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Abstract

For every stock investor, the question of how many stocks to buy is funda-
mental. The recommendations from the literature is wide and ranges from
10 to over 300. As a contrast, 41.79% of Swedish shareholders held only one
stock in year 2020. This thesis studies the Swedish stock market between
2011 and 2020 which to the authors knowledge not has been done before
within the research space of Diversification. Main conclusions are that for
equally weighted portfolios, reducing the shortfall risk to 20% for a 10 year
investment period would take around 120-150 stocks. For five (one) year pe-
riods it would take 150 stocks (70-80 stocks). It was also seen that portfolios
held for 10 years second-order stochastically dominates portfolios held for
five years and one year respectively when the portfolio size is five and greater
for equally weighted portfolios.

Keywords Portfolio Diversification, Modern Portfolio Theory, Quantitative
Finance, Return Distributions, Shortfall Risk, Stochastic Dominance, Simu-
lation Study.
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Chapter 1

Introduction

Diversification or the practice of investing one’s money into many different
assets aims to reduce exposure to one particular asset or risk. The concept is
not new, in the old testament, Ecclesiastes 11:2, it is written: ”Divide your
wmvestments among many places, for you do not know what risks might lie
ahead”. In common parlance, the same principle is expressed through the
phrase "Don’t put all your eggs in one basket”. Assuming that the stocks do
not perform exactly the same, the intuition behind diversification is simple.
Buying shares in only one company, there is a risk that you buy the worst
performing stock. If you instead buy two stocks, the worst case scenario is
that you buy the two worst performing stocks, but still you are better off
than only buying one stock since the second worst performer is still better
than the worst performer due to our assumption that the stocks do not per-
form exactly the same. On the other hand, buying one stock you could buy
the best performer, leaving you better off compared to buying the two best
performers. So having concentrated portfolios will make your portfolio more
volatile than spreading your investments and is therefor perceived as more
risky. The most straightforward way to reduce this risk is through diversifi-
cation.

With Harry Markowitzs’ groundbreaking work [1952, 1959], a theoretical
framework justifying the benefits of diversification in a mathematically rig-
orous way was established. With it, the investment choice was pushed away
from being an art to a science and what today is called the ”Modern Portfolio
Theory” was born. Capital Asset Pricing Model (CAPM), a model directly
based on Markowitzs’ work, implies that the only efficient portfolio is the
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market portfolio consisting of all risky assets each weighted in proportion to
its total presence in the market. With CAPM, the existence of Index Funds
and extensive diversification can be theoretically justified.

Several empirical studies have been conducted on the question "How many
stocks does it take to be well-diversified?” with recommendations ranging
from 10 to over 300 stocks which most likely is quite surprising results for
the reader. [Evans and Archer| [1968] Suggest around 10 stocks, [Elton and
Gruber| [1977] recommend atleast 15 stocks, Benjelloun| [2010] recommends
around 40-50 stocks and [Statman, [2004] recommends over 300 stocks. This
wide range, is no doubt troublesome for the investor facing an actual invest-
ment decision. How many stocks should he buy to be well-diversified? As
time passes, changing market conditions likely do change the number of how
many stocks make a diversified portfolio. Similarly, a different number is ex-
pected if different markets (such as Large Cap stocks in Sweden or S&P 500
in the US) are used. But most notably, different methodologies to measure
the gain of diversification will change the recommendations suggested in a
direct manner. In the litterature, different methodologies have been used
and is a major reason for the wide range of suggestions.

These studies can be contrasted to the current situation in Sweden. In year
2020 (2019), the average number of stocks held per shareholder is 4.5 (4.1)
and 41.79% (43.9%) held only one stock [] [Euroclear, 2020, p.12].

1.1 Research Questions

The question of ”How many stocks does it take to be well-diversified” has
a established research tradition (see section and is a fundamental ques-
tion for every investor. To mine knowledge, no study in this research space
has looked at the Swedish stock market as this study do. The thesis also
looks at "modern time” spanning from 2011-01-03 to 2020-12-30 making it
relevant for current investors. The question of whether equally weighted or
capitalization weighted portfolios are preferable will also be studied. Finally,
whether one, five or 10 year investment periods are better will be studied.

'Many people are in practice more diversified by for instance having invested in real
estate or through part of their pension savings which are in some funds.



Chapter 2

Theoretical Background and
Litterature Review

In this section, theory and literature relevant for understanding the context of
this thesis is presented. Especially section [2.0]is important for understanding
the surrounding literature of this thesis.

2.1 Overview of Modern Portfolio Theory

In his seminal 1952 paper, Markowitz introduced what today is known as
Modern Portfolio Theory and with it, pushed investment choice away from
beeing an art to a science. The central message of the theory is simple.
Investors should invest in portfolios that for a given target expected return
minimizes risk as measured by variance ] or alternatively maximize portfolio
expected return given a target variance. Mathematically, this can be stated
as a quadratic optimization problem:

W = argmin w' Lw (2.1)

subject to the constraints:

IThe individual investor can use the risk measure of his choice, for instance semivariance
which is defined as: E(X —EX )211{ x<kex}- The standard deviation is also commonly used
which is equivalent to the variance (in a optimization context) due to there being a one-
to-one correspondence between standard deviation and variance, they are strict monotone
transformations of each other.
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whp=p* (2.2)
wil=> w=1 (2.3)

where w is the column vector of relative portfolio weights, 3 is the covari-
ance matrix, g is the column vector consisting of the expected returns of
individual assets and p* is the, exogenously set, target expected portfolio
return which is a scalar. The final constraint, equation (2.3), means that the
portfolio is fully invested.

In this case, the optimization problem, has a closed form solution which
can be found by using Lagrangian multipliers, for a complete derivation see
Appendix [A] The solution is:

C—pu'B_ WA—B __
optimal = 4555 1+ 27!
Woptimal = o pa® L qo g
with A = 172711, B=p’¥"'1 and C = 'S p.

Often, prohibiting short sales is also added as a constraint, i.e. w; > 0. In
this case the problem has no closed form solution but solving it is still easy
by using quadratic programming solvers, such as quadprog in MATLAB.

The well-known CAPM model by [Sharpe [1964] is directly based on the
work of Markowitz and is constructed as an Equilibrium argument. One key
implication of the model is that the only efficient portfolio is the "market
portfolio” containing all risky assets where each asset is weighted by its
market capitalization. So practitioners of CAPM should engage in extensive
diversification. An important underlying assumption in the model is that
investors have homogenous expectations of the future, i.e. they all have the
same expectations regarding the expected value, variance and correlation
coefficients of all assets in the investment universe. While this might be
a reasonable modelling assumption, in practice, an investor contemplating
different investment opportunities has to form an opinion about expected
values, variances and correlations of returns himself. Once this is done, it only
remains to plug in the estimates in the Markowitz optimization framework

4
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to obtain optimal portfolio weights. Despite the conceptual simplicity of this
procedure, in practice, results that are bad and not economically meaningful
often results E| One reason for this is the sensitivity of the optimizer, Michaud
coined the term ”Error Maximazation” which he describes in the following
way:

Risk and return estimates are inevitably subject to estimation er-
ror. MV optimization significantly overweights (underweights)
those securities that have large (small) estimated returns, neg-
ative (positive) correlations and small (large) variances. These
securities are, of course, the ones most likely to have large esti-
mation errors. [Michaud, 1989, p.33-34] .

The following example, taken from DemMiguel, Garlappi and Uppal [2009,
p.1919-1920] strengthens the intuition and shed further light on the impor-
tant problem of ”Error Maximazation”.

Suppose we have two assets where both have the same yearly mean and
volatility of 8% and 20% and with a correlation of 0.99. Due to the both as-
sets being identical, the optimal weight allocation from the optimizer is 50%
in both assets. But, if the mean return on the first asset is not known and is
estimated to be 9% instead of 8%, then the mean-variance optimizer would
recommend a weight of 635% in the first asset and -535% in the second. So,
as this example demonstrates, the optimizer try to exploit even the smallest
difference by extreme weighting without considering that these differences
might be due to simple estimation error which is a most realistic assumption
in all statistical problems including covariance- and mean estimates.

The same paper by DeMiguel et al.| [2009] also demonstrates that it is hard
to consistently beat the naive 1/N portfolio. This is a very serious problem
for those wishing to use the mean-variance analysis for practical allocation
problems. Several approaches to deal with practical limitations of the opti-

20One interesting fact in the context is that Markowtiz himself used naive diversification
rather then his own framework for personal investments. ”I should have computed the
historical co-variances of the asset classes and drawn an efficient frontier. Instead, I
visualized my grief if the stock market went way up and I wasn’t in it—or if it went way
down and I was completely in it. My intention was to minimize my future regret. So I
split my contributions fifty-fifty between bonds and equities” |Zweig), 1998, p.114]
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mization problem exist and I will provide a short overview.

Jorion| [1992] recognizes that the classical optmization alghoritm ignores the
effect of estimation in the input estimates. Therefore he proposes a simple
simulation approach based on the Multivariate Normal Distribution so the
investor can obtain a range of "statistical equivalent portfolios”. Another re-
sampling technique, called ”The Resampled Efficient Frontier” is a method
based on Monte Carlo resampling. See chapter 6 in the book Michaud and
Michaud| [2008] for details.

To estimate the covariance matrix needed for portfolio optimization, a natu-
ral first step is to use its sample equivalent. In situations when there are few
observations relative to the number of stocks, as is often the case Iﬂ, large esti-
mation errors occur. Hence, the most extreme coefficients in the matrix tend
to take extreme values, not so much because this is the ”"truth” but rather
since they contain alot of error. Unfortunately, due to ” Error Maximization”,
the optimizer will tend to focus on those coefficients that are most unreliable.
To remedy this, Ledoit and Wolfl [2003] and Ledoit and Wolf| [2004] suggest
the method of linear shrinkage where extreme coefficients are pulled towards
more central values using a shrinkage target and thereby reducing estimation
error where it matters the most. Mathematically it can be formulated as:

Yishrink = OF + (1 - 5)8

where Yk 1S the shrunken covariance matrix, F' is the target, S is the
sample covariance matrix and 0 is the optimal shrinkage intensity. Different
targets can be used, Ledoit and Wolf [2003] use for instance the single factor
matrix due to [Sharpe [1963] and |Ledoit and Wolfl [2004] use a constant cor-
relation model where all pairwise correlations are identical. One crucial part
that remains is how to choose the optimal shrinkage constant §. Ledoit and
Wolf [2003, 2004] derives the optimal shrinkage intensity using a loss func-
tion based on the Frobenius norm. For nonlinear shrinkage, see for instance
Ledoit and Wolf| [2017] which they have shown dominates linear shrinkage.
For a paper combining nonlinear-shrinkage with multivariate GARCH mod-
els, see Engle, Ledoit and Wolf [2009]. In that paper they consistently beat

3For example when the number of stocks considered is large and perhaps five years of
monthly returns are used yielding 60 observations.

6
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the 1/N portfolio which DeMiguel et al. [2009] shows is a non trivial achieve-
ment.

For mean estimates, the reader can for instance start by reading the paper
by (Green et al.| [2013] which gives a broad overview.

One approach starting the asset allocation based on an equilibrium argu-
ment and allowing the investor to incorporate his own opinion, is the Black-
Litterman model. See for instance Black and Litterman| [1992].

2.2 Stochastic Dominance

In this section, the concept of second-order stochastic dominance will be
introduced. It is a partial orderﬁ which gives an explicit and transparent
rule for ordering portfolios and random variables in general. The concept
of second-order stochastic dominance is what will be used in this thesis but
to understand it better, first-order stochastic dominance is introduced as well.

There is a rich theory related stochastic dominance and here only the essen-
tials are presented. The interested reader can for instance look at the book:
Whang| [2019] and articles: Levy| [1979] and Domian et al. [2007] as a start
for further studies.

We will focus on continuous distributions here despite that the concept of
Stochastic Dominance can be defined for discrete or mixed distributions as
well.

We begin by defining first-order stochastic dominance.

Definition 1. The random wvariable X first-order stochastically dominate
the random variable Xs,if P(X7 > x) > P(Xs > x) for all x and P(X; >
x) > P(Xy > x) for some z.

41t is a partial order since for example, if portfolio A does not second-order stochasti-
cally dominate portfolio B, that does not imply that Portfolio B second-order stochastically
dominates portfolio A. As a comparison, for a total order all pairs are comparable.
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O

Remark 2. Visually, X, first-order stochastically dominates Xo if the cu-
mulative distribution function (CDF) of X lies below that of Xs.

O

Example 3. Suppose the randomo variables X1 and X5 denote the return of
two stock portfolios. If X, first-order stochastically dominates Xo, then the
first portfolio would be desired by all investors preferring higher returns.

O

We continue to the main concept of second-order stochastic dominance.

Definition 4. The random variable X, second-order stochastically dominate
the random variable Xo, if for all x € R

/QC (Fy(t) — By(t)]dt > 0

—0o0

and there is strict inequality for some x, i.e.

/I Ry () — B(0)]dt > 0

—00

O

Proposition 5. First-order stochastic dominance implies second order-stochastic
dominance.

Proof. Follows immediately from definition [I] and definiton [4] m

Theorem 6. Assuming an investor to be a risk averse (concave utility func-
tion) and expected-utility mazimizer, he would prefer a portfolio Xy if it
second-order stochastically dominates portfolio Xs.

Proof. Proof is omitted. O

Remark 7. The reader should notice that the theorem is a very strong and
compelling argument for ranking different portfolios given that the investor
15 a risk averse expected-utility maximaizer.

8
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2.3 Some Mathematical Preliminareis

We will provide some mathematical formulae that are important for under-
standing Diversification and Portfolio Theory in general. Although impor-
tant they are not that advanced. For completeness proofs are provided.

Lemma 8. A double sum can be written as a product of two sums:

Zinyj = ZxZ-Zyj (2.4)

i=1 j5=1 =1

Proof.

inyj = (mlyl + ...+ xlym> +oo (xnyl + ...+ xnym>
i=1 j=1

= (14 ..+ )y + oo+ (X1 4 o+ 20)YUm

— (i xl> (Y1 + o + Ym)

]

Definition 9. We define the covariance, variance and standard deviation.
Cou(X,Y) = E[(X - E(X))(Y - EY)],

Var(X) = E[(X — E(X))Y,

Std(X) = /Var(X).

O

From the definition, it is immediate that the variance can be expressed in
terms of the covariance, i.e. Var(X) = Cov(X, X).
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Lemma 10. Cov(X,Y) = E(XY) - E(X)E(Y).

Proof. The proof follows immediately by multiplying out the brackets in
the definition of covariance, and then using the linearity of mathematical
expectation.

=E[XY - XE(Y) -E(X)Y + E(X)E(Y)]

=EXY)-EX)E®Y)-EX)EY)+ EX)E(Y)

=E(XY)-EX)E(Y).

O
Proposition 11. Let Xy,..., X, and Yi,...,Y,, be random variables. Let
Q1y... 0y and by, ..., by, be real numbers. Then
Cov (Z a; “Zb Y) ZZaibjCOU(Xi,Yj).
=1 j=1

Proof. Using lemma [§| that a double sum is the product of two sums, lemma
and linearity of expectation, we obtain the following:

n

Cov (iaiXi,iiji> —E ZaZX ZbY B> aX;
i=1 j=1 i=1

:ZZCL,@E(X“Y; Zaz X; Z ]E(YJ)

iljl j=1

:ZZaleX“YJ ZZale Y;)

i=1 j=1 =1 j=1
= ZZCLZ E(X:,Y;) — E(X;)E(Y;)]
=1 j=1

= ZZazb Cov(X;,Y;).

=1 j=1

10



2.4. Sub-Additivity: Justifying Diversification

Since Var(X) = Cov(X, X), we get the following corollary, which is a gen-
eral expression for the variance of a linear combination.

Corollary 12.

n n

Var(zn: a; X;) = Z Z a;a;Cov(X;, X;).
i=1

i=1 j=1

Proof. From the equality Var(X) = Cov(X, X) and proposition we get
the chain of equalities:

n n

Var(i a;X;) = Cov (i a; X, i an]) = Z Z a;a;Cov(X;, X;).
i=1 i=1 j=1

i=1 j=1
]

Remark 13. Identifying terms with the same index, we can split the last
double sum in the following way which emphasize the pure variance and co-
variance contributions respectively.

Var(z a;X;) = ZZaiajCOU(Xi,Xj) (2.5)

i=1 i=1 j=1
= Z azVar(X;) + Z Z a;a;Cov(X;, X;). (2.6)
i=1 i=1 j=1
i#]

2.4 Sub-Additivity: Justifying Diversification

In Modern Portfolio Theory, diversification is a core concept. Its importance
stems from the fact that the investor should not only focus on returns, but on
risk aswell. Markowitz writes the following about the importance of Diver-
sification: ”Diversification is both observed and sensible; a rule of behavior

11
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which does not imply the superiority of diversification must be rejected both
as a hypothesis and as a mazim” |Markowitz, 1952, p.77].

I begin by providing a simple, motivating, example showing the power of
diversification.

Example 14. Suppose stock A has an expected return of 4% and a standard
deviation (volatility) of 12%. Assume that Stock B also has a expected return
of 4% and a standard deviation (volatility) of 12%. The correlation between
the two assets is 0.8. In this example, we assume that wy = w, = 0.5,
i.e. the portfolio is equally invested in the two stocks. We model both stock
returns as random variables. With obuvious notation, we have for instance
E(X4) = 4% and Std(X4) = 12%. Are we better of buying one of the stocks
or a combination of them?

Solution. If we buy one of the stocks, we obviously get a return of 4% with a
volatility of 12%. But assuming we buy both of the stocks, then the following
calculations gives the expected portfolio return (E[R,]) and standard deviation
(0,) of the portfolio:

E[R,)) = E[(0.5X4) +0.5Xp| =4

In words, we get an 4% expected return, which is unchanged compared to
buying one stock.

Var[(0.5X4) +0.5X5] = 0.5°Var(Xa) + 0.5°Var(Xg) + 2(0.5%)Cov(X 4, Xp)

Since Correlation, Corr(X,Y) is defined as Corr(X,Y) = %, a

simple calculation shows that Cov(Xa, Xp) = 0.01152. Using this and re-
mark [13, we get that

Var[(0.5X4) + 0.5X 5] = 0.5%0.12% + 0.5%0.12* + 2(0.5%)0.01152 = 0.01296

And finally, we obtain, o, = v/0.01296 ~ 0.1138.

12
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O

This example shows the gain of diversification. By buying two stocks, we
get to keep our return of 4% but lower our standard deviation from 12% to
approximately 11.38%. Obviously, the question is whether we can expect
this in the general case? The answer is yes, and it is follows from the sub-
additivity property of the standard deviation.

In a two asset case, we can denote the return distributions as random vari-
ables, X and Y. Then the sub-additivity of standard deviation is simple
to show. Var(X +Y) = Var(X) + Var(Y) + 2Corr(X,Y)Std(X)Std(Y).
Since Corr(X,Y) < 1, we have that: Var(X +Y) < Var(X) + Var(Y) +
25td(X)Std(Y) = [Std(X) + Std(Y))?, taking square root on both sides,
we finally get: Std(X +Y) < Std(X) + Std(Y). In words, this says that
if adding two assets together, the risk/volatility (as measured by standard
deviation) cannot get bigger than if you add the two risks seperately. So
you are never worse off, in terms of volatility, if you divide your money into
more assets. Example illustrated this in a special case. To stress the
interpretation of sub-additivity, I quote Willmotts explanation of it: ”If you
add two portfolios together the total risk can’t get any worse than adding the
two risks seperately. Indeed, there may be cancellation effects or economies
of scale that will make the risk better” [Wilmott, 2006, p.342].

We now prove sub-additivity for standard deviation in the general case when
different weights are used for different assets and where we have more than
two assets.

Proposition 15. Denote by w; > 0 the weight in asset . We model returns
as random variables X;, where the index v represents asset i. Then, the
portfolio standard deviation is less than or equal to, a linear combination of
the return standard deviations of the portfolio constituents. The weights in
the linear combination are the portfolio weights. Mathematically we have:

Sta(> " w,X) < 3 wiStd(X,)
i=1 i=1

13
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Proof. We first work with variances and will at the end take the square root
to obtain the result for standard deviations.

Var(zn: w; X;) = Zn: zn: ww;Cov( X, Xj)
i=1

i=1 j=1

=3 ) ww;Std(X;)Std(X;)Corr(X;, X;)

i=1 j=1

Where we used that Cov(X;, X;) = Corr(X;, X;)Std(X;)Std(X;). Since
Corr(X;, X;) <1, we get:

Var(zn: w; X;) < Zn: Zn:wiijtd(Xi)Std(Xj) = (Zn: wiStd(XZ-)>

i=1 j=1

Taking square root on both sides, we finally get:

Std(i w; X;) < (En: wStd(X;))

This shows that the portfolio standard deviation is less than or equal to,
a linear combination of the return standard deviations of the portfolio con-
stituents, where the weights in the linear combination are the portfolio weights.
So the risk of a portfolio is less than, or equal to, the risk of the individual
assets. O

When solving the optimization problem to obtain optimal weights it does not
matter whether the investor uses standard deviation or variance. This since
there is a one-to-one correspondence by virtue of the two measures being a
strict monotone transformation of each other. But, in terms of evaluating
risk in itself, there is a big difference. Whereas standard deviation is sub-
additive which implies diversification never leaves you worse off, variance is
not. A simple counterexample proves this.

14
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Var(X +Y) =Var(X) + Var(Y) + 2Cov(X,Y), assuming Cov(X,Y) > 0,
implies that Var(X +Y) > Var(X) + Var(Y). If we let X = w;X; and
Y = wy X5, we have translated the above proof to the notation used above
in a portfolio theory context.

In general, it is possible to show that standard deviation is a coherent risk
measure whereas variance is not, hence the two measures are not equivalent
in general.

Markowtiz writes ”Thus far I have used the standard deviation (or equiva-
lently, the variance) of return as a measure of the risk involved in the port-
folio” |Markowitz, 1976, P.50]. Due to the discussion above, these kind of
statements are in general not correct and care must be taken regarding the
context.

2.5 The Law of Average Covariance and Di-
versifiable Risk

With the Mathematical machinery set, we can readily obtain an analytical
formula to evaluate the benefits of naive diversification. It will also equip us
with an way to decompose total risk into diversifiable and non-diversifiable
risk.

Recall from equation (2.6), that the portfolio variance, denoted by o2 here,
can be written as:

013 = ZwizVar(Xi) + Z Z ww;Cov(X;, X;) (2.7)
i=1

i=1 j=1
i#£]

If we naively, choose each portfolio weight as 1/N, where N is the number
of assets, then equation ({2.7)) becomes:

15



2.5. The Law of Average Covariance and Diversifiable Risk

o) = (%)22131/@7‘()(0 + (%)2271:2”:00@(&,)9). (2.8)

i=1 j=1
i#£]

In an N asset case, there are N variances, and N>~N = N(N—1) covariances.
Naturally then, we can define the average variance and average covariance
respectively as:

1 &
U}% = NZ VCLT'(Xl)
=1

_ 1 -
055 = m; CO’U(Xi, X])

Using the fact that # = %m, we can rewrite equation 1} as:

O'p:NO'p—f— N

Ti; (2.9)

Taking the limit as N goes to infinity in equation (2.9) we see that:

or— T (2.10)

In words, the risk that remains after diversifying naivly among infinitely
many stocks is the average covariance. Hence, this is the risk that we can-
not diversify away. In the special case that the average covariance is 0, we
could eliminate risk completely. While empirically unreasonable for stocks,
this might be a more realistic situation for insurance companies for instance,
assuming insurance policies are written on uncorrelated risks.

Note that in this theoretical example, covariances and not variances are the
important factor. In other words, evaluating securities in themselves, ignor-
ing the covariance between them, is a bad idea for the portfolio manager.
He should look at the portfolio as a whole and not only as consisting of
individual parts. Also note that in general, for N securities, there are N
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2.5. The Law of Average Covariance and Diversifiable Risk

variances but N(N — 1) covariances. Assuming there are 200 assets in the
investment universe, only 200 variance estimates are needed compared to the
200 x 199 = 39 800 covariance estimates that are needed. This explains why
covariances often are more important than variances when creating portfolios
and very soon can become an overwhelming task if too many securities are
analyzed. This ”curse of dimensionality” problem can for instance be han-
dled by the single index model of [Sharpe| [1963], see the article for details.

What we derived here was by Markowitz called " The Law Of The Average
Covariance” [1976]. It was however derived much before in his classical book

Blue: Total Risk
Black: Diversifiable Risk
Red: Non-diversifiable Risk

Portfolio Variance (Volatility)

Number of Stocks

Figure 1: Total Risk can be decomposed as: Total Risk = Diversifiable
Risk + Non-diversifable Risk. Blue arrow shows total risk, black arrow shows
diversifiable risk and red arrow shows non-diversifiable risk.

17



2.6. How Many Stocks Does It Take To Be Well Diversified?

[1959, see p.109-112] but was then presented without a name.

In this section we obtained the "Law of Average Covariance” by virtue of
the simplifying assumptions of equal weighting and infinitely many assets.
In reality this might be non-realistic assumptions. Nevertheless they are nec-
essary in order to obtain nice close form formulas as in this section which
equips the investor with intuition and better understanding of the concept
of diversification.

Having obtained a mathematical working knowledge of diversification and
related formulas, in next section we continue to describe some empirical work
that has been done in the topic of diversification and is very important for
understanding the context of this thesis.

2.6 How Many Stocks Does It Take To Be
Well Diversified?

Modern Portfolio Theory recognizes the gain of diversification. Naturally,
the questions arises, how many stocks make a diversified portfolio? Several
studies has attempted to answer this question with different data sets and
different methodologies. While changing market conditions, naturally, can
affect the number of stocks needed to be well diversified, it would be very
troublesome if that number ranged from say 10 to 300 stocks due to changing
market conditions. Fortunately, this wide range of suggestions can by a large
extent be explained by the fact that fundamentally different methodologies
have been used in answering the question "how many stocks does it take to
be well diversified”.

The aim of this section is to give a broad overview of some studies and the
reader who wish details is encouraged to read the original articles which are
very much readable. A summary of the number of stocks suggested is avail-

able in table[I] at (p[23).

The pioneering study attempting to measure the relationship between in-
creasing portfolio diversification and reduction of portfolio risk is attributed
to|Evans and Archer| [1968|. Their methodology is conceptually simple. They
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2.6. How Many Stocks Does It Take To Be Well Diversified?

built portfolios based on random selection with equal weighting of stocks
from a universe consisting of 470 [] stocks from the Standard and Poor’s
Index (S&P 500) and calculated the time-series standard deviation of their
semi-annual return between January 1958 - July 1967. The portfolio sizes
ranged form 1 —40. They repeated this 60 times to obtain 60 observations of
the standard deviation for each portfolio size. With 60 observations at hand,
they calculated the mean portfolio standard deviation for each portfolio size
and plotted this against the portfolio size. Figure (1| (p{17) catches the spirit
of the plot they obtained. They also ran a regressionY = B(1/X) + A,
where Y is the mean portfolio standard deviation, X is the portfolio size
and A is the constant. From the regression, they concluded that the mean
standard deviation decreased to an asymptote and that this asymptote ap-
proximated the average estimated systematic variation |Z| of 0.1166 over the
period considered. they conclude that the results raise doubts concerning the
economic justification of icreasing portfolio sizes beyond 10 or so securities.

The study Evans and Archer did had a large impact and was used as a theo-
retical motivation when suggesting how many stocks an investor should buy
in many textbooks for example. See Newbould and Poon [p,73, 1993] and
[p.85, 1996] respectively for a survey of textbooks and more popular publi-
cations.

Newbould and Poon| [1993] recognizes that several authors have focused on
the average standard deviation of portfolios with different sizes, while an
investor only has one portfolio. Hence, the investor faces the risk that his
specific portfolio can substantially be below or above the average. As they
themselves state; ”Fach individual investor is risk averse on his/her own in-
dividual portfolio outcome (and not merely risk averse on the average of all
investors’” outcomes)” [1993, p.87]. They remedy this by simply construct-
ing confidence intervals. They conclude that the minimum number of stocks
needed to achieve diversification is much higher than 20 stocks but that it

530 stocks were removed due to unsatisfactory data.

6Bird and Tippett| [1986] shows that their regression specification in general is misspeci-
fied. The consequence is biased parameter estimates which, in this specific case, translates
to over-estimation of the rate at which diversifiable risk is eliminated as the portfolio size
is increased due to an under-estimate of B.

“Calculated by computing the standard deviation of a portfolio containing all the 470
securities.
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2.6. How Many Stocks Does It Take To Be Well Diversified?

ultimately depends on the particular stock universe studied, the weighting
scheme used when constructing the portfolios and the individual investors
preferences. It should be noted that Evans and Archer [1968] also construct
a confidence interval but do not emphasize its importance in their study.

Upson et al. [1975] write that another aspect of risk in context of diversifi-
cation is a portfolio managers confidence of being near the average market
return, i.e. the variability across portfolios for a given time period is rele-
vant. So there is a risk in the cross-sectional direction as well in the sense
that portfolio returns for specific portfolio sizes, can vary more or less from
the market portfolio. Considering this with an example, they conclude that
the ”established truth” (at their time) of 8 — 16 stocks being enough for di-
versification is misleading and too low. Elton and Gruber [1977] derives an
analytical risk measure incorporating both the time-series dimension as-well
as the cross-sectional dimension (portfolio return differing from the market
return) and call this ” Total Risk”. Their conclusion from an empirical study
is that the gains from adding stocks beyond 15 appears to be significant.
Newbould and Poon| [1996] writes that ”Volatility in performance must be
“felt” more keenly by the investor than the volatility of standard deviations”
[p.75]. They remedy this by constructing a method where choice of portfolio
size (i.e. how much to diversify), is dependent on confidence intervals for av-
erage risk and confidence intervals for average returns. An investor investing
in large stocks (minimum stock market value of $ 2.5 billions) wanting to be
within 10% of average risk and 10% of average return (with 95% confidence)
would need at least a portfolio consisting of 60 stocks. The same scenario
but looking at small stocks (stock market value between $ 150 million and $
1 billion) would require at least 100 stocks.

Benjelloun| [2010] studies diversification by looking at equally weighted and
market weighted portfolios. He studies two measures of risk, time series
standard deviation and standard deviation of terminal wealth which is cross-
sectional. Benjelloun run regressions of the form Y = A% + B where N
is the portolio size and Y is the measure of risk. He declares a portfolio
"diversified” when its risk is equal to or smaller than B. He concludes that
40 to 50 stocks is all that is needed to be diversified.

Mao |1970] does an theoretical analysis and assumes that all securities have
the same mean return, the same variance of return and that all pairs of
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securities have the same positive correlation coefficient. He then derives a
formula where he divides the actual gain of diversification by the maximal
gain of diversification and calls this the relative gains of diversification. Set-
ting the correlation coefficient (which is the same for all pairs of stocks by
assumption) to 0.5, then the number of stocks needed varies between 2.7
to 16.3 to achieve a relative gain between 50% and 90%. If the correlation
coefficient is set to 0.2, then the number of stocks needed varies between 4.4
to 33.2 to achieve a relative gain between 50% and 90%. He concludes that
relatively few securities are needed to reap the bulk benefits of diversification.

Markowitz| [1976] shows by an argument using the ”Law of Average Covari-
ance” (see section [2.5]), and assuming pairwise correlation of 0.25, that much
of the reduction in standard deviation that diversification will yield is already
provided by 20 stocks.

Evans and Archer] |1968] recognize the importance of an marginal analy-
sis when deciding what portfolio size to have which is a fundamental, well-
known, principle in Microeconomics. Statman| [1987] writes that ”Diversifi-
cation should be increased as long as the marginal benefits exceed the marginal
costs. The benefits of diversification are in risk reduction. The costs are tran-
action costs.” [p.354]. Using this kind of argument in combination with a
security market line which builds on the ability to borrow or lend money
(see the paper for details), he concludes that the borrowing investor needs
at the very least 30 stocks and the lending investor 40 stocks.Statman| [2004]
uses the same methodology as in the previous paper, but due to changing
market conditions he updates his assumptions. The conclusion is that the
optimal level of diversification is over 300 stocks. For another paper using,
among other things, the marginal analysis method, see |Rui Ming Daryl and
Kai Jie Shawn| [2012].

Fisher and Lorie| [1970] studies gain of diversification by looking at the distri-
bution of returns. These distributions were obtained by selecting a portfolio
of different sizes and repeating the procedure with a computer and was hence
a simulation study. They also used different measures for measuring diversi-
fication. They conclude that roughly 40% of achievable reduction is obtained
by holding two stocks, 80% by holding eight stocks, 90% by holding sixteen
stocks, 95% by holding thirty-two stocks and finally 99% by holding 128
stocks. [Domian et al. [2003] also do a simulation study and define shortfall
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risk as the difference between the return of the stock universe considered and
the 5 percentile of the distribution for a given portfolio size, this difference
is then divided by the return of the stock universe considered. Notice that
the return for the stock universe considered is constant since in each simula-
tion all stocks are selected meaning that there is no variation. If a portfolio is
deemed diversified when the shortfall risk is below 10%, then over 60 stocks
is needed for 20 year periods and over 40 stocks for 5 year periods.

The two studies above look at the return distributions for different portfo-
lio sizes obtained by simulations and then define measures to measure the
gain of diversification. Levy| [1979] argues that the whole distribution is rel-
evant to look at and does so by using the concept of second-order stochastic
dominance (see section . In general, all risk averse expected utility max-
imizers prefer a second-order stochastic dominant investment more than a
dominated one. The result of the study, using the data from the Fisher and
Lorie| [1970] study, is that an investor prefer 128 stocks (rather than 8, 16, 32
stocks) for 1 year periods, the same goes for 5 year periods. For 10 and 20
year periods, no clear and general results are available and the efficient set
consists of 2, 16, 32 and 128 stocks for the 10 year period. For the 20 year pe-
riod, 8 stocks is always preferred but diversification beyond this may not pay.

Domian et al.[[2007] also incorporates, among other things, the second order
stochastic dominance methodology. They also look at the shortfall risk of
ending wealth beeing less than a target amount, which in their study of 20
years they choose too be the long-term US-treasury bond rate. Their study
shows that 63 stocks are needed to achieve a 10% shortfall risk, 93 stocks are
needed to make the shortfall risk 5% and 164 stocks are needed to have a 1%
chance of under performing the Treasury bonds. They state that the results
make a compelling case that 100 stocks are not enough to provide sufficient
protection from downside risk.

In Sweden, Aktiespararna [2021] is an independent organization for people

saving in stocks. Their recommendation of a well-diversified portfolio is 10-15
stocks in different industries.
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Table 1: Summary of selected articles from the littrature regarding: ”How
many stocks does it take to be well diversified?”. The number of stocks rec-
ommended is interpreted by the author when no explicit number is specified.

Authors

Number of Stocks

:Evans and Archer11968]

less than 10

Maol [1970]

When pairwise correlation coefficient is 0.2:
5 stocks (50% of relative gain),
34 stocks (90% of relative gain)

| [Fisher and Lorie| [1970]

8 (80% risk reduction), 16 (90% risk reduction)

| [Upson et al.| [1975]

More than 16

:Markowitz [1976]

Around 20

| [Elton and Gruber| [1977]

Atleast 15

Levy| [1979)

128 for 1 to 5-year holding periods,
8 for 20 year holding periods

| |Statman] [1987]

Atleast 30 (borrowing investor),
Atleast 40 (lending investor)

' Newbould and Poon| [1993]

Much higher than 20

' Newbould and Poon| [1996]

60 (large stocks), 100 (small stocks)

' [Domian et al|[2003]

Over 40 (5 year periods), over 60 (20 year periods)

| |Statman] [2004]

Over 300

| [Domian et al|[2007]

Over 100

 Benjelloun| [2010]

40 to 50

| [Aktiespararnal [2021]

10-15 stocks in different industries
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Chapter 3
Method

3.1 Data Collection

Daily closing prices, adjusted for splits, was retrieved from Nasdaq Nordics
website [http://www.nasdagomxnordic.com/aktier/historiskakurser|.
Looking at all listed companies from Small-, Mid-, and Large Cap at the
date 2021-04-01, companies that had a complete price history from the three
lists ranging from 2010-01-04 to 2021-01-04 was then selected.

The data used in this study ranged from 2011-01-03 to 2020-12-30 yielding
10 years of data. I used only this interval of the data (and not all the way
back to 2010-01-04) since this gave 10 years of data. This was desirable for
consistency reasons, since I could then form 10 one year periods, two five year
periods and one 10 year period making the comparisons done in the chapter
over the same period. Due to requiring a complete price history back to
2010-01-04 T know that at least one stock was excluded due to this despite
that it could have been included if the requirement was that its’ price history
should range back to 2011-01-03 only. With this, I added an unnecessary bias
to the data collection. The seriousness of this bias is not that great and does
not invalidate the results of this study.

Market Capitalization values at close was available for the date 2021-03-31
for all stocks included in the study. By dividing the market capitalization
value by the closing price for the date 2021-03-31, the number of stocks for
the specific company could be deduced. This number was then used through-
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3.1. Data Collection

out the data set to infer market capitalization values for different dates. For
instance, multiplying the number of stocks by the closing price 2010-01-04,
we obtained a market capitalization value for that date as well. Notice that
the assumption of constant number of stocks outstanding is an assumption
since companies can for instance repurchase their stocks. Hence, the mar-
ket capitalization values that was calculated is an proxy for the true market
capitalization values.

In total, there were 385 stocks available at 2021-01-04 of which 212 was se-
lected since they had a price history available ranging back to 2010-01-04.
One stock, Sagax Preferensaktie, was removed since no market capitalization
value was available at the website.

In numbers, this meant that:

e Small Cap had 100 stocks listed 2021-01-04 of which 54 was retrieved.
e Mid Cap had 149 stocks listed 2021-01-04 of which 59 was retrieved.

e Large Cap had 136 stocks listed 2021-01-04 of which 99 was retrieved.

The data does not incorporate dividends, which means that the calculated
returns used in the study is an underestimate of the actual returns an in-
vestor would obtain in reality. The data collected suffers from survival bias
in the sense that only stocks existing at 2021-04-01 was used when collecting
data back to 2010-01-04. Hence, companies that for instance went bankrupt
2011 or any other date between the start and end date, was not considered.

This kind of bias is not uncommon in the finance literature, see for instance
Engle, Ledoit and Wolf [2019] p.370].

That no dividends are incorporated, means that the results of this thesis is
pessimistic and the investor would be better off in reality due to the gains
from dividends. The survival bias yields more optimistic results since in
reality, one cannot see into the future and only selecting stocks that will not
go bankrupt. These kind of optimistic results are more problematic since it
is in general better to give too careful recommendations than the other way
around.
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3.2. Study Design - A simulation Approach

3.2 Study Design - A simulation Approach

The methodology of this thesis is inspired by the methodology presented in
the papers |Domian et al.| [2003] and Fisher and Lorie [1970]. Just as those
studies, this study is designed as a simulation study.

Given a return history, the portfolio sizes studied were 1, 2, 5, 10, 15, 20, 30,
40, 50, 60, 70, 80, 90, 100, 120, 150, 200 and 212 stocks. These portfolio sizes
were drawn from a stock universe consisting of 212 stocks from small-, mid-,
and large cap [} For each of those portfolio sizes, 200.000 simulations were
done where the stocks were selected randomly without replacement, i.e. no
stock could be chosen two times or more for a specific simulation. The rea-
son why I resort to simulations is due to the number of combinations quickly
becoming too big to handle. For example, selecting 1 stock among 212 is
possible to do in 212 unique ways which with modern computers is trivial.

Selecting 2 stocks among 212, is possible in (252) = (21+22'),2, = 22.366 ways
and selecting 20 stocks among 212 is possible in (22102) ~ 5.48 x 107 ways. The

number of combinations quickly become too large to handle efficiently. Due
to the design of the study, we use one return history and simulate different
portfolios for each portfolio size. This means that we obtain the distribution
of returns for different portfolio sizes conditional on the return history used.
So, for instance figure [2| (p[31]) shows a conditional distribution.

Once the simulations have been done, the percentile thresholds looked at
were: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95% and 99%. Looking for in-
stance at table [3|, we see that for portfolios of size 5, there was a 1% that
the yearly return was below -0.0039 and it was 50% chance that the return
was below 0.1142. Note that the 50" percentile is the median. Notice,
for the stock universe (212 stocks in this case), there is no variation in the
percentiles since selecting 212 stocks among 212 can only be done in one way.

Alongside the percentiles, some summary statistics are also presented. These
are the mean portfolio return of the 200.000 simulations, the cross sectional
standard deviation of the different portfolios and the range defined as the
difference between the maximum value and minimum value. Finally, the
shortfall in %, is for each portfolio size defined as:

1One exception is figure [13|on (p. where only large cap stocks were used.
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3.2. Study Design - A simulation Approach

(Return for the studied stock universe) — (5% percentile of a specific portfolio size)

(Return for the studied stock universe)

The choice of using the 5% percentile is not and should not be seen as a
7golden standard”. I use it here since the 5% value is used in the paper
Domian et al.| [2003], they on the other hand use the 5% level since it is
the customary choice in tests of statistical significance. Nevertheless, each
investor has to decide about a suitable level for himself.

[Upson et al|, |1975] p.86] argue that that another aspect of risk in context of
diversification, is a portfolio managers confidence of being near the average
market return. In the same way, [Elton and Gruber} 1977, p.416] claim that
earlier studies (such as that one by Evans and Archer| [1968]) neglected the
risk that the mean return on a specific portfolio will be different than the
market return. The shortfall in %, is a response to this kind of critique and
was introduced in the paper by |Domian et al.| [2003].

Periods of one year, five year and 10 years were studied. For ease of inter-
pretation, the returns for five and 10 year periods were annualized making
it easy to compare with the one year periods. Only buy and hold strategies
were done with no portfolio re-balancing between the start and end date.
Equal- and market capitalization weighted portfolios were studied. See sec-
tion for the approximation done regarding the capitalization weighting.

The tables presented in chapter [ have been averaged. For instance, table[3]is
based on one year periods. In total, there were 10 of those available, and the
table is the average of these ten observations. Similary, the table presented
for five years is the average of two observations. Finally, the ten year table
only contained one observation and is not averaged. This way of aggregating
the tables provides a better overview and makes it easier to see some general
patterns. Nevertheless, care must be taken to not over-interpret the results
and for instance think that they are always true for all time periods. Some
interesting observations occurring for the specific years are presented in Ap-

pendix [B]
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3.2. Study Design - A simulation Approach

The programming was done in MATLAB and all results in the thesis are
completely reproducible.
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Chapter 4

Results and Analysis

I begin by some general comments that are relevant for all periods studied.
Next, results that are specific for each period will be commented in the cor-
responding section of this chapter. This chapter provides an overview, the
reader is refereed to Appendix (p which contains results for specific
observations (for instance one year results for 2015-2016 that are not aver-
aged), that deviate from the patterns observed in this chapter.

Looking at figure[2] figure[3|and figure[d] it is clear by a visual inspection that
for portfolios of size 5 and greater, the equally weighted portfolios stochas-
tically dominates the capitalization weighted portfolios. Due to this, I shall
mainly focus on the tables and figures containing information for the equally
weighted portfolios throughout this thesis.

Table Pl summaries the number of stocks needed to reach different levels of
shortfall in % for equally weighted portfolios.

Table 2: The number of stocks needed for different periods to reach a
specified shortfall in % for equally weighted portfolios.

Length of period

Shortfall in % | 1 year 5 year 10 year

50 Between 10-20 stocks. | Between 20-30 stocks. | Between 30-40 stocks.
20 Between 70-80 stocks. | Around 150 stocks. Between 120-150 stocks.
10 Around 150 stocks. More than 200 stocks. | Almost 200 stocks.
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4.1. One Year Periods

For all tables in this chapter, the cross-sectional standard deviation decreased
monotonically with increasing portfolio sizes. For equally weighted portfolios,
the mean was not changing much with different portfolio sizes. Doing formal
ANOVA tests to test for equal means across all portfolio sizes, we could not
reject the null of equal means for one and five year holding periods. For 10
year holding periods, we rejected the null, but looking at table [7] we see that
it does not vary too much, in fact the smallest value is 0.2598 (for portfolios
of size one) and the largest is 0.2622 (for portfolios of size five).

4.1 One Year Periods

For the equally weighted portfolio, I performed Levene’s test for testing the
null hypothesis of equal variances across all portfolio sizes in table [3] The
null is rejected due to a p-value of 0. Doing the ANOVA test for testing the
null hypothesis of equal means across all portfolio sizes in table |3| yielded a
p-value of 1, so the null cannot be rejected. These results are as expected
when looking at table [3|

Doing the same analysis for the capitalization weighted portfolio yielded a
p-value of 0 for Levene’s test and a p-value of 0 for the ANOVA test. Again,
this is the expected results when looking at table [4] here the mean does vary
quite alot.
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Figure 2: Return distributions for different portfolio sizes. This plot is based
on the average of 10 years of yearly returns between 2011-01-03 and 2020-
12-30. 200.000 simulations were performed. Blue distribution is for equally
weighted portfolios and green distribution is for capitalization weighted port-
folios.
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Table 3: Percentiles of returns for equally weighted portfolios held for one year. 10 observations between
2011-01-03 and 2020-12-30 were averaged in this table. 200.000 simulations were run for each portfolio size.

Percentiles of

Number of Stocks

Distribution |1 2 5 10 20 30 40 50 60 70 80 100 120 150 200 212
1% -0.1383 | -0.0677 | -0.0039 | 0.0296 | 0.0559 | 0.0675 | 0.0755 | 0.0811 | 0.0856 | 0.0889 | 0.0919 | 0.0966 | 0.1007 | 0.1061 | 0.1151 | 0.1244
5% -0.0688 | -0.0192 | 0.0283 | 0.0534 | 0.0732 | 0.0823 | 0.0880 | 0.0922 | 0.0956 | 0.0981 | 0.1004 | 0.1041 | 0.1072 | 0.1113 | 0.1187 | 0.1244
10% -0.0326 | 0.0076 | 0.0457 | 0.0667 | 0.0828 | 0.0902 | 0.0949 | 0.0984 | 0.1012 | 0.1031 | 0.1051 | 0.1083 | 0.1108 | 0.1142 | 0.1208 | 0.1244
25% 0.0301 | 0.0539 | 0.0770 | 0.0895 | 0.0994 | 0.1040 | 0.1071 | 0.1093 | 0.1110 | 0.1124 | 0.1135 | 0.1155 | 0.1171 | 0.1193 | 0.1230 | 0.1244
50% 0.1032 | 0.108% | 0.1142 | 0.1173 | 0.1198 | 0.1211 | 0.1220 | 0.1227 | 0.1230 | 0.1234 | 0.1238 | 0.1243 | 0.1245 | 0.1249 | 0.1247 | 0.1244
75% 0.1858 | 0.1707 | 0.1567 | 0.1489 | 0.1437 | 0.1413 | 0.1396 | 0.1380 | 0.1368 | 0.1358 | 0.1348 | 0.1332 | 0.1317 | 0.1298 | 0.1263 | 0.1244
90% 0.2798 | 0.2425 | 0.2048 | 0.1867 | 0.1731 | 0.1640 | 0.1578 | 0.1531 | 0.1496 | 0.1470 | 0.1445 | 0.1407 | 0.1376 | 0.1338 | 0.1275 | 0.1244
95% 0.3606 | 0.3035 | 0.2458 | 0.2259 | 0.1943 | 0.1784 | 0.1687 | 0.1619 | 0.1570 | 0.1532 | 0.1499 | 0.1450 | 0.1410 | 0.1360 | 0.1283 | 0.1244
99% 0.6489 | 0.6092 | 0.4301 | 0.3032 | 0.2301 | 0.2026 | 0.1873 | 0.1773 | 0.1699 | 0.1642 | 0.1597 | 0.1525 | 0.1468 | 0.1402 | 0.1296 | 0.1244
Statistics

Mean 0.1243 | 0.1244 | 0.1242 | 0.1243 | 0.1243 | 0.1243 | 0.1243 | 0.1243 | 0.1243 | 0.1243 | 0.1243 | 0.1244 | 0.1244 | 0.1244 | 0.1244 | 0.1244
Std.Dev. 0.1716 | 0.1209 | 0.0755 | 0.0529 | 0.0363 | 0.0289 | 0.0244 | 0.0211 | 0.0187 | 0.0168 | 0.0151 | 0.0125 | 0.0103 | 0.0076 | 0.0029 | 0.0000
Range 2.7165 | 1.5220 | 0.7479 | 0.4887 | 0.3193 | 0.2336 | 0.2030 | 0.1833 | 0.1550 | 0.1315 | 0.1222 | 0.0988 | 0.0820 | 0.0632 | 0.0265 | 0.0000
Shortfall % 1.5529 | 1.1542 | 0.7727 | 0.5708 | 0.4110 | 0.3386 | 0.2924 | 0.2588 | 0.2311 | 0.2114 | 0.1929 | 0.1627 | 0.1381 | 0.1055 | 0.0458 | 0




Table 4: Percentiles of returns for capitalization weighted portfolios held for one year. 10 observations

between 2011-01-03 and 2020-12-30 were averaged in this table.

portfolio size.

200.000 simulations were run for each

Percentiles of

Number of Stocks

Distribution |1 2 5 10 20 30 40 50 60 70 80 100 120 150 200 212
1% -0.1383 | -0.0975 | -0.0604 | -0.0357 | -0.0095 | 0.0037 | 0.0116 | 0.0174 | 0.0216 | 0.0255 | 0.0286 | 0.0334 | 0.0375 | 0.0426 | 0.0515 | 0.0572
5% -0.0688 | -0.0415 | -0.0195 | -0.0045 | 0.0115 | 0.0198 | 0.0255 | 0.0293 | 0.0323 | 0.0349 | 0.0370 | 0.0405 | 0.0433 | 0.0469 | 0.0533 | 0.0572
10% -0.0326 | -0.0118 | 0.0019 | 0.0112 | 0.0225 | 0.0286 | 0.0327 | 0.0358 | 0.0380 | 0.0399 | 0.0415 | 0.0443 | 0.0463 | 0.0492 | 0.0542 | 0.0572
25% 0.0301 | 0.0371 | 0.0368 | 0.0376 | 0.0409 | 0.0432 | 0.0450 | 0.0465 | 0.0475 | 0.0484 | 0.0492 | 0.0505 | 0.0516 | 0.0531 | 0.0556 | 0.0572
50% 0.1032 | 0.0935 | 0.0755 | 0.0660 | 0.0611 | 0.0594 | 0.0588 | 0.0584 | 0.0581 | 0.0579 | 0.0578 | 0.0576 | 0.0574 | 0.0574 | 0.0572 | 0.0572
75% 0.1858 | 0.1531 | 0.1151 | 0.0947 | 0.0813 | 0.0757 | 0.0725 | 0.0703 | 0.0687 | 0.0673 | 0.0663 | 0.0647 | 0.0633 | 0.0616 | 0.0588 | 0.0572
90% 0.2798 | 0.2155 | 0.1531 | 0.1212 | 0.0996 | 0.0904 | 0.0848 | 0.0811 | 0.0783 | 0.0760 | 0.0740 | 0.0710 | 0.0686 | 0.0655 | 0.0603 | 0.0572
95% 0.3606 | 0.2634 | 0.1787 | 0.1377 | 0.1107 | 0.0990 | 0.0923 | 0.0875 | 0.0840 | 0.0811 | 0.0786 | 0.0748 | 0.0718 | 0.0679 | 0.0612 | 0.0572
99% 0.6489 | 0.4206 | 0.2437 | 0.1709 | 0.1319 | 0.1155 | 0.1064 | 0.0996 | 0.0948 | 0.0905 | 0.0874 | 0.0821 | 0.0777 | 0.0722 | 0.0631 | 0.0572
Statistics

Mean 0.1243 | 0.1036 | 0.0777 | 0.0663 | 0.0611 | 0.0594 | 0.0588 | 0.0584 | 0.0581 | 0.0579 | 0.0578 | 0.0576 | 0.0575 | 0.0574 | 0.0572 | 0.0572
Std.Dev. 0.1716 | 0.1202 | 0.0640 | 0.0436 | 0.0302 | 0.0241 | 0.0204 | 0.0177 | 0.0157 | 0.0140 | 0.0127 | 0.0105 | 0.0087 | 0.0064 | 0.0024 | 0.0000
Range 2.7165 | 2.2327 | 1.3580 | 0.6599 | 0.3084 | 0.2067 | 0.1743 | 0.1662 | 0.1453 | 0.1285 | 0.1112 | 0.0886 | 0.0779 | 0.0538 | 0.0252 | 0.0000
Shortfall % 2.2021 | 1.7256 | 1.3406 | 1.0788 | 0.7997 | 0.6532 | 0.5534 | 0.4874 | 0.4354 | 0.3893 | 0.3526 | 0.2917 | 0.2425 | 0.1805 | 0.0687 | 0




4.2. Five Year Periods

4.2 Five Year Periods

For the equally weighted portfolio, we performed Levene’s test for testing the
null hypothesis of equal variances across all portfolio sizes in table 5] The
null is rejected due to a p-value of 0. Doing the ANOVA test for testing the
null hypothesis of equal means across all portfolio sizes in table |5 yielded a
p-value of 0.9986, so the null cannot be rejected. These results are as ex-
pected when looking at table 5]

Doing the same analysis for the capitalization weighted portfolio yielded a
p-value of 0 for Levene’s test and a p-value of 0 for the ANOVA test. Again,
this is the expected results when looking at table [6]

From figure (3], it is seen that the equally weighted portfolios have two peaks

(is bimodal). In section Appendix (pf61)) it is shown that it is due to the
small-and /or mid cap stocks.
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4.2. Five Year Periods
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Figure 3: Return distributions for different portfolio sizes.
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This plot is

based on the average of two five year returns between 2011-01-03 and 2020-
12-30, returns have been annualized in the plot. 200.000 simulations were
performed. Blue distribution is for equally weighted portfolios and green
distribution is for capitalization weighted portfolios.
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Table 5: Percentiles of returns for equal weighted portfolios held for five years, averaged over both periods.

All numbers are annualized for ease of comparison. 200.000 simulations were run for each portfolio size.

Percentiles of

Number of Stocks

Distribution |1 2 5 10 20 30 40 50 60 70 80 100 120 150 200 212
1% -0.1372 | -0.0796 | -0.0112 | 0.0314 | 0.0664 | 0.0843 | 0.0964 | 0.1044 | 0.1107 | 0.1162 | 0.1212 | 0.1286 | 0.1350 | 0.1431 | 0.1574 | 0.1902
5% -0.0864 | -0.0322 | 0.0274 | 0.0626 | 0.0915 | 0.1056 | 0.1151 | 0.1213 | 0.1263 | 0.1307 | 0.1342 | 0.1403 | 0.1453 | 0.1517 | 0.1648 | 0.1902
10% -0.0525 | -0.0025 | 0.0506 | 0.0815 | 0.1062 | 0.1180 | 0.1257 | 0.1309 | 0.1352 | 0.1389 | 0.1418 | 0.1468 | 0.1513 | 0.1570 | 0.1854 | 0.1902
25% 0.0159 | 0.0540 | 0.0939 | 0.1156 | 0.1322 | 0.1399 | 0.1447 | 0.1483 | 0.1512 | 0.1537 | 0.1557 | 0.1595 | 0.1633 | 0.1705 | 0.1891 | 0.1902
50% 0.1143 | 0.1335 | 0.1518 | 0.1595 | 0.1644 | 0.1671 | 0.1690 | 0.1709 | 0.1725 | 0.1745 | 0.1766 | 0.1847 | 0.1976 | 0.1972 | 0.1919 | 0.1902
75% 0.2517 | 0.2413 | 0.2233 | 0.2115 | 0.2035 | 0.2029 | 0.2053 | 0.2184 | 0.2366 | 0.2354 | 0.2304 | 0.2219 | 0.2147 | 0.2060 | 0.1944 | 0.1902
90% 0.4452 | 0.3801 | 0.3050 | 0.2738 | 0.2847 | 0.3484 | 0.3132 | 0.2901 | 0.2730 | 0.2606 | 0.2504 | 0.2356 | 0.2249 | 0.2125 | 0.1963 | 0.1902
95% 0.6195 | 0.4798 | 0.3710 | 0.3728 | 0.4668 | 0.3816 | 0.3352 | 0.3064 | 0.2864 | 0.2713 | 0.2596 | 0.2424 | 0.2303 | 0.2161 | 0.1973 | 0.1902
99% 0.9861 | 0.8622 | 1.4152 | 0.8336 | 0.5294 | 0.4241 | 0.3673 | 0.3322 | 0.3077 | 0.2896 | 0.2756 | 0.2546 | 0.2396 | 0.2224 | 0.1991 | 0.1902
Statistics

Mean 0.1904 | 0.1896 | 0.1900 | 0.1902 | 0.1902 | 0.1903 | 0.1901 | 0.1903 | 0.1899 | 0.1902 | 0.1899 | 0.1900 | 0.1903 | 0.1901 | 0.1902 | 0.1902
Std.Dev. 0.4792 | 0.3357 | 0.2115 | 0.1480 | 0.1018 | 0.0812 | 0.0681 | 0.0594 | 0.0523 | 0.0469 | 0.0422 | 0.0348 | 0.0288 | 0.0212 | 0.0081 | 0.0000
Range 7.4135 | 4.3039 | 1.9473 | 1.1572 | 0.6886 | 0.5094 | 0.4014 | 0.3334 | 0.3007 | 0.2666 | 0.2410 | 0.1871 | 0.1589 | 0.1237 | 0.0608 | 0.0000
Shortfall % 1.4545 | 1.1691 | 0.8561 | 0.6710 | 0.5187 | 0.4446 | 0.3947 | 0.3622 | 0.3358 | 0.3126 | 0.2946 | 0.2624 | 0.2360 | 0.2023 | 0.1337 | 0




Table 6: Percentiles of returns for capitalization weighted portfolios held for five years, averaged over both
periods. All numbers are annualized for ease of comparison. 200.000 simulations were run for each portfolio

size.

Percentiles of

Number of Stocks

Distribution |1 2 5 10 20 30 40 50 60 70 80 100 120 150 200 212
1% -0.1372 | -0.1107 | -0.0720 | -0.0425 | -0.0154 | -0.0010 | 0.0085 | 0.0153 | 0.0204 | 0.0246 | 0.0284 | 0.0342 | 0.0391 | 0.0453 | 0.0560 | 0.0627
5% -0.0864 | -0.0614 | -0.0330 | -0.0129 | 0.0067 | 0.0170 | 0.0237 | 0.0287 | 0.0325 | 0.0355 | 0.0381 | 0.0423 | 0.0459 | 0.0503 | 0.0581 | 0.0627
10% -0.0525 | -0.0313 | -0.0104 | 0.0041 | 0.0192 | 0.0271 | 0.0324 | 0.0362 | 0.0391 | 0.0414 | 0.0435 | 0.0468 | 0.0496 | 0.0530 | 0.0592 | 0.0627
25% 0.0159 | 0.0264 | 0.0305 | 0.0347 | 0.0408 | 0.0446 | 0.0472 | 0.0490 | 0.0505 | 0.0515 | 0.0526 | 0.0543 | 0.0558 | 0.0575 | 0.0608 | 0.0627
50% 0.1143 | 0.1018 | 0.0820 | 0.0718 | 0.0663 | 0.0648 | 0.0641 | 0.0638 | 0.0635 | 0.0632 | 0.0631 | 0.0629 | 0.0628 | 0.0627 | 0.0626 | 0.0627
75% 0.2517 | 0.1965 | 0.1384 | 0.1110 | 0.0933 | 0.0857 | 0.0816 | 0.0789 | 0.0769 | 0.0751 | 0.0739 | 0.0717 | 0.0701 | 0.0680 | 0.0645 | 0.0627
90% 0.4452 | 0.3152 | 0.1976 | 0.1484 | 0.1184 | 0.1053 | 0.0979 | 0.0928 | 0.0892 | 0.0860 | 0.0837 | 0.0798 | 0.0769 | 0.0730 | 0.0665 | 0.0627
95% 0.6195 | 0.4174 | 0.2395 | 0.1719 | 0.1332 | 0.1172 | 0.1077 | 0.1014 | 0.0967 | 0.0927 | 0.0896 | 0.0847 | 0.0810 | 0.0761 | 0.0679 | 0.0627
99% 0.9861 | 0.6923 | 0.3505 | 0.2211 | 0.1621 | 0.1405 | 0.1267 | 0.1176 | 0.1109 | 0.1052 | 0.1010 | 0.0943 | 0.0888 | 0.0820 | 0.0708 | 0.0627
Statistics

Mean 0.1904 | 0.1374 | 0.0906 | 0.0747 | 0.0678 | 0.0657 | 0.0647 | 0.0643 | 0.0639 | 0.0635 | 0.0634 | 0.0631 | 0.0631 | 0.0629 | 0.0627 | 0.0627
Std.Dev. 0.4792 | 0.2416 | 0.0904 | 0.0569 | 0.0386 | 0.0305 | 0.0255 | 0.0221 | 0.0195 | 0.0174 | 0.0157 | 0.0129 | 0.0107 | 0.0078 | 0.0030 | 0.0000
Range 7.4135 | 6.1938 | 2.5532 | 0.8477 | 0.3455 | 0.2674 | 0.2111 | 0.1958 | 0.1661 | 0.1510 | 0.1522 | 0.1286 | 0.0966 | 0.0781 | 0.0324 | 0.0000
Shortfall % 2.3784 | 1.9795 | 1.5262 | 1.2060 | 0.8937 | 0.7296 | 0.6215 | 0.5429 | 0.4813 | 0.4332 | 0.3932 | 0.3251 | 0.2684 | 0.1978 | 0.0739 | 0




4.3. 10 Year Periods

4.3 10 Year Periods

For the equally weighted portfolio, we performed Levene’s test for testing the
null hypothesis of equal variances across all portfolio sizes in table [7]] The
null is rejected due to a p-value of 0. Doing the ANOVA test for testing the
null hypothesis of equal means across all portfolio sizes in table [7] yielded a
p-value of 0.0371 so the null is rejected, which is reasonable when looking at
table [7

Doing the same analysis for the capitalization weighted portfolio, yielded a
p-value of 0 for Levene’s test and a p-value of 0 for the ANOVA test. Again,
this is the expected results when looking at table [§
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4.3. 10 Year Periods
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based on one 10 year return between 2011-01-03 and 2020-12-30, returns
have been annualized in the plot. 200.000 simulations were performed. Blue
distribution is for equally weighted portfolios and green distribution is for
capitalization weighted portfolios.
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Table 7: Percentiles of returns for equally weighted portfolios held for ten years between 2011-01-03 and
2020-12-30. Annualized for ease of comparison. 200.000 simulations were run for each portfolio size.

Percentiles of

Number of Stocks

Distribution |1 2 5 10 20 30 40 50 60 70 80 100 120 150 200 212
1% -0.0993 | -0.0809 | -0.0196 | 0.0239 | 0.0675 | 0.0923 | 0.1099 | 0.1233 | 0.1349 | 0.1448 | 0.1534 | 0.1668 | 0.1798 | 0.1967 | 0.2269 | 0.2619
5% -0.0926 | -0.0406 | 0.0183 | 0.0607 | 0.1015 | 0.1252 | 0.1410 | 0.1535 | 0.1633 | 0.1717 | 0.1788 | 0.1907 | 0.2008 | 0.2146 | 0.2398 | 0.2619
10% -0.0685 | -0.0136 | 0.0426 | 0.0842 | 0.1234 | 0.1458 | 0.1606 | 0.1718 | 0.1805 | 0.1877 | 0.1940 | 0.2046 | 0.2133 | 0.2251 | 0.2489 | 0.2619
25% 0.0015 | 0.0417 | 0.0958 | 0.1338 | 0.1687 | 0.1868 | 0.1979 | 0.2062 | 0.2129 | 0.2181 | 0.2223 | 0.2299 | 0.2357 | 0.2437 | 0.2576 | 0.2619
50% 0.0976 | 0.1326 | 0.1837 | 0.2125 | 0.2358 | 0.2433 | 0.2486 | 0.2525 | 0.2553 | 0.2576 | 0.2590 | 0.2616 | 0.2629 | 0.2644 | 0.2644 | 0.2619
75% 0.2685 | 0.3104 | 0.3297 | 0.3376 | 0.3237 | 0.3199 | 0.3148 | 0.3107 | 0.3061 | 0.3032 | 0.2996 | 0.2938 | 0.2885 | 0.2817 | 0.2690 | 0.2619
90% 0.6761 | 0.6188 | 0.5785 | 0.4852 | 0.4453 | 0.4088 | 0.3838 | 0.3667 | 0.3537 | 0.3433 | 0.3342 | 0.3200 | 0.3088 | 0.2948 | 0.2719 | 0.2619
95% 1.1105 | 1.0459 | 0.7275 | 0.6732 | 0.5258 | 0.4621 | 0.4236 | 0.3989 | 0.3794 | 0.3654 | 0.3532 | 0.3343 | 0.3199 | 0.3018 | 0.2733 | 0.2619
99% 2.7099 | 1.9791 | 1.4038 | 0.9305 | 0.6539 | 0.5515 | 0.4914 | 0.4531 | 0.4251 | 0.4035 | 0.3857 | 0.3592 | 0.3386 | 0.3135 | 0.2755 | 0.2619
Statistics

Mean 0.2598 | 0.2605 | 0.2622 | 0.2614 | 0.2618 | 0.2618 | 0.2616 | 0.2619 | 0.2618 | 0.2621 | 0.2618 | 0.2620 | 0.2619 | 0.2619 | 0.2619 | 0.2619
Std.Dev. 0.5974 | 0.4244 | 0.2681 | 0.1866 | 0.1289 | 0.1026 | 0.0862 | 0.0750 | 0.0661 | 0.0593 | 0.0534 | 0.0440 | 0.0364 | 0.0267 | 0.0102 | 0.0000
Range 6.2798 | 4.5879 | 2.6208 | 1.6391 | 0.9714 | 0.7332 | 0.6408 | 0.5607 | 0.4619 | 0.4355 | 0.3820 | 0.3090 | 0.2642 | 0.1925 | 0.0801 | 0.0000
Shortfall % 1.3537 | 1.1551 | 0.9301 | 0.7683 | 0.6122 | 0.5221 | 0.4615 | 0.4139 | 0.3766 | 0.3442 | 0.3171 | 0.2717 | 0.2332 | 0.1805 | 0.0844 | 0




Table 8: Percentiles of returns for capitalization weighted portfolios held for ten years between 2011-01-03

and 2020-12-30. Annualized for ease of comparison. 200.000 simulations were run for each portfolio size.

Percentiles of

Number of Stocks

Distribution |1 2 5 10 20 30 40 50 60 70 80 100 120 150 200 212
1% -0.0993 | -0.0970 | -0.0870 | -0.0723 | -0.0476 | -0.0323 | -0.0227 | -0.0144 | -0.0083 | -0.0033 | 0.0012 | 0.0087 | 0.0148 | 0.0231 | 0.0368 | 0.0480
5% -0.0926 | -0.0762 | -0.0562 | -0.0432 | -0.0261 | -0.0143 | -0.0058 | 0.0006 | 0.0052 | 0.0092 | 0.0126 | 0.0184 | 0.0232 | 0.0296 | 0.0407 | 0.0480
10% -0.0685 | -0.0548 | -0.0267 | -0.0170 | -0.0101 | -0.0024 | 0.0043 | 0.0096 | 0.0134 | 0.0169 | 0.0196 | 0.0244 | 0.0283 | 0.0335 | 0.0432 | 0.0480
25% 0.0015 | 0.0117 | 0.0167 | 0.0194 | 0.0217 | 0.0232 | 0.0252 | 0.0274 | 0.0292 | 0.0310 | 0.0325 | 0.0352 | 0.0372 | 0.0402 | 0.0460 | 0.0480
50% 0.0976 | 0.0843 | 0.0661 | 0.0596 | 0.0550 | 0.0523 | 0.0507 | 0.0498 | 0.0491 | 0.0487 | 0.0483 | 0.0481 | 0.0479 | 0.0476 | 0.0476 | 0.0480
75% 0.2685 | 0.2202 | 0.1461 | 0.1112 | 0.0921 | 0.0832 | 0.0774 | 0.0733 | 0.0702 | 0.0675 | 0.0653 | 0.0620 | 0.0592 | 0.0560 | 0.0495 | 0.0480
90% 0.6761 | 0.4505 | 0.2488 | 0.1675 | 0.1286 | 0.1122 | 0.1019 | 0.0950 | 0.0896 | 0.0851 | 0.0812 | 0.0752 | 0.0702 | 0.0642 | 0.0542 | 0.0480
95% 1.1105 | 0.6816 | 0.3242 | 0.2096 | 0.1502 | 0.1291 | 0.1164 | 0.1077 | 0.1011 | 0.0954 | 0.0906 | 0.0832 | 0.0771 | 0.0694 | 0.0573 | 0.0480
99% 2.7099 | 1.5207 | 0.5757 | 0.3044 | 0.1987 | 0.1622 | 0.1433 | 0.1314 | 0.1218 | 0.1140 | 0.1078 | 0.0980 | 0.0896 | 0.0796 | 0.0615 | 0.0480
Statistics

Mean 0.2598 | 0.1706 | 0.0958 | 0.0701 | 0.0583 | 0.0543 | 0.0523 | 0.0513 | 0.0505 | 0.0500 | 0.0495 | 0.0491 | 0.0487 | 0.0484 | 0.0480 | 0.0480
Std.Dev. 0.5974 | 0.3012 | 0.1291 | 0.0775 | 0.0536 | 0.0437 | 0.0374 | 0.0327 | 0.0293 | 0.0262 | 0.0237 | 0.0196 | 0.0163 | 0.0120 | 0.0046 | 0.0000
Range 6.2798 | 5.0081 | 1.9752 | 0.9172 | 0.4733 | 0.4025 | 0.3323 | 0.2806 | 0.2246 | 0.2202 | 0.1883 | 0.1601 | 0.1283 | 0.1021 | 0.0557 | 0.0000
Shortfall % 2.9310 | 2.5879 | 2.1709 | 1.9010 | 1.5438 | 1.2988 | 1.1206 | 0.9875 | 0.8925 | 0.8075 | 0.7372 | 0.6155 | 0.5173 | 0.3820 | 0.1508 | 0




4.4. Comparison Between Periods

4.4 Comparison Between Periods

In this section, differences between different holding periods is studied. Due
to the Equally weighted portfolios being better in general, I focus the anal-
ysis on that and only provide a plot (figure @ of the capitalization weighted
portfolios for the interesterd reader.

From ﬁgure (and a CDF plot not presented here), it is clear that for portfolio
sizes of 5 and greater we have that:

e Portfolios held for 10 years second-order stochastically dominates port-
folios held for five years and one year respectively.

e Portfolios held for five years second-order stochastically dominates port-
folios held for one year.

This implies that an risk averse, utility maximizing investor, would ceteris
paribus prefer the portfolios held for 10 years.
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Figure 5: Return distributions for equally weighted portfolios based on
200.000 simulations between 2011-01-03 and 2020-12-30. Blue plot is aver-
aged across ten yearly returns. Green plot is averaged across two five year
returns and red plot is for the entire 10 year period containing only one
observation. All returns are annualized for ease of comparison.
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Figure 6: Return distributions for capitalization weighted portfolios based
on 200.000 simulations between 2011-01-03 and 2020-12-30. Blue plot is
averaged across ten yearly returns. Green plot is averaged across two five
year returns and red plot is for the entire 10 year period containing only one
observation. All returns are annualized for ease of comparison.
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Chapter 5

Conclusions and Further
Research

Professional investors and Finance academics are in general agreement that
investors should hold diversified portfolios to some extent. However the spe-
cific question of "How many stocks does it take to be well-diversified” is less
clear cut and is obviously strongly influenced by the preferences of the indi-
vidual investor.

If one major concern with not holding diversified portfolios is the possibility
of returns ending below the stock universe studied, the shortfall risk measure
is natural to use. For equally weighted portfolios, reducing the shortfall risk
to 20% for a 10 year investment period would take around 120-150 stocks.
For five (one) year periods, it would take 150 stocks (70-80 stocks). For
private investors, owning that many stocks is most likely not reasonabldl],
especially if smaller amounts of money is invested. The solution to beeing
well-diversified would then simply be to own some investment funds in the
portfolio. If the investor wants some specific stocks they can easily be added
to the portfolio.

It was seen by visual inspection, that in general, equally weighted portfolios
second-order stochastically dominated capitalization weighted portfolios for
portfolio sizes of 5 and greater. The conclusion is however not completly

LOne obvious reason is transaction costs such as brokerage fees, searching costs (which
stocks to buy?) and monitoring costs (what is happening with my stocks?).
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5: Conclusions and Further Research

waterproof due to the market capitalizations used for different dates was an
approximation. See chapter [3| for details. Similarly, portfolios held for 10
years second-order stochastically dominates portfolios held for five years and
one year respectively for portfolio sizes of five and greater. This conclusions
however should be interpreted with care as there is a literature and research
available on the topic of " Time Diversification”, it deserves to be evaluated
more thoroughly before a general conclusion or guideline is taken. The con-
clusions however holds for the data set studied in this thesis and at least
provides an indication of what we could expect. The concept of stochastic
dominance could be used in further studies to see what portfolio sizes domi-
nates other. In connection to this, if the results are robust through time with
changing market conditions would be interesting to see. It is also possible
to do formal hypothesis tests for stochastic dominance (contrary to a visual
inspection as was done in this thesis), see Whang| [2019] for details. This
could be done in further research.

Chapter [4] contains illustrative tables. For instance, the tables quantifies the
simple fact that owning more stocks make the worst case scenarios (for in-
stance measured by the first or fifth percentile) better. Similarly, the other
side of the coin is that in general (exception for table [5| whose distribution
plot had two peaks, see figure [3| on p. the best case scenario gets worse
with more stocks. So one could say that the price to pay for decreasing the
downside risk is by decreasing the upside potential as well. This is easy to
establish in intuitive terms but the tables quantifies it which provides further
insight into the concept of portfolio diversification.

Is it possible to reconcile the seemingly paradoxical fact that in Sweden year
2020, the average number of stocks held per shareholder is 4.5 and 41.79%
held only one stock EP The average market value of the portfolios were
around SEK 523.000 [Euroclear} 2020, p.12, p.14]. As a proxy [} in 2016
the average market value of portfolios were SEK 517.000 and the median
portfolio was worth SEK 30.000. The big difference between the mean- and
median portfolio value is explained by skewed ownership where a small num-
ber of shareholders own portfolios worth much more than the average. For

2Many people are in practice more diversified by for instance having invested in real
estate or through part of their pension savings which are in some funds.

3] use this proxy since data from 2020 regarding the information to come, to my knowl-
edge, is not available.

46



5: Conclusions and Further Research

instance, the five percent with the largest holdings owned around 79 percent
of the share wealth [SCB| [2016]. With these, relatively smaller amounts [] it
is less surprising that 41.79% of the Swedish shareholders own only one stock
since even if they lose the entire investment, it will probably not put them in
a catastrophic financial situation whereas it could potentially lead to major
gains as has been quantified in the tables from chapter [} For a discussion
of these matters in a behavioral finance framework, see for instance [Statman
[2004]. In brief, he theorize the fact that people are willing to take high risk
with only part of their money due to the desire for riches. For some this could
mean that they gamble at a casino and for others that they buy one stock
that they believe could be the next "winner”. As long as people do know
what risk they are undertaking, this is a question of individual preferences.
Do people know what risks they are taking?

Further studies would benefit by handling the biases in this thesis such as
the survivalship bias, approximation of market capitalizations and including
dividends.

Diversification is in practice a multi-dimensional problem and to diversify in
the "usual meaning” of the word can be done in more ways than just buy-
ing more stocks E| To name a few examples it is possible to: diversify by
holding different asset classes (such as bonds or gold), diversify through time
and many different weighting schemes affecting the final outcome is possible
to use. These other dimensions of " Diversification” would be fruitful to study.

No doubt, much work has been done in the field of portfolio diversification
but I believe there is more to do in order to understand the multi-dimensional
complexity of it.

4To put SEK 30.000 in a context, the average income for people in sweden were SEK
35.300 year 2019 [SCB| [2021].

SImagine an extreme crisis such as a world war. Then perhaps, investing in canned
food and water would be better then holding 100 different stocks? Should these kind
of thoughts be incorporated in a formal analysis and if yes, how could it be done in a
modelling framework? If not included, ” Diversification” would perhaps not help you when
you need it at most.
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Appendix A

Derivation of Optimal Weights

The contents in this section together with related notions, can be found in
chapter 3 of the book by [Petters and Dong| [2016] which is very readable and
at a mathematical level.

In this section we will derive the solution to the optimization problem given

by equation ([2.1)) subject to the constraints given by equation (2.2)) and (2.3)).
First we present some preliminaries that will be needed.

Lemma 16. The inverse of a invertible, symmetric matrix is also symmetric,
ie. A7 = (ATHT.

Proof. Proof is omitted. m

Assumption 17. The covariance matrixz of return rates R, 3 is invertible.

O

Proposition 18. Assumption[I7 implies that there is no redundant security
in the portfolio in the sense that no security return is a linear combination
of the others.

Proof. Assume on the contrary, that the first security return is a linear com-
bination of the other security returns:

Rl = a2R2 + ...+ CLNRN
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A: Derivation of Optimal Weights

The covariance matrix X can be written as:

011 J12 O1N

021 0922 02N
I

ON1 ON2 ... ONN

where as usual 0;; = Cov(R;, R;) = 0j; . Expanding the first entry in the
first column of the covariance matrix 3, we get:

011 = OO’ZJ(Rl, Rl) :COU(Rl, a2R2 “+ ...+ CI,NRN)
:CLQOOU<R1, Rg) —+ ...+ CLNCOU(Rl, RN)
=@2012 + ...+ aANOIN

Analogous calculations are done for the other entries in the first column
yielding the following equality:

011 CL20'12+...—|—CLNO'1N
091 CL20'22+...+CLNO'2N
ON1 Aa0N2 + ...+ ANONN

Denoting column ¢ in 3 by ¢;, we see that the first column c; is a linear
combination of the others:

Ci = a9Cy + ...+ ancy

This for instance imply that the determinant of 3 is 0 and hence non-
invertible.

Arguing by contradiction, we have shown that the assumption of an invertible
covariance matrix, implies that no secuirty return is a linear combination of
the others. O

Proposition 19. The covariance matriz, 3, of security return rates R is
positive definite.
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A: Derivation of Optimal Weights

Proof. A covariance matrix is always positive semidefinite. This follows from
the fact that:

x'Yx = Var(z R + ...+ xyRy) >0

We assumed previously that the covariance matrix, 3, is invertible. This
implies that the determinant, det(¥) > 0. Since the determinant is equal
to the product of its eigenvalues, det(3) > 0 implies that all eigenvalues are
greater than 0. Finally, in Linear Algebra there is a theorem stating that
a matrix is positive definite iff all eigenvalues are positive. Invoking this
theorem shows that the covariance matrix of security return rates is positive
definite. This concludes the proof. O

Lemma 20.

OxTa 0aTx
. - o 2 (A.1)

Proof. Proof is omitted. O

Remark 21. The formula presented in this lemma is simple to remember
by using the mnemonic technique of comparing it to the single variable case.
For example, if a is a scalar and f(x) = ax, then f'(z) = a. O

We next present computational rules for the gradient and hessian of a scalar
valued function of several variables when the function is of a specific form.

Lemma 22 (The Gradient). If f(x) = xTAx is a real valued function of
several variables, i.e. f:R™ — R, where A is a n x n real matriz. Then the
gradient of f, Vf = %, is defined as:

d
_of  0xTAx) T
Proof. Proof is omitted. O]
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A: Derivation of Optimal Weights

Lemma 23 (The Hessian). If f(x) = xTAx is a real valued function of

several variables, i.e. f :R™ — R. Then the hessian of f, 838%, is defined
as:

?f  9P(xTAx)
0x0xT  Ox0xT
Proof. Proof is omitted. m

=A+AT (A.3)

We now have the tools needed to solve the portfolio minimization problem.
The method of Lagrangian multipliers will be used and it is assumed the
reader has a working knowledge of it.

Problem 24. We solve the portfolio minimization problem by finding the
portfolio weight vector w that solves:

wIiYw

W = arg min
w

subject to the constraints:
whp = (A.5)

wil = Zwi =1 (A.6)

Remark 25. Notice that the objective function as given by equation
15 diwvided by 2 compared to the original problem in equation at (p@
This does mot matter since the solutions are equivalent. Also, the standard
deviation could be used as risk measure because in an optimization context it
15 equivalent to the variance. But the variance is much simpler to work with
in this case.

Solution. We begin by setting up the Lagrangian, L:
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A: Derivation of Optimal Weights

wIixw

L(w, ) = + 0 (1= w1 + Xo(ut — wip) = f(w) + ATh(w)

where we defined,

wIxw
e
A= _)\2_
(] 1—wl1
) = (1] = |2

Using the lemma and lemma 22, we get the following two first order
conditions:

T

%(w,/\) = @_FTE)W_)\ll_)\Q#ZEW_All_)\QM (A.8)
oL

N h(w) (A.9)

In the last equality of equation (A.8]) we used that the covariance matrix X
is symmetric, i.e. ¥7 = ¥ which implies that (X + X7)/2 = 3.

To find critical points, the first order conditions are set equal to 0. We first
obtain from equation ({A.8):
Sw=Ml+p <= w=AIZ 1+ Z 'y
= wl =118 4 ot st (A.10)

In the first equivalence we used assumption of ¥ beeing invertible. In
the last equivalence we used the property of lemma that the inverse of
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A: Derivation of Optimal Weights

a symmetric matrix is still symmetric, i.e. (X717 = X7 Setting the
components of h(w) = 0, then we secondly get:

1=w'1 (A.11)
w=wip (A.12)
Plugging in the expression for w’ from equation (|A.10)) into the two equations

above, we obtain:

l=wil=M1"Z""1 + ™1 (A.13)
pr=wip=M1"S" 4+ Aop" S

—~
E]>
—_
N

S~—

Define A =1"2711, B=p"S 1 and C = pT'S 1p.

Notice that B is a scalar (check the dimensions) and therefore BT = B.
Equipped with this notation, we get that:

5 -]

5 o

Denote

I
=

Then,

A= Bj =K~ L” = ﬁ [—CB _AB} Lﬂ

Identifying components, we get:
A =S8 and Ny = £48

Plugging in the multipliers (A; and Ay) in equation (A.10]), we then get:
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A: Derivation of Optimal Weights

r_C—pB 17y 4+ pA—B

_ Two—-1
~ AC - B2 ac gt

W

Taking the transpose to obtain the solution w, we finally get:

 C—uB
- AC — B2

WA—B

s K475
T A0 -

w S
It remains to show that this candidate solution indeed is a minimum which
will be done by invoking the second derivative test. Using Lemma for

calculating the hessian, we get that:

0*L

owowT (w,A) =2

It was shown in proposition |19 that the hessian (i.e. the covariance matrix
3 in this case) is positive definite. Hence it is a minimum point.
O
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Appendix B

Results and Analysis - More
Details

In chapter 4| the plots and tables are constructed by averaging individual
tables. In the case of one year returns, ten observations between [2011-01-03]
and [2020-12-30] were averaged. In the case of five year returns, two obser-
vations were averaged and in the case of 10 year returns there was only one
observation. This gives an overview and simplifies analysis of more general
character. Nevertheless, the reader might get the false impression that all
periods were similar to these aggregated results. This is not the case and
I will provide some comments that are interesting for the individual obser-
vations, not averaged. For instance, the distributions are changing both in
location and shape.

The takeaway for the reader should be that we cannot expect too much
"regularity” from one year to another making it a dangerous endeavour to
generalize the results without care.

B.1 One Year Periods

In interest of brevity not all plots are presented. Some interesting observa-
tions from these plots were:

e In 2011 (see figure 7)) you most likely would get a negative return. For
larger portfolio sizes you surely would. This kind of results can get the
individual investor to think it is ”safer” to invest in few stocks. Only
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B.1. One Year Periods

one year later (see figure , owning few stocks can lead to substantial
negative returns while owning many stocks surely lead to positive re-
turns. What one prefers is a matter of preference but it is important
to know that owning few stocks, in general, is riskier in terms of the
downside risk.

e In 2012 (see ﬁgure for portfolio sizes greater than 30, the cap weighted
portfolios second-order stochastically dominates the equally weighted
portfolios as seen by a visual inspection.

e In 2015 (see ﬁgure@ the equally weighted portfolio is bimodal for larger
portfolio sizes.

e In 2018 (see figure we again see the bimodal characteristic of the
equally weighted portfolio and there is a high risk of getting a negative
return.
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Figure 7: Return distributions for different portfolio sizes. This plot is based
on 200.000 simulations between 2011-01-03 and 2011-12-30. Blue distribu-
tion is for equally weighted portfolios and green distribution is for capital-
ization weighted portfolios. Notice how positive returns only are obtainable
for smaller portfolio sizes.

o7



PDF
- NS
PDF

o - n
PDF

(=] [o+] B

PDF PDF

PDF

B.1. One Year Periods

PDF
L=
PDF
(=T ]
PDF
(=T S L]

Portfolio Size = 1 3 Portfolio Size =2 Portfolio Size =5

05 0 0.5 1 1.5 -0.5 0 0.5 1 1.5 05 0 0.5 1
Annualized Return Annualized Return Annualized Return
Portfolio Size = 10 Portfolio Size = 20 Portfolio Size = 30

0.5 0 0.5 0.2 0 0.2 0.4 01 0 01 02 03
Annualized Return Annualized Return Annualized Return
Portfolio Size = 40 Portfolio Size = 50 Portfolio Size = 60

T
[m]
o
01 0 01 02 03 0.1 0 0.1 02 0 0.1 02
Annualized Return Annualized Return Annualized Return
Portfolio Size = 70 Portfolio Size = 80 Portfolio Size = 100
LL:
m]
o
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2
Annualized Return Annualized Return Annualized Return
Portfolio Size = 120 45 Portfolio Size = 150 100 Portfolio Size = 200
20
%0 % 50
10
o 10 o
0 0 0
0 005 01 015 0.05 0.1 0.15 0.04 006 008 01 012
Annualized Return Annualized Return Annualized Return
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general is better for portfolio sizes of 30 or greater.
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Figure 10: Return distributions for different portfolio sizes. This plot is
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B.2 Five Year Periods

Figure 3] is the average of two five year periods. Looking at the periods
seperately, we see that the distributions have changed considerably. Figure
is bimodal for larger portfolio sizes. To understand this characteristic
better, the same plot was produced but only containing large cap stocks.
The result, presented in Figure (13| shows that there is no bimodal property
for this market. Hence, we can infer that the bimodal property is due to
inclusion of small- and/or mid cap stocks who had higher returns than the
large cap stocks only. This data set, contained 99 stocks (compare with 212
before) and hence different portfolio sizes were looked at. For example, the
portfolio size of 200 were not possible to study in the data set consisting of
large cap stocks only.
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Figure 11: Return distributions for different portfolio sizes. This plot is
based on 200.000 simulations between 2011-01-03 and 2015-12-30. Blue dis-
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Figure 12: Return distributions for different portfolio sizes. This plot is

based on 200.000 simulations between 2016-01-04 and
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Figure 13: Return distributions for different portfolio sizes. This plot is
based on 200.000 simulations between 2011-01-03 and 2015-12-30 and only
containing Large Cap stocks. Blue distribution is for equally weighted port-
folios and green distribution is for capitalization weighted portfolios. Notice,
the bimodal property, seen in figure is not visible here.
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Appendix C

Popularvetenskaplig
Sammanfattning (Swedish)

Varje aktieinvesterare maste, direkt eller indirekt, forhalla sig till portfolj di-
versifikation eller mer konkret fragan:”Hur manga aktier skall jag investera
1?”. Forskningens svar pa denna fragan éar att det varierar mellan 10 till 300
stycken. Detta kan sattas i kontrast mot det faktum att 41.79 % av svenska
aktiesparare ar 2020 endast dgde en aktie.

Den stora variationen inom forskningen kan forklars med hjalp av flera fak-
torer sasom att olika marknadsforutsattningar och att olika tidsperioder stud-
erats. Den enskilt viktigaste faktorn ar dock att olika metoder anvénts for
att svara pa fragan och ar huvudforklaringen till den stora variationen.

Volatilitet eller standardavvikelse ar ett viktigt risk begrepp inom finans.
Det &r ett matt pa hur mycket din portfolj eller aktie ror sig fran dag till
dag (andra tidsspann sasom veckor eller manader kan ocksa anvéndas). En
hog volatilitet medfor att du kan forvanta dig stora svangningar. Studier
har visat att det racker med ca 10 aktier for att volatiliteten skall stabilisera
sig och inte kunna minskas mycket mer. Men, konsensus bland forskningen
verkar vara att detta risk matt, enskilt betraktat, inte beaktar viktiga as-
pekter vad géller risk. En sadan aspekt ar investerares grad av (o)sékerhet
i att portfoljavkastningen kommer skilja sig fran en specifik samling av ak-
tier, t.ex. en marknad sasom Large Cap aktier i Sverige. For att inkludera
denna dimension av risk sa kan konceptet Shortfall i % (Engelsk terminologi)
anvandas. Mattet ar definierat som skillnaden i avkastningen pa en specifik
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samling av aktier (t.ex. alla Large Cap aktier) och 5% percentilen for en en-
skild aktieportfolj med ett fixt antal aktier dividerat med avkastningen pa en
specifik samling av aktier. Vill man anvinda nagon annan percentil eller sam-
ling av aktier sa ar det upp till vardera investerare vilket gér mattet flexibelt.

Slutsatsen av att anvanda Shortfall i % blir att ca 120-150 aktier kravs for
att uppna en Shortfall pa 20% under en 10 ars period. For fem (ett) ars
perioder kriavs 150 (70-80) aktier. I samtliga fall studerades lika viktade
portfoljer och samlingen av aktier som studerades var bolag fran Small, Mid
och Large Cap listan. Som privat sparare kan man enklast uppna denna grad
av diversifikation genom att investera i fonder. Enskilda aktier kan laggas
till i portfoljen enligt vardera investerares behag.

Det visades aven att Gverlag sa kommer investerare foredra lika viktade
portfoljer framfor kapitaliserings viktade portfoljer. Denna rangordning kunde
goras med hjalp av ett teretiskt koncept som kallas for andra-gradens stokastisk
dominans. Det ar ett bra rangordnings verktyg da alla investere som ogillar
risk och vill maximera sin nytta foredrar en portfolj som stokastiskt dominerar
en annan. Anledningen till varféor man anvander det teoretiska konceptet
stokastisk dominans beror pa att rangordningen da kan goras pa ett logiskt
och transparent satt.

I studien visades ocksa att portfoljer som halls i 10 ar stokastiskt dominerar
portfoljer som halls under fem eller ett ars perioder.

Gar det att forsona det faktum att 41.79 % av aktiespararna endast dgde
en aktie? Som en proxy sa var medianportfoljens varde ar 2016 30 000 kr.
Skulle varsta scenariot handa att man forlorar alla pengar skulle det inte
novadnigtvis innebara en kris for enskilda sparares privatekonomi samtidigt
som det finns en chans att man tjanar mycket pengar genom att valja nasta
“vinnar aktie”. Darfor kan beteendet forklars genom att folk helt enkelt ”tar
en chansning”. Om man forvaltar en storre formogenhet skulle de allra flesta
mest sannolikt foredra att vara mer diversifierade istéallet for att endast aga
en aktie.

Slutligen bor det namnas att diversifikation i praktiken ar ett mangfacetterat

begrepp, t.ex. kan man diversifiera over olika tillgangsslag sasom obligationer
och ravaror. Man kan aven diversifiera 6ver tid. Denna uppsats beaktar inte

66



C: Populérvetenskaplig Sammanfattning (Swedish)

dessa aspekter men det vore en intressant infallsvinkel for fortsatta studier.
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