
INVESTIGATION OF

ALTERNATIVE CONTACTLESS

OPTICAL SURFACE

RECONSTRUCTION METHODS

RICKARD BOLIN, ERIC ROSTEDT

Master’s thesis
2021:E7

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract

Object and surface reconstruction in 3D is commonly used in production tolerance
validation. Depending on the required level of accuracy, a multitude of different
methods are available, each with their own advantages and disadvantages.

This thesis aims to investigate alternative surface reconstruction methods which
utilise that all possible light paths are known along a given one-dimensional curve
on the surface of a material with known refractive index. This makes it possible to
calculate the expected light intensity for the curve. By comparing the expected inten-
sity to a reference intensity from when there is no surface to reflect off, it is possible
to deduce information about the surface.

Several methods utilising this information to reconstruct the surface of an object are
investigated and evaluated. The types of investigated methods range from one-
dimensional iterative methods to Convolutional Neural Network based Encoder-
Decoder architectures.

The evaluation shows that it is possible to deduce information about the general
shape of the surface, but that the non-linear nature of the problem makes it difficult
to identify any fine details. The methods showing the most promising results use a
combination of principal components and simple geometric relationships in the data
to reconstruct the surface.

Keywords: Geometric transformation, Principal Component Analysis, Helmholtz
equation, CNN based Encoder-Decoder

Acknowledgements

We would like to express our sincerest gratitude and appreciation to all who have
made this thesis possible. Among those are Maria Sandsten, Filip Cederquist and
Gustav Harrysson, who have provided valuable feedback and suggestions of im-
provement. We would also like to offer a special thanks to our supervisor Johan
Lindström for his guidance and interesting ideas throughout this thesis.

Rickard Bolin & Eric Rostedt

Contents

1 Introduction 1

2 Theory 3
2.1 Fundamental optics and boost . 3

2.1.1 Luminous intensity as a function of angle and distance 3
2.1.2 Fresnel coefficients . 4
2.1.3 Boost factor . 6
2.1.4 Simulation . 11

2.2 Theoretical foundation of the investigated methods 13
2.2.1 Helmholtz equation in a rectangle 13
2.2.2 Principal Component Analysis 14
2.2.3 Similarity transformations . 15
2.2.4 CNN based Encoder-Decoder . 16
2.2.5 Neural network estimation of gradient using backpropagation 17

3 Data Collection 19
3.1 Collection of real data . 19
3.2 Data generation . 21
3.3 Data exploration . 22

4 Analysis 31
4.1 Update individual scanlines iteratively 32
4.2 Linear basis expansion and space alignment 35

4.2.1 Choice of basis . 36
4.2.2 Weight space map estimation . 42

4.3 CNN-based Encoder-Decoder . 43
4.3.1 Simple Encoder-Decoder . 43
4.3.2 Surface autoencoder combined with boost encoder 44

5 Results 47
5.1 Iterative method . 47
5.2 Comparison of weight space alignment techniques 47

5.3 Reconstructions . 50
5.3.1 Evaluation on the generated test set 51
5.3.2 Evaluation on the real test set . 53

6 Discussion 57
6.1 Review of the different methods . 58
6.2 Future research . 61

Appendix A Theory Appendix 1
A.1 Helmholtz equation in a rectangle - Derivation of eigenfunctions and

eigenvalues . 1
A.2 Principal Component Analysis . 4
A.3 Umeyama’s algorithm - Finding the optimal similarity transformation 6
A.4 Estimation of gradient using a neural network and backpropagation . 6

Appendix B Model Architectures 11
B.1 One-dimensional curve boost function architecture 12
B.2 Boost PC weights to Surface PC weights architecture 15
B.3 Handpicked basis weight mapping architecture 16
B.4 Helmholtz basis weight mapping architecture 17
B.5 Encoders and Decoder . 18

Appendix C Data Generation 23

Appendix D Reconstructions 27

Chapter 1

Introduction

Reconstruction of objects in 3D is commonly used in many different applications.
Techniques such as LiDAR point clouds and stereo images can be used to reconstruct
large objects and environments, whereas techniques such as Moiré deflectometry
and structured light reconstruction can be used to reconstruct the surface of small
objects with very high accuracy[4][7].

This thesis aims to investigate alternative contactless optical reconstruction methods
that use emitters and detectors to generate light and record the signal strengths after
the light has travelled along the surface of a material to estimate the shape of the sur-
face in real time. If the surface could be estimated to a certain degree of accuracy, this
method could be used as a quick test during production to assure that production
tolerances are met. Alternatively, for the use cases that can adapt to variations in the
surface as long as it is known, the estimation could make it possible to increase the
production tolerances, resulting in a lower production cost.

The proposed method utilises that, along a given one-dimensional curve on the sur-
face of a material with known refractive index, it is possible to use simple ray tracing
techniques to find the path of all rays from one side of the curve to the other. This
means that it is possible to estimate how much of the light generated by an emitter
on one end of the curve that will reach the detector on the other end, either directly
or after reflecting off the surface. It turns out that the surface has a large impact on
the amount of detected light.

The proportion between the detected light and expected detected light when there
is no surface to reflect off will be referred to as boost factor, and will be described in
detail in section 2.1.3. The illustration in figure 1.1 shows how more light paths are
enabled as the surface becomes more curved.

1

Figure 1.1: Boost factor examples. The top left illustrates the boost factor when there
is no underlying curve, top right when there is a flat curve. The two lower figures
show how the boost factor increases as the curve becomes more curved.

In the case where there is no material to reflect off, no additional light will reach the
detector, resulting in a boost factor of one. With a perfectly flat and large surface,
the amount of light reaching the detector will approximately double, resulting in a
boost factor of two. As the surface becomes more and more curved, more possible
paths for the light are enabled and the boost increases.

Reconstruction techniques such as time-of-flight, structured light and Moiré deflec-
tometry generally work quite well, and this thesis is not an attempt to develop a
method with state-of-the-art accuracy or speed. Instead, the methods investigated
in this thesis should be considered a complement to the toolbox of existing tech-
niques to be used when the environment and context is especially well suited. The
methods proposed in this thesis can be used in a similar fashion as structured light
techniques as the optical signals containing information about the surface can be
recorded in real time, making it possible to examine how forces applied in different
ways affect the deformation over time.

The aim of this thesis is to:

• Investigate different methods to reconstruct a surface using optical emitters
and detectors at the edge of the surface.

• Evaluate the different methods on both simulated and real data.

2

Chapter 2

Theory

In this chapter, a rigorous derivation and explanation of the concept of boost and
how it can be simulated is provided, which will be necessary to be able to understand
the methods and results.

Additionally, an overview of some fundamental statistics and optics is provided, as
well as some theory behind the building blocks of the investigated methods.

2.1 Fundamental optics and boost

2.1.1 Luminous intensity as a function of angle and distance

Figure 2.1: Illustration of the light intensity dependence on angle and distance.

The intensity I of light emitted decreases proportionally to the inverse of the squared
distance Lr from the emitting surface since the light is distributed as the surface of a

3

sphere, which grows proportionally to the square of the radius of the sphere. This is
commonly referred to as the inverse square law [12] (p. 12):

Ir ∝
I

L2
r

.

The intensity Ir is also directly proportionally to the cosine of the angle between the
normal of the surface and the ray~r. To the right in figure 2.1 it is illustrated how
much of an emitting surface that can be utilised when viewed from an angle α. This
is known as Lambert’s cosine law [12] (p. 13):

Ir ∝ I cos(αr). (2.1)

2.1.2 Fresnel coefficients

Figure 2.2: Illustration of Snell’s law, which describes reflection and transmission
when an incoming ray intersects a curve which separates two different media.

Reflection and transmission are physical phenomena occurring when a wave passes
from one medium to another. For a differentiable curve c(x) which separates the two
media as in figure 2.2, the normalised normal vector pointing perpendicularly to the
surface and away from the second medium is found as:

~̂n =
1√

[c′(x)]2 + 1

[
−c′(x)

1

]
.

Let the vector~i represent a light ray,~r be the reflected ray and~t be the transmitted
ray after hitting the interface. For simplicity, let the vectors be normalised, i.e have
length of 1.

4

The angle of incidence θi is the angle between the incoming vector~i and the normal
vector ~̂n and is calculated using the dot product:

−~i · ~̂n = || −~i||2 · ||~̂n||2 cos(θi) =⇒ θi = arccos
(
−~i · ~̂n

)
.

where the implication holds iff the vectors~i and ~̂n are normalised. When the incom-
ing ray intersects the curve, it will split into two parts. One is reflected and one is
transmitted to the other medium. The law of reflection states that the reflective angle
is the same as the angle of incidence. The reflected vector can be calculated using the
householder transformation [5]:

~r =~i− 2(~i · ~̂n)~̂n.

The angle of the transmitted ray depends on the refractive indices of the media. The
refractive index nj of a medium j is defined as

nj =
vj

c
,

where vj is the speed of light in medium j and c is the speed of light in vacuum. The
relation between the angle of incidence θi and the transmitted angle θt for a light ray
travelling from medium 1 to medium 2 follows Snell’s law [12] (p. 17), which states:

sin(θi)n1 = sin(θt)n2. (2.2)

An illustration of Snell’s law can be seen in figure 2.2.

To find how much of the light is reflected and transmitted respectively, Fresnel’s for-
mulae are used. The relation depends on the incident angle θi, the refractive indices
of the two media and the polarisation of the incident light.

The Fresnel formulae [12] (p. 495-496) gives the reflection coefficient for parallel
polarised light as

Rp (θi) =

(
nrel cos θi − cos θt

nrel cos θi + cos θt

)2

,

and for perpendicular polarised light as

Rs (θi) =

(
cos θi − cos θt

cos θi + cos θt

)2

,

5

where nrel is the relative refractive index n2
n1

. By solving for θt in equation (2.2), it can
be eliminated from the equations

Rp (θi) =

n2
rel cos θi −

√
n2

rel − sin2 θi

n2
rel cos θi +

√
n2

rel − sin2 θi

2

(2.3)

and

Rs (θi) =

cos θi −
√

n2
rel − sin2 θi

cos θi +
√

n2
rel − sin2 θi

2

. (2.4)

Assuming that the material does not absorb any of the light, the law of conservation
of energy gives that:

Tp(θi) = 1− Rp(θi).
Ts(θi) = 1− Rs(θi).

In the case where the incident light is unpolarised, the amount of parallel and per-
pendicular polarised light is equal [3]. The effective reflection and transmission fac-
tors can then be calculated as

Re f f (θi) =
Rp(θi) + Rs(θi)

2
. (2.5)

Te f f (θi) =
Tp(θi) + Ts(θi)

2
.

2.1.3 Boost factor

Along a differentiable one-dimensional curve on the surface of a material with
known refractive index, it is possible to find the path of all rays from one side of
the curve to the other. Thus, it is possible to estimate how much of the light gener-
ated by an emitter on one end of the curve that will reach the detector on the other
end, either directly or by reflecting off the surface. The increase in detected light
caused by light reflecting off the curve compared to when there is no curve to reflect
off is called the boost factor. The general formula for the boost factor is defined as

Boost factor =
pcurve + pdirect

pdirect
, (2.6)

where pcurve is the proportion of the total light reaching the detector by first reflect-
ing off the curve and pdirect is the proportion of the total light reaching the detector
without any reflections. This section will explain in detail how pcurve and pdirect are
derived and calculated. To simplify the theory and calculations, the length L of the

6

curve is assumed to be much larger than the height of the emission and detection
points ye and yd (see figure 2.3). This results in only rays with small emission and
detection angles ϕe and ϕd being likely to reach the detector, as well as most inci-
dence angles towards the curve being close to 90◦, which results in almost no light
getting transmitted through the material.

Consider a light source and a detecting surface as in figure 2.3.

Figure 2.3: Light source and detecting surface. The left figure shows the one-
dimensional curve from the light source to the detecting surface. The right figure
shows the light source and detecting surface in the geometry from a bird’s-eye view.

Let all light be emitted from a point ye on the light source be separated into only five
rays, as in figure 2.4.

Figure 2.4: Five light rays emitted from the point ye at the light source.

7

According to Lambert’s cosine law (see section 2.1), the intensity is proportional to
the cosine of the angle between the light source and the surface detecting the light.
As illustrated to the right in figure 2.3, the light is both emitted and detected at an an-
gle. If each ray carries the same intensity I, the emitted intensity from the light source
in the direction towards the detecting surface for each ray ` is I cos(αe) cos(ϕ`

e) and
the detected intensity will be proportional to cos(αd) cos(ϕ`

d). In the example in fig-
ure 2.4, the first ray misses the detecting surface completely, the second and third ray
hits the detecting surface without hitting the curve below and the fourth and fifth ray
hits the detecting surface by reflecting off the curve. The detected intensities of the
reflected rays are

I4 =
Re f f (θ

4
i) cos(αe) cos(αd) cos(ϕ4

e) cos(ϕ4
d)I

L2 ,

I5 =
Re f f (θ

5
i) cos(αe) cos(αd) cos(ϕ5

e) cos(ϕ5
d)I

L2 ,

where Re f f is the effective reflection factor from equation (2.5). Without a curve to
reflect off, the total detected intensity would be

Idirect = I cos(αe) cos(αd)
cos(ϕ2

e) cos(ϕ2
d) + cos(ϕ3

e) cos(ϕ3
d)

L2 .

Since L is assumed to be much larger than the height of the points ye and yd, the
emission and detection angles ϕe and ϕd are close to zero, the angles of incidence
θi are close to 90◦. This results in cos(ϕe) ≈ cos(ϕd) ≈ 1 and, when cos(θi) ≈ 0 is
inserted into the Fresnel equations (2.3) and (2.4), the effective reflection coefficient
is found to be close to one:

Rp(θi) ≈

0 · n2
rel −

√
n2

rel − 1

0 · n2
rel +

√
n2

rel − 1

2

= 1,

Rs(θi) ≈

0−
√

n2
rel − 1

0 +
√

n2
rel − 1

2

= 1.

This simplifies the expressions considerably:

I4 ≈ I5 ≈
I cos(αe) cos(αd)

L2 ,

Idirect ≈
2I cos(αe) cos(αd)

L2 .

8

These simplifications are applied throughout the entire derivation of the boost factor.

The boost factor is calculated as the total detected intensity divided by the detected
intensity if the curve were not present, which in this case is

boost factor =
Idirect + I4 + I5

Idirect

≈ cos(αe) cos(αd)(2I + I + I)
2I cos(αe) cos(αd)

= 2.

Note that the intensities, length and dependencies on α cancels out. Essentially, the
boost concept can be thought of as the total number of rays hitting the detector di-
vided by the number of rays hitting the detector without reflecting off the curve.
Since all rays between an emitter-detector pair depend on the the length L and an-
gles αe and αd in the same way, they will always cancel out when calculating the
boost. Therefore, αe, αd and L are left out in the rest of the calculations in this section.

In practice, the light is emitted in the entire 180◦ range. Therefore, the discrete for-
mulation must be extended to a continuous one. Assume uniformly distributed in-
tensity over the light source and uniform sensitivity distribution along the detecting
surface. First, consider only the rays hitting the detector without reflecting off the
curve. Then, for each point ye along the emitter, there exists an angle ϕdirect(ye),
within which all rays hit the detector. Figure 2.5 illustrates the angle ϕdirect(ye):

Figure 2.5: Illustration of the direct hit angle ϕdirect.

9

Let et and eb be the top and bottom of the light source respectively and dt and db be
the top and bottom of the detecting surface. By fixating a point ye on the light source
between the bounds et and eb, ϕdirect(ye) can be calculated as:

ϕdirect(ye) = arctan
(

dt − ye

L

)
− arctan

(
db − ye

L

)
.

The proportion of rays hitting the detector directly is

ϕdirect(ye)

π
=

1
π

[
arctan

(
dt − ye

L

)
− arctan

(
db − ye

L

)]
.

Since the intensity is assumed to be uniformly distributed over the emitting surface
and equal for all angles, the total intensity Itotal in the direction towards the detector
is calculated as:

Itotal =

et∫
eb

π/2∫
−π/2

Idβdy = Iπ(et − eb).

The proportion pdirect in relation to the total intensity is thus:

pdirect =
1

Itotal

et∫
eb

π/2∫
−π/2

Iϕdirect(ye)

π
dβdye

=
1

Iπ(et − eb)

I
π

π

et∫
eb

ϕdirect(ye)dye

=
1

π(et − eb)

et∫
eb

arctan
(

dt − ye

L

)
− arctan

(
db − ye

L

)
dye.

The rays hitting the detector by reflecting off the curve will now be examined. Define
the indicator function ιd(yd(ϕe, ye)) as

ιd(yd(ϕe, ye)) =

{
1 if db ≤ yd(ϕe, ye) ≤ dt
0 else

where yd(ϕe, ye) is the position of the ray emitted from elevation ye with angle ϕe at
x = L. If the ray is reflected backwards and never reaches x = L, then yd(ϕe, ye) :=

10

∞. The proportion pcurve detected after reflecting off the curve in relation to the total
intensity can then be calculated as:

pcurve =

I
et∫

eb

π/2∫
−π/2

ιd(yd(ϕe, ye))dϕedye

Itotal

=
1

π(et − eb)

et∫
eb

π/2∫
−π/2

ιd(yd(ϕe, ye))dϕedye. (2.7)

Thus, expressions for both pcurve and pdirect are derived, and equation (2.6) can now
be used to calculate the boost factor for a given curve.

2.1.4 Simulation

To calculate the boost factor for a curve c(x) is to solve equation (2.6). The intensity
proportion pdirect has a closed form solution, whereas pcurve must be approximated
by simulation. The simulation depends on the ability of finding the normal to c(x),
hence a necessary assumption is that c(x) is differentiable. Consider a discretised
version of the integral (2.7). Let Y be the set of vertex points along the emitting
surface and Φ be the set of sampled angles. Then pcurve can be approximated as:

pcurve ≈
1

|Y||Φ| ∑
ye∈Y

∑
ϕe∈Φ

ιd(yd(ye, ϕe)).

To improve the resolution, only rays reflecting off the curve at least once are sampled
to get a biased estimation which can be compensated for retroactively. The range of
angles to sample rays from is easily calculated as

ϕcurve =

 arctan
(

L
|y−c(L)|

)
if y ≥ c(L)

π
2 + arctan

(
L

|y−c(L)|

)
else

and is illustrated in figure 2.6.

11

Figure 2.6: Illustration of the range of angles for which light rays emitted from a
point ye will intersect the curve c(x).

Denote the biased estimation as pb
curve. The compensation is then carried out as:

pcurve =
ϕcurve

π
pb

curve.

The simulation algorithm is summarised with the pseudo code in algorithm 1.

Input: Rays from light source
while rays are still reflecting off material do

find points i on curve where the rays will reflect
for all remaining rays do

if i is between emitter and detector then
calculate reflections by finding the normal of the curve at i

else
remove ray from remaining rays

end
end

end
count the number of rays hitting the detector

Algorithm 1: Algorithm for simulation of boost gain

As a future reference for the reader, the boost factor is two when a flat curve is
present and the angles of incidence onto the curve are large. This can reasoned
about in the following way: Consider a light source and a perfectly flat curve
(n̂ = [0, 1]> ∀x). From the light source to any point on the detecting surface, there
are exactly two paths: the direct path and the path with one reflection. Assuming

12

that the light source has full field of view of 180◦ towards the detecting surface, the
path with one reflection off the flat curve will always exist. Therefore, the number
of paths doubles compared to when the curve is not present. Thus, when the angles
of incidence are large, the detected intensity at the detecting surface doubles. Figure
1.1 in the introduction displays the light rays and simulated boost factor for a flat
curve.

2.2 Theoretical foundation of the investigated methods

The problem this thesis aims to solve is to find the surface that causes the boost of
each scanline over a surface.

One of the investigated methods updates one or a few scanlines at a time with a gra-
dient descent scheme. To avoid using finite difference estimation of the simulation,
the gradient is approximated using a neural network and backpropagation.

The other investigated methods use all scanlines at the same time. Since there are a
lot of scanlines, the dimensionality has to be reduced. A few different ways of reduc-
ing the data are investigated, for example by describing the data as a linear expan-
sion of different bases and by using Convolutional Neural Network (CNN) based
Encoder-Decoder architectures. Thereafter, a way of relating the reduced boost data
to the reduced surface data it needed. For this, similarity transformations and neural
networks are investigated.

In this section, the theoretical foundation needed for everything mentioned above is
presented in a short and concise manner.

2.2.1 Helmholtz equation in a rectangle

One of the bases used to reduce the dimensionality of the surface data consists of the
eigenfunctions to Helmholtz equation on a rectangle. Therefore, let S(x, y) denote a
twice continuously differentiable surface function in the rectangle Ω = {(x, y) | 0 ≤
x ≤ L, 0 ≤ y ≤ H}. Furthermore let S(x, y) be zero along the boundary of the
rectangle. The eigenfunction-eigenvalue pairs to the negative Laplacian is found by
solving the Helmholtz equation [17] (p. 313-315):

− ∆S(x, y) = λS(x, y), S ∈ D (2.8)
Ω = {(x, y) | 0 ≤ x ≤ L, 0 ≤ y ≤ H},
D = {S ∈ C2(Ω) | S(0, y) = S(L, y) = S(x, 0) = S(x, H) = 0}.

Solving this problem, the following eigenfunctions sm,n with corresponding eigen-

13

values λm,n are obtained:

sm,n(x, y) = −sin
(mπ

L
x
)

sin
(nπ

H
y
)

.

λm,n = π2
[(m

L

)2
+
(n

H

)2
]

.

m, n ∈ Z+.

Note that this family of eigenfunctions are not uniquely determined. For example,
the eigenfunctions s̃m,n(x, y) = asin

(mπ
L x
)

sin
(nπ

H y
)

also satisfies the problem for-
mulation 2.8. The choice of using a = −1 as scaling is to make the eigenfunction
s1,1(x, y) bowl shaped. For the full derivation, see appendix A.1.

2.2.2 Principal Component Analysis

To reduce the dimension of data while preserving as much information as possible,
Principal Component Analysis (PCA) can be used to find the most prominent fea-
tures. The dimensionality can then be reduced by only using some number of these
features, or principal components, to describe the data. A simple example of PCA on
two dimensional data can be seen in figure 2.7.

Figure 2.7: Example of Principal component analysis. The most prominent feature
is found in the PC1 direction and the less prominent in the PC2 direction, which is
orthogonal to PC1.

Consider a data set with vectors {xi}m
i=1. To find the principal components, the co-

variance matrix Σ of the data set is constructed. The covariance matrix is symmetric
and positive semi-definite, hence its eigenvalue factorisation can be written as

Σ = VΛV>.

The diagonal matrix Λ contains the (non-negative) eigenvalues sorted in descending
order, and the orthogonal matrix V holds the corresponding eigenvectors as column

14

vectors. These eigenvectors are the principal components (orthogonal features) of
the data set, where the eigenvector corresponding to the largest eigenvalue accounts
for most of the variance in the data set, the eigenvector corresponding to the second
eigenvalue accounts for the second largest amount of variance and so on. For
a full derivation as well as a more efficient method for calculating the principal
components, see appendix A.2.

To determine how many principal components that should be used to reduce
the dimensionality of the data, an energy measurement is used. Assume that the
covariance matrix has n eigenvalues. The energy of the covariance matrix is defined
as E = ∑n

j=1 λj, where {λj}n
j=1 are the eigenvalues of the covariance matrix. To

calculate the number of components needed to preserve a certain proportion of
the total energy, assume that the eigenvalues are sorted in descending order and

let Ek = ∑k
i=1 λi

∑n
j=1 λj

. The number of features needed is the smallest number k such that

Ek/E ≥ p, where p is the proportion of energy to preserve.

2.2.3 Similarity transformations

A combination of translation, reflection, rotation and/or scaling is called a similarity
transformation [9]. An example of a similarity transformation is illustrated in figure
2.8.

Figure 2.8: Illustration of a similarity transformation. The triangle is rotated 90◦

anticlockwise, translated up to the right and shrunken.

The transformation matrix of a similarity transformation has the following appear-
ance:

T =

(
sR t
0> 1

)
,

15

where R is a rotation matrix, t is a translation vector and s is a positive scalar. Let
{xi}N

i=1 and {yi}N
i=1 be corresponding sets of points. If the optimal similarity trans-

formation T∗ between the sets is known, it can be used to estimate where the corre-
sponding point ynew would be for a new point xnew, and is obtained by applying the
transformation, i.e:

[
ynew

1

]
= T∗

[
xnew

1

]
.

When a similarity transformation is used to align two sets of corresponding points,
the optimal transformation depends on the metric, but a common choice is to min-
imise the Euclidean norm between the two sets of points. The optimal similarity
transform with respect to the Euclidean norm can be found using Umeyama’s algo-
rithm, which is described in appendix A.3.

2.2.4 CNN based Encoder-Decoder

As seen in section 2.2.2, PCA finds the hyperplane best describing the data in the
selected number of dimensions. Thus, dimensionality reduction with PCA works
well if the data can be described by linear patterns, but falls short when the data
exhibits non-linear patterns. An example of this can be seen in figure 2.9.

Figure 2.9: Illustration of when ordinary principal component analysis fails to cap-
ture non-linear features (left). Alternative dimension reduction methods could how-
ever take non-linearity into account and find non-linear manifolds.

The principal components fail to capture the underlying sinusoid pattern of the data.
Therefore, a CNN-based Encoder-Decoder architecture can be used to reduce the
dimensionality of the data instead of PCA. An Encoder-Decoder network with lin-
ear activations trained to generate itself, known as an autoencoder, can essentially
be viewed as a PCA without the orthogonality constraints on the components [13].

16

With non-linear activations, the Encoder-Decoder network can learn non-linear man-
ifolds, as illustrated in figure 2.9.

An illustration of a typical CNN-based encoder and decoder can be seen in figure
2.10.

Figure 2.10: Illustration of a typical encoder-decoder structure [8].

When the output of the encoder has smaller dimensions than the input, an infor-
mation bottleneck is created. This forces the encoder to learn to represent the input
data in fewer dimensions, essentially learning to recognise important features of the
data[2]. If the decoder then learns to reconstruct the input only using the information
in the bottleneck, the input is successfully encoded in a lower dimension.

2.2.5 Neural network estimation of gradient using backpropaga-
tion

A neural network trained to approximate a function can also be used to estimate the
partial derivatives of its inputs. To do this, it is necessary to find how the input pa-
rameters affects the loss function. This is done using the backpropagation algorithm
[15]. Let L be the number of layers in the network and (`) denote the `:th layer. Fur-
thermore let f (`)(·), z(`), a(`) and W (`) denote the activation function, pre-activation
values, post-activation values and the weights respectively at the `:th layer and let
L(y, ŷ) be the loss function. The gradient of the loss function with respect to the
input p of the network is then calculated as

dL
dp

=

 L

∏
`=1

(
d f (`)(z(`))

dz(`)
W (`)

)> dL
da(L)

. (2.9)

For the full derivation of the gradient, as well as clarification of the notation, see
appendix A.4.

17

18

Chapter 3

Data Collection

3.1 Collection of real data

To test the methods on real data, a setup is constructed.

Figure 3.1: Illustration of the setup. The left figure shows the dimensions of the panel
and the right how the emitters and detectors are placed in relation to the panel, i.e at
an elevation of 0.3 mm above the edge points.

The setup, illustrated in figure 3.1, consists of a thin panel with dimensions 1257 by
728 mm. The panel is equipped with a total of 144 emitters and 144 detectors, 48 on
each long side and 24 on each short side, placed at an elevation of 0.3 mm above the
panel. The width of both the emitting and detecting surface is 2.2 mm.

The setup is constructed such that for all pairs of emitters and detectors:

1. The difference between the largest and smallest value of the curve c(x) between
them is small in relation to its length L.

2. The emitter and detector are at similar heights.

3. The emitter and detector are not elevated much above the curve.

19

4. The widths of the emitting and detecting surfaces are small.

Due to these properties, the light rays hitting the detecting surface by reflecting off
the curve have had large angles of incidence, which matches the assumptions made
in the boost factor derivation in section 2.1.3.

Two different types of data are collected from the setup. The first is the shape of
the panel surface, which is measured using an ultrasonic sensor. To obtain different
surfaces, the panel is manually deformed. The sensor has a resolution exceeding
0.069 mm, which makes it suitable for measurements of point pressure deformations.
Measurements are made in a grid of 25× 15 equidistant points along the surface.

The second type of data is a recording of detected light when the panel is deformed,
without any exterior interaction or interference. This data is simply the detected
signal strengths and not the boost factor for each scanline. Since the boost factor of
a perfectly flat surface is two, the boost factor for each signal can be computed by
comparing the recorded signal to a reference obtained from a flat surface:

Surface boost factor =
2 · Recorded signal

Recording of flat signal
.

To record signals from a flat surface, the surface is manually deformed until the panel
is approximately flat. Figure 3.2 illustrates an attempt of making the panel flat:

Figure 3.2: Illustration of the approximated flat panel created by manually deforma-
tion.

The panel deviates about 0.2 mm from the mean at the most extreme points.

20

3.2 Data generation

Collection of real data is time consuming due to the measurements of the shape of
the surface being slow. The possibility to generate reasonable surfaces is therefore of
great interest. The boost simulator can then be used to estimate the boost for each
surface. The generated surfaces need to reflect reality in that the surfaces should be
possible to create by applying a reasonable amount of force to the panel.

The generated surfaces are based on twelve handpicked basis surfaces, which are
displayed in figure 3.3:

Figure 3.3: Illustration of the twelve handpicked basis surfaces.

21

In essence, the surfaces are generated as a linear combination of the basis surfaces in
figure 3.3, but with some additional intermediate steps adding more variation and
smoothing the surfaces to better resemble a the measured surfaces. The full data
generation algorithm can be found in appendix C.

By using this algorithm to generate reasonable surfaces combined with the simula-
tion to generate the corresponding boost matrices, a large amount of training data
can be generated. This opens up the possibility to investigate methods relying heav-
ily on training data, which would not be reasonable if all training data had to be
measured and recorded from the setup. Two examples of surfaces generated by the
algorithm are illustrated in figure 3.4.

Figure 3.4: Two examples of generated surfaces.

3.3 Data exploration

The aim of this section is to take a look at the data, investigate how the boost depends
on the underlying curve and to make a brief comparison between the simulated and
measured data. The surfaces are intuitive and easily illustrated. An example surface
is displayed in figure 3.5.

22

Figure 3.5: Illustration of a ‘bowl’ shaped surface.

Note the dimensions of the surface. The length and width of the surface is much
larger than the depth, which is the case for all measured and generated surfaces.

The boost factors of all scanlines, i.e all emitter-detector pairs, over a surface will be
illustrated as a boost matrix. Let the components around the periphery of the surface
be enumerated such that both emitter and detector number one is in the lower left
corner and increases in the anticlockwise direction around the edge of the surface.
The intensity measured by the d:th detector from the e:th emitter is denoted Ie,d.
Consider the geometry shown in figure 3.6:

Figure 3.6: Scanline geometry with four emitters and four detectors.

23

The scanline intensities Ie,d from each emitter to each detector makes up a signal
matrix with the following appearance:

signal matrix =


0 I1,2 I1,3 I1,4

I2,1 0 I2,3 I2,4
I3,1 I3,2 0 I3,4
I4,1 I4,2 I4,3 0


The diagonal elements are zero since the angle from an emitter to a detector on the
same edge as itself is 90◦, which according to Lambert’s law results in no light reach-
ing the detector. To obtain the boost matrix, the signal matrix is divided element-
wise by the corresponding elements in the signal matrix for the same geometry but
without any surface for the light to reflect off. Since the real setup has 144 emit-
ters and 144 detectors, the full size boost matrices will have dimensions (144, 144).
Figure 3.7 illustrates the boost matrix for the surface in figure 3.5:

Figure 3.7: The measured boost matrix for the example surface in figure 3.5.

The boost matrix is interpreted in the following way:

1. The component ordering starts in the lower left of the surface and then moves
anticlockwise.

2. The rows correspond to the different boosts between one specific emitter and
all detectors. So for example row zero corresponds to the boosts from the emit-
ter in the lower left corner to all the detectors.

24

3. The columns correspond to the boosts between all emitters and one specific
detector.

4. The dark blue regions are where the components lie on the same edge.

5. Example: The region where the rows are 71-119 and the columns are 0-47 (the
box with red region in the lower left) corresponds to the scanlines going from
the long side at the top to the long side at the bottom of the surface, and the
off-diagonal of the box corresponds to the completely vertical scanlines.

To get a better understanding of why a boost matrix for some surface looks the way
it does, it is important to look at how the boost for each individual scanline depends
on the surface. The number of rays reaching the detecting surface increases as the
curve becomes more parabolic. Consider a curve c(x) = a

(
x− L

2

)2
with length L.

The curve is a parabola centred at x = L
2 . By varying a, the curvature of the parabola

is varied. The hypothesis is that as a increases, the boost should also increase. Figure
3.8 illustrates the relation between the coefficient a and the boost.

Figure 3.8: Relation between curvature of centred parabola and boost.

It appears from figure 3.8 that the boost depends linearly on the coefficient a in the
interval [10−6, 10−5], which is in the range of the quadratic coefficient for the defor-
mations on the real surface. Next, the effect of the length of the curve on the boost is
examined. For the centred parabolas c(x) =

(
x− L

2

)2
, this is easy to answer. Since

the boost depends linearly on the curvature a of the centred parabolas, the boost will
also depend on the length, since a depends on the length. On the edges, c(x) equals
some elevation c0, making it possible to construct the following equation:

25

c0 = a(0− L
2
)2 ⇐⇒ a = 4

c0

L2 .

Hence, given a centred parabola with some fixed elevation at the edges, the boost de-
creases proportionally to the square of its length. Even though the curves are almost
never perfectly centred parabolas in practice, consider ‘bowl’ shaped surface func-
tions, for example the measured shape in figure 3.5. By extracting one-dimensional
curves along these types of shapes, it is possible to compare how the boost depends
on the depth of the curve, which should have a similar appearance as the centred
parabola relation. To remove the length dependence, consider only vertical curves
going from the bottom to the top of the surface. The relation between the depth and
the boost for these curves are illustrated in figure 3.9:

Figure 3.9: Relation between depth and boost for vertically extracted one-
dimensional curves where the underlying 2D surfaces are approximately centred
‘bowl’ surfaces.

It is obvious from figure 3.9 that the max depth of a curve has a large impact on the
boost, at least for this family of curves. However, the lowest point will of course not
always be close to the the middle of the curve. Thus, the impact of skewness of the
curve on the boost has to be investigated. This is done by studying a family of third
degree polynomials c(x) with length L fulfilling the following criteria:

1. c(0) = c(L) = c0 := 2.

2. c(L
2 + δ) = min

x∈[0, L]
c(x) := −1 .

3. c′(L
2 + δ) = 0.

26

As the parameter δ is varied, the lowest point is shifted away from the centre. Due to
the symmetry of reflections, a shift to the left should affect the boost in the same way
as the a shift to the right, assuming that the magnitude of the shifts are the same.
The effect of δ on the boost is displayed in figure 3.10

Figure 3.10: Relation between skewness and boost.

The boost decreases proportionally to |δ|, at least for cubic polynomials which ful-
fil the proposed criteria. Now, as touched on briefly in the analysis of the relation
between skewness and boost, there exist a natural symmetry for the boost. Assume
that some curve c(x) with length L yields a boost b, then the curve c(L − x) also
yields the same boost b. Hence, for a given boost, there exists at least two different
curves yielding that boost. An example of this is illustrated in figure 3.11:

27

Figure 3.11: Mirrored curves both yielding a boost of 1.55.

However, these are not the only ones, rather there exists lots of possible curves yield-
ing very similar boosts. This can be seen in figure 3.12, where all curves yield a boost
in the interval [1.55± 0.005]:

Figure 3.12: Several curves with very similar boosts.

At least a cubic polynomial is necessary to approximate a curve since the boost is
dependent on both its curvature and skewness. However, since the real data is col-
lected on a large panel, the surface may contain for example two modes or some
other property making the cubic approximations insufficient, which can be seen in
figure 3.13.

28

Figure 3.13: Examples where cubic polynomial underfits, left: double modal curve,
right: curve with overhang at the edges.

Therefore, using cubic polynomials is not sufficient. However, a too high degree of
the polynomial might cause overfitting, as illustrated in figure 3.14:

Figure 3.14: Overfitted polynomial.

Considering this trade-off, a fourth degree approximation is deemed a reasonable
choice.

Using the information derived above, the appearance of the boost matrix in figure
3.7 can be explained. First, since the example surface in figure 3.5 is quite parabolic,

29

the maximum boost should be found for the scanline travelling over the centre at
the shortest possible distance. This is the case for scanline from one long side to the
other over the centre, which is approximately around the elements (23, 95) and (95,
23). Looking at the boost matrix, this is indeed the case. Furthermore, the boost
matrix should always be symmetric, since the curve c(x) between emitter-detector
pair (i, j) has the same boost as the curve c(L − x) between pair (j, i). Lastly, the
measured boost matrix is compared with the simulated boost matrix in figure 3.15

Figure 3.15: Comparison of measured boost matrix (left) and simulated boost matrix
(right) for the example surface in figure 3.5.

The boost matrices are similar, but there are also obvious differences. The differences
may be caused by several factors, such as:

• Loss of precision in the simulation due to discretisation.

• Simulation performed on polynomial approximations of the real curves.

• The supposedly flat reference panel is not actually perfectly flat.

• The recorded signal contains noise.

30

Chapter 4

Analysis

Consider a target surface described by the function S(x, y). The problem at hand is
to reconstruct a surface described by the function S̃(x, y) which is as close to S(x, y)
as possible. Hence, the problem can be written as a minimisation problem:

argmin
S̃(x,y)

1
LW

W∫
0

L∫
0

(
S(x, y)− S̃(x, y)

)2
dxdy. (4.1)

Since the only thing known about the surface to reconstruct is its boost matrix, the
problem has to be rewritten to reconstruct a surface producing a boost matrix as
similar to the target as possible.

Let B be the measured boost matrix for the surface S(x, y) and B be the function map-
ping a surface to its boost matrix. An alternative least square minimisation problem
can then be constructed, where the target function is in terms of the boost matrices
instead:

argmin
S̃(x,y)

1
2
||B−B(S̃(x, y))||22 (4.2)

The simulation described in section 2.1.4 is considered a sufficiently accurate approx-
imation of the function B. Thus, the problem lies in developing a method capable
of finding the target surface using only its boost matrix. However, the relationship
between small changes in the surface and the effect on the boost factor of each in-
dividual scanline is complex and non-linear, making it difficult to predict how a
change in the surface actually affects the overall boost matrix without having to run
the full simulation for every modification of the surface.

31

With these issues in mind, the following methods of reconstructing the target surface
are investigated:

Iteratively update a small batch of scanlines:

Simplify the problem by only considering how a change in the surface would affect
one or a few scanlines at a time. Since the number of scanlines considered at a certain
iteration is small, it is possible to simulate the boost and approximate the gradient
for each scanline. A gradient descent algorithm is then used to iteratively find a
surface matching the measured boost. Both estimation of the gradient directly from
the simulation and by mapping the simulation to a neural network is investigated.

Approximate boost matrices as linear combinations of boost basis matrices:

Investigate the possibility of simply ignoring the non-linearity of the problem and
assuming that each boost matrix can be sufficiently well approximated by a linear
combination of some boost basis matrices. The weight of each basis in the linear
combination is then mapped to weights of basis surfaces corresponding to each boost
basis matrix, which are finally used to reconstruct the predicted surface. Assuming
that it is possible to ignore the non-linearity of the problem, the first task in this
method lies in finding reasonable basis sets that can be used to approximate the
boost matrices and surfaces. For this, three different approaches of basis selection is
investigated:

• Manual surface basis selection.

• Using eigenfunctions from the Helmholtz equation in a rectangle.

• Using principal components.

The second task is to find a reasonable way of relating the boost and surface basis
weights. For this, geometric transformations and neural networks are investigated.

Use CNN-based Encoder-Decoder architectures to encode the boost matrix and de-
code the surface:

The possibility of using all information, including the non-linear part, of the problem
is investigated by training CNN-based Encoder-Decoder architectures to reconstruct
the surface from the boost matrix.

4.1 Update individual scanlines iteratively

Since problem 4.2 is large and difficult on its own, the main idea of this method
is to split it up. Instead of trying to find the entire surface directly, a possibility
would be to make an initial guess S̃(x, y), look at individual scanlines and update
S̃(x, y) iteratively. The surface S(x, y) is assumed to be sufficiently smooth and can
be accurately approximated by a polynomial surface of degree p. The initial guess

32

can then be made as an arbitrary p:th degree polynomial surface. Let P be a p:th
degree polynomial surface basis, i.e:

P = [1, x, y, x2, xy, y2, . . . , xp, . . . , xkyp−k . . . yp]>.

The number of coefficient for describing a p:th degree surface is q = (p+1)(p+2)
2 . Let

c = [c0, c1, . . . cq−1]
>, then S̃(x, y) can be written as S̃(x, y) = c>P. The main

advantage for this assumption is that the parameterised line y = kx + m from an
emitter to a detector will yield a one-dimensional curve with degree p along the
surface, i.e

S̃(x, y = kx + m) =
p

∑
k=0

akxk = a>x, x =
[
1, x, x2, . . . , xp−1, xp]>

Let bm be the measured boost along a scanline and bp(a) be the estimated boost for
the corresponding curve. The coefficients a can then be updated using a gradient
descent scheme [1]. The gradient is calculated from the loss function

L(a) = [bm − bp(a)]2. (4.3)

However, a continuity constraint exists for S̃(x, y). One way to enforce the constraint
would be to use the following scheme:

1. Make an initial guess of S̃(x, y).

2. Evaluate S̃(x, y) on a mesh to get a scatter of points.

3. Choose a batch of scanlines randomly.

4. Extract one-dimensional curves by parameterising along each scanline in the
batch.

5. Update the coefficients for the one-dimensional curves using gradient descent
on the loss functions.

6. Scatter points along each updated curve.

7. Perform a least square polynomial surface fit using the scatter points from the
mesh and the updated curve.

8. Set S̃(x, y) to be the new fitted curve and repeat 2 to 8 until a termination crite-
rion is met.

Two main issues have not yet been touched upon. The first is how to make an initial
guess. The primary issue with initial guesses for this problem is, as seen in the figure
3.12 from the section 3.3, the amount of possible curves yielding the same boost.

33

Therefore, it can not be guaranteed that the gradients actually modify the individual
curves in the correct way. Thus, the method may be sensitive to initial guesses and
may only be suitable to refine predictions from other methods. The second issue
concerns the calculation of the gradient. The most straightforward method is to use
a finite difference approximation of the boost function. However, due to the nature of
the setup and that the boost function is a simulation, the gradient is not particularly
kind. The partial derivatives for bp(a) (of a fourth degree polynomial) are illustrated
in figure 4.1.

Figure 4.1: Illustration of partial derivatives of the boost function for fourth degree
polynomials. The constant term is excluded.

Since the simulation is constructed such that the emitter and detector always have
an offset of 0.3 mm from the curve at x = 0 and x = L, the constant term of the
polynomial only shifts the curve and emitters in space without affecting the resulting
boost. Therefore, the partial derivative w.r.t the constant term of the polynomial is
constant and not included in figure 4.1.

34

The partial derivatives are very ragged and their sizes suggests the need of some
kind of scaling to make the method numerically stable. Furthermore, calculating
gradients in this way is expensive. Instead, the simulation is mapped to a neural
network and the gradient approximated by using the backpropagation algorithm.

Consider a network that approximates bp(a). The network has p input nodes, p− 1
for the coefficients a, and one for the length of the scanline. The gradient of the loss
function w.r.t the input p of the network is calculated using equation (2.9) and is
used as an approximated gradient direction. The architecture of the network can be
found in appendix B.1.

4.2 Linear basis expansion and space alignment

The idea behind this method is to find basis surfaces and boost basis matrices, then
use linear basis expansions to express surfaces with corresponding boost matrices as
linear combination of their respective basis. The weights are then used as a training
set to estimate a map from the weights for the linear basis expansion of a boost matrix
to the weights describing the surface function. To make the process of finding the
weights for the linear basis expansion of a surface function easier, consider ~S which
is the vectorised (transformed into a column vector [10]) surface matrix constructed
by evaluating the surface function at the points (xi, yj) where

xi =
i
m

L, i ∈ {0, 1, . . . , m}, yj =
j
n

W, j ∈ {0, 1, . . . , n}.

Let {~Si}M
i=1 be the surface basis which ~S is linearly expanded by. By letting

S = [~S1, ~S2, . . . , ~SM], ~S can be written as:

~S ≈ Swsur f ace. (4.4)

Similarly, the vectorised boost matrix ~B with basis vectors {~B}N
j=1, can be written as:

~B ≈ Bwboost, where B = [~B1, ~B2, . . . , ~BN]. (4.5)

The weight vectors wsur f ace and wboost in equations (4.4) and (4.5) respectively, can
both be estimated using least squares.

ŵsur f ace =
(

S>S
)−1

S~S, (4.6)

ŵboost =
(

B>B
)−1

B~B. (4.7)

35

Now by finding the weight vectors ŵsur f ace and ŵboost for a training set where both
the surfaces and their corresponding boost matrices are know, a map f (wboost) =
wsur f ace can be estimated. Then the surface estimation problem can be split up into
three steps:

1. Find the weights of the projection of the boost matrix onto each basis vector by
solving equation (4.7).

2. Map wboost to wsur f ace using f (wboost) = wsur f ace.

3. Reconstruct the surface by inserting wsur f ace into equation (4.4).

The flow of the method is illustrated in figure 4.2.

Figure 4.2: Flow of the method.

However, three main issues have not been addressed. First is the possible non-linear
relationship between boost and surface, making the assumption that vectorised
boost matrices can be linearly expanded inaccurate. However, the hypothesis for
this method is that the relationship is linear enough to be able to be approximated
as linear. The two other issues concern the choice of basis and estimation of the
map f (x). Section 4.2.1 examines possible basis surfaces and section 4.2.2 examines
possible ways to estimate the map f (x).

4.2.1 Choice of basis

There are numerous possible basis choices, all with different advantages and disad-
vantages. Three methods of constructing the basis are examined:

1. Construct a set of basis surfaces by hand. Thereafter, use the boost simulator
to construct the corresponding boost matrices.

36

2. Solve Helmholtz equation in a rectangle and use the eigenfunctions as a sur-
face basis. Then, use the boost simulator to construct the corresponding boost
matrices.

3. Find principal components of the training set to find an appropriate basis for
the respective space.

1. Use hand picked surfaces as a basis and simulate corresponding boost matrices
The first investigated basis for the boosts and surfaces are hand-picked surfaces and
their corresponding boost matrices. The chosen surface basis consists of the surfaces
introduced in section 3.2, figure 3.3 for the surface generation algorithm. The corre-
sponding boost matrices are obtained by finding the simulated boost of each surface.

If all or most commonly recurring surfaces are known, the weights of each basis
surface could act as an easily interpreted classification of the general appearance of
the surface. Additionally, if a new, distinct possible surface is introduced, the basis
is very simple to extend with the new surface. There are two main issues with this
basis. The first is that since the basis is, to an extent, the same as the basis used to
generate the simulated surfaces, it might be too tailored towards that particular set
of surfaces and may not generalise well. The other issue is that the hand-picked
basis will not be orthogonal. Since the non-linearity of the boost matrix expansion is
already ignored, the lack of orthogonality might cause the map f (x) to be too hard
to estimate accurately.

2. Use the eigenfunctions from solving Helmholtz equation in a rectangle as a sur-
face basis and simulate boost matrices
The second surface basis is chosen as a family of solutions (eigenfunctions) to
Helmholtz equation (2.8), described in section 2.8. There are at least two reasons for
going through the trouble of finding this family of eigenfunctions instead of picking
a set of arbitrary surfaces as a basis. The first is the pairwise orthogonality of the
eigenfunctions, which might make the analysis of the boost matrices in the boost
space easier if at least some of the properties of the surface basis are present in the
boost basis as well. The second reason is the favourable geometrical properties of the
Laplacian. The Laplacian at a certain point can be thought of as a measure of the non-
conformity of the point compared to its immediate surroundings [18]. Thus, solving
Helmholtz equation results in a set of basis surfaces with slow variations in depth
along the surface, which is a reasonable constraint for the kind of deformations this
method is meant to model.

The solution to Helmholtz equation grants an infinite set of orthogonal surfaces, for
example the family

sm,n(x, y) = − sin
(mπ

L
x
)

sin
(nπ

H
y
)

.

By keeping only a subset of these eigenfunctions, the underlying surface will not
be able to be exactly reconstructed using a linear combination of the eigenfunctions,

37

but approximately well if sufficiently many are kept. The set of eigenfunctions that is
used is {sm,n(x, y) : (m, n) ∈ {1, 2, 3} × {1, 2, 3}}. The boost simulator is then used
to find boost matrices for the chosen subset of surfaces. The surfaces are illustrated
in figure 4.3.

Figure 4.3: Nine eigenfunctions which constitutes the Helmholtz basis.

The simulation is constructed with the assumption that the emitter and detector are
placed very close to the curve. The eigenfunctions in equation (4.2.1) consist of sinu-
soids that are zero along the edge of the surface. Therefore, most surfaces will block
the light for some scanlines. This causes the very distinct regions and patterns in the
boost matrix seen in for example figure 4.4, which corresponds to the basis surface
s2,1 in figure 4.3.

38

Figure 4.4: Boost matrix for basis surface s2,1(x, y).

The black rectangle in figure 4.4 highlights the part of the boost matrix corresponding
to the straight scanlines from one long side to the other. By looking at surface s2,1 in
figure 4.3, it is easy to see that about half of those scanlines will be blocked by the
surface, which shows up as the transition from blue to red inside the black rectangle.
It might be possible to use the distinct patterns of each basis to extract information
about certain regions of the surface.

3. Using Principal Components as basis
To construct this basis, a training set consisting of surfaces with corresponding boost
matrices is needed. Thereafter, PCA is performed on the surface training set as well
as on the boost matrix training set respectively. The first m components from the
surface PCA alongside the first n components from the boost PCA is used as the ba-
sis. For some background regarding why principal components might be a suitable
choice of the individual basis, see appendix A.2. The mean surface and mean boost
matrix of the training set is illustrated in figure 4.5.

39

Figure 4.5: Illustration of mean surface and mean boost matrix in the training set.

Hence, the average surface in the data set is a quite ‘bowl’ shaped surface. The first
two principal components are visualised in figure 4.6.

Figure 4.6: Visualisation of the first two principal components from respective space.

To properly determine a suitable number of components to accurately describe the
surfaces as well as the boost matrices, the energy metric introduced in section 2.2.2
can be used. Calculating the energy levels for the surface PCA and the boost PCA
respectively yields the results illustrated in figures 4.7 and 4.8:

40

Figure 4.7: Cumulative preserved energy (explained variance) when including more
surface principal components.

Figure 4.8: Cumulative preserved energy (explained variance) when including more
boost principal components.

How much energy that should be preserved is not by any means obvious. Since the
issue of non-linearity is ignored and only a few components are actually needed to
preserve a very high amount of energy, it may be reasonable to choose the rather
conservative amount of 99% percent. To preserve 99% energy, the number of com-
ponents needed in the surface PCA is six, according to figure 4.7. However, from
figure 4.8, only four components are needed to preserve 99% energy for the boost
PCA.

41

There are several reasons to choose principal components as respective basis. They
are orthogonal and describe common characteristics of the respective data set, which
are both preferred properties of a basis. There are however at least two issues. The
first is poor performance on surfaces or boost matrices not included in the training
data. The other is that principal component analysis only finds linear manifolds
in the data. To find non-linear manifolds, kernel PCA [16] can be used. However,
the issue of finding a suitable kernel might itself be as difficult as the original prob-
lem. Therefore, methods using CNN based Encoder-Decoder architectures with non-
linear activations are investigated in section 4.3 instead of trying to find reasonable
kernels for kernel PCA.

4.2.2 Weight space map estimation

There are numerous ways to estimate the map of weights in the boost factor space to
the surface space. Two procedures using training data are proposed which consist
of:

1. Aligning weight vectors in respective spaces using geometric transformations.

2. Estimating the map using an artificial neural network.

1. Similarity transformation
Consider the vector spaces V and W which are spanned by the vectorised boost ba-
sis matrices {~Bi}M

i=1 and {~Si}N
i=1 respectively. A boost vector ~B ≈ Bwboost can be

viewed as a point in the linear expansion of the boost. Similarly, a surface function
~S ≈ Swsur f ace can be seen as a point in the linear basis expansions of the surface. The
decomposition of each boost matrix and surface function will then generate point
clouds in their respective space which represent the weight of each basis of the sur-
face or boost matrix. This opens up the possibility to use point cloud alignment
algorithms as a mapping from weights in the boost space to weights in the surface
space.

Geometric transformations between the spaces are investigated to see if it would be
possible to find a simple, intuitive map between them. The simplest kind of geo-
metric transformation producing reasonable results is preferred, which in this case
turns out to be the similarity transformation, described in section 2.2.3. A similarity
transformation has fewer degrees of freedom than both affine and projective trans-
formations, making it less prone to overfitting. Therefore, even though both affine
and projective transformation would by definition yield an equal or better result
than the similarity transformation on the training set, it would not necessarily gen-
eralise to perform well on the test set.

2. Map weights using an artificial neural network
The above mentioned method to map weights from one space to another is linear,
which might not be enough since a linear combination of surfaces does not neces-

42

sarily result in a boost matrix that is a linear combination of the corresponding boost
basis matrices. To address this non-linearity, fully connected artificial neural net-
works are trained to map vectors in the boost factor space to vectors in the surface
space. The model architectures can be found in appendix B.2, B.3 and B.4.

4.3 CNN-based Encoder-Decoder

Since the map between a surface and the corresponding boost may very well be
non-linear, the Encoder-Decoder architectures might perform better than PCA at re-
ducing dimensions, as described in section 2.2.4. Two architectures and training
approaches are investigated, one straight-forward approach and one restricting the
network to smooth and realistic surfaces. Detailed descriptions of kernel sizes, num-
ber of layers, activation functions and more can be found in appendix B.5.

4.3.1 Simple Encoder-Decoder

The straight-forward Encoder-Decoder architecture takes a boost matrix as input and
outputs a predicted surface. The network is trained using a MSE reconstruction loss
between the predicted and target surface:

L(Y, Ỹ) =
1

MN

M

∑
i=0

N

∑
j=0

(
Yi,j − Ỹi,j

)2
,

where Ỹ is the output of the decoder. The loss function in equation (4.3.1) is a discre-
tised version of the main problem formulation in equation (4.1). An overview of the
architecture is illustrated in figure 4.9.

Figure 4.9: Flowchart of a simple Encoder-Decoder architecture.

43

4.3.2 Surface autoencoder combined with boost encoder

To ensure a smooth and continuous looking reconstruction, a slightly more complex
architecture is proposed. The architecture is illustrated in figure 4.10.

Figure 4.10: Flowchart of combined autoencoder and surface encoder architecture.

Instead of the simple Encoder-Decoder architecture in section 4.3.1, an undercom-
plete surface autoencoder is used to learn a low-dimensional representation of the
surfaces. The boost encoder is trained in tandem to encode into the same low-
dimensional representation as the surface encoder encodes the surface to. Lastly,
the encoder part of the autoencoder is simultaneously trained to encode the surface
in a way that the boost encoder can also achieve by penalising differences in the out-
put of the two encoders. The goal of this strategy is to make both encoders produce
the same bottleneck layer when given the boost and surface from a corresponding
boost-surface pair as input. By letting the surface autoencoder decide the content of
the bottleneck layer, the predicted surface is hypothesised to be smoother and more
continuous looking compared to the result of the simple Encoder-Decoder network
in section 4.3.1.

With this architecture, the training challenge is split up into a few more easily man-
aged parts:

1. Train the surface encoder to find a low-dimensional representation of the sur-
face.

2. Train the decoder to reconstruct the surface from the low-dimensional repre-
sentation.

44

3. Train the boost encoder to find a low-dimensional representation of the boost
matrix matching the low-dimensional representation of the corresponding sur-
face.

4. Train the surface encoder to recognise what information the boost encoder
has access to and thus make it easier for the boost encoder to learn the low-
dimensional representation.

The first two parts are simply the autoencoder part of the network, where the sur-
face encoder and decoder are trained to encode the surface and decode the bottle-
neck layer respectively to minimise the reconstruction loss in equation (4.3.1). The
third part consists of training the boost encoder to minimise the mean squared error
between its output and the output of the surface encoder. The final part is achieved
by including a part of the loss of the boost encoder to the reconstruction loss of the
surface autoencoder.

45

46

Chapter 5

Results

To properly evaluate the methods, three data sets are used. The first is a training
set consisting of 5000 generated surfaces with simulated boost matrices. The second
is a test set of 1000 surfaces and simulated boost matrices generated in the same
way. This data set is referred to as the generated test set. The last data set consists
of 34 measured surfaces combined with their measured signal matrices, which is
then divided by the approximated flat panel signal to get an estimation of the boost
matrices. This last data set will be referred to as the real test set. Many of the surfaces
in the real test set are rather different from the more common generated surfaces.
This is by design to test how well the methods can generalise and adapt.

5.1 Iterative method

The iterative method proposed in section 4.1 does not manage to converge for any
test surfaces. The gradients generally point in directions that update the curves to
yield boosts closer to the real boosts than before the update. However, since there are
a large set of curves with approximately the same boost, the gradients can update the
curves in directions that are not necessarily correct. The refit step in the algorithm,
which takes one-dimensional curves and produces a surface, does not manage to
counteract the issue of having equal boost for many curves. Thus, there are no results
to show for this method since all tests diverges.

5.2 Comparison of weight space alignment techniques

Finding the optimal similarity transformation between the surface and boost point
clouds of the training data and applying it on weights from a sample of surfaces
and boost matrices grants the alignment illustrated in figures 5.1 to 5.3. Only the

47

alignment of the weights of two basis shapes in the respective space are illustrated
for sake of clarity.

Figure 5.1 illustrates the alignment using the handpicked surface basis weights.

Figure 5.1: Handpicked basis: Comparison between using similarity transformation
(left) and neural network (right) as point cloud mapping.

The stars in figure 5.1 are where the correct wsur f ace are located, while the circles illus-
trate the respective function approximations f (wboost). The neural network appears
to align the example points better than the similarity transformation.

Figure 5.2 illustrates the alignments for the Helmholtz basis weights.

Figure 5.2: Helmholtz basis: Comparison between using similarity transformation
(left) and neural network (right) as point cloud mapping.

The alignments in figure 5.2 indicate a slightly better performance of the neural net-
work than the similarity transformation on the example points.

Lastly, figure 5.3 illustrates the alignments using the PCA basis weights.

48

Figure 5.3: PCA basis: Comparison between using similarity transformation (left)
and neural network (right) as point cloud mapping.

The neural network appears to perform slightly better on the example points using
the PCA basis as well.

The root mean squared error (RMSE) of the target and aligned points is used to evaluate
the performance objectively. The root mean squared error is defined as:

RMSE =

√√√√1
d

d

∑
i=1

(~pi −~ti)2 (5.1)

where ~p and~t are the prediction and target vector respectively. The average RMSE
for the generated test set is summarised in table 5.1.

Table 5.1: Average RMSE for the different alignment methods on the generated test
set. Bold methods outperform the others. Since the different bases span different
spaces, they cannot be compared. Hence, comparisons are made row-wise.

Basis Alignment method
Sim. Transf. Neural Net.

Handpicked 0.265 0.199
Helmholtz 0.130 0.067

PCA 1.786 1.558

The neural network approach outperforms the similarity transformation for all dif-
ferent bases on the generated test set. The average RMSE for the different methods
and bases on the real test set is summarised in table 5.2:

49

Table 5.2: Average RMSE for the different alignment methods on the real test set.
Bold methods outperform the others. Since the different bases span different spaces,
they cannot be compared. Hence, comparisons are made row-wise.

Basis Alignment method
Sim. Transf. Neural Net.

Handpicked 2.143 2.393
Helmholtz 0.196 0.282

PCA 2.953 2.823

Contrary to the generated test set, the similarity transformation approach outper-
forms the neural network on both the handpicked and the Helmholtz basis. The
neural network does however perform slightly better on the PCA basis.

5.3 Reconstructions

The main goal is not to produce the best point cloud alignments, but rather to re-
construct the surface as well as possible. The methods are evaluated using three
different metrics. The first uses the RMSE measure defined in equation (5.1), but
with prediction vectors of size 25 × 15 describing the depth at equidistant points
over the surface. The second metric is a normalised version of the RMSE to counter-
act the fact that surfaces with larger depths produce larger errors than surfaces with
smaller depths in the RMSE measure. The normalised RMSE is defined as:

Normalised RMSE =
1
m

√√√√1
d

d

∑
i=1

(~pi −~ti)2.

where m is the largest absolute value found in either ~p or~t. The last metric is the
maximum deviation which is defined as:

Maximum deviation = max
i
|~p−~t|

For all three metrics, smaller values are preferred for a good reconstruction.

50

5.3.1 Evaluation on the generated test set

Table 5.3: Average values for all surfaces in the generated test set, bold numbers
indicate that the method performs best with regard to that metric. Comparisons are
made column-wise.

Method RMSE (mm) Norm. RMSE Max Dev. (mm)
Handpicked + Sim. Transf. 0.205 0.094 0.641
Handpicked + Neural Net. 0.147 0.068 0.405
Helmholtz + Sim. Transf. 0.324 0.155 1.094
Helmholtz + Neural Net. 0.296 0.132 1.127

PCA + Sim. Transf. 0.183 0.088 0.463
PCA + Neural Net. 0.188 0.089 0.444

Simple Encoder-Decoder 0.179 0.084 0.626
Autoencoder + Boost encoder 0.169 0.080 0.482

In table 5.3 it can be seen that using the handpicked basis combined with a neu-
ral network map performs the best on the generated test data in regard to all three
metrics. The worst performing, in terms of the two RMSE metrics, is using the
Helmholtz basis combined with a similarity transformation. The worst in regard to
the average max deviation is the Helmholtz basis combined with a neural network.
Figures 5.4 and 5.5 illustrate a reconstruction using the handpicked basis combined
with a neural network (the best) as well as one using the Helmholtz basis combined
with a similarity transformation (the worst).

Figure 5.4: Example reconstruction using the handpicked basis combined with a
neural network.

51

Figure 5.5: Example reconstruction using Helmholtz basis combined with a similar-
ity transform. Note that this is the same target surface as in figure 5.4 but shifted
down.

From figures 5.4 and 5.5 it can be seen that the handpicked basis combined with
a neural network reconstructs the surface very well, while the Helmholtz basis us-
ing similarity transformation struggles. The Helmholtz basis has the issue that the
surface which it tries to reconstruct does not fulfil the boundary conditions. Further-
more, the target surface is very different from the basis surfaces in the Helmholtz
basis, hence it is quite likely that the target surface simply cannot be constructed ac-
curately by the basis surfaces. The methods using PCA basis as well as the Encoder-
Decoder methods perform only slightly worse than the handpicked basis combined
with a neural network. Figures 5.6 and 5.7 illustrate the reconstructions using PCA
basis accompanied by a similarity transform as well as a surface autoencoder com-
bined with a boost encoder on the same target surface.

Figure 5.6: Example reconstructions using the PCA basis combined with a similarity
transformation.

52

Figure 5.7: Example reconstruction using the autoencoder combined with the boost
encoder.

It can be seen in figures 5.6 and 5.7 that those methods manage to reconstruct the sur-
faces rather well. One thing to note that differentiates the Encoder-Decoder methods
is that since they are not tied to any basis surfaces, they are not forced to be as regular
and smooth as the reconstructions of other methods. This can for example be seen in
the upper right of the reconstruction in figure 5.7, where the corner has an irregular
shape.

5.3.2 Evaluation on the real test set

Table 5.4: Average values for all surfaces in the real test set, bold numbers indicate
that the method performs best with regard to that metric. Comparisons are made
column-wise.

Method RMSE (mm) Norm. RMSE Max Dev. (mm)
Handpicked + Sim. Transf. 0.648 0.257 1.787
Handpicked + Neural Net. 1.052 0.402 2.545
Helmholtz + Sim. Transf. 0.337 0.151 0.986
Helmholtz + Neural Net. 0.579 0.208 1.365

PCA + Sim Transf. 0.244 0.124 0.783
PCA + Neural Net. 0.211 0.111 0.663

Simple Encoder-Decoder 0.410 0.205 1.143
Autoencoder + Boost encoder 0.373 0.184 1.110

The results from table 5.4 tell a different story than the one in table 5.3. On the real
test set, the handpicked method combined with a neural network performs worst,
rather than best as for the generated test set. The best method on the real test set

53

is the one using the PCA basis combined with a neural network. Figures 5.8 and
5.9 illustrate example reconstructions for the PCA basis combined with a neural net-
work (best) as well as one for the handpicked basis combined with a neural network
(worst):

Figure 5.8: Example reconstruction using the PCA basis combined with a neural
network.

Figure 5.9: Example reconstruction using the handpicked basis combined with a
neural network.

It can be seen from the reconstructions in figures 5.8 and 5.9 that the PCA method
combined with a neural network performs rather well, while the handpicked
method combined with a neural network performs poorly. It should be noted that all
methods perform worse on the real test set, except for the Helmholtz basis combined
with a similarity transform which stays about the same. This could be explained by
the fact that many of the surfaces in the real test set is quite well conditioned for the

54

Helmholtz basis. Figure 5.10 illustrates a reconstruction where the target function is
well suited for the Helmholtz basis:

Figure 5.10: Example reconstruction using the Helmholtz basis combined with a
similarity transform.

Since off-centred ‘bowl’ shaped surfaces are captured by the basis surfaces in the
Helmholtz basis, and the fact that the target surface in figure 5.10 almost fulfils the
boundary conditions, the method can reconstruct the surface rather accurately. The
performance of the Encoder-Decoder methods ranks somewhere in the middle of all
methods. An example reconstruction using a surface autoencoder combined with a
boost encoder method is illustrated in figure 5.11:

Figure 5.11: Example reconstruction using combined with a boost encoder.

The reconstruction in figure 5.11 is not awful, but not satisfactory either. The method
does not seem be able to capture the steep and almost pointy surface. The issue with

55

the method most likely lies in the fact that the training data is too ‘nice’, resulting in
the method not generalising well.

Considering that the methods using the PCA basis are clearly number one
and two on the real test set and also performing very well on the generated test set,
they are deemed the two best. Out of them, in terms of the metrics, the edge is given
to the one using the neural network mapping. Several more reconstructions using
the PCA basis combined with a neural network mapping can be found in appendix
D.

56

Chapter 6

Discussion

The aim of this thesis is to investigate the possibility to reconstruct a surface by using
optical emitters and detectors at the edge of the surface and to evaluate different
reconstruction methods on both simulated and real data.

The evaluation shows that it is possible to deduce information about the general
shape of the surface, but that most methods still experience some reconstruction er-
rors and that they do not generalise very well. The non-linear nature of the problem
makes it difficult to make any kind of prediction regarding finer details.

All methods show promising results on the generated test data, but PCA combined
with a neural network performs best on the real test data, closely followed by PCA
combined with similarity transformation.

Some conclusions can be drawn from the results in tables 5.1, 5.2, 5.3 and 5.4:

• All methods except those using the Helmholtz basis show a rather large drop
in reconstruction performance from the generated test data to the real test data,
which indicates that they do not manage to generalise to the previously unseen
surfaces present in the real test data.

• Alignment using similarity transformation seems to generalise better than us-
ing neural networks, at least when the real test data contains lots of new sur-
faces.

• Handpicked basis performs well on generated data but poorly on real data,
which is to be expected since the generated test data was (partly) generated
with the same surfaces that were used as the handpicked basis.

• Methods using the Helmholtz basis do not perform well on the generated test
data since the method assumes that the edge is set to zero, which is rarely the
case for the generated surfaces. The real data is slightly better conditioned and
yields results about as good as the results of the Encoder-Decoder architectures.

57

• Similarity transform and neural network yield very similar results together
with the PCA basis, both for generated and real data. This indicates that the
relationship between the first few principal components of boost and surfaces
might almost be linear, despite the fact that the original problem is non-linear.

• The Encoder-Decoder architectures work well on the training data, but do not
generalise well since the real data contains lots of noise, which the networks
are not trained to handle.

6.1 Review of the different methods

Iterative method

As mentioned in section 5.1, since there is a large set of curves yielding approxi-
mately the same boost, the gradients update the curves in directions that are not
necessarily correct. Since the refit does not manage to counteract this, some addi-
tional information might be required for this method to work. One possibility is to
add some weighting function to prefer the more common curve shapes, and hence
penalise improbable and uncommon curves. Another issue is that the gradients rely
on a neural network which might occasionally grant poor directions. The advantage,
and possibly even necessity, of using a neural network to calculate the gradients is
that it is much cheaper than using the simulator, and also more numerically stable.

If this method worked, it would probably be able reconstruct the surfaces with much
higher accuracy than what can be achieved with the other proposed methods, espe-
cially for the more fine-grained details. Furthermore, it would only require training
data for the neural network approximation of the boost function.

Handpicked basis

The handpicked basis performs well on the generated test set since the generated
test set is (partly) generated using the surfaces in the handpicked basis. It then per-
formed very poorly on the real test set, since the real test set contains rather different
surfaces. So the method does not generalise well. However, it was an idea worth
investigating for two reasons. First, it is a quite natural approach if only a few types
of surfaces are common. Then the handpicked basis could be the set of those, and
thereby be likely to work well. Second, it is easy to extend the basis when a new kind
of surface is discovered. Additionally, the possibility to interpret the largest weight
of each basis as a kind of classification of the general surface makes the method even
more appealing. Lastly assuming that there is a way to improve the performance
of this method with some additional effort, each basis surface might be able to be
related to certain kind of deformations or defect, meaning it might even be possible
to deduce information about the cause of the deformation, and not only the surface,

58

directly from the distribution of basis weights.

Helmholtz basis

There are at least two reasons why the Helmholtz basis does not perform well. First
and foremost, the boundary conditions on the surfaces are almost never fulfilled,
making the problem ill-conditioned from the start. Second, to accurately reconstruct
for instance a surface as the one in figure 5.5 would require a lot of eigenfunctions
due to the sinusoidal nature of the eigenfunctions. In other words, the appearance
of the eigenfunctions are very different from the surfaces they are supposed to re-
construct.

The main benefit of the method is that, independent of any training data, infinite
number of orthogonal basis surfaces can be constructed, making it theoretically pos-
sible to reach an arbitrarily high level of precision. However, when testing using 16
basis shapes instead of 9, the results on the real test set became poorer. This is most
likely caused by the map between spaces becoming much larger and more complex.
Lastly, as briefly mentioned in section 4.2.1, something interesting about this method
is that since the different eigenfunctions will block light in different regions, it might
be possible to use the distinct patterns of each basis to extract information about
certain regions of the surface.

PCA basis

Both an advantage and disadvantage of PCA compared to the other methods is that
the training data is used to find the surface basis. The fact that the surfaces are
closely related to the data as well as being orthogonal creates better conditions for
the method to work than the other ways of choosing a basis. Of course, this means
that a large part of the success of the method depends on the training data being
diverse and that it contains variations of the possible surfaces that it might need to
reconstruct. Since six surface components manages to preserve almost all energy in
the data, the method is from the start better conditioned than the Helmholtz method,
which needs as many as nine basis surfaces to produce a decent reconstruction.

The boost basis of the PCA is also found using the training data, which means that
it is not exactly corresponding the surface basis. This opens up a few more possibili-
ties compared to the other methods. For example, the possibility to choose different
amount of basis components might have contributed to the improved result of the
PCA method compared to the others, since the neural network map could be simpli-
fied from 6 input - 6 output to 4 input - 6 output, reducing the number of parameters
needed for the mapping. An additional benefit is that, since the boost basis is found
by PCA as well, the boost basis matrices are pairwise orthogonal.

59

Alignment using similarity transformation

It is surprising that similarity transformations managed to estimate the map between
the spaces as well as it did. Since the boost is not generally linear, it was not expected
that the map between the spaces could be done by a linear map, which also has so
few degrees of freedom. Since the degrees of freedom are so low, it is not as prone to
overfitting as the neural networks. The simplicity, cheapness and memory efficiency
of the similarity transformation makes it very compelling.

A disadvantage with this type of transformation is that it requires an equal amount
of components in both spaces, which might not always be optimal. For example,
the PCA method needed 6 surface components to preserve 99% energy, but only 4
components to preserve the same amount of energy in the boost data.

Alignment using neural network

Aligning the boost and surface spaces using a neural network works about as ex-
pected. It performs very well on the generated test set, but struggles on the real test
set, which consists of quite different surfaces. This is possibly due to overfitting to
the training set. Since the generated test set is rather similar to the training set it
is expected for the networks to perform well, because the network is well fitted to
it. However, the poor performance on the real test set shows that more varied and
diverse training data is needed to train a network that generalizes well. The note-
worthy exception is using the PCA basis. The reason for this is unclear, but it could
be due to the fact that the PCA basis have both an orthogonal surface basis and an
orthogonal boost basis, making the reconstruction easier.

Another issue of using the neural network is that the calculations are expensive com-
pared to other simpler transformations and requires quite a lot of infrastructure to
perform a simple inference. These problems are possible to work around, but may
not be worth the effort since similarity transformation seems to work almost equally
well.

Lastly, an advantage of using neural networks is, as mentioned earlier, that they
do not have the restriction of equal number of inputs and outputs that similarity
transformations have. Instead, the number of inputs can be based directly on how
much energy that needs to be preserved.

Encoder-Decoder architectures

The Encoder-Decoder architectures often manage to capture the general shape of the
surfaces, but handles new surfaces poorly. The main advantage with this method
compared to the ones based on linear combination of some basis is that it has the pos-
sibility to make more detailed reconstructions since it has access to more information
than for example the PCA based methods. The combined surface autoencoder and

60

boost encoder performs slightly better than the simple Encoder-Decoder, but still
worse than the PCA linear combination method, despite having access to more in-
formation. It is most likely possible to improve the performance of these methods a
lot by tuning the architecture, adding some regularisation to the loss function during
training and by generating more realistic training data.

6.2 Future research

• Study the iterative method more in-depth and investigate if it is possible to
make it work by for example weighting to gradients to prefer the most common
shapes. This is probably the most interesting future research building upon this
thesis since it would make it possible to reconstruct the surfaces with much
higher accuracy than what is achieved in this thesis.

• Investigate the Helmholtz basis method more in depth. As mentioned earlier,
having access to an infinite number of orthogonal basis surfaces might make it
possible to reconstruct surfaces with an arbitrary level of accuracy. Addition-
ally, it would be done without having to use any slow and expensive gradient
descent algorithm.

• Use a setup that does not utilise the simplifications made in this thesis. For ex-
ample, investigate how well the methods work for larger angles of incidence.
Would noise and other disturbances of the signal make it impossible to recon-
struct the surfaces? If it is possible to have the emitters and detectors further
away from the surface, it opens up the possibility to try the methods on sur-
faces with much larger deformations.

• Collect more real test data with more commonly occurring surface shapes to
get a better understanding of exactly what the methods are incapable of recon-
structing.

• Add noise and component variation to the boost simulator to make the training
data more diverse and methods more robust.

• Find a way to obtain a better flat panel. There is a clear issue with using the
approximately flat panel as a reference, since it might cause structural errors
in the boost estimation if it is not perfectly flat. An alternative is to calculate
the theoretical signals of a perfectly flat panel, which comes with its own set of
challenges.

61

62

Bibliography

[1] L. C. Böiers. Mathematical methods of Optimization. Ed. by Studentlitteratur.
Lund, Sweden: Studentlitteratur, 2010, pp. 41–101. ISBN: 9789144070759.

[2] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
URL: https://www.deeplearningbook.org/contents/autoencoders.html.

[3] M. Hébert. “Reflection and transmission of light by a flat interface. Fresnel’s
formulae”. Institut d’Optique Graduate School at ParisTech. 2013. URL: http:
//paristech.institutoptique.fr/site.php?id=797&fileid=11468.

[4] S. Herbort and C. Wöhler. “An introduction to image-based 3D surface recon-
struction and a survey of photometric stereo methods”. In: 3D Research 2 (Sept.
2011), pp. 1–17. DOI: https://doi.org/10.1007/3DRes.03(2011)4.

[5] A. S. Householder. “Unitary Triangularization of a Nonsymmetric Matrix”. In:
Journal of the Association for Computing Machinery 5.4 (Oct. 1958), pp. 339–342.
ISSN: 0004-5411. DOI: https://doi.org/10.1145/320941.320947.

[6] W. Kabsch. “A solution for the best rotation to relate two sets of vectors”. In:
Acta Crystallographica Section A 32.5 (1976), pp. 922–923. DOI: https://doi.
org/10.1107/S0567739476001873.

[7] O. Kafri and I. Glatt. “Moire Deflectometry: A Ray Deflection Approach To
Optical Testing”. In: Optical Engineering - OPT ENG 24 (Dec. 1985), pp. 944–
960. DOI: https://doi.org/10.1117/12.7973607.

[8] A. LeNail. “NN-SVG: Publication-Ready Neural Network Architecture
Schematics”. In: Journal of Open Source Software 4.33 (2019), p. 747. DOI: https:
//doi.org/10.21105/joss.00747.

[9] G. Lippolis et al. “Automatic registration of multi-modal microscopy images
for integrative analysis of prostate tissue sections”. In: BMC Cancer 13.408
(2013). DOI: https://doi.org/10.1186/1471-2407-13-408.

[10] H. D. Macedo and J. N. Oliveira. “Typing linear algebra: A biproduct-oriented
approach”. In: Science of Computer Programming 78.11 (2013), pp. 2160–2191.
ISSN: 0167-6423. DOI: https://doi.org/10.1016/j.scico.2012.07.012.

[11] K. Pearson. “LIII. On lines and planes of closest fit to systems of points in
space”. In: The London, Edinburgh, and Dublin Philosophical Magazine and Jour-
nal of Science 2.11 (1901), pp. 559–572. DOI: https : / / doi . org / 10 . 1080 /
14786440109462720.

63

[12] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti. Introduction to Optics, Inter-
national Edition. Ed. by E. Fahlgren. 3rd ed. Upper Saddle River, NJ: Pearson,
2006. ISBN: 0-13-197133-6.

[13] E. Plaut. From Principal Subspaces to Principal Components with Linear Autoen-
coders. Dec. 2018. URL: https://arxiv.org/pdf/1804.10253.pdf (visited on
02/23/2021).

[14] P. Ramachandran, Z. Barret, and Q. Le. “Searching for Activation Functions”.
In: 2018. URL: https://arxiv.org/pdf/1710.05941.pdf.

[15] R. Rojas. Neural Networks: A Systematic Introduction. 1st ed. Berlin, Germany:
Springer-Verlag Berlin Heidelberg, 1996, pp. 151–184. ISBN: 978-3-642-61068-4.

[16] B. Schölkopf, A. Smola, and K. R. Müller. “Nonlinear Component Analysis as
a Kernel Eigenvalue Problem”. In: Neural Computation 10.5 (1998), pp. 1299–
1319. DOI: https://doi.org/10.1162/089976698300017467.

[17] A. Sparr and G. Sparr. Kontinuerliga System. Ed. by Studentlitteratur. 2:8. Lund,
Sweden: Studentlitteratur, 2000. ISBN: 978-91-44-01355-8.

[18] D. F. Styer. “The geometrical significance of the Laplacian”. In: American Jour-
nal of Physics 83.12 (2015), pp. 992–997. DOI: https://doi.org/10.1119/1.
4935133.

[19] S. Umeyama. “Least-Squares Estimation of Transformation Parameters Be-
tween Two Point Patterns”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 13.4 (1991), pp. 376–380. DOI: https://doi.org/10.1109/34.
88573.

64

Appendix A

Theory Appendix

A.1 Helmholtz equation in a rectangle - Derivation of
eigenfunctions and eigenvalues

Let S(x, y) denote a twice continuously differentiable surface function in the rectan-
gle Ω = {(x, y) | 0 ≤ x ≤ L, 0 ≤ y ≤ H}. Furthermore, let S(x, y) be zero on the
boundary. The Helmholtz equation is then

− ∆S(x, y) = λS(x, y), S ∈ D (A.1)
Ω = {(x, y) | 0 ≤ x ≤ L, 0 ≤ y ≤ H},
D = {S ∈ C2(Ω) | S(0, y) = S(L, y) = S(x, 0) = S(x, H) = 0}.

Using separation of variables, S is rewritten as the product of single-variable func-
tions:

S(x, y) = X(x)Y(y).

Applying the negative Laplacian results in the following equation:

X ′′xxY + XY ′′yy = −λXY .

Dividing by XY results in:

X ′′xx
X

+
Y ′′yy

Y
= −λ.

1

Moving the Y fraction to the right side makes it obvious that the left side is only
dependent on x and the right side is only dependent on y. For the equation to hold,
then both the X fraction and the Y fraction must be constant. Let

−X ′′

X
= µ,

−Y ′′

Y
= ν,

λ = µ + ν.

Before solving this equation system, a quick detour to show that the negative Lapla-
cian is a positive semi-definite operator is made. Consider the negative Laplacian in
two dimensions on the domain Ω. Furthermore let u(x, y), v(x, y) be arbitrary twice
differentiable, two dimensional functions on the domain. Let (u| v) be the inner
product defined as:

(u|v) =
∫

Ω
uv dΩ.

Then the negative Laplacian is positive semi-definite with respect to the inner prod-
uct iff

(u| − ∆u) ≥ 0 ∀(x, y) ∈ Ω.

Using Green’s first identity [17] (p. 403)

(u| − ∆u) = −
∫

Ω
u∆u dΩ

= −
∮

∂Ω
u(∇u · n) dS +

∫
Ω
∇u · ∇u dΩ

= −
∮

∂Ω
u(∇u · n) dS +

∫
Ω
||∇u||22 dΩ.

Since u is zero on the boundary, the contour integral is zero. Therefore

(u| − ∆u) =
∫

Ω
||∇u||22 dΩ ≥ 0. (A.2)

So the negative Laplacian is a positive semi-definite operator and hence must have
non-negative eigenvalues. Two cases are possible, the eigenvalue is either zero or

2

positive. First, assume that the eigenvalue is zero. The equation system is then
transformed to:

−X ′′

X
= µ⇐⇒ X(x) = A1 cos(

√
µx) + A2 sin(

√
µx)

−Y ′′

Y
= −µ⇐⇒ Y(y) = B1 cosh(

√
µx) + B2 sinh(

√
µx)

However, applying the boundary conditions grants that A1 = B1 = µ = 0, which
yields that

X(x) = 0,

making S(x, y) = 0. This is a solution to the equation, but a rather useless one.
Therefore, consider the second case with λ > 0:

− X ′′xx
X

= µ.

−
Y ′′yy

Y
= ν.

λ = µ + ν.

This equation system has the solutions:

X(x) = A1cos(
√

µx) + A2sin(
√

µx).

Y(y) = B1cos(
√

νy) + B2sin(
√

νy).
λ = µ + ν.

Inserting the boundary conditions results in:

X(0) = A1cos(0) + A2sin(0) = 0 =⇒ A1 = 0.

X(L) = A2sin(
√

µL) = 0 =⇒ µ =
(mπ

L

)2
, m ∈ Z+.

Y(0) = B1cos(0) + B2sin(0) = 0 =⇒ B1 = 0.

Y(H) = B2sin(
√

νH) = 0 =⇒ ν =
(nπ

H

)2
, n ∈ Z+.

3

Thus, sm,n(x, y) = A2B2sin(mπ
L x)sin(nπ

H y) are eigenfunctions to the Laplacian. How-
ever, due to ambiguity of eigenfunctions, the scaling can be chosen to be any (non-
zero) value. To make the eigenfunction s1,1(x, y) bowl shaped, A2B2 = −1 is chosen.
Hence the eigenfunctions are simply sm,n(x, y) = −sin(mπ

L x)sin(nπ
H y). Finally by

inserting the resulting µ and ν into the eigenvalue expression, the full solution is
written as:

sm,n(x, y) = −sin
(mπ

L
x
)

sin
(nπ

H
y
)

.

λm,n = π2
[(m

L

)2
+
(n

H

)2
]

.

m, n ∈ Z+.

A.2 Principal Component Analysis

Let S = {xi}m
i=1 be a data set containing data vectors xi ∈ Rn. Then create a data

matrix:

X ′ =


x>1
x>2
...

x>m

 .

Calculate the mean for each column of the data matrix:

µ̂ =


1
m ∑m

i=1 xi,1
1
m ∑m

i=1 xi,2
...

1
m ∑m

i=1 xi,n

 .

Centre the data matrix by subtracting the means, i.e:

X i,j = X ′
i,j − µ̂i.

Principal component analysis is meant to identity the features that are most promi-
nent in the data set. The way this is achieved is to find which features in the data
that carry the most variance [11]. Construct the covariance matrix Σ (recall that the
data matrix is centred, hence the mean does not need to be subtracted):

4

Σ =
1

m− 1
X>X.

Since Σ is obviously symmetric and

y>Σy =
1

m− 1
y>X>Xy

=
1

m− 1
(Xy)> Xy

=
1

m− 1
||Xy||22 ≥ 0 ∀y 6=~0,

the covariance matrix is a symmetric positive semi-definite matrix, and hence has
non-negative eigenvalues. Let the eigenvalues be sorted in descending order. Then
the feature that maximises the variance is the eigenvalue corresponding to the first
(largest) eigenvalue. Each consecutive eigenvalue-eigenvector pair contributes less
and less to the total variance. The covariance matrix Σ is expensive to calculate,
but there is a shortcut. Use the singular value decomposition on the data matrix,
X = USV>. Thus the covariance matrix can be rewritten as:

Σ =
1

m− 1
X>X =

1
m− 1

(
USV>

)> (
USV>

)
= V

(
1

m− 1
S2
)

V>.

This is the eigenvalue factorisation of the covariance matrix. Hence the eigenvalues
and eigenvectors of the covariance matrix can be extracted from the singular value
decomposition of the data matrix. So the scheme to find the features that contribute
the most to the total variance in descending order is the following:

1. Construct unstandardised data matrix.

2. Standardise the matrix by subtracting the column-wise means and dividing by
the column-wise standard deviation.

3. Decompose the standardised data matrix using the singular value decomposi-
tion.

4. Let {σi}
min(m, n)
i=1 be the diagonal entries of S and {vi}n

i=1 be the column vectors
of V.

5. The eigenvalues of the covariance matrix are extracted as: λi =
σ2

i
m−1 .

6. The feature vector vi then contributes 100× λi
∑j λj

% to the total variance of the
data matrix.

5

A.3 Umeyama’s algorithm - Finding the optimal simi-
larity transformation

Consider the minimisation problem:

argmin
R,t,s

N

∑
i=1
‖yi − t− sRxi‖2

2

s.t. RR> = I,

where {(xi, yi}N
i=1 are points corresponding to each other. This problem is solved

using Umeyama’s algorithm [19], which is an extension of Kabsch algorithm [6]:

1. Calculate mean vectors: µ̂x = 1
N ∑N

i=1 xi, µ̂y = 1
N ∑N

i=1 yi.

2. Calculate standard deviation: σ̂2
x = 1

N ∑N
i=1 ||xi − µx||22 .

3. Construct cross-covariance matrix: Σx,y = 1
N ∑N

i=1(yi − µ̂y)(xi − µ̂x)
>.

4. Perform singular value decomposition: Σx,y = USV>.

5. Define: D = diag(1, det(UV>)).

6. Set: R∗ := UDV>.

7. Set: s∗ := 1
σ̂2

x
tr(SD).

8. Set: t∗ := µ̂y − s∗R∗µ̂x .

9. Transformation matrix is then: T =

[
s∗R∗ t∗
0> 1

]
.

A.4 Estimation of gradient using a neural network and
backpropagation

If a neural network is trained to approximate a function, it can also be used to esti-
mate the partial derivatives of its inputs. Consider the fully connected neural net-
work in figure A.1.

6

Figure A.1: Fully connected sequential neural network architecture.

where the superscript denotes the layer indices and the network has L layers.

Assume that the input layer consists of p nodes and that the `:th layer has n(`) nodes.
Let z(`)i and a(`)i denote the pre-activation value and post-activation value respec-
tively for the i:th neuron in the `:th layer in the network. In vector form, the pre-
activation and post-activation values can be written as:

z(`) =


z(`)1
z(`)2

...
z(`)

n(`)

 , a(`) =


a(`)1
a(`)2

...
a(`)

n(`)

 .

Denote w(`)
i,j as the weight going from the i:th node in layer `− 1 to the j:th node in

layer `. Let W (`) be defined as:

W (`) =


w(`)

1,1 w(`)
1,2 . . . w(`)

1,n(`)

w(`)
2,1 w(`)

2,2 . . . w(`)

2,n(`)

...
...

w(`)

n(`−1),1
w(`)

n(`−1),2
. . . w(`)

n(`−1),n(`)

 .

Furthermore, let b(`) denote the bias in layer `. The pre-activation vector z(`) can be
written as:

z(`) = W (`)a(`−1) + b(`). (A.3)

Let f (`)(x) be the activation function that maps the pre-activation values to the post-
activation values in the `:th layer, i.e:

7

a(`) = f (`)(z(`)), (A.4)

f (0)(z(0)) = a(0) = p, (A.5)

where p is the input.

Thereby the output vector a(L) can be calculated recursively:

a(L) = f (L)(zL)

= f (L)(W (L)a(L−1) + b(L))

= f (L)(W (L) f (L−1)(z(L−1)) + b(L))

= f (L)(W (L) f (L−1)(W (L−1)a(L−2) + b(L−1)) + b(L))

= f (L)(W (L) f (L−1)(W (L−1) f (L−2)(... f (0)(z(0))...) + b(L−1)) + b(L))

= f (L)(W (L) f (L−1)(W (L−1) f (L−2)(...p...) + b(L−1)) + b(L)).

Let L(y, a(L)) be a loss function where y is the target vector and a(L) is the output
from the network. This is the function that the network tries to minimise. However,
to use the neural network to get a gradient to update the parameters with, it is nec-
essary to get find how the input parameters affects the loss function. This is done
using the backpropagation algorithm [15].

The task at hand is hence to calculate ∇pL. The following notation is used (c, v and
u are only used to showcase the notation and not used in any calculations):

dc
dv

:=


dc

dv1
dc

dv2
...

dc
dvn

 ,
du
dv

:=


du1
dv1

du1
dv1

. . . du1
dvn

du2
dv1

du2
dv1

. . . du2
dvn

...
...

dum
dv1

dum
dv2

. . . dum
dvn

 .

Note that c is some function which takes a vector v as input and produces a scalar
output, and that u is function which takes a vector v as input and produces a vector
as output.

Using the chain-rule on ∇pL yields:

dL
dp

=

(
da(L)

dp

)>
dL

da(L)
. (A.6)

8

The equations (A.3) and (A.4) yield:

a(`) = f (`)(z(`)) =⇒ da(`)

dp
=

d f (`)(z(`))
dz(`)

dz(`)

dp
,

z(`) = W (`)a(`−1) + b(`) =⇒ dz(`)

dp
= W (`) da(`−1)

dp
,

p = a(0) = f (z(0)) =⇒ d f (z(0))
dp

=
da(0)

dp
=

dp
dp

= I.

Hence a recursive formula has been found:

da(L)

dp
=

d f (L)(z(L))

dz(L)
dz(L)

dp

=
d f (L)(z(L))

dz(L)
W (L) da(L−1)

dp

=
d f (L)(z(L))

dz(L)
W (L) d f (L−1)(z(L−1))

dz(L−1)

dz(L−1)

dp

=
d f (L)(z(L))

dz(L)
W (L) d f (L−1)(z(L−1))

dz(L−1)
W (L−1) da(L−2)

dp
= . . .

=

[
1

∏
`=L

d f (`)(z(`))
dz(`)

W (`)

]
dp
dp

=
1

∏
`=L

d f (`)(z(`))
dz(`)

W (`). (A.7)

Inserting the result from equation (A.7) into equation (A.6) grants:

dL
dp

=

[
1

∏
`=L

d f (`)(z(`))
dz(`)

W (`)

]>
dL

da(L)

=

 L

∏
`=1

(
d f (`)(z(`))

dz(`)
W (`)

)> dL
da(L)

. (A.8)

The result in equation (A.8) is the gradient of the loss function with respect to the
input p.

9

10

Appendix B

Model Architectures

Appendix containing the architecture of all neural network models used in this the-
sis.

11

B.1 One-dimensional curve boost function architecture

Figure B.1: Boost function network summary.

12

Figure B.2: Boost function network architecture.

• Input 1: 5x1 vector (5 curve coefficients).

13

• Input 2: 1x1 vector with stopped gradient (Length of curve) .

• Output: 1x1 vector (Boost for a single curve).

• Optimiser: Adam.

• Loss function: MSE of target and predicted boost.

The network consists of four dense layers (including output layer), swish activation
[14] after each hidden layer except last one and 20 percent dropout after each acti-
vation. The input is split into two separate branches, making it easier to stop the
backpropagation into the ‘Length’ branch and only calculate the gradient w.r.t to the
curve coefficients without any contribution from the length (which should of course
be constant and not be considered when calculating the gradient). The first branch
takes five scaled curve coefficients describing the fourth degree polynomial fit of the
curve c(x) as input, and the second branch takes a scaled length as input. The output
is simply the predicted boost for the curve described by the curve coefficients.

14

B.2 Boost PC weights to Surface PC weights architec-
ture

Figure B.3: Summary of boost PC weights to Surface PC weights mapping network.

• Input: 4x1 vector (4 boost principal component weights).

• Output: 6x1 vector (6 surface principal component weights).

• Optimiser: Adam.

• Loss function: MSE between target and predicted surface principal component
weights.

The network consists of four our dense layers (including output layer), swish activa-
tion after each hidden layer and 20 percent dropout after each activation except the
last one. The input takes four scaled boost matrix principal component weights and
the output is six scaled surface principal component weights.

15

B.3 Handpicked basis weight mapping architecture

Figure B.4: Summary of handpicked basis weight mapping network.

• Input: 12x1 vector (12 boost basis weights).

• Output: 12x1 vector (12 surface basis weights).

• Optimiser: Adam.

• Loss function: MSE of target and predicted basis weights.

The network consists of four our dense layers (including output layer), swish activa-
tion after each hidden layer and 20 percent dropout after each activation except the
last one. The input takes twelve scaled boost basis weights and the output is twelve
scaled surface basis weights.

16

B.4 Helmholtz basis weight mapping architecture

Figure B.5: Summary of Helmholtz basis weight mapping network.

• Input: 9x1 vector (12 boost basis weights).

• Output: 9x1 vector (12 surface basis weights).

• Optimiser: Adam.

• Loss function: MSE of target and predicted basis weights.

The network consists of four our dense layers (including output layer), swish acti-
vation after each hidden layer and 20 percent dropout after each activation except
the last one. The input takes nine scaled boost basis weights and the output is nine
scaled surface basis weights.

17

B.5 Encoders and Decoder

Figure B.6: Summary of surface encoder architecture.

• Input: 15x25 matrix (Surface).

• Output: 5x5x4 tensor (Bottleneck).

The network consists of five convolutional layers (including output layer) with swish
activation and 20 percent dropout after each hidden layer. The input takes a nor-
malised surface and the output is a tensor containing information about the surface.

18

Figure B.7: Summary of boost encoder architecture.

• Input: 144x144 matrix (Boost matrix).

19

• Output: 5x5x4 tensor (Bottleneck).

The network consists of a max pooling layer, six convolutional layers (including out-
put layer) with 20 percent dropout after each hidden convolutional layer and swish
activation after each hidden layer except the last one. The input takes a normalised
boost matrix and the output is a tensor containing information about the boost ma-
trix.

20

Figure B.8: Summary of decoder architecture.

• Input: 5x5x4 tensor (Bottleneck).

• Output: 15x25 tensor (Surface).

The network consists of six transposed convolutional layers which are used as up-
sampling layers. Swish activation is performed after each hidden layer and 20 per-
cent dropout is applied after each hidden transposed convolutional layer excepted

21

for the last one. The output layer consist of a regular convolutional layer to reduce
the output to the correct size. The shape is intentionally made too large at the sixth
transposed convolutional layer to then be downsized again at the output layer to
make the edge values more consistent. The input takes a bottleneck tensor and the
output is a scaled prediction of the surface corresponding to the bottleneck tensor.

Simple Encoder-Decoder architecture

The Encoder-Decoder architecture is built by connecting the output of the boost en-
coder in figure B.7 to the input of the decoder in figure B.8. The model is trained
by minimising the reconstruction loss, defined as the MSE between the target and
predicted shape, with the default Adam optimiser.

Combined surface autoencoder and boost encoder

The Surface encoder and decoder are connected to produce an autoencoder and
trained to minimise a loss consisting of the reconstruction loss, which is defined
as the MSE of the target and predicted surface, as well as a weighted part of the loss
used to trained the boost encoder. The boost encoder is simultaneously trained to
minimise the MSE of its bottleneck output and the bottleneck output of the surface
encoder. In words, it is trained to output a bottleneck that is similar to the one that
the surface encoder outputs. By including the loss of the boost encoder in the loss of
the autoencoder, it is incentivised to find an encoding that the boost matrix encoder
is able to find as well.

22

Appendix C

Data Generation

The construction of the surfaces is split up into two steps. The first step is to construct
intermediate surfaces using twelve basis surfaces which are displayed in figure C.1:

23

Figure C.1: Visualisation of twelve handpicked surfaces which constitutes the hand-
picked basis.

Random weights are sampled and the intermediate surfaces are constructed as a lin-
ear combination of the basis surfaces where the coefficients are the sampled weights.
The weights are drawn from uniform distributions:

w1, w2 ∼ U (−0.025, 0.475)
w3, w4 ∼ U (−0.025, 0.250)
w5, w6 ∼ U (−0.015, 0.585)
w7, w8 ∼ U (−0.050, 0.950)

w9, w10, w11, w12 ∼ U (−0.020, 0.380)

Table C.1: Sample distributions for the weights.

To add some extra variation, noise terms εi ∼ N (0, 0.1) are added to each weight wi.

24

When a large set of these intermediate steps have been constructed, principal
component analysis is performed on the set (see section 2.2.2). The dimensionality
is then decreased by projecting the set onto the first eight principal components,
which are displayed in figure C.2:

Figure C.2: Basis surfaces from the PCA.

The final surfaces are constructed as linear combinations of the principal compo-
nents where the weight for each component is drawn uniformly between the small-
est and largest value that was found for that component in the data set. Lastly, when
these surfaces are constructed, a fourth degree polynomial surface is fitted to each
shape and the boost simulation is run for each scanline for each fitted shape. Hence
a method for generating reasonable surfaces with corresponding boost matrices is
constructed and can be utilised to rapidly generate training data.

25

26

Appendix D

Reconstructions

Five surface reconstructions from the generated test set using the PCA basis along-
side neural network mapping function:

Figure D.1: Reconstruction of surface from the generated test set.

27

Figure D.2: Reconstruction of surface from the generated test set.

Figure D.3: Reconstruction of surface from the generated test set.

Figure D.4: Reconstruction of surface from the generated test set.

28

Figure D.5: Reconstruction of surface from the generated test set.

Five surface reconstructions from the real test set using the PCA basis alongside
neural network mapping function:

Figure D.6: Reconstruction of surface from the real test set.

Figure D.7: Reconstruction of surface from the real test set.

29

Figure D.8: Reconstruction of surface from the real test set.

Figure D.9: Reconstruction of surface from the real test set.

Figure D.10: Reconstruction of surface from the real test set.

30

Master’s Theses in Mathematical Sciences 2021:E7
ISSN 1404-6342

LUTFMS-3407-2021

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

