the Linear Test Equation,

y′ = λy, y(0) = 1, t ∈ [0, 10], (4.1)

with solution y(t) = eλt. λ is chosen to be negative so that the solution is
decaying. Although this ODE is extremely basic, it will help us determine
how stability and error coefficient affect method performance when comparing
methods within the same class. Choosing λ to be large negative allows us to
create a stiff problem and determine how method behavior changes between stiff
and non-stiff problems. Another property of the Linear Test Equation is that
Formula (2.10) simplifies to

Tn = EC ∗ (hλ)p+1yn−k +O(hp+2), (4.2)

which makes perfect sense because scaling the step size is proportional to scaling
the decay coefficient. The other test problem we use is the Prothero-Robinson
problem,

y′ = λ(y − F (t)) + F ′(t), y(0) = 10, t ∈ [0, 2] (4.3)

with solution y(t) = F (t) + (y(0) − F (0))eλt. This problem can be viewed
as “the Linear Test Equation with forcing.” We choose the forcing function
F (t) = C sin(ωπt). The y dependence in the ODE remains linear, but the
function F , which we have chosen here to be the sine function, prevents the
solution from decaying to zero, which effectively prevents the error from decaying
away and challenges the step size controller. The stiffness can again be controlled
by λ, and C and ω can be chosen to challenge the solver, primarily the step size
controller, to see how the method reacts to a more difficult problem numerically,
even though it is still theoretically simple. In the following experiments, λ is
fixed, since the effects of varying λ are examined in the previous problem. The
values of C and ω are chosen to try to produce “interesting results.” This choice
and goal are clearly somewhat arbitrary. However it is guided by the idea that
choosing very small values will cause the results to look similar to the Linear
Test Equation, while choosing very large values will cause the solver to take
many steps and possibly fail. Therefore we attempt to design our experiments
to land between these two extremes.

For each problem and method, we run two tests:
In the first test, we set a fixed step size and measure how accurate the results

are to the theoretical solution. For the Linear Test Equation we use a step size of
h = 0.01 and for the Prothero-Robinson problem we use a step size of h = 0.002
for a total of 1000 steps in both cases. To measure error, we use a weighted root
mean square (wRMS) norm, which is a discrete approximation to the L2 norm
using the Trapezoidal Quadrature Rule:

||y||2 =

N∑
i=1

(ti − ti−1)

(
y2i + y2i−1

2

)
. (4.4)
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This accounts for all points in the simulation. For this experiment, we consider
the “best” method to be the one which achieves the smallest error from the true
solution.

In the second test, we set a fixed tolerance and allow the step size to vary
according to MODES’ default step size controller. The tolerance must be de-
termined based on the method class. We also measure the error between the
computed solution and the theoretical solution using the same norm as before.
For this experiment we are looking for which methods can take fewer steps while
still maintaining a reasonable amount of accuracy.

4.3 One Parameter Classes

The one parameter classes are the E2, I1 and I+2 methods. Although low order
methods may not be the most interesting for applications in solving real world
problems, they illustrate some trends which may generalize to methods of higher
order.

For all method classes, the goal is to illustrate the landscape of the parameter
space in order to highlight the strengths and weaknesses of each method. It is
possible to test a large number of different methods by breaking the interval
[0, π] into some number of equally spaced points and running tests with every
method which lands on one of these points. The denominator of 144 is chosen
for its sufficient size and high divisibility: meaning θ0 is chosen in increments
of π/144, because this choice makes smooth graphs and gives us many “nice”
fractions like 3π/4, or π/6 for example.

For all three method classes, we first establish the explicit formulas for the
α and β coefficients, which allows us to easily determine zero stability and error
coefficients. The roots of the ρ polynomial and the error coefficient are then
plotted. Next, we simulate the Linear Test Equation with different values of λ
in order to get a basic comparison between these methods and to see how stiffness
changes performance. Next, we simulate the Prothero-Robinson problem with
λ fixed at -1 and different values of C and ω in order to determine how the
methods handle a slightly more difficult problem. For situations which warrant
extra investigation, we run more experiments. For the explicit and implicit-plus
methods, we examine the effect of a tighter tolerance. For the implicit methods,
we examine the effect of increased stiffness.
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4.3.1 E2 Methods

We begin with the explicit two step methods. The fixed step size formula is
given by

yn + α1yn−1 + α0yn−2 = h(β1y
′
n−1 + β0y

′
n−2). (4.5)

For consistency and order two, we require

α1 + α0 = −1 (4.6a)

β1 + β0 = 2 + α1 (4.6b)

2(β1) = 4 + α1. (4.6c)

Using the Parametric Equivalence Theorem to substitute out β0 = −T0α0, the
coefficients can be determined by solving the system1 1 0

1 T0 −1
1 0 −2

α1

α0

β1

 =

−1
−2
−4

 . (4.7)

For T0 6= 1/2 the matrix can be inverted to give

1

2T0 − 1

2T0 −2 1
−1 2 −1
T0 −1 1− T0

−1
−2
−4

 =

α1

α0

β1

 . (4.8)

Therefore we can solve the coefficients explicitly,

D = 2T0 − 1 (4.9a)

Dα1 = −2T0 (4.9b)

Dα0 = 1 (4.9c)

Dβ1 = 3T0 − 2 (4.9d)

Dβ0 = −DT0α0 = −T0. (4.9e)

According to Lemma 4.1.2, these methods are strongly stable when
|α0| = | 1D | = | 1

2T0−1 | < 1, which occurs when θ0 ∈ (π/4, π). At θ0 = π/2 we
have the Adams-Bashforth method AB-2.

The error constant for the E2 methods can be calculated from:

C3 =
1

3!
(α1 + 8)− 1

2!
(β1) (4.10a)

EC =
C3

β1 + β0
. (4.10b)

This gives:

C3 =
5T0 − 2

6(2T0 − 1)
, (4.11a)

EC =
5T0 − 2

12(T0 − 1)
. (4.11b)
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In Figure 4.1 we plot the absolute values of the second root of the ρ polyno-
mial, which shows which methods are zero stable, and the error coefficient.

Figure 4.1: E2 Methods: The methods are zero stable where the second root
of ρ(z) is less than one, which is between π/4 and π. Within this interval, the
error coefficient is decreasing, with a minimum of 1/6 at θ0 = π. At θ0 = π/2
is the AB-2 method.

The plot of the second root verifies that the method is zero stable for θ0 ∈
(π/4, π). In this region, the error coefficient decreases as θ0 becomes larger.
Within the zero stability region, the error coefficient is bounded below by 1/6.
For θ0 = arctan(2/5) the error coefficient vanishes and the method becomes
order three, but it is not zero stable. This is to be expected due to the Dahlquist
Barrier Theorem.

We would like to see how the stability regions change as θ0 changes. For
some values of θ0 ∈ [π/4, π], the corresponding stability regions are shown in
Figure 4.2. We see that as θ0 becomes larger the stability region shrinks. Note
that θ0 = π/4 and θ0 = π are both essentially “invalid” methods, since θ0 = π/4
corresponds to a method with infinite error coefficient, while θ0 = π corresponds
to a method which is nowhere stable.
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Figure 4.2: E2 Methods: stability regions for different values of θ0. The stability
region is becoming smaller as θ0 increases from π/4 to π. At
θ0 = π/4 the stability region is largest, but the error coefficient approaches
infinity asymptotically. At θ0 = π the error coefficient is minimized, but the
stability region vanishes.

This demonstrates an important analytic property for this class of methods:
there is a trade-off between methods with a large stability region and those with
a small error coefficient.

Next, we run simulations using the Linear Test Equation. In the fixed step
size experiment, we choose λ = −1,−2,−4,−8,−16,−32. We choose the zero
stable methods with π/4 < θ0 < π, omitting endpoints. The accuracy measure-
ments are plotted in Figure 4.3. We find three interesting trends:

1. The simulations become less accurate as λ is increased (more negative).
This may be because λ directly affects the error term as given in Equation
(4.2).

2. The lines slope downward, following the trend in error coefficient. There-
fore, a smaller error coefficient is better, so long as the method remains
stable, which leads directly to the next item:

3. As λ becomes larger, methods near θ0 = π become unstable. This is
because the stability region of these methods is too small to contain hλ
for the given step size.

Therefore, in this experiment the conclusion is: the “best” method is the one
furthest to the right, such that the stability region is large enough to include
hλ for the given problem and step size.
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Figure 4.3: E2 Methods: Accuracy of fixed step size simulation of Linear Test
Equation (4.1) for different values of λ. Step size is h = 0.01, global error
measured using wRMS norm (4.4), log10(error) plotted.

Next, we simulate the Linear Test Equation with variable step size. A tol-
erance of 10−4 is chosen. The number of steps are plotted in Figure 4.4. In this
experiment we find that for the larger (more negative) values of λ, especially
λ = −16 and λ = −32, the conclusion from the previous experiment is actually
reversed, and methods for smaller values of θ0 perform better. It seems that
when the problem is more stiff, the need for a larger stability region is greater
than the benefit gained from the smaller error coefficient. When the problem is
less stiff, the curve is more flat and the methods perform more similarly to each
other.

In Figure 4.5 we see that all methods are achieving a reasonable amount
of accuracy. For all cases, methods on the right are slightly more accurate.
However, this isn’t an issue: the global error is not expected to be less than the
tolerance, only reasonably small with respect to it. The reason that the stiffer
problems achieve higher accuracy is likely because of the fact that they decay
to zero faster. The “squiggles” that occur between neighboring methods may
be an effect of the error controller, but this is not entirely clear.
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Figure 4.4: E2 Methods: Number of steps in variable step size simulation of
Linear Test Equation (4.1) for different values of λ with a tolerance of 10−4.
Step size controller is MODES’ default.

Figure 4.5: E2 Methods: Accuracy of variable step size simulation of Linear
Test Equation (4.1) depicted in Figure 4.4, error measured using wRMS norm
(4.4), log10(error) plotted.
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We also consider the effect of tightening the tolerance. In Figure 4.6 we
show the same simulation with a tolerance of 10−8. In this case we find that for
smaller values of λ there is a clear preference for methods with larger θ0. This
is likely because a small step size is already required in order to achieve the
desired accuracy, and therefore there is no benefit to gain from a large stability
region. Instead, the solver benefits from a smaller error coefficient. For larger
λ the solver again begins to need a larger stability region but the tolerance still
limits the maximum step size and so the best method is found somewhere in
the middle.

Accuracy is plotted in Figure 4.7. Methods on the right are slightly more
accurate, with a range of accuracies similar to the previous experiment.

Figure 4.6: E2 Methods: Number of steps in variable step size simulation of
Linear Test Equation (4.1) for different values of λ with a tolerance of 10−8.
Step size controller is MODES’ default.
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Figure 4.7: E2 Methods: Accuracy of variable step size simulation of Linear
Test Equation depicted in Figure 4.6, error measured using wRMS norm (4.4),
log10(error) plotted.

Another pattern to note in Figures 4.3, 4.5, and 4.7 is that the lines are
equally spaced. Since the values of λ are chosen in powers of two and the log of
the error is plotted, the equal spacing demonstrates that the error is proportional
to a power of λ. In the error formula for the Linear Test Equation, Equation
(4.2), we see that this should be the case for the leading error term. This is
simply a property of the Linear Test Equation and is not unique to this method
class.

Finally we simulate the Prothero-Robinson problem without stiffness
(λ = −1) but with various amplitudes and frequencies of the forcing sine func-
tion. The comparisons between the methods is similar to the nonstiff Linear
Test Equation case. We note that although the problem C = 5, ω = 1 achieves
higher accuracy in the fixed step size trial and fewer steps in the variable step
size trial than the problem C = 1, ω = 10, it is actually less accurate in the
variable step size trial.
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Figure 4.8: E2 Methods: Accuracy of fixed step size simulation of Prothero-
Robinson Problem (4.3) for λ = −1, F (t) = C sin(ωt) and different values of C
and ω. Step size is h = 0.002, global error measured using wRMS norm (4.4),
log10(error) plotted.
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Figure 4.9: E2 Methods: Number of steps in variable step size simulation of
Prothero-Robinson Problem (4.3) for λ = −1, F (t) = C sin(ωt) and different
values of C and ω with a tolerance of 10−4. Step size controller is MODES’
default.

Figure 4.10: E2 Methods: Accuracy of variable step size simulation of Prothero-
Robinson Problem (4.3) depicted in Figure 4.9, error measured using wRMS
norm (4.4), log10(error) plotted.
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4.3.2 I1 Methods

The implicit one step methods are the familiar “Theta Methods” and are usually
parametrized as

yn = yn−1 + h(θfn−1 + (1− θ)fn) (4.12)

for 0 ≤ θ ≤ 1. To fit into the scheme presented in Chapter 3, they will be
parametrized as

yn = yn−1 + h(tan(θ0)fn−1 + (1− tan(θ0))fn) (4.13)

with 0 ≤ θ0 ≤ π. Clearly this is a superset since choosing θ0 > π/4 corresponds
to a choice of θ /∈ [0, 1]. However this parametrization includes all consistent
one step implicit methods.

By Lemma 4.1.1 the I1 methods are all zero stable, so the only thing to
compute is the error coefficient.

The α and β coefficients can be read off from Equation 4.13. The error
coefficient is

EC = tan(θ0)− 1

2
. (4.14)

The absolute values of the error coefficients are plotted in Figure 4.11.

Figure 4.11: I1 Methods: Absolute values of error coefficients. All methods are
zero stable, but no method is defined for θ0 = π/2. For θ0 = 0, arctan(1/2), and
π/4 we have the Implicit Euler, Trapezoidal Rule, and Explicit Euler methods,
with error coefficients of 1/2, 0, and 1/2 respectively.

There is an asymptote at θ0 = π/2 where the α and β coefficients tend to
infinity. On the interval (π/2, π] ∪ [0, arctan(1/2)] the methods are A-stable
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and the error coefficient is decreasing. θ0 = 0 corresponds to the Implicit Euler
method. θ0 = arctan(1/2) is the Trapezoidal Rule, where the error coefficient
vanishes and the method attains order two. On the interval [arctan(1/2), π/2)
the methods have bounded stability regions, with the stability region shrinking
and error coefficient increasing for larger θ0. Furthermore, at θ0 = π/4, a
degeneracy occurs and the implicit term disappears and the method becomes
the Explicit Euler method.

Beginning with the Linear Test Equation, when the problem is not stiff we
see in the fixed step size trial in Figure 4.12 that the performance is nearly
directly associated with the error coefficient. The Trapezoidal rule is the most
accurate and the accuracy decreases in both directions as θ0 approaches π/2. For
λ = −32 the minimum begins to shift to the left, away from θ0 = arctan(1/2).
Since the advantage to this method class is its ability to handle stiff problems,
we will investigate shortly how these methods compare against each other when
stiffer problems are chosen.

However, we first look at what happens when the step size is allowed to
change. In the variable step size trial we see in Figure 4.13 that the minimum
is shifted to the Explicit Euler method, which is taking less steps than all other
methods. When we measure accuracies, there is a significant decrease in accu-
racy at θ0 = π/4 suggesting that there must be an issue with the error estimator.
This is shown in Figure 4.14.

The reason why this happens is because of how the error estimator for Ik
methods is constructed, which is detailed in [16, Theorem II.6.2]. For an Ik
method constructed from a parameter vector θ, the error is estimated as
||xn − xpred||, where xpred is calculated by an Ek method constructed from

θ̂, where θ̂ is the same as the first k − 1 components of θ. This means that
whenever an Ik method degenerates to an explicit method, xpred will actually
be calculated using an Ek method which is the same method, and so xn will
equal xpred and the error estimate will be zero. For the I1 methods, xpred is
determined using the unique order one explicit method, which is the Explicit
Euler method. Since the error estimator is measuring zero error, the step size
is ramping up by the maximum step size ratio in every step, which is 1.2 by
default. This clearly causes a significant loss in accuracy.

Aside from this issue, we find that with the A-stable methods, the methods
with θ0 closer to arctan(1/2) are all performing better, achieving less steps and
better accuracy. Furthermore the choice of problem is not greatly affecting per-
formance, with stiffer problems requiring only slightly more steps, and achieving
greater overall accuracy for likely the same reason as in the explicit case: sim-
ply because the problem is decaying to zero. For the non A-stable methods, the
performance is hindered greatly by the increased stiffness, and the results are
generally poor, so it is probably a good idea to simply not use these methods.
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Figure 4.12: I1 Methods: Accuracy of fixed step size simulation of Linear Test
Equation (4.1) for different values of λ. Step size is h = 0.01, global error
measured using wRMS norm (4.4), log10(error) plotted.

Figure 4.13: I1 Methods: Number of steps in variable step size simulation of
Linear Test Equation (4.1) for different values of λ with a tolerance of 10−4.
Step size controller is MODES’ default.
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Figure 4.14: I1 Methods: Accuracy of variable step size simulation of Linear
Test Equation (4.1) depicted in Figure 4.13, error measured using wRMS norm
(4.4), log10(error) plotted.

Just like with the E2 method class, we observe that the lines in Figures 4.12
and 4.14 are equally spaced since the values of λ are chosen as powers of two
and the principle error term in Equation 4.2 is a power of λ.

When the stiffness is increased, we find a very interesting trend. For the fixed
step size trial, in Figure 4.15 we see that the minimum shifts from arctan(1/2)
to 0 as the stiffness increases. This supports the idea that the Implicit Euler
method is better than the Trapezoidal Rule for extremely stiff problems due to
its greater numerical damping. This also brings up the possibility that a method
choice somewhere between the two might be optimal depending on the stiffness
of the problem. These are simply the Theta Methods in Equation (4.12) with
0 ≤ θ ≤ 1/2. As expected, the methods which are not A-stable quickly become
useless.

For the variable step size trial, Figure 4.16 shows that the A-stable meth-
ods all perform similarly well, with the increased stiffness not greatly affecting
performance, except in a small region near π/2. In fact, the step counts are
even comparable to the nonstiff case in Figure 4.13. The accuracy calculations
in Figure 4.17 show that the Trapezoidal Rule is still achieving higher accuracy.
Therefore, the effectiveness of the Trapezoidal Rule should not be ignored, even
for extremely stiff problems.
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Figure 4.15: I1 Methods: Accuracy of fixed step size simulation of stiff Linear
Test Equation (4.1) for different (large negative) values of λ. Step size is h =
0.01, global error measured using wRMS norm (4.4).

Figure 4.16: I1 Methods: Number of steps in variable step size simulation of
stiff Linear Test Equation (4.1) for different (large negative) values of λ with a
tolerance of 10−4. Step size controller is MODES’ default.
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Figure 4.17: I1 Methods: Accuracy of variable step size simulation of stiff Linear
Test Equation (4.1) depicted in Figure 4.16, error measured using wRMS norm
(4.4).

Finally we examine the Prothero-Robinson problem. As a comparison be-
tween methods, the results are not extremely different from those found in the
Linear Test Equation. However, we find that while increasing the frequency ω
does not cause a great loss of accuracy in the fixed step size case, it does cause
the solver to require many more steps in the variable step size case.
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Figure 4.18: I1 Methods: Accuracy of fixed step size simulation of Prothero-
Robinson Problem (4.3) for λ = −1, F (t) = C sin(ωt) and different values of C
and ω. Step size is h = 0.002, global error measured using wRMS norm (4.4).

Figure 4.19: I1 Methods: Number of steps in variable step size simulation of
Prothero-Robinson Problem (4.3) for λ = −1, F (t) = C sin(ωt) and different
values of C and ω with a tolerance of 10−4. Step size controller is MODES’
default.
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Figure 4.20: E2 Methods: Accuracy of variable step size simulation of Prothero-
Robinson Problem (4.3) depicted in Figure 4.19, error measured using wRMS
norm (4.4).

4.3.3 I+2 Methods

The Implicit Plus methods have more variables and order conditions. For the
I+2 methods, the order conditions lead to the system

1 1 0 0
1 T0 −1 −1
1 0 −4 −2
1 0 −12 −3



α1

α0

β2
β1

 =


−1
−2
−4
−8

 . (4.15)

Inversion gives:

1

12T0 − 5


12T0 −12 9 −2
−5 12 −9 2
−T0 1 3T0 − 2 1− 2T0
8T0 −8 11− 12T0 4T0 − 3



−1
−2
−4
−8

 =


α1

α0

β2
β1

 , (4.16)

which leads to the explicit formulas for the coefficients:

D = 12T0 − 5 (4.17a)

Dα1 = 4− 12T0 (4.17b)

Dα0 = 1 (4.17c)

Dβ2 = 5T0 − 2 (4.17d)

Dβ1 = 8T0 − 4 (4.17e)

Dβ0 = −DT0α0 = −T0. (4.17f)
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Using Lemma 4.1.2, we determine that methods are zero stable when
| 1
12T0−5 | < 1, which is exactly when θ0 /∈ [arctan(1/3), arctan(1/2)].

The error coefficient can be determined from the formulas:

C4 =
1

4!
(16 + α1)− 1

3!
(8β2 + β1), (4.18a)

EC =
C4

β2 + β1 + β0
, (4.18b)

which leads to the computations:

C4 =
−3T0 + 1

6(12T0 − 5)
, (4.19a)

EC =
−3T0 + 1

36(2T0 − 1)
. (4.19b)

In Figure 4.21 we plot the absolute values of the second root of the ρ polynomial
and the error coefficient.

Figure 4.21: I+2 Methods: The methods are zero stable where the second root of
ρ(z) is less than one, which is from arctan(1/2) wrapping around to arctan(1/3).
Within this interval, the error coefficient is decreasing but mostly flat, reaching
zero at θ0 = arctan(1/3), giving a weakly stable order four method. At θ0 = π/2
is the AM-2 method.

For this method class the zero stability region is quite large and the error
coefficient curve is quite flat, but decreasing for larger θ0. At θ0 = π/2 is the
Adams-Moulton method AM-2. At θ0 = arctan(1/3) is a weakly stable order
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four method with α = (1, 0,−1), β = (1/3, 4/3, 1/3) and fourth order error
coefficient 1/180.

We examine how the stability region changes as θ0 changes. In Figure 4.22
we see that the stability region also shrinks for larger θ0, therefore giving a trend
similar to that witnessed in the E2 methods where there is a trade-off between
methods with large stability regions and those with small error coefficients.

Figure 4.22: I+2 Methods: stability regions for different values of θ0. The sta-
bility region is becoming smaller as θ0 increases from π/4 to π.

Next, we simulate the Linear Test Equation. In Figure 4.23 we see that
method performance is relatively flat for each given problem, but that the in-
creased stiffness actually causes a significant decrease in accuracy overall. One
likely explanation for this is that in Equation 4.2 the power of p is greater since
these methods are higher order (p = 3), and so the stiffness λ has a greater
effect on the error. The step size also has a greater influence on the error and
this is to be expected from higher order methods: they converge faster as h
becomes small, but can be outperformed by lower order methods when the step
size is large. For all problems, the method achieving highest accuracy seems
to be near arctan(1/3), which is where the error coefficient is smallest, and the
zero stability region ends.

When the step size is allowed to vary, we see that for a tolerance of 10−4

in Figure 4.24 that most methods are able to simulate the problem in very few
steps, but methods near θ0 = π start to experience poor performance, and for
those past θ0 = 0, the simulation fails. In these cases modes returns an error
that the polynomial coefficients are not finite. Furthermore, in Figure 4.25 we
see that the pattern of poor performance extends to the achieved accuracy.
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The reason for this is not entirely clear: Although the stability region becomes
smaller towards the right, it does not vanish. If, for example, we look at the
method for θ0 = 0 we have the coefficients

α = (1,−0.8,−0.2)

β = (0.4, 0.8, 0)

The error coefficient is 1/36 and the stability region is large enough to touch -4
(it is depicted in Figure 4.22). The reason why these methods fail is a question
left to future research.

Figure 4.23: I+2 Methods: Accuracy of fixed step size simulation of Linear Test
Equation (4.1) for different values of λ. Step size is h = 0.01, global error
measured using wRMS norm (4.4), log10(error) plotted.
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Figure 4.24: I+2 Methods: Number of steps in variable step size simulation of
Linear Test Equation (4.1) for different values of λ with a tolerance of 10−4.
Step size controller is MODES’ default.

Figure 4.25: I+2 Methods: Accuracy of variable step size simulation of Linear
Test Equation (4.1) depicted in Figure 4.24, error measured using wRMS norm
(4.4), log10(error) plotted.
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We also test the implicit-plus methods with tighter tolerance. When a tol-
erance of 10−8 is chosen we see in Figure 4.26 that all methods take more steps,
and the “bad behavior” experienced near θ0 = π is slightly “smoothed out.” In
fact, for λ = −1 there are even a few methods past θ0 = 0 which are able to
successfully simulate. We also see in Figure 4.27 that all methods are achieving
a reasonably good accuracy that does not vary too much.

Figure 4.26: I+2 Methods: Number of steps in variable step size simulation of
Linear Test Equation (4.1) for different values of λ with a tolerance of 10−8.
Step size controller is MODES’ default.
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Figure 4.27: I+2 Methods: Accuracy of variable step size simulation of Linear
Test Equation depicted in Figure 4.6, error measured using wRMS norm (4.4).

In a similar fashion to the trends observed in both the E2 and I1 method
classes, the lines in Figures 4.23, 4.25 and 4.27 are equally spaced, since λ in the
Linear Test Equation is chosen in powers of two, and the principle error term
in Equation 4.2 is proportional to a power of λ.

Finally, we run the I+2 methods on the Prothero-Robinson problem. For
the fixed step size trial, since the stiffness is chosen as λ = −1, the methods
compare similarly against each other as they did with the Linear Test Equation.
Adjusting the forcing parameters does sufficiently increase the difficulty which
causes the simulation to be less accurate. In the variable step size case, the
number of steps required is nearly smooth, however the achieved accuracy is
oddly chaotic. This disruption is even visible at θ0 = π/2, the Adams-Moulton
method, a method which has many different variable step size implementations,
and so it’s even more unclear what causes this and whether such a thing is
potentially problematic.
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Figure 4.28: I+2 Methods: Accuracy of fixed step size simulation of Prothero-
Robinson Problem (4.3) for λ = −1, F (t) = C sin(ωt) and different values of C
and ω. Step size is h = 0.002, global error measured using wRMS norm (4.4),
log10(error) plotted.



CHAPTER 4. ONE AND TWO PARAMETER CLASSES 50

Figure 4.29: I+2 Methods: Number of steps in variable step size simulation of
Prothero-Robinson Problem (4.3) for λ = −1, F (t) = C sin(ωt) and different
values of C and ω with a tolerance of 10−4. Step size controller is MODES’
default.

Figure 4.30: I+2 Methods: Accuracy of variable step size simulation of Prothero-
Robinson Problem (4.3) depicted in Figure 4.9, error measured using wRMS
norm (4.4), log10(error) plotted.
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4.4 Two Parameter Classes

There are several difficulties which must be overcome in order to analyze the
methods of two parameters. First, for the one parameter methods, the interval
[0, π] is broken up into 145 points (including both endpoints) to give a selection
of methods. For each method we compute its ρ polynomial and its roots as well
as the error coefficient, and apply the method to a few test problems. In the two
dimensional case, copying this strategy means breaking the square [0, π]× [0, π]
into a 145 × 145 grid, which means the amount of work required is effectively
squared.

In early experiments the zero stability of each method was calculated using
MODES’ theta2coeff tool and Matlab’s root function, and error coefficient
was calculated using MODES’ errorConstant tool. In the one dimensional
case computations took only a few minutes but in the two dimensional case
they could take several hours. By instead determining explicit formulas for
the coefficients in terms of the tangents of the θs and using the lemmas, the
computation time required to produce all these graphs was reduced to just a
few seconds.

However there is no shortcut to conducting experimental simulations. Ex-
cepting methods which are not zero stable, each method must be chosen and a
MODES simulation must be run for a fixed step size and variable step size trial.
Furthermore, since two dimensional plots are required to display the data (con-
tour plots were chosen in this case), there is no longer an easy way to compare
the results of simulating different problems on the same graph. This motivates
the choice of a single problem for each method class that is “suitably difficult”
for the solver so that the differences between methods from that class can be
highlighted. If the problem is “too easy,” the solver is simply able to ramp up
the step size and many trials resolve in the exact same number of steps, making
comparisons less meaningful. If the problem is “too hard,” the computation
time is increased and a larger proportion of methods lead to bad computations.

It is important to note that the choice of problem variables is essentially
arbitrary. The Prothero-Robinson problem offers the chance to increase the
complexity of the problem by increasing the stiffness and forcing function to a
point where the solver must accumulate some error and perform some step size
control. We choose the interval t ∈ [0, 2] with initial value y0 = 10 and λ = −5
so that some mild stiffness and damping is incurred. Since the two parameter
methods are each one order higher than their one parameter counterparts, the
problem must be made a little tougher, so the forcing function F (t) = 5 sin(5πt)
is chosen.

In the fixed step size trial, we would again like to measure the accuracy of
a simulation of 1000 steps, and therefore the step size of 0.002 is chosen. In
the variable step size trial, we would like the solver to work similarly hard, and
the final control tool is the tolerance. Through experimentation the following
tolerances were chosen:

� 10−6 for the E3 methods.
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� 10−4 for the I2 methods.

� 10−8 for the I+3 methods.

It was found that these tolerances, combined with this problem, cause most
stable simulations to take somewhere between 800 and 2000 steps. This is large
enough to make meaningful comparisons between methods but small enough
that the computer is not made to work unreasonably hard. Methods which begin
to encounter stability problems can have their step counts increase rapidly, or
integration can fail completely. Therefore, in order to more accurately display
the differences between the more stable methods, simulation is halted at 2000
steps.

Another difficulty encountered in this section is the question of how the sta-
bility regions of methods change as θ changes continuously. Such an analysis
is difficult because there is no clear way to visualize the change, since θ varies
in two dimensions. One idea might be to simply measure the area of the sta-
bility region - this would make it possible to determine which stability regions
are larger, but gives no further qualitative results. This could be done using
integration to determine the area inside ρ(z)/σ(z) for z in the complex unit cir-
cle, but these curves are not always simple, and when they separate the plane
into multiple regions, some analysis is required to determine which region is the
correct stability region. Alas, considerations of the size of the stability region
will be mentioned in each section and some hypotheses will be made regarding
how the stability region might change and what effects this might have, but
definitive conclusions may not be reached.

4.4.1 E3 Methods

For the E3 methods, the coefficients can be determined by solving the four
dimensional system:

1 1 1 0
2 1 + T1 T0 −1
4 1 + 2T1 0 −4
8 1 + 3T1 0 −12



α2

α1

α0

β2

 =


−1
−3
−9
−27

 . (4.20)

The coefficients are:

D = −3T1T0 + T1 + 2T0 − 1 (4.21a)

Dα2 = 12T1T0 − 9T1 + 8T0 − 6 (4.21b)

Dα1 = −4T0 + 3 (4.21c)

Dα0 = 5T1 − 2 (4.21d)

Dβ2 = −23T1T0 + 6T1 + 22T0 − 12 (4.21e)

Dβ1 = −DT1α1 = 4T1T0 − 3T1 (4.21f)

Dβ0 = −DT0α0 = −5T1T0 + 2T0. (4.21g)
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Using Lemma 4.1.3 we can determine when the method is zero stable from the
coefficients a1 and a0. The roots of the ρ polynomial are one and:

(α1 + α0)±
√

(α1 + α0)2 + 4α0

2
. (4.22a)

The method is stable when both these roots are less than one in magnitude.
The explicit formulas for these roots and the error coefficient are messy, and so
they are omitted. The second largest root of ρ is plotted in Figure 4.31; where
it is one, the method is not zero stable. The error coefficients are plotted in
Figure 4.32. Those which are greater than 1 are truncated.

By overlaying these two plots, we see that within the zero stability region,
the error coefficient is reduced for methods towards the lower-right corner,
“wrapping around” towards the sliver of zero stable methods which exist in
the lower-left corner. The lower bound for the error coefficient of zero stable
methods was not determined, but experimental evidence suggests that in this
corner, it is around 0.11. There are also a couple small “islands” of zero stability
past this corner where the error coefficient is slightly smaller, possibly becoming
as small as 0.09. These islands likely appear as a result of “roundoff error” due
to the gridding scheme described at the beginning of the chapter. The zero
stability plot was recreated in higher resolution with θ chosen in increments of
π/1000 and this area appeared as a single, thin island which does not quite
touch the corner, although this plot is not shown.

Similarly to how there exists an E2 method with zero error coefficient which
is not zero stable, there is a one-dimensional set of E3 methods with zero error
coefficient, none of which are zero stable. It is possible to determine the set of
θs for which this occurs by setting the error coefficient formula equal to zero:

EC =
1

24
∑
βj

(
34 + 24α2 + α1 − 4 · 23β2 − 4β1

)
= 0. (4.23)

The fraction on the outside can be multiplied out, and the formulas for the
coefficients in terms of θ can be substituted in. The coefficients have a common
denominator which can be multiplied through and after collecting like terms the
formula simplifies to the much more manageable

27T1T0 − 9T1 − 14T0 − 6 = 0, (4.24)

which we can factor and write as

T0 =
9T1 − 6

27T1 − 14
. (4.25)

By using Lemma 4.1.3 we can now find out “how far away” these methods are
from methods which are zero stable. We substitute out T1 in the formulas for
α1 and α0 and through a miracle of cancellation we find:

α1 = −9

α0 =
1

3T0 − 1
.
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Although not particularly useful, it is quite interesting to find that the α1 co-
efficient is a constant -9! The nontrivial roots of the ρ polynomial are therefore
minimized for α0 = −α1 = 9, where they are ±3.

Figure 4.31: E3 Methods, Zero Stability: The second largest root of ρ(z) is
plotted, methods are stable where it is less than one. At θ = (π/2, π/2) is the
AB-3 method.
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Figure 4.32: E3 Methods, Error Coefficient: The absolute value of the error
coefficient is plotted where it is less than one. At θ = (π/2, π/2) is the AB-3
method.

The next task is to simulate the Prothero-Robinson test problem for the
E3 methods. In the fixed step size experiment, we see in Figure 4.33 that the
accuracy is correlated to the error coefficient, with methods towards the lower-
right corner of the zero stability region achieving higher accuracy. Methods with
total error greater than one are omitted.

Next, the E3 methods are applied to the test problem with a variable step
size and tolerance of 10−6. We find in Figure 4.34 for these parameters that
there is a correlation between step count and error coefficient. In Figure 4.35
it is shown that the methods with smaller error coefficients also achieve better
accuracy.

We hypothesize for the E3 methods that a general trend exists where meth-
ods with a smaller error coefficient also have smaller stability regions, similar to
the trend in E2 methods. However for this experiment it is inconclusive whether
or not this is true. Since there are now two dimensions to choose from, it might
be possible to find a method with larger stability region and smaller error co-
efficient than another given method. It may be the case that choosing a stiffer
problem, or a simpler problem with a lower tolerance, could cause methods with
large stability regions to experience better performance. This could be one way
to observe what trends exist for how the stability region changes. However, no
such definitive analysis has yet been made. Such is a relevant topic for future
research.
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Figure 4.33: E3 Methods: Accuracy of fixed step size simulation of Prothero-
Robinson Problem (4.3) for λ = −5, F (t) = 5 sin(5t). Step size is h = 0.002,
global error measured using wRMS norm (4.4), log10(error) plotted.

Figure 4.34: E3 Methods: Number of steps in variable step size simulation of
Prothero-Robinson Problem (4.3) for λ = −5, F (t) = 5 sin(5t) with a tolerance
of 10−6. Step size controller is MODES’ default.
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Figure 4.35: E3 Methods: Accuracy of variable step size simulation of Prothero-
Robinson Problem (4.3) depicted in Figure 4.34, error measured using wRMS
norm (4.4), log10(error) plotted.

4.4.2 I2 Methods

We now turn our attention to the I2 methods. As these are order two methods,
the formulas for the coefficients can be determined by solving a three dimen-
sional system:  1 1 0

1 + T1 T0 −1
1 + 2T1 0 −4

α1

α0

β2

 =

−1
−2
−4

 . (4.26)

After inversion, we compute the coefficients:

D = 2T1 − 4T0 + 3 (4.27a)

Dα1 = 4T0 − 4 (4.27b)

Dα0 = −2T1 + 1 (4.27c)

Dβ2 = 2T1T0 − 3T0 + 2 (4.27d)

Dβ1 = −DT1α1 = −4T1T0 + 4T1 (4.27e)

Dβ0 = −DT0α0 = 2T1T0 − T0. (4.27f)

To determine zero stability, by Lemma 4.1.2 we require the absolute value of
α0. This is plotted in Figure 4.36 where it is less than one. The error coefficient
is plotted in Figure 4.37.

There are several “degenerate” sets of methods living in the I2 class. For
T1 = 1/2 ⇒ θ1 = arctan(1/2) the α0 and β0 coefficients disappear and the
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method degenerates to a one step method. In fact, the formulas for the other
coefficients simplify and become α1 = −1, β2 = 1/2, β1 = 1/2. This is the
Trapezoidal Rule, disguised as a two step method which ignores the furthest
point. The fact that all these degenerate one step methods must be the Trape-
zoidal Rule is also provable from the fact that all methods produced from the
I2 parametrization must be order two.

In the I1 methods, the Trapezoidal Rule is the single method with zero
error coefficient which attains order two. This method can be thought of as the
unique I+1 method. In the I2 methods, there is a one dimensional set of methods
with zero error coefficient, therefore attaining order three. Unlike in the explicit
classes, some of these methods are zero stable. These are I+2 methods, hidden
in the I2 class. To find these methods, we again set the error coefficient equal
to zero. Removing the extra factors, this gives the equation

23 + α1 − 3 · 22β2 − 3β1 = 0. (4.28)

The formulas for the coefficients are substituted in, and the common denom-
inator is multiplied through. After like terms are collected, we arrive at the
harmless equation

3T1T0 − T1 − 2T0 − 1 = 0, (4.29)

which can be factored and rewritten as

T0 =
T1 − 1

3T1 − 2
. (4.30)

Another interesting phenomenon is that there is a degenerate set of explicit
methods that lie within the I2 class. This can be compared to how the Explicit
Euler method, the unique E1 method, was present as a degenerate I1 method.
Finding these explicit methods is relatively easy: all we have to do is set β2 = 0.
From the coefficient formula this means

2T0T1 − 3T0 + 2 = 0. (4.31)

This can also be factored and written as

T0 =
−2

2T1 − 3
. (4.32)

Part of this line also lies within the zero stability region. Bear in mind that due
to the gridding scheme described at the beginning of this chapter, the I+2 and
E2 methods are not being depicted exactly in these figures, but rather nearby
methods in multiples of π/144 are being chosen.
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Figure 4.36: I2 Methods, Zero Stability: The second largest root of ρ(z) is
plotted, methods are stable where it is less than one. At θ = (0, 0) is the BDF-2
method.

Figure 4.37: I2 Methods, Error Coefficient: The absolute value of the error
coefficient is plotted where it is less than one. At θ = (0, 0) is the BDF-2
method.
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Simulations with the I2 methods for fixed step size are shown in Figure 4.38.
For the fixed step size trials, the results are quite well behaved and match error
coefficient calculations. There is a curve on the left side where the methods
perform exceptionally well. These are the (neighbors of the) I+2 methods that
were identified earlier.

In the variable step size trials in Figure 4.39, we see a region near the center-
top where the methods achieve very few steps. It turns out that, in a similar
situation to the I1 case, these are the (neighbors of the) degenerate explicit
methods. This means that the error estimator is failing for these methods and
measuring zero or near-zero error, causing the step size to be ramped up in
every step. This happens for the same reason given in Section 4.3.2. When
we measure and plot the achieved accuracies in Figure 4.40, we see in a similar
fashion to the I1 class that the higher order methods are achieving small errors,
while the degenerate explicit methods have high errors.

Figure 4.38: I2 Methods: Accuracy of fixed step size simulation of Prothero-
Robinson Problem (4.3) for λ = −5, F (t) = 5 sin(5t). Step size is h = 0.002,
global error measured using wRMS norm (4.4), log10(error) plotted.
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Figure 4.39: I2 Methods: Number of steps in variable step size simulation of
Prothero-Robinson Problem (4.3) for λ = −5, F (t) = 5 sin(5t) with a tolerance
of 10−4. Step size controller is MODES’ default.

Figure 4.40: I2 Methods: Accuracy of variable step size simulation of Prothero-
Robinson Problem (4.3) depicted in Figure 4.39, error measured using wRMS
norm (4.4), log10(error) plotted.
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One final question to answer is which I2 methods are suitable for stiff prob-
lems. Some methods such as BDF-2 have unbounded stability regions in the left
half-plane. However in the I1 class we observed that not all methods have un-
bounded stability regions and it is reasonable to expect that there may also be
I2 methods which are not stiff suitable. We can determine experimentally which
methods can be applied to stiff problems by simulating the Linear Test Equa-
tion with large negative λ with all methods. The stiffness value of λ = −200 is
chosen, with y0 = 1 and t ∈ [0, 10] as before. We also perform both fixed and
variable step size trials.

In the fixed step size trial in Figure 4.41 we witness a very interesting phe-
nomenon: The accuracies attained still reflect the error coefficients, but some
methods which are not zero stable are now able to successfully simulate! Recall
that for the Linear Test Equation, increasing stiffness is equivalent to increasing
the step size. It turns out that in the I2 class there are methods which are not
zero stable but which have stability regions in the negative half-plane which are
close to, but bounded away from zero, and therefore are stable for sufficiently
large hλ. When the stiffness of the problem is increased, some of these methods
become stable for the given step size. We find, counter to intuition, that for
these methods the error is actually reduced by increasing the step size. An
example of one such method will be examined at the end of this chapter.

But before moving on, we test the stiff Linear Test Equation with variable
step size. A tolerance of 10−4 is chosen. In Figure 4.42 we show the number
of steps each method takes and in Figure 4.43 we show the accuracies of each
method. We observe a “dividing line” emerging precisely along the order three
methods: to the right of this line, methods are taking thousands of steps, likely
indicating that the step size must be greatly reduced in order to achieve stability.
This region includes the explicit methods. To the left of this line, methods take
only about 100 steps, indicating that stability is no issue. We remark that the
I+2 methods themselves should not be stiff suitable, however methods near this
set seem to be able to achieve high accuracy while taking very few steps.

It is interesting to note the pattern here, which was also present in the I1
methods. There are two separate, connected sets of methods, one being the
methods which have unbounded stability regions in the negative half-plane and
are suitable for stiff problems, the other being methods with bounded stability
regions which are not suitable for stiff problems. These regions are separated by
the one-dimension-lower set of higher order methods, and the degenerate set of
explicit methods live on the side of the methods with bounded stability regions.
It would be interesting to investigate this pattern for higher order Ik methods.
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Figure 4.41: I2 Methods: Accuracy of fixed step size simulation of stiff Linear
Test Equation (4.1) for λ = −200. Step size is h = 0.01, global error measured
using wRMS norm (4.4), log10(error) plotted.

Figure 4.42: I2 Methods: Number of steps in variable step size simulation of
stiff Linear Test Equation (4.1) for λ = −200 with a tolerance of 10−4. Step
size controller is MODES’ default.
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Figure 4.43: I2 Methods: Accuracy of variable step size simulation of stiff Linear
Test Equation (4.1) depicted in Figure 4.42, error measured using wRMS norm
(4.4), log10(error) plotted.

4.4.3 I+3 Methods

The coefficients for the I+3 methods are found by solving the system:
1 1 1 0 0
2 1 + T1 T0 −1 −1
4 1 + 2T1 0 −6 −4
8 1 + 3T1 0 −27 −12
16 1 + 4T1 0 −108 −32



α2

α1

α0

β3
β2

 =


−1
−3
−9
−27
−81

 . (4.33)

The formulas are:

D = −72T1T0 + 24T1 + 39T0 − 17 (4.34a)

Dα2 = 72T1T0 − 27T1 − 24T0 + 9 (4.34b)

Dα1 = −15T0 + 9 (4.34c)

Dα0 = 3T1 − 1 (4.34d)

Dβ3 = −27T1T0 + 9T1 + 14T0 − 6 (4.34e)

Dβ2 = −57T1T0 + 18T1 + 39T0 − 18 (4.34f)

Dβ1 = −DT1α1 = 15T1T0 − 9T1 (4.34g)

Dβ0 = −DTα0 = −3T1T0 + T0. (4.34h)

The zero stability region is plotted in Figure 4.44. This region is much larger
than the zero stability regions of the E3 and I2 methods. This means that there
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are many more methods to choose from. However, we will soon see that not all
of them are good quality.

The error coefficients are plotted in Figure 4.45. Since the coefficients in the
denominator D are large, and since the error coefficient formula includes the
reciprocal of (p+ 1)!

∑
βj , the error coefficients are very small for a majority of

methods. In fact, most error coefficients are below 0.05, except near the curve
where D = 0. This trend can be compared to the one parameter classes, where
in contrast to the explicit and implicit methods, the implicit-plus methods have
a large zero stability region and small, flat error coefficients.

Figure 4.44: I+3 Methods, Zero Stability: The second largest root of ρ(z) is
plotted, methods are stable where it is less than one. At θ = (π/2, π/2) is the
AM-3 method.
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Figure 4.45: I+3 Methods, Error Coefficient: The absolute value of the error
coefficient is plotted where it is less than one. At θ = (π/2, π/2) is the AM-3
method.

As before, we run fixed and variable step size trials. The results of the
fixed step size trial are plotted in Figure 4.46. We see that the methods are far
from identical. In the large central region, methods perform somewhat similarly,
with high accuracies which improve slightly towards the right, wrapping around.
However for methods in the center-top region, the simulation fails. The reason
for this is not clear.

For example, if we look at the method θ = (π/2, 0), we see that the fixed
step size coefficients are:

α = (1.000,−1.125, 0.000, 0.125),

β = (0.375, 0.750,−0.375, 0.000).

The roots of ρ(z) are {1, 0.4215,−0.2965} so it is certainly zero stable. In fact,
the stability region is large enough to include -2.5 and the error coefficient is
0.333. While there is nothing obvious to explain why integration fails with
this particular method, even applying it to a simple problem such as the linear
test equation results in the modes error “polynomial coefficients are not finite.”
When the step size is allowed to vary, the error “too small step size reached”
is encountered. It is not entirely clear what causes this problem, and so we
leave the question open as to why these methods are not viable, at least in this
application.

In the variable step size trials, a similar pattern emerges. As shown in
Figure 4.47, step counts generally decrease slightly to the right, so long as they
are chosen within this “feasible” region. Measuring accuracies in Figure 4.48, it
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is also hard to see any improvement in one method over another. For example,
it may be possible to find improvements by selecting θ = (0, π/2) over the
Adams-Moulton method at θ = (π/2, π/2). This method has a smaller error
coefficient and has performed better in our simple experiments, but also has a
smaller stability region and lacks the same amount of numerical damping.

Of all the method classes examined in this paper, the I+3 methods are the
most difficult to draw any clear conclusions from. There is no obvious trade-off
between error coefficient and stability, no clear advantage to selecting meth-
ods with one property or the other, and no indication of why some methods
produce unacceptable results or fail to simulate. Perhaps there may be a way
to choose methods which perform definitively better than Adams-Moulton in
specific scenarios, but this question is left open to future research.

Figure 4.46: I+3 Methods: Accuracy of fixed step size simulation of Prothero-
Robinson Problem (4.3) for λ = −5, F (t) = 5 sin(5t). Step size is h = 0.002,
global error measured using wRMS norm (4.4), log10(error) plotted.
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Figure 4.47: I+3 Methods: Number of steps in variable step size simulation of
Prothero-Robinson Problem (4.3) for λ = −5, F (t) = 5 sin(5t) with a tolerance
of 10−8. Step size controller is MODES’ default.

Figure 4.48: I+3 Methods: Accuracy of variable step size simulation of Prothero-
Robinson Problem (4.3) depicted in Figure 4.47, error measured using wRMS
norm (4.4), log10(error) plotted.
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4.4.4 Methods Which Are Stable Away From Zero

Traditionally, methods which are not zero stable are never used. The reason for
this is because in order to ensure the possibility of controlling error by reducing
step size, it is important that the step size is allowed to become arbitrarily
small without leaving the stability region of the method. However, the stability
question is slightly more nuanced than this. It is possible for a method to be
stable in some region of the negative half-plane which is bounded away from zero.
It is possible for such a method to be stable when the step size is sufficiently
large, but become unstable as the step size is decreased. In the I2 class we
witnessed that some methods became stable for the Linear Test Equation when
the stiffness was increased, which is equivalent to choosing a larger step size h.
In this section, we examine one such method. It has not been determined if
such methods exist in Ek or I+k classes, or even in Ik classes for any other k.

Consider the I2 method given by the parameters (θ1, θ0) = (1.5, 1.0). The
fixed step size formula for this method has coefficients:

α = (1.0000, 0.0893,−1.0893),

β = (1.6518,−1.2590, 1.6965),

which can be verified by the Parametric Equivalence Theorem. The character-
istic polynomial for this method is then given by

π(z;hλ) =

2∑
k=0

(αk − hλβk)zk. (4.35)

The ρ polynomial is ρ(z) = 1+0.0893z−1.0893z2, which has roots {1,−1.0893}
and therefore by the Root Condition the method is not zero stable. However
for hλ = −0.05 the characteristic polynomial (4.35) becomes π(z;−0.05) =
1.0826+0.0263z−1.0045 with roots {0.9755,−0.9512} and therefore the method
is stable for this value of hλ. In fact, by performing a simple line search, we find
that the boundary for the stability region on the negative real axis is somewhere
around hλ = −0.0388, and therefore the method is stable for some step sizes to
the left of this value, and unstable for step sizes to the right.

We simulate the Linear Test Equation y′ = −y with initial value y(0) = 1
on the interval t ∈ (0, 10) with this method and fixed step size h = 0.05 to
obtain the completely reasonable result in Figure 4.49. However when the step
size is reduced to just h = 0.025 we see in Figure 4.50 that instability is causing
rapidly accelerating oscillations as the simulation diverges.

The takeaway from this experiment is not that we should begin considering
methods which are not zero stable, but rather that stability is a slightly more
complex issue than is usually considered. Note that we have not examined error
coefficient, and are not claiming that this method, or any other non-zero stable
method, should perform better than zero stable methods. This method does
not even have an unbounded stability region in the left half-plane and therefore
is not suitable for highly stiff problems. Zero stable methods are necessary for
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convergence, which is important for general applications in solvers which need
to be able to account for a wide variety of problems and which may require the
step size to become extremely small. However in experimental settings with a
simple problem, with the step size being either fixed or bounded below, it is
important to note that the choices of methods is not determined precisely by
the property of zero stability, but instead by the requirement that the methods
chosen are stable for the given values of hλ. Since the characteristic polynomials,
and therefore stability regions of methods vary continuously with respect to the
θ parameters, methods such as the one above, which is stable in a region near
zero, will be located near the zero stability region in θ space, so a nearby zero
stable method could be chosen anyways. However, it is interesting to discover
that such methods exist, even if the plausibility of using them is dubious.

Figure 4.49: Fixed step size simulation of Linear Test Equation y′ = −y using
the non zero stable method with step size h = 0.05. The step size is sufficiently
large such that hλ = −0.05 is within the stability region of the method, and the
simulation is stable.
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Figure 4.50: Same test as in Figure 4.49 except with a step size of h = 0.025.
Since hλ = −0.025 is outside of the stability region of the method, the simulation
is unstable.



Chapter 5

Further Study

5.1 Difficulties

In this paper many graphs are presented which show some kind of trend or make
it possible to draw some experimental conclusions. In reality, many more exper-
iments were run which were inconclusive or not illustrative. Therefore, to some
extent the information presented here is “selected” in order to support conclu-
sions. We argue that this decision is justified since these patterns emerged in
many other experiments, although other experiments had either presentational
or computational issues. In some cases there was no good way to show the
results, in other cases only partial results would be clear. Furthermore some
experiments were extremely computationally intensive, especially when looking
at the methods of two parameters, since so many methods had to be tested in
order to form the plots, and some experiments failed completely. This limitation
meant that other factors had to be kept simple, and that small issues in codes
could make it necessary to run the entire computation again.

Finally and most importantly, this research was truly experimental. Going
into this subject, there was never a clear vision of what would be found, or
sometimes even where to start, since there is so little known about it. The
ultimate question of how to build continuous method changes into a solver has
been largely circumvented because even equipped with an understanding of the
theoretical properties of these methods, there is still no clear way to go about
this. An error estimator which controls step size will automatically account
for stability issues, but even with an error estimate, how should a solver know
whether the results can be improved by choosing a method with a larger stability
region, one with a smaller error coefficient, or some other property which can
automatically determine method choice? In what direction should the θ vector
travel, and by how much? Such a framework has yet to be established.

72
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5.2 Higher Order Methods

The research presented here focused specifically on low order methods with
few parameters because these classes were the easiest to navigate visually and
computationally. While we observed certain trends in these classes and were
able to make experimental conclusions regarding how methods compared to
other methods of the same order and class, we were not able to generalize these
results to higher orders. Since higher order methods are often useful in practical
computing, it would be valuable to obtain general results regarding the higher
order classes in order to assess the possibility of applying these methods to
more generalized problems. For a start, it would be useful to find a quick way
to determine the zero stability regions and error coefficient gradients for any
method class, as well as knowing how the stability regions change. This would
make it possible to navigate the θ space easily for classes of any order, at least
with respect to these properties. However, even obtaining simpler results about
higher order methods could be a good start. For example, BDF methods are
popular implicit methods for their ability to tolerate stiff problems and produce
accurate results. However, could there be other methods of orders 3 to 6 which
are stiff tolerant and produce smaller errors than the BDF family? Are there
similarly stiff suitable methods for higher orders?

5.3 An Algorithm Which Selects Methods Con-
tinuously

The use of parametric multistep methods opens the door to the possibility of
using method choice as a primary control feature in solver performance. Clas-
sically, solvers implementing linear multistep methods will only use one or two
methods for each order, and only change methods when an order change is
deemed necessary. Rather than changing order or class, it may be possible to
choose a new method from the same order and class to improve performance
in a similar fashion to step size control. This possibility can be demonstrated
by examining the E2 methods: In this class, we saw that methods with smaller
θ0 (towards π/4) had larger stability regions, while methods with larger θ0 (to-
wards π) had smaller error coefficients. If a solver implementing these methods
was able to detect that a problem required a larger stability region, then a
method could be chosen to accommodate this necessity. If, on the other hand,
the solver detected that the problem was sufficiently stable, and instead wished
to decrease error for a given step size, the solver could choose a method with a
smaller error coefficient. This of course is only a simple example, as E2 meth-
ods will likely not be used as primary methods in industrial solvers. However, if
more were known about the higher order classes, and if there was a clear theo-
retical way to navigate their qualities, then perhaps this idea could be extended
to multistep solvers implementing higher order methods which must meet more
realistic demands, and such a controller could be proposed which automatically
selects the best method.
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