SYMBOLIC REGRESSION
USING GENETIC
PROGRAMMING LEVERAGING
NEURAL INFORMATION
PROCESSING

NANNA GRYTZELL

Master’s thesis
2021:E6

LUND UNIVERSITY

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

NNYVIILVINFHLVIN NNYVILNIDS WNYLIN3ID

Abstract

Regression analysis conducted with traditional mathematical meth-
ods can be sub-optimal if the exact model of the observed data is un-
known. Evolutionary computing (EC) and deep learning (DL) are vi-
able alternatives, since regression performed with these methods tends
to be less dependent on a particular model. EC are especially flexible,
because they are capable of performing symbolic regression. A sub-
field of EC and DL is genetic programming (GP) and artificial neural
networks (ANN), respectively. This master thesis examines the effects
of giving a genetic programming system neural information process-
ing capabilities, in order to bridge the gap between ANN and GP. The
approach is to compare GP, in its standard formulation, with 1) GP
that speciates using an ANN, 2) GP that extends the function set with
ANNs. Two methods are used to measure the prediction error. The
effect of the first approach is an increased noise in the convergence.
This leads to an enlarged spread of the prediction error for one of our
two error measures, and a mainly unchanged error for the other. The
effects of the second approach is an increase in accuracy for one of the
error measures, and a decrease in bloat.

Acknowledgements

I am truly grateful that Oxide has given me the opportunity to
write this masters thesis. It has been a thrilling and worthwhile ex-
perience. I want to thank Lars Hard and Axel Stalhand for all the
support, guidance and feedback that they have given me. I also like
to thank Anders Brodin for help and guidelines, and all co-workers at
Oxide whom took the time to read this report.

Contents

1 Introduction

1.1 Oxide
1.2 Objective
1.3 Constraints and limitations
1.4 Technical approach
1.5 Related worko
2 Background

2.1 Evolutionary algorithms
21.1 EAlingua
2.1.1.1 Biologyand EA

2.1.1.2 Search and solution.

2.1.2 Genetic algorithm
2.1.2.1 Selection and replacement

2.1.2.2 Reproduction

2.1.2.3 Mutation

2.1.3 Genetic programming
2.1.3.1 Tree structure

2.1.3.2 Stack-based representation and evaluation . .

2.1.3.3 The combined set C'

2.1.34 Bloat 0.

214 Diversity o
2.1.4.1 Fitness sharing

2.2 Artificial neural networks
2.2.1 The structure L
2.2.2 Trainingo
2.3 K-means clustering

3 Method

3.1 Data e
3.2 Clustering
3.3 Multilayer perceptrons
3.4 Genetic algorithm
3.4.1 Fitness function
3.5 Genetic programming
3.5.1 The combined set C'"
3.5.1.1 Closure

3.5.1.2 Sufficiencyo

3.5.2 Population initialization
3.5.3 Genetic operations
3.5.4 Fitness function
3.5.4.1 Searchspace
3.5.4.2 The optimization problem
3.5.5 Speciation
Results
Discussion
Conclusions

Further research

i

37

51

52

53

1 Introduction

Regression analysis is about estimating a relationship between a dependent
variable and one or more independent variables. The dependent variable and
independent variable(s) are also known as the output and input variable(s),
respectively.

Most people associate regression with classical methods such as linear regres-
sion and statistical modelling. These types of regression models are based
on assumptions about the the observed process. The assumptions are often
statistically oriented and infer a probability distribution from the observed
process. Classical regression has good generalisation abilities and the result-
ing model is transparent; every model parameter can be explained, and one
can tell how significant each model parameter is for the result. The draw-
back is that the model design requires prior knowledge about the underlying
process, and that the model assumptions are not always fulfilled or static
over time.

Symbolic regression is a good alternative when the observed process does not
meet the model assumptions made in classical regression. This approach to
regression is quite different from classical regression in that no prior knowl-
edge is needed about the observed process. Furthermore, symbolic regression
searches for model structure in addition to model parameters. The resulting
model is a mathematical expression, or even a computer program, that op-
timizes the fit against the observed data. The freedom to decide the model
structure comes at a cost: the search space is vastly increased. Also, there is
no analytic way to solve the regression problem. Efficient search algorithms
is thus of high importance when performing symbolic regression.

Symbolic regression using genetic programming (GP) has proven to be a
highly successful approach for regression. Making customized regression in
relation to specific problems feasible, without restricting the model search by
prior assumptions. Another very positive side-effects is the ability to explain
how it performs the computations due to the fact that it actually generates
the code/math. However, genetic programming in its standard formulation
(in the context of symbolic regression) lacks the ability of pattern recognition.

Artificial neural networks (ANN) are interesting constructs from a mathe-
matical standpoint since they are capable of arbitrary function approxima-
tion. The task of classifying data or recognizing patterns in data, is very
well handled by this type of model. The downside is rapid decrease of trans-
parency/explainability as the complexity of a network increase, considering

ANNSs black boxes.

This gives a good reason to explore the effect of extending GP with neural
information processing capabilities.

1.1 Oxide

Oxide is a high-end R&D (Research and Development) company working in
artificial intelligence (AI), machine learning and large-scale data processing.
The company primarily develops a new Al engine, Polychaos, that can be
applied in various information rich domains such as life science, finance, en-
vironment and space engineering. It is basically an advanced research engine
built using a generative approach with evolutionary computation models per-
forming information refinement at scale as well as detecting complex patterns
in high-dimensional information spaces.

Regression is a fundamental operation in Polychaos and is used to merge
great quantities of numerical data into distinctly defined signals. At the
moment, symbolic regression is performed using GP (without neural infor-
mation processing capabilities). Oxide aims to extend the current GP mod-
els performing regressive tasks in Polychaos with neural functions in order
to improve capabilities regarding sequences/patterns and enable alternative
processing based on that. It is this regression task that has set the foundation
for this thesis.

1.2 Objective

Genetic programming is the center of this report and the main objective is to
examine potentially positive and negative effects by 1) having GP speciate
using an ANN 2) extending the function set for GP with neural information
processing.

The study will include a number of related investigations of:

e the effect on the precision of the symbolic regression models evolved by
the GP

e the gene frequencies within the population

e the size of evolved programs

e the general evolutionary dynamics

The study of gene frequencies may give insight in the gene interplay, dis-
playing how the GP choose (or use) different genes from the gene pool. This
gene interplay might change when different sets of functions and terminals
are handed to the GP, where some genes will be favoured and others will be
suppressed.

The size of evolved programs is of high relevance from a parsimonious point
of view. Large programs are computationally expensive which may also slow
down the evolutionary process significantly. Given the number of possible
combinations of possible programs from a given set of functions and termi-
nals, large programs extend the search space significantly, which makes size
a central topic.

This thesis covers a wide range of biological onsets, where each lead to the
next. The step prior to the actual GP has been put together by recursively
asking:

Question: How will the GP leverage neural information processing?
Answer: By incorporating pre-trained neural networks into the GP.

Question: How will this ability be used?

Answer: Two different approaches will be tested. The first approach
is speciation using a multi-class classification network. The
second approach is by adding pre-trained binary classifica-
tion networks to the combined set.

Needing: One multi-class classification network and several binary
classification networks.

Question: In order for the ANNs to recognise classes of the data, the data
has to be partitioned in some way. How?

Answer: By assigning the data points to clusters.
Needing: A clustering method.
Question: If each ANN is a binary classifier, several networks have to be

trained. This sounds like a tedious task to do by hand. Is there a
better way?

Answer: Yes, a GA will be implemented for this task.
Needing: A genetic algorithm.

1.3 Constraints and limitations

The following parts has to be submitted in order to complete the thesis
objectives:

1. Partition the data
2. Pre-train ANNs
3. Implement a GA

4. Implement a GP

It is not possible to dig deep into each of these fields without outpace the
time limit for this thesis. Hence step 1-3 has been kept simple. The pre-
trained ANNs are restricted to shallow neural networks (yielding a maximum
of two hidden layers), to not sacrifice to much of the GP’s transparency.
The partitioning of the data has by design been performed using a simple
baseline method, k-means clustering. This method partition the data set
into k clusters based on k cluster centers, where each data point belong to
the cluster with the closest cluster center. This is not a main focus in the
thesis, but rather an approach to pre-process the data into relevant patterns.
The aim with the GA has been to produce a number of robust and simple
trained networks for pattern recognition where networks are combined and
the use optimized by the GP. High accuracy is of secondary importance in
this context.

There exists many approaches to model the evolutionary process, that GP
are attending. Despite that GP being the center of this thesis, comparisons
to other, more complex approaches is outside the scope of this work. Making
GP in its standard formulation, the single baseline in this report.

The data I use in this report consists of a single time series, hence the ob-
jective is to study the differences that may occur when leveraging neural
information processing. Using several time series would yield a more gener-
alised model, which is outside the scope of this work.

1.4 Technical approach

A large part of the work has been allocated to implementing a custom GP
providing the flexibility and insights required for the research work.

4

The implementations has been conducted in the programming language Julia.
This programming language provides easy high-level numerical computing,
similar to that of Matlab and Python, and at the same time supports gen-
eral programming. Furthermore, code written in Julia can have nearly as
good performance as code written in a statically-typed language (such as
C) [1]. Hence this approach has enabled high-speed execution in terms of
compilation and multi-core parallel processing.

Also the GA and ANN I use are custom developed for the task at hand,
making the workflow efficient and highly integrated.

1.5 Related work

The data used in this study is a financial time series, making literature from
the intersection of computer science/math and financial forecasting relevant.
Some has used ANN to make trading rules and/or predictions. One for
instance is Vijh et al. [2], they trained ANNs to predict stock price and
they report that it outperformed random forest. Shortly, random forest is a
“forest” or ensemble of decision trees, where each decision tree models the
observed data. The output of random forest is given by the average of the
output from each individual tree. Vijh et al. [2] looked at historical data,
such as past stock price and volume of shares traded of that particular stock.

Some papers has started to incorporate ANNs with GAs by letting the GA
decide the structure and weights of the network [3, 4]. This way of combining
evolutionary algorithm (EA) and ANN is called neuroevolution [5]. Yu et al.
[6] wrote an review about ANNSs in finance and economics forecasting. They
state that using EAs, the ANNs avoid getting stuck in local optimum. Lastly,
the authors conclude that “there is no doubt that the prediction performance
of neural networks is improved by integrating it with other technologies” (in-

cluding EA), [6, chap. 7].

Researchers have actively been applying GPs in forecasting, e.g. Grosan and
Abraham [7] implemented two different kinds of GPs, and also an ensemble of
these two. As for comparison, an ANN and a so called neural fuzzy network
(NF) was also implemented. Grosan and Abraham [7] used two different
stocks when testing each model and the result was that the ensemble GP
outperformed the ANN and the NF on one stock, and on the other they
performed equally well. The authors think that GP could play a prominent
role in stock price modelling problems. Neely et al. [8] implemented a GP
that made trading rules for six exchange rate series. They report that their

result “indicate that the trading rules are detecting patterns in the data that
are not captured by standard statistical models” [8]. Further, Yu et al. [9, 10]
published two papers focusing on GP finding technical trading rules. In
their first paper they studied international short-term capital flow between
Taiwan and four foreign countries, which did not lead to any remarkable
discoveries [9]. A year later Yu et al. [10] published a second paper, searching
for technical trading rules based on S&P 500 index. Now, they had tweaked
their GP approach a little and this time the results where more promising.
Yu et al. [10] report that their GP could outperform buy-and-hold, i.e. the
strategy of buying a stock and hold it for a long period of time, regardless
of fluctuations in the market [11]. McDermott et al. [12] showed in their
work that GP, and variants, can perform well in predicting out-of-sample
over short time-horizons.

The work most similar to this thesis was made by Arshad et al. [13], but
their focus is on wind power forecasting. They trained 5 different ANNs to
forecast the electrical power produced at wind farms within a certain region.
The trained ANNs where then assembled with a GP that performed symbolic
regression. Their model outperformed each of the single ANNs.

2 Background

This section aim to give the theoretical background needed to understand
the partitioning of the given data set and the biological onsets used in this
master thesis. The first section cover evolutionary computation, including
evolutionary algorithms (EA), genetic algorithms (GA) and genetic program-
ming (GP). The second section provides background regarding artificial neu-
ral networks (ANN) and the third, and last, section explains the k-means
clustering algorithm.

2.1 Evolutionary algorithms

An evolutionary algorithm is a metaheuristic optimization algorithm, mean-
ing that it is a problem-independent strategy that guide the search for an
optimal solution. This type of algorithms are inspired by nature, designed
to simulate evolution. The EA consist of a set of individuals, called a popu-
lation, where each individual represents a solution to the problem at hand.
In every generation, i.e. iteration, the population transforms through selec-
tion, reproduction and mutation. By repeated generations, evolution of the
artificial population takes place.

Two main families of evolutionary algorithms are:

e Genetic Algorithms, evolve a genome consisting of solutions to a given
problem (in most cases a vector of numbers)

e Genetic Programming, enable evolution of programs and functions that
are executable

The subsequent sections will first clarify the meaning of some words that is
used through out this report. This will be followed by an introduction of
the standard variants of GA and GP. Lastly, diversity will be presented, and
explained why this is such an important subject of EA.

2.1.1 EA lingua

Terms from fields, such as biology and mathematical optimization, is com-
monly used in EA. This section aims to clarify the meaning of words lent
from these fields.

2.1.1.1 Biology and EA

In real organisms the genome is the total genetic material coded in the nuclear
DNA, i.e. the genes [14]. Genes are normally organized in certain sets, called
chromosomes [15]. The genome may also be referred to as the genotype of
an organism [16]. What the genome is expressing, i.e. what characteristics
or traits that are observable, is called the phenotype of an organism [17].

These terms also occur in EA lingua. An organism is usually referred to
as an individual. An individual has a genome, consisting of one or more
chromosomes, that encode a solution to the problem at hand. The genome,
or genotype, is the raw set of chromosomes (and hence genes) of an individual.
The phenotype is attained by rendering the genome, such that one can see
what solution the genome is encoding.

Furthermore, an EA individual is also given a fitness value based on its
ability to solve the problem at hand, and this measure is used for individual
comparison. In real life, Darwinian fitness (relative reproductive success)
should be maximized; in EA the fitness should be optimized and depending
on the problem this can mean either minimizing or maximizing the error.

2.1.1.2 Search and solution

In mathematical optimization, one have an objective function H : A — R
that should be optimized. All points @ € A are called candidate solutions or
feasible solutions [18, 19]. The domain A of H is called the search space or
choice set [18].

In EA, the objective function is know as the fitness function (the function
that determines the fitness value of an individual). The domain A is know
as the search space and the dimension of the search space is equal to the
maximum chromosome length /.., in the population. Let C' denote the set
of all genes available in the population, then

A = {m = (xl,xg,...,xgmx); iCj € Cj C O,]: 1a~-->€max}- (1)

All elements x of the search space, i.e. all candidate solutions, will simply
be referred to as “solutions” in this report. Further, if an individual is said
to “solve” a problem, this means that this individual represents a candidate
solution.

2.1.2 Genetic algorithm

The human genome consists of 46 chromosomes, or 23 chromosome pairs,
meaning that we have two complete sets of chromosomes. This makes humans
so called diploid organisms. An individual in a GA is usually haploid, i.e.
has only one complete set of chromosomes. The genome of a GA individual
in a population is typically a fixed-length arrays of binary or real numbers,
but there may be other forms of representation as well. The initialization
step is often fairly simple; randomly generate individuals. The steps that
follows are:

e Selection — Select the individuals that will be allowed to reproduce.
Often this is based on each individual’s fitness value. Individuals with
better fitness are more likely to be selected.

e Reproduction — Let selected individuals breed by pairing up the par-
ents. The genes in each pair of parents are mixed by so called crossover,
resulting in offspring that has inherited parts from both parents.

e Mutation — Transform the population and/or the offspring through
mutation. Each individual will be mutated with a probability p,,.
Sometimes the best individuals cannot be mutated.

e Replacement — Renew a part of, or the whole population with the
offspring.

One iteration of the steps above is called a generation, and will be repeated
until a stopping criteria is fulfilled. A typical stopping (convergence) criteria
is: if the fitness of the n best individuals has not improved in the last x
generations, then stop.

Mainly, there are two kinds of GA’s: steady-state and generational GA. The
first one mentioned, replace a subset of the population with the offspring,
while the latter substitute the entire population with the offspring. The rest
of this thesis focus primarily on the steady-state GA.

2.1.2.1 Selection and replacement

A basic selection and replacement method is selection of the best and re-
placement of the worst. Let the population size be N,.,. Then select the
n < Npop/2 individuals with highest fitness. Let them form pairs and let
each pair have 2 offspring, resulting in n offspring. Let these n offspring
replace the n worst individuals in the population.

A popular selection method is tournament selection [20]. Here, draw 4 indi-
viduals from the population, let the 2 individuals with highest fitness mate,
resulting in 2 offspring. Replace the 2 individuals with lowest fitness. Con-
tinue in the same manner; draw 4 individuals from the population without
replacement until there are no more individuals to be drawn.

2.1.2.2 Reproduction

In order to renew the population, the individuals need to reproduce. The
simplest case is through single-point crossover. Suppose we have a pair of
parents and they have one chromosome each. Randomly generate a break
point on the chromosomes and let the subsequent bits in each chromosome
be exchanged. This gives us two new offspring, see figure 1. Generating
two break points on each chromosome yield two-point crossover and so on.
If the chromosomes are arrays of integers or floating-point numbers it is

Parent 1 Parent 2

ﬂﬂﬂ @

l

Offspring 1
(1 ot o)

Offspring 2

EDEREREDED

Figure 1: Single-point crossover. In this example the break point is placed
after the third gene. The subsequent genes are then altered to form two new
offspring.

also possible to use a method called blending crossover. FEach gene is a
convex combination of it’s two parents’ genes at the same location. Given
two parents, each with one chromosome of length ¢. Let g; be the j’'th gene in
the chromosome. Then an offspring’s genes would have the following formula:

Gj.offspring = T * Jj parentl + (1 - T) * Jj parent2 ; r~ M(Oa 1)7 .] = 17 2a s ,f.

10

2.1.2.3 Mutation

Mutation is ultimately the main source of variation in any living organ-
ism and in principle the same applies to evolutionary algorithms. Mutation
operates by randomly modifying specific positions in otherwise preserved
chromosomes rather than creating new chromosomes by crossing over. High
mutation rates may refresh a population that has lost some of its genetic di-
versity [21, chap. 3]. For some problems, the phenotype of the top individuals
may be to tender to manage mutation. In those cases one may protect the
n best individuals from mutation and let the rest undergo mutation. This is
called elitism [22].

One way of mutate an individual is by point mutation. Here each gene in
a chromosome will be mutated with a probability p,,. If mutation occurs,
the gene will be replaced with a new randomly generated gene. For example,
let the chromosome {1 1 1 0 1} be mutated. Say that the first and fourth
element will mutate and this may result in {0 1 1 0 1}, see also figure 2.

ENEREDERED

INEDEDEDED

Figure 2: Here a chromosome is depicted, with the intention to explain point
mutation. Each gene in the chromosome will be mutated with a probability
Pm. If mutation occurs, the gene will be replaced with a new randomly
generated gene. In this example the first and fourth gene is mutated and
both genes are replaced with the gene 0.

2.1.3 Genetic programming

A genetic programming system (GP) follow the same steps as a GA, but it
differs at the genetic representation. A GP individual can have genomes with
dynamic length, that represent a computer program solving the problem at
hand. The genetic representation allows for program to be directly in-place
or may require a translation from genes to an executable program. A GA
will gradually tune a number of model parameters (genes), while the GP
has freedom to select functions, terminal elements as well as construct the
structure of the model. This freedom is accompanied by a vast growth of the
search space.

11

Instead of a binary vector the chromosome could for example now encode a
parse tree instead, such as the one seen in figure 3, that encode the expression

(84 z) - cos(a).
()

Figure 3: A expression tree forming the expression (8 + x) - cos(a)

The set of genes is denoted C' = FUT', where F'is the function set and 7"is the
terminal set. The function set, as the name suggest, contains functions, or
operators, that needs at least one input in order to produce an output value.
The terminal set contains variables or constants and they serve as inputs for
the previously mentioned set. An example of a function and terminal set is:

F:{+a_7X7/7COS}7 T:{CL,I’,8,7T}.

The two following subsections describes shortly two genetic representations
used in genetic programming.

2.1.3.1 Tree structure

This is the traditional genetic representation in a GP and was initially pre-
sented by Koza [21]. This structure is used in several programming languages,
where LISP is convenient to use due to its easy access to the structure [21].

Each chromosome represents a tree structure where the nodes contain an
operator and the leaves contain a variable or constant. As an example: an
individual representing the expression (8 +) - cos(a) would have the tree
seen i figure 3. It is also suitable for classification and decision making, e.g.
should you take a walk? figure 4.

2.1.3.2 Stack-based representation and evaluation

A stack is a data structure that can be used for efficient genetic representation
leveraging so called postfix notation (this is the structure that will be used
in this thesis). The postfix notation is also known as reverse Polish notation
(RPN) and were used in some of the first electronic calculators, such as

12

Take a walk?

Figure 4: A decision tree, telling if you should take a walk or not.

Friden EC-130 and later by HP in their pocket-size series, named Hewlett-
Packard Voyager [23, 24]. Today, RPN is used in stack-oriented programming
languages such as FORTH and advanced scientific calculators. One major
benefit is instruction order fully determines precedence order when evaluating
an expression [25].

In order to evaluate a expression written in postfix notation, one needs a
stack. For example, say we have a operator taking 2 inputs, in conventional
(infix) notation this operator will have one operand on each side, like:

10 + 6

To make this suitable for a stack, this has to be rewritten in postfix notation:

6 10 +

13

Here, the operands are placed first in line and the operator come last. The
reason for this is, when working with a stack, the operands are pushed on
the stack, first 6 then 10. The operator will then pop the top two elements
on the stack, namely 10 and 6, evaluate them and push the answer (16) back
on the stack.

Returning to the expression (8+x)-cos(a), mentioned above, this would now
be written as

a cos x 8 + x

A second example is depicted in figure 5. A merit of the postfix notation

START >~ STOP

08 12~ 45— + x
T 45j T
12 12 [57

98| |08 98 98 | 5586

Figure 5: A stack evaluating (45 + 12) - 98.

The postfix notation is 98 12 45 + x . First 98 is pushed on the stack,
followed by 12 and then 45. When reaching + the top two elements on the
stack are popped and the answer is pushed on the stack. Then x poppes the
top two elements and pushes its answer on the stack.

is that there is no need for parentheses. As an example, the expression in
figure 5, written with postfix notation, is

98 12 45 + x

and will give the answer 5586. While writing the same expression with infix
notation will need parenthesis in order to retrieve the same answer.

Using this structure, it is possible for a chromosome to have genes that are
not used. Consider the chromosome {a + b -}. The first element will be
pushed on the stack, then the second element will need two values from the
stack, but there is only one value. Hence the second gene will be unexpressed.
Further more, the chromosome {a b ¢ -} will encode the expression ¢ — b,
i.e. the first gene will not be used.

14

2.1.3.3 The combined set C

In Genetic Programming - On the Programming of Computers by Means of
Natural Selection, Koza [21] introduced a special new element to the com-
bined set, which he called the ephemeral random constant . This terminal
has been widely used ever since. At the initialization of the algorithm, this
terminal generates several random constants to the combined set. It is then
left to the GP to find the most suitable constant (or constants) that can
be achieved by combining the constants generated by the ephemeral random
constant.

Mainly, there are two properties regarding the combined set C' that should be
considered when choosing the elements for this set: closure and sufficiency.
An explanation of these two properties will follow.

Closure: Every imaginable combination of the elements in the combined
set C' can possibly occur during evolution of the artificial population. It
is important that no combination cause an error, i.e. every function in F
should be able to take as argument, any output that may be produced by
any function in F' and any terminal value from 7. This is the property of
closure and in order to fulfil this, it is normal to make adjustments to some
functions.

The arithmetic operation of division is not feasible if the denominator is 0.
Hence, the protected division function is used and defined as

. /Yy, if 0
pmﬂ%w:{1w ﬁZiO'

The natural logarithm is undefined when its argument is 0. Therefore, the
protected natural logarithm function is used and defined as

In(z), if x>0
pm@*:{o() itz <0

If the sinus function receives a number that is equal to oo (which is possible
during program execution) the sinus function do not know what to respond.
The protected sinus function is thus defined as,

{ sin(z), if 2z € (—00,0)

psin(z) = 0, otherwise

Sufficiency: Despite that any combination of elements from C' may occur,
this alone will not be enough if the elements in C' are unable to express a

15

solution to the problem at hand. In order to fulfil the property of sufficiency,
one need to believe that the elements in C' are capable of expressing a solution
to the given problem.

Extending the function set significantly in order to guarantee coverage is
often not an option due to the increase in search space of possible programs.
The function set is often designed with a fair amount of understanding of the
problem to be solved.

2.1.3.4 Bloat

Generally speaking, there is a strong preference for parsimonious explana-
tions and one could wish that the dynamic chromosome lengths in a GP
would yield parsimonious solutions. Unfortunately, this is rarely the case.
As Koza [21, chap. 1] states: “Genetic programming does not generally pro-
duce parsimonious results (unless parsimony is explicitly incorporated into
the fitness measure). Like the genome of living things, the results of ge-
netic programming are rarely the minimal structure for performing the task
at hand.”.

A manifestation of this phenomenon is so called bloat. Which mean that after
some generations, the individuals’ genomes grow rapidly in size without also
increasing their fitness. This results in unnecessary complex solutions that
is computational expensive and likely over-fit, i.e. poorly generalized [26].

What causes bloat? There is no straight answer. Researchers has over the
years developed several theories, trying to explain this phenomenon. Two
well known theories are the crossover bias theory and the fitness-causes-
bloat theory. The first mentioned, states that crossover in itself does not
affect the average size of programs, but it changes the distribution of the
size of programs. Small programs usually yield trivial models, while large
programs are able to express more complex relations giving these a better
fitness. Resulting in selection of somewhat larger programs in the selection
step, thus increase the average size of programs in the next generation, and so
on. The fitness-causes-bloat theory states that there are more large programs
than small programs, hence the number of large programs of a given fitness
is likely greater than the number of small programs with the same fitness.
The programs grow in size, simply because there is more of them [27, 26].

Numerous techniques have been proposed to combat this issue. The most
trivial method is to have a size limit; no offspring above a certain size will
be introduced to the population, or it might be added to the population

16

but with a very bad fitness, such that it is likely to die in the next gen-
eration. Other arrangement to control bloat is so called size fair crossover
and size fair mutations, where these genetic operations will not result in a
“unfairly” big chromosome. Shrink mutation is considered a rather direct
approach to combat bloat, by applying mutations that shrink an individ-
ual’s chromosome. Lastly, as quoted above, to control bloat, one may also
incorporate minimization of it in the fitness measure. These techniques are
further explained by Poli et al. [26, chap. 11].

2.1.4 Diversity

Diversity in the population is central to efficient exploration of the entire
search space of possible solutions. Decreasing diversity can lead to premature
convergence and make the algorithm stuck in a local optimum, i.e. the
algorithm cease to, in an efficient way, explore the search space.

In genetics, diversity is counteracted by two phenomena, the concepts of fix-
ation and genetic drift. Individuals within a population may hold different
variants of a gene, i.e. alleles. If something befalls, e.g. the environment
changes, the different alleles might be unequally suited for the new condi-
tions. This may result in the effect that certain alleles will give an advantage
to those individuals who hold it. Eventually, this better suited allele will
increase in the population, and wipe-out the other alleles. When this better
suited allele is the only variant present in the population, this gene is said
to be fixed. Fixation may also happen due to chance, i.e. “sampling error”
when sampling from the gene pool [28].

Fixation due to chance is an example of genetic drift. It is characterised
by a random change in the allele frequency within a population. This is in
contrast to natural selection that is driven by some kind of selection rule [29].

Basically, the same applies to an EA; both phenomena decrease diversity and
degenerate the search for a global optimum. In order to avoid loss of diversity,
mutation is of high importance. Mutation encourage exploration, but it has
to be moderately applied, too much will weaken the exploitation (which is
needed for fine tuning). Unfortunately, solely tuning the mutation rate will
not fix the issue, which explains why basic GA/GP often are insufficient
when one is facing a complex problem. Diversity is connected to all parts of
an EA and to preserve it, different niching method has been proposed.

In nature, a species’ niche is its role or position in a “community” (which in
this case is consisting of all species in the given environment). In order for a

17

community to be stable, species need to have different roles, i.e. niches [30].
Hence, by applying a niching method to an EA, the artificial population is
encouraged to specialize on different parts of the search space. The section
below cover a niching method called fitness sharing, for more methods the
reader is referred to the PhD thesis by Gustafson [31].

2.1.4.1 Fitness sharing

In nature, individuals whom are close to each other compete for limited
resources in a crowded area. One can mimic the competition among individ-
uals regarding limited resources by applying a niching method called fitness
sharing. It is often included to increase diversity in the evolutionary process
by promoting individuals in low-density regions in the search space. Thus,
preventing the population from getting stuck in a local optimum.

To measure the “closeness” of individuals, one usually chooses between geno-
typic or the phenotypic distance, where the first is based on the genome and
the latter is based on what the genome is expressing. Next, one need a
number of how many individuals that are sharing resources with an individ-
ual ¢. Individuals far apart, will probably not affect one another. Hence, a
threshold o is set, such that individuals with a distance greater than o are
considered to be too far apart to be competing about the same resources. On
the other hand, individuals that are less than o apart, do compete about the
same resources and the effects of that are summed up in a niche count m;,

N
m; = Z Sh(di,j)
j=1
d@j “ .
Sh(d@j) = L= (7) it di’j R
0, if d@j >0

where N is the number of individuals in the population and d; ; is the distance
between individual ¢ and individual j. There is also a second parameter, «,
which states the magnitude of sharing. For o > 1, the effects of sharing are
enhanced, while for a < 1, sharing gets a little less intimidating.

2.2 Artificial neural networks

Artificial neural networks (ANN) is another field inspired by nature, with
a layout that resembles neuron networks in biological brains, albeit highly
simplified. There are various ways of connecting the nodes. If the nodes are

18

connected in such a way that information travelling through the network only
goes one way, the ANN is called a feed-forward neural network or sometimes
a multilayer perceptron (MLP). Normally, a neural network consist of units of
one or several nodes, called layers. By connecting several layers, one arrives
at deep learning.

ANNSs are capable of nonlinear modeling without prior knowledge about the
relationships between input and output variables, which is particularly use-
ful when an observed process does not meet the assumptions needed in tra-
ditional mathematical methods [6]. Further, the universal approximation
theorem states that a MLP can approximate any continuous function, on
a compact set of input values [32], meaning that there is no fundamental
constraints built into the MLP. This also means that it can be applied in
various fields. Other types of ANNs does also fulfil the universal approxima-
tion theorem, such as convolutional neural networks (very common in image
analysis) [33], but not all ANNs is legitimate universal function approxima-
tors. Overall, this makes ANNs capable of solving a wide range of problems
and they have been successfully applied in image analysis, pattern recogni-
tion [34], sequence recognition (such as speech [35]), social network filtering
(such as the news article Facebook Boosts Al to Block Terrorist Propaganda
[36]) and finance [2, 6].

One drawback with ANNs is that they essentially can be seen as a black box,
and the model development is a computationally intensive procedure [37].
Their black box nature makes ANNs hard to use in fields where one has to
explain the output of the model [38], such as in medical diagnosis [39] or
credit applications in finance [40].

How a MLP is constructed and trained will be explained below.

2.2.1 The structure

Starting with a simple perceptron with one input layer and one output node,
figure 6. The output node computes a weighted sum of the input values,
add a bias b to the sum and then passes it through an activation function ¢,
that gives the output Z of the perceptron. The perceptron can be seen as a
mapping F : RF — R,

k
Pl = g0<b * Zwﬂi) = p(w"z +b) = Fla,w,b)
i=1
By adding one or more layers between the input and output layer, one gets

19

T

1 1
) 2
input

2. ¥

Tr—1 i

§

Lk

Figure 6: The simple perceptron consisting of a input layer and one output
node. The output node receive input values z; from the input layer, compute
a weighted sum of these and add a bias term b. This sum is then passed
through an activation function ¢, yielding the output Z from the perceptron.

a MLP, see figure 7. The intermediate layers are called hidden layers, due to
the fact that their output and structure is unknown when using the model,
i.e. the MLP act as a black box and the hidden layers are a part of this box.

As mentioned before, looking at figure 7, one sees that information travelling
through the network only goes in one direction (from left to right in this
example). In the rest of this section, the MLP in figure 7 will act as a base
for explaining the principles of a feed-forward neural network. The principle
is the same when adding more layers.

Let w;; be the weight from hidden node j to output node i and w; be the
weights from the hidden layer to output node ¢,

w1 Wiz ... Wiy

W1 Wa2 Wa;
W:('w1 wy - Wy): .

Wy Wiy ... Wyry

be all weights to the output layer. Following, let b; be the bias from the
hidden layer to output node 7 and

b= (b by - by)
Then the output 2 = (24, ..., 2s)7 is
2=yp,0a=yp,0(WTh+b)

20

where ¢, is the activation function for the output layer and h is the output
from the hidden layer. Declaring W and b in the same manner as W and
b, respectively, but from the input layer instead, results in

Z2=g,0 (Wh(ppoa)+b)=¢p,0 (WT(soho (W'z +b)) +b),

where (), is the activation function for the hidden layer.

Input Hidden Ouput
layer layer layer

Figure 7: An MLP with three layers. The first layer, the input layer, receive
the input « and pass it through to the hidden layer, which then pass it to
the output layer. The nodes that contain 1 represents the bias; the input is
equal to 1 and each weight from that node is the bias.

21

Historically speaking, the activation function for a perceptron was the Heav-
iside step function. Making it suitable for binary classification [41]. Due to
it being a step function, it only has two states: 0 or 1 (on or off), which limit
its applicability. Nowadays the perceptron and the MLP is used in a broader
sense, and can refer to a feed-forward network suitable for both classification
and regression. Neither is it necessary for a perceptron to have the Heaviside
step function as activation function, other more common alternatives today
is the rectified linear or the logistic function [42].

2.2.2 Training

In order for a network to be functional on a given problem, it need to learn
how the observed process behaves. Let D = ((x1, 21), (%2, 22), ..., (TN, 2N))
be the set of all observation of a process, where each @, correspond to ex-
perience z,. The target is to optimize the network’s output £ against the
observed values z, for each input x,. To do so, one need a so called error
function that measure how well the output of compete for limited resources
in a crowded area.the network fit the observed data. The error function is a
function of the weights and the biases in the network and is defined as,

N
Er(W,b,W,b) =Y Er,(W,b,W,b)

n=1

where Er, is the error when the network is fed with the input x,. By
adjusting the weights and biases in the network, the error can be minimized.

Using the gradient descent method, the weights and biases are updated ac-
cording to,

AW = —’)/VWET, Ab = —’)/viT‘, (2)
AW = -~V Er, Ab= —yV;Er, (3)

where v is the step size while updating the weights and biases, also known
as the learning rate.

We define,
OEr
On = 0%,
5 — OEr OEr 0z, da, _ WT(5n ® (¢ o an))_

oh, 0%, Oa, Oh,

22

where ® is element-wise (Hadamard) multiplication, 2, is the output of the
network when the input is «,, and the corresponding for a,, and h,,.

The differentials in (2) can thus be expanded as,

N N
0Er, 0%, 0a
E — n n n — /
VoPT =D s e g~ 20 @ (o an)
N N
0Er, 0%, Oa
Er = e e 5, ® (¢, oay,))hl.
Vw b ; 02, Oa, OW n:l(© (¢ © an))h,
Further, the differentials in (3) can be expanded as,
N ~ N
0FEr, 0h, 0a <
By — n n ~n _ 5 / ~
Vel ; Oh., D, b n; n e)
N

0 © (@) 0 a@n)z).

OEr, Oh, 0G4, o=~ <
Vo= o, G 55~ 2

This way of updating the weights and biases is called back-propagation of
error. First all the inputs are forwarded through the network, resulting in out-
puts 2,,Vn € {1,...,N}. Then each §, and 8, is back-propagated through
the layers to update the weights and biases.

Let W (%) be the weight matrix at iteration itr. This gives the weight update,
W(itr+1) — W(itr) . 7(6(itr) o® ((‘0; o a(itr)))<h(itr))T

and the corresponding for the rest of the weights and biases.

2.3 K-means clustering

This is a widely used heuristic clustering algorithm that partitions n observa-
tions into k clusters, where k < n. Each cluster C; has a cluster centroid m;
and each observation z, is assigned to the cluster with the nearest centroid.
The objective of k-means algorithm is to minimize the Euclidean distance
between the cluster centroid and its members. This are done by repeat-
edly refine the k cluster centroids and reassign the observations to the new
clusters.

Two commonly used initialization method are Forgy and Random Parti-
tion [43]. Using the Forgy method, k randomly chosen observations are ini-
tialized as cluster centroids. The Random Partition method randomly assign

23

each observation to a cluster, then the centroids are computed as the mean
of each member in the cluster.

The algorithm proceeds in the following two steps

e Assignment of each observation z, to the cluster with the nearest cen-
troid, such that each cluster Cj is a set

Ci = {ap : ||y —mal[* < [la, —myl[? V5, 1 < j < &,

where a small adjustment is made to the above formulation: all ob-
servations are assigned to exactly one cluster (even if an observation
happen to fit into several clusters).

e Calculation of the new cluster centroids by taking the mean of all it’s
members, i.e.

1
mi:Fij, forizl,...,k.
| i|zj€C¢

These two steps are repeated until the algorithm reach a stopping criterion,
such as:

e The centroids have not changed during the last iterations.

e The algorithm has reached it’s maximum number of iterations.

24

3 Method

This section cover the experimental work of this thesis. Starting by dividing
the data into two parts, one for training and one for testing. The training
data is then divided into smaller parts which is then clustered using k-means
clustering method. The purpose of the clustering step is to prepare training
data for the ANNs, since supervised learning is used when training the ANNs.
Next, several binary classification networks are being trained on the clustered
data using a GA, resulting in several network functions. Lastly, a GP is being
trained to predict the stock price of the subsequent day. This GP has the
opportunity to utilize the network functions for improving its predictions.
All the steps are depicted in figure 8.

3.1 Data

The data being used is the historical Stock Quote Prices for Bureau Veritas
SA (BVI.PA), Paris, France, during the period 2007-04-10 — 2017-11-10, This
data was arbitrarily chosen as a basis for this work. The whole time series is
normalized, meaning that it is mapped to the interval [0, 1].

First, the data are divided into two parts, see figure 9. The first part is
used while building the model, this will be called the training data and is
denoted Yy, = (y1,Y2,---,Un,). The second part, is used to evaluate how
the model handles new data, i.e. the second part is only used when the
model is finished and is called the test data Y;.. The training data consist of
ny = 2269 observations, which is 85% of the given data, and the test data
consist of ny = 400 observations. The training data is later divided into a
“net-training” set and a validation set during buildup of the MLP’s.

3.2 Clustering

The training data Y;, is being prepared for clustering by letting a window,
that is w = 5 wide, slide over the whole time series. Resulting in several
subsequences, here called segments. A segment s, ; is defined as

Swit = (yt—erl Y Z/t)T- (4)

The idea behind segmentation is that in time ¢ one can look back at segment
s, and see what has happened before. At that time ¢, the value y, will be

25

[Time series }

4[Training data } [Test data}

I
divide
into

segments
R2

—[Segments J

|
cluster the
segments
using k-means

v

{ Clusters J [GA

L train MLPs
to classify

segments
¥

[Neural network functions }

| i |

(Predictions J

Figure 8: A flowchart for the method. The time series is divided into two
parts; training data and test data. The training data is further divided
into smaller subsequences, here called segments. The segments are clustered
using k-means. The clusters are classified by several binary classifications
networks, whom are trained using a GA. Resulting in several neural network
functions. These functions, along with the training data and the segments,
are used in a GP that is being trained to predict the stock price for the next
day. The test data is only used when the model is finished and measure the
out-of-sample performance.

26

100 A
JJ'L'. mﬁﬁ\% ’N.N‘fw
Training data Jluwﬂ"f\"‘w“ﬂ“
075 b M{ ATV

, \W"v

P

™

050 - M w Test data

, WA
. /), w)vrf\w’m

0.00 [
| \ . . \ . \ \ \ . \ .
Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 Jan-17 Jan-18

Figure 9: The time series is divided into two main parts. The first part is
used for training and model designing, i.e. training data. The second part
is used for evaluating the performance of the model on out-of-sample data,
this part is called the test data.

the base and because of that each segment is subtracted by its last value,

1

R 1
Swit = Swt — Ut

The log-increment in each segment is evaluated by first adding a constant e
to each element, such that division by 0 and the logarithm of 0 are avoided,

T
s | — Yt—wi2—Ytte . Yt—1—Yt+e yt—ys+e
Swit (111 (yt—wjtlfyt‘i’ﬁ) In <yt72*yt+€) In <yz71*yt+6 ’
fort =w, ... ng.
Following by collecting each s, in a matrix
Sw = (gw,w gw,erl e §w,ntr) .

This matrix is then used to cluster each segment s, ; with k-means clustering,
where the number of clusters £ = 25 and Forgy is used in the initialization
step.

3.3 Multilayer perceptrons

Several MLP’s are employed to classify the clustered data. For each clustering
two kinds of MLP’s are being trained. Firstly, one multi-class classification

27

network is trained to classify each segment. A suitable error function for this
task, is the cross entropy

Ntr

Er(by, Wy,... by, W) = ZZZM. n(24),
n=1 =1
where b; and W, is the bias and weights for the ['th layer, for [= 1,..., L.
The number of classes is the same as the number of clusters k = 25, ny, is
the number of observations, z, = (2.1, 2n2, - - -, Zn,x) is the n’th observation,
and 2, is the estimated value of z,. Furthermore,

Zn,i =

1, ifz,€ classuandi=u
0, ifz,€ classuandi#u °

The activation function for the input and hidden layers is the logistic func-
tion. For the output layer the activation function is the softmax function,

6“71,75

" = _Z] ean,j)

where a,,; is the net input to output node ¢ for observation n.

Secondly, given k = 25 clusters, k = 25 binary classification networks are
trained to tell if a segment belongs to “their” class or not. The error function
is once again the cross entropy function and here, all the nodes has the logistic
function as activation function.

The chosen optimization algorithm is Adam (short for adaptive moment es-
timation), which was introduced by Kingma and Ba [44]. Adam combines
the advantages of two popular optimization methods, namely RMSProp and
AdaGrad. The implementation is straightforward and the hyper-parameters
typically needs little tuning, which is very useful when having many net-
works to tune. Overall, it is considered to be a robust algorithm with a wide
interpretability [44, 45].

The Adam algorithm store a moving average of the past gradients and also
of the square of the past gradients. For each layer [these are defined as,

ml(:ltrﬂ) 51m(m~) + (1= 3V Er (itr) (5)
miy; " = Bimy) + (1= By) Vaw B (6)
v = By + (1= B) (Vw, Er™) © (Vi Er(™) (7)

m“ = fyv m) + (1= Bo) (Ve Bri™) © (Vi Bri™) (8)

28

where m*) and vt is the moving average at iteration itr and Er(¥) is the
error at iteration itr. Before updating the weights and biases, a correction is
made to (5) - (8),

. 1 (itr+1) . 1 (itr+1)
my, = —— my, = ——
BT ORI R
~ 1 (itr+1 N 1 itr+1

Finally, the weight and bias update, for each layer [, is given by,

bl(itr+1) _ bl(itr) . '}/mbl % (/ﬁzll/Q + 61)

‘/‘/l(itr+1) _ “/l(itr) . ’yle @ (,0;‘1/1/2 + 61)

where € > 0 is used to avoid numerical problems if an element in 9y, or dw,
for any [€ {1,..., L}, becomes to small.

3.4 Genetic algorithm

A GA has been implemented to train the binary classification networks.
The population size is set to 16 individuals, where the 8 best are allowed
to reproduce. This is a rather small population, but through testing, this
showed to be sufficient for this task.

The selection and replacement is carried out by selecting the best individuals
and replace the worst. For reproduction, both single-point crossover, applied
on the whole genome rather than chromosomes, and blending crossover is
used. Each crossover technique is used with 50% probability. The mutation
method is point mutation and the mutation rate is set to 5%. This GA uses
elitism, i.e. the top two individuals will not be mutated.

An individual has three chromosomes. The first chromosome has two genes,
each representing the number of nodes in the first and second hidden layer.
If one of the genes is equal to 0, this individual represents a network with one
hidden layer. The number of hidden layers is restricted to 2 and the number of
nodes in each layer belong to {0, 1,...,8}, because we want small networks
(and it is sufficient for this classification task). The second chromosome
holds the learning rate v € [0.0002, 0.008]. The third chromosome holds the
number of iterations during training of the network and it’s value belong to
{100,...,300}. For an example, see figure 10.

29

(4 Ho.0068 { 178)
2]

Figure 10: An example of an individual’s genome in the genetic algorithm de-
scribed in section 3.4. The first chromosome has two genes, each representing
the number of nodes in the first and second hidden layer of the network, here
the first hidden layer contains 4 nodes and the second hidden layer contain
2 nodes. The second chromosome holds the learning rate, here it is 0.0068.
The third chromosome holds the number of iterations during training, here
it is 178 iterations.

3.4.1 Fitness function

Here, an attempt is made to quantify what one would look for while tuning
a binary classification network. Trivial is to aim for high sensitivity and
specificity, both on training and validation data. Thus, the target will be to
maximize the fitness.

For each class [, the data is skewed; a major part of the samples do not
belong to class [. Hence, the sensitivity will get a twice as high value than
the specificity. This results in the final fitness for individual ¢ is given by,

fi = 2 - (SenSgain + S€NSyal) + SPEC; ain + SPECq)-

3.5 Genetic programming

A stack-based genetic programming system is being implemented, as a stack
based model is compatible with oxides polychaos framework. The GP has
a population consisting of individuals, that evolves over generations. Each
individual represents a computer program that gives a prediction of the stock
index y for the next day. Let the computer program, or function, that indi-
vidual i represents, be denoted as

¢z(t7t -1, t= 4) = gtJrl,ia
where 9,11 is the estimated value of ¥, ; made by individual <.

Three slightly different versions of the GP are being made. The three versions
are:

e Standard GP; no access to ANNs and randomly generated species.

30

e Speciation using a MLP; no access to ANNs and the species are gener-
ated using a MLP.

e ANNs in the combined set; access to ANNs and randomly generated
species.

The following subsections give a more detailed explanation of the GP.

3.5.1 The combined set C
The combined set C' = FUT is

F = {+, —, x, pdiv, psin, exp, pln, AND, OR, NOT}
T = {R, v, Yi—1, Yt—4, 7} U {network functions}

where represents Koza’s ephemeral random constant [21, chap. 10]. When-
ever a gene is set to the ephemeral random constant during the initialization
step, the gene is set to a three-digit number drawn from U (—0.5,0.5). The
granularity is chosen as to make the chromosomes more comprehensible. Ad-
ditionally, this genes value is stored in an array £. When the initialization
step is completed, E will contain all generated constants during this step and
will act as a pool of constants during the rest of the algorithm. If a mutation
occurs and the mutation produce a ephemeral random constant, the value
will be drawn uniformly from the array F.

Further explanation of the function and terminal set will follow in the two
proceeding subsections.

3.5.1.1 Closure

All functions in F are maps f; : R— Ror f; : RxR — R, i.e. they only take
scalar input values. While each network function is a map g : R™ +— R where
m > 1 is the segment width, i.e. only taking vector valued input. Hence,
adding the network functions to the function set will cause error. Instead, the
network functions are treated as variables, such that the property of closure

is fulfilled.

Let netl be the binary classification network that classifies cluster 1. Then
at time ¢ the netl-variable is

netl; = net1(s,,)

where s,,; is the segment defined in equation (4). The corresponding apply
to the rest of the network functions.

31

3.5.1.2 Sufficiency

It should be re-emphasized that the important aim for this thesis is to improve
the prediction of the stock index by leveraging neural information processing.
It is not believed that this report will find the so long sought solution to: what
will the stock price be tomorrow? Technically, the property of sufficiency is
not satisfied, but the aim is to come as close as possible (within the limits
of this thesis). As mentioned in the introduction, there are previous works
in time series prediction where ANNs are being used [2, 7, 13]. Hence, it is
believed that introducing ANNs in C' will contribute to the sufficiency of the
combined set.

3.5.2 Population initialization

The population is randomly generated and represents a sampling of the space
of possible solutions. For each individual i, a chromosome length ¢; is drawn
from U{1, by} Where lpax is the maximum chromosome length during the
initialization step. Let g;; be the j'th gene in the chromosome of individual
i. Then each gene g;; is drawn from either the function set F' or the terminal
set T, with equally high probability. The reason to draw from either F' or T’
is when the ANNs are added to the combined set, the portion of terminals
in C' will change; resulting in a different gene frequency of terminal and
functions in the population when the combined set contain ANNs and not,
which might affect the gene interplay. It is believed that the comparison
between the different version of the GP will be more fair when the genes are
drawn this way.

There are no restrictions regarding the composition of the chromosomes.
There may arise some that do not encode any expression. For example the
chromosome

{sin, +, pln, -}

will not encode any expression, but is still viable. The human genome, for
instance, consist of 98% noncoding sequences [14], indicating that it does not
have to be a problem.

The number of individuals in the population can have great impact in the fi-
nal solution. Starting with only a few individuals will probably give a narrow
covering of the search space, and may result in suboptimal solutions because
the algorithm got stock in a local optimum. While having many individuals
will more likely embrace a bigger area of the search space and increase the

32

probability of finding globally optimal solutions. At the same time, many
individuals also mean greater computational cost and to some extent a slower
converging algorithm. To compromise these aspects, bootstrapping is being
used. In this context, meaning that the population is initialized with a great
number of individuals, and after some generations the population is reduced
to a smaller number of individuals. This results in a broad covering of the
search space, but in an inexpensive way.

3.5.3 Genetic operations

The GP is a steady-state GP. Selection and replacement is attained through
tournament selection.

Crossover is performed through single-point crossover. Since there is no
restriction regarding the chromosome length, a small adjustment is made
to the single-point crossover described in figure 1. One crossover point is
randomly generated at the first parent’s chromosome and another crossover
point is randomly generated at the second parent’s chromosome. Enabling
the chromosomes to grow beyond the maximum chromosome length /., set
during the initialization step.

To soften the growth, the break point is drawn from a normal distribution.
Let lparent1 be the chromosome length of the first parent. Then the break
point bp is drawn from

gparentl + 1 o= Eparentl —1
2 ’ 6

Mutation is attained through single-point mutation, in the same way that
were explained in section 2.1.2.3.

bp ~N(p,0), p=

3.5.4 Fitness function

First, the root mean square error (RMSE) between two vectors w and v is
defined as,

where N is the length of the input vectors, u; is the j'th element in vector
u and the corresponding for v.

The fitness is calculated in two steps and the target is to minimize it. The
fitness f; for individual 7 is the RMSE of the observed time series Y;, and the

33

corresponding estimated time series ¢; made by individual 7,
fi= (i) = 9(Yar, Gi).

Secondly, all individuals’ fitness value are being shared, as explained in sec-
tion 2.1.4.1. The niche count is hence given by,

N
m; =m(g;) = Z sh(d;;), where d; ; = g(9i,9;)

dij\" .
1_(0) ifdi; <o , where 0 = 0.004, o =1
O, if di,j Z g

Sh(dl"j) =

where NN is the number of individuals in the population. The distance d; ;
between individual ¢+ and individual j is measured by calculating the RMSE
between the estimated time series made by these two individuals.

The final fitness value f of individual ¢ is given by

fi=1(@) = fi-mi. (9)

3.5.4.1 Search space

Let us reconnect to the search space defined in equation (1). At the initial-
ization step, the search space will be

A={x = (v1,22,...,24,,.); t; €C, j=1,... lmax}

As the population evolve, the maximum chromosome length will grow. Let o)

be the maximum chromosome length in the population at generation itr; re-
sulting in a search space which has a dynamic number of dimensions. This
implies that, in generation itr, the search space is

) Ymax

A= {$ = (.Z'l,xg,. .. ,.Ig(itr)); X S C, j = 1,. .. g(itr)}.

3.5.4.2 The optimization problem

Denote the candidate solution represented by individual i, as ind; € A. Then
the estimated time series made by individual 7 is given by,

34

Further, the final fitness function, given by equation (9), is a map f* : R™r — R*.
Resulting in the composite function H : A — RT of f* and g, whose rule is

The optimization problem can thus be written as:

Find the minimum of (f* o g)(ind;) subject to ind; € A.

3.5.5 Speciation

In nature, when a species is divided and isolated, different linage may oc-
cur [46]. The problem at hand is believed to be rather complex, hence it is
found desirable to let the population fork and, hopefully, explore different ar-
eas of the search space. To mimic speciation, the whole population is divided
into species and each species will not integrate with any other species.

Each species is allocated a unique part of the training data Y;,, to simulate
different environments. Let y*) C Y;, denote the data points assigned to
species k. Then

where 7 is the number of species and
y W Ny =0, where u#v, Yu,ve{1,2,...,n}.

The allocation is in some case randomly generated, in other cases the alloca-
tion is decided by a multi-class classification network described in section 3.3.

The speciation results in several solutions working together. For the training
data, the ith estimate of ;. is given by

¢i(1)(t,t— 1,,t—4) lf yt+1 € y(l)

) Vi (t,t—1,...,t—4) if yq €y?

Y1, = : (10)
wi(n)(t,t— 1,...,t—4) if Yir1 € y(”)

where 1), is the computer program represented by individual i) that belong
to species . Also, let i denote the rank of individual i**) within species &,
i.e. the fitness value f7,, given by equation (9), of individual i) is

Fioo < Fiy < fioos where j0 < it < k0w 5090 k00 e {12, [S.[3,

35

where |S,| is the number of individuals in species k.

For out-of-sample data, such as the test data, the rule in equation (10) does
not apply (by definition, a out-of-sample point y, ¢ y*, V& € {1,2,...,1}).

For randomly generated species, the i¢th estimate of y;.; is given by
Jerri = Vi (Lt =1, t —4), k~U{1,n}. (11)

For species generated by a MLP, the ith estimate of y;, is given by
U1 = Vi (Gt —1,.. .t —4), k= MLP(s5,), (12)

where the MLP-function outputs the class belonging (and hence species be-
longing as well) of the segment s;,, defined in equation (4).

36

4 Results

In this section, the results of this masters thesis are presented. The standard
GP will be presented such that the base behaviour will be set. Next, to
leverage neural information processing, the data where partitioned and then
a GA trained 25 binary classification networks. The clusters and the perfor-
mance of the networks will be presented. Having the pre-trained networks,
the GP where extended in two ways, by using a MLP for speciation and by
adding the ANNs to the combined set C'. The result of this will be shown,
first by examine the performance of the model in terms of accuracy against
the test data. Then the gene frequencies and size of evolved programs are
being presented.

In short, the results will be presented in the following order:

e Standard GP
e (Cluster and multi-class classification network
e GA and binary classification networks

e The variants of the GP

A prediction obtained from equation (11) is uniformly drawn from the pool
of predictions made by the ith best individuals in each species, resulting in
a non-deterministic prediction. While prediction’s obtained from equation
(12) is deterministic, i.e. always the same. In order to compare these results,
two approaches has been made.

Single solutions are obtained from equation (11) and equation (12), since
each point is estimated by one individual. Also, let §; and @i.; be the ith
best single estimate of Y;, and Y., respectively.

Weighted solutions are obtained by a weighted sum of the predictions
made by the ¢th best individuals in each species. Consider the number of
data points p, assigned to species k; let this number act as a weight for the
prediction made by individual i**). Each weight is normalized such that the
weighted solution is given by,

N 1 !
Y+l = =g Zp[{/l/}i(n) (t,t—1,...,t—4).

k=1Pr k=1

37

The standard GP is presented in figure 11 and figure 12. The convergence
is stable, see figure 11, but it should be mentioned that the noise can vary
a little depending on the value of ¢ and « in the fitness sharing function.
The three best single solutions are plotted against the training and test data,
respectively in figure 12. Overall, the GP has adapted to follow the target
curve.

Next, let us look at the partitioning of the data. Figure 13a show in green, the
cluster assignments along the training data. It is clear that some clusters have
more members than others, representing patterns that appear with varying
frequencies. Cluster 5, 14 and 23 seems to be very local, only appearing
once in the training data and could maybe be considered as outliers. The
rest of the clusters are spread out along the curve and when the curve get
an unusual look, some of the sparse clusters seems to get “activated”. For
instance, the dip just before t = 1000 and the dip after ¢ = 1500 has a higher
density of some low-density cluster members compared to the increase after
roughly ¢t = 1100 lasting until ¢ = 1500.

The multi-class classification network is mostly inlined with the high-density
clusters, but it has some problem with the very low-density clusters, such as
cluster 5, 14, 23 and 25 which it fails to recognise, compare green and red
crosses in figure 13a. These classes does not appear in the test data either,
see figure 13b.

The binary classification network were trained by a GA and the result is de-
picted in figure 14. The blue and yellow /orange bars represent the sensitivity
and specificity, respectively, of the top individuals. At the end of each run,
the GA saved the top three individuals, such that the final binary classifier
for each class (marked with a black square) where chosen by hand from a
pool of three alternatives.

38

fitness

L

0 250 500 750 1000
generations

o 250 500 750 1000
generations

(b) The top (green) and top mean (yel-
low) RMSE-value for the whole popula-
tion.

(a) The fitness values f7,

Figure 11: The convergence of the standard GP during one run. The fitness
values f.,, for all x € {1,2,...,n} are shown in plot (a). Let ¢; be the
ith best estimation made on the training data. The green line in plot (b)
represents the root mean square error, defined in section 3.5.4, of ; against
the training data Y., i.e. g(Yi,§1). The yellow line in plot (b) represents

the RMSE mean of the 15 best estimations, i.e. (Zil 9(Ye, 9:)) /15.

The standard GP converge as it should. Some species appear to have a bit
more noisy convergence than other and tuning the parameters a and o of
the fitness sharing function, could change the noisiness a bit.

39

stock index
&
stock index

0 500 1000 1500 2000 0 100 200 300 400

time time

(a) Training data. ¢(Yi, 91) = 0.010 (b) Test data. g(Yie, Ute,1) = 0.009
g(}/{:ra QZ) = 0.011 g(}/{:ea Qte,Z) = 0.011
9(Yir, g3) = 0.011 9(Yie, Gte;3) = 0.011

Figure 12: The precision of the standard GP from one run. Plot (a) and plot
(b) show the three best single solutions along the target curve (black dashed
line) for the training data and test data, respectively. The performance is
equal on both data sets for all three top single solutions. Overall, the results
are adequate and it is seems that the standard GP has been fitted to the

target data.

40

25 * +
Sismar f.f oo amrss 3OE T ISR BT AT RIIT R BIHED HSSHSUSISSIMN BRNCISHES.L Y LS. HIENEMI R HNOE BN S 1

3

OEIE N O B3 B HIHE L BRAE B HEHII A P HANNES LT SRR S R SR P R L 1 4
20 e Le d sEmr e SRR E I~ 0 T o s * poegs

THLIM TNT IIONE IEMI DITNNILIIIGN TSN PNIOND OSTITRSINST I8 oL mrhm ruame

e

e iR N A H
 SEBHBIREIPT B+ B + *t m 111 11 + t t t

PP mE LTI AR MY 3 ¢ . Bir i orroampnt asr g.8mr omo®m

15 e tal 22 O Y 11 . - 3 - b3

¥ 1. AR T TR D I SR SR

torrsmEr 1. SRR mra i JIPE I . *
IR I RITIET L ER PR OERYD PRET PIONINDENNED SRR ORR MR oMM uIng

HEPEEF I PRI RS PHITHIT MW E SN R

b+ 4 b3 t 4
10 %] +
k3

class / cluster

it + 1o BET AN L HHE T . B 3. 81T @ ET L WM. T B IITEELISG 3
I S S RS P PRI L TN R OUNE S0N EEE BIE 0 M BT L HRONIE B PO BN MMM EIIE i,
LI M T I b 8 * RN X

Heth L BEEEST SI0 P B & THHE T IIHMIE #1T M PTMIRIET B8 HEOED I IR O IR M LA e
SO MR T MY ET NN R PRET OF SSPUEENNE HT PO PTRESRORE B BRON SRRPRHEENL S 8 o 10t

g HiuHt e
FEEsiANt + o# #f |4

. b3 +
HEBHST L P HEHIH MISIM LSNP EEI M R LB B UH O BIBINE LB M MERERRRLEN. W EMEIM M B I E SN

0 500 1000 1500 2000
time

(a) Cluster belonging and network classification on the training data.

25

20

—— stock index
% cluster
% network

class

10

o 100 200 300 400
time

(b) Network classification on the test data.

Figure 13: Cluster belonging and network classification. To visualize the
performance of the multi-class classification network, the cluster belonging
of each segment of the training data (green crosses), along with the class
belonging of each segment that is assigned by the multi-class classification
network (red crosses) has been plotted in plot (a). Plot (b) display the class
belonging of each segment in the test data, that is assigned by the multi-class
classification network. The crosses are placed at the end point of the segment
they are representing. Overall, the multi-class classification network does a
good job, even though it misses some assignments of the low-density clusters
(mainly cluster 2, 5, 9, 14, 23 and 25).

41

1.00

075

0.50

sensitivity / specificity

0.00

class

(a) Class 1-15.

100 n M n

—— sensitivity indl
—— sensitivity ind2
050 —— sensitivity ind3
chosen

specificity ind1
p2s specificity ind2
specificity ind3

sensitivity / specificity

0.00 - -
16 18 20 22 24
class

(b) Class 16-25.

Figure 14: The three best individuals that where trained by the GA for each
binary classifier, where “ind1” is the best individual, “ind2” second best, and
so on. The blue bars represent the sensitivity of the network and the yellow
bars represent the specificity of the network. The black squares mark which
individual that were chosen to proceed to the GP.

42

Let us now compare the different versions of the GP. In all figures that follow,
containing three subplots, are composed as showed in figure 15. Figure 15a
depict the standard GP, figure 15b depict the GP having species generated
by a MLP and figure 15¢ depict the GP having ANNs in the combined set.

Figure 16 and figure 17 show the precision regarding the single solutions and
the weighted solutions, respectively. Figure 16 show that the median is lower
when ANNs are added to the combined set, but not from speciation using a
MLP. Figure 17 tell that the weighted solutions does not gain accuracy by
leveraging neural information processing.

Next, figure 18 and figure 19 presents the gene frequency. It appears that the
GP find the neural networks useful when they are added to the combined set,
based on the decrease of use of lag-signals and constants in both figure 18¢c
and figure 19c. Speciation using a MLP does not change the gene interplay,
see figure 18b and figure 19b.

Lastly the chromosome length is being presented in figure 20 and figure 21.
Here, it is seen that adding ANNs to the combined set reduces bloat.

Standard GP Speciation using a MLP
Speciation: Random Speciation: MLP
C = {+, —, x, pdiv, psin, exp, C = {+, —, x, pdiv, psin, exp,
pln, AND, OR,NOT, R, pln, AND, OR,NOT, R,
Z/t7yt—17yt—477f} yt,yt—l,yt—zwr}

(a) (b)

ANNs in C

Speciation: Random
C = {+7 — X, pdiV7 pSina exp,
pln, AND, OR, NOT, R,

Yty Yt—1,Yt—4, T,
netl — net25}

()

Figure 15: A figure showing how the results are being presented.

43

=== Training data, standard GP === Training data, speciation using a MLP === Training data, ANNs in C
= Test data, standard GP == Test data, speciation using a MLP = Test data, ANNs in C
0.08
ools
0.06
0015
I @
E 0.04 E 0012
0009
0.02
— - [
(a) All points. (b) Zoomed.

Figure 16: Boxplot of RMSE for single solutions on both on the training
and test data. Due to the stochastic nature of the single solutions obtained
by equation (11), the estimate g; and @i, of the training and test data,
respectively, has been sampled 500 times, for ¢ = 1,...,5. For each sample,
the RMSE of that sample against the observed value has been calculated. All
these RMSE-values has been collected for 9 runs. The purple boxes represent
the standard GP, the green boxes represent the GP with MLP generated
species and the red boxes represent the GP with ANNs in the combined set.
Note that the RMSE-values in the green boxes has been obtained by equation
(12), hence they each consist of 5 -9 = 45 values.

It can be observed that giving the GP neural information processing, gathers
the error on unseen data, see plot (a) and also compare the size of the dark
purple and the dark red box in plot (b). Further, the median is lowered
when ANNSs is added to the combined set and unchanged when having MLP
generated species, see plot (b).

44

=== Training data, standard GP === Training data, speciation using a MLP === Training data, ANNs in C
= Test data, standard GP == Test data, speciation using a MLP

== Test data, ANNs in C

0025

0.020

0.015

RMSE

0.010

0.005

-a=

RMSE

0.010

0.009

0.008

0.007

0.006

0.005

E!!

(a) All points.

(b) Zoomed.

Figure 17: Boxplot of RMSE for weighted solutions both on the training
and test data. The purple boxes represent the standard GP, the green boxes
represent the GP with MLP generated species and the red boxes represent
the GP with ANNs in the combined set.
It can be observed that the weighted solutions do not gain accuracy by lever-
aging neural information processing. Further, speciation using a MLP enlarge
the spread of the error, see plot (a).

45

HN\WW HMW
UEW UZWW

frequency

0 250 500 750 1000 0 250 500 750 1000
generations generations

(a) Standard GP. (b) Speciation using MLP.

arit: [+, —, x,/1]
— trig: [sin]
—— nets: [netl, ..., net25]
bool: [AND, OR, NOT]
—— const: [R,]
— lag: [yt Ye—1,Yt-4l
—— other: [exp, In]

frequency

0 250 500 750 1000
generations

(c) ANNs in C.

Figure 18: The total gene frequency within the population during one run.
The vertical dotted line marks the bootstrap in generation 40.

It can be observed that speciation using a MLP does not change the gene
frequency, see plot (b), while adding ANNs to the combined set does, see
plot (c). The use of the lags (light blue) and the constants (green) decreases
and the GP replace these with the ANNs (turquoise).

46

frequency

2

01

0o i 00
0 250 500 750 1000 o 250 500 750 1000
generations generations

(a) Standard GP. (b) Speciation using MLP.

™ arit: [+, —, x,/]

E — trig: [sin]

—— nets: [netl, ..., net25]
bool: [AND, OR, NOT]

—— const: [R, r]

— lag: [yt Ye—1, Yt-4l

—— other: [exp, In]

frequency

[} 250 500 750 1000
generations

(c) ANNs in C.

Figure 19: The active gene frequency within the population during one run.
The vertical dotted line marks the bootstrap in generation 40.

It can be observed that speciation using a MLP does not change the active
gene frequency, see plot (b), while adding ANNs to the combined set does, see
plot (c¢). The use of the lags (light blue) and the constants (green) decreases.
Also the use of the exponential and the natural logarithm slightly decrease.
The GP seems to replace these with the ANNs.

47

100 100

length
length

0 250 500 750 1000 0 250 500

750 1000
generations generations

(a) Standard GP. (b) Speciation using MLP.

0 250 500 750 1000
generations

(c) ANNs in C.

Figure 20: The total chromosome length. Let ¢ be the mean chromosome
length of the population. Furthermore, let /5 and fg5 be the 5% and 95%
quantiles of the chromosome length within the population. Then the black
line represents the mean of ¢ for 13 runs and the upper and lower grey line,
that is the boundary of the grey area, represents the mean of /5 and fy5 for
13 runs. The vertical dotted line marks the bootstrap in generation 40.

It can be observed that both speciation using a MLP and adding ANNs to
the combined set lowers the 5% quantile. Speciation using a MLP does not
decrease the mean chromosome length, see plot (b). While adding ANNs to
the combined set clearly reduce the mean chromosome length and decrease
the growth rate of the chromosomes, see plot (c).

48

0 250 500 750 1000 o 250 500 750 1000
generations generations

(a) Standard GP. (b) Speciation using MLP.

50
a0

30

length

20

0 250 500 750 1000
generations.

(c) ANNs in C.

Figure 21: The size of evolved programs, i.e. the active chromosome length.
Let ¢ be the mean active chromosome length of the population. Furthermore,
let /5 and /g5 be the 5% and 95% quantiles of the active chromosome length
within the population. Then the black line represents the mean of ¢ for 13
runs and the upper and lower grey line, that is the boundary of the grey
area, represents the mean of /5 and fy5 for 13 runs. The vertical dotted line
marks the bootstrap in generation 40.

It can be observed that speciation using a MLP does not change the active
chromosome length, compare plot (a) and (b). By adding ANNs to the
combined set, the mean active chromosome length decreases and the 95%
quantile clearly drops down, compare plot (a) and (c).

49

fitness
RMSE

N

o 250 500 750 1000 0 250 500 750 1000
generations generations

(a) Standard GP. (b) Standard GP.

fitness
RMSE

0 250 500 750 1000 0 250 500 750 1000
generations. generations

(c) Speciation using MLP. (d) Speciation using MLP.

fitness
RMSE

o 250 500 750 1000 0 - 250 500 750 1000
generations generations

(e) ANNs in C. (f) ANNs in C.

Figure 22: The convergence. To the left, the fitness values f7.,,Vx €
{1,2,...,n} are shown. Let g; be the ith best estimation made on the train-
ing data. To the right, the green line represents the root mean square error,
defined in section 3.5.4, of §; against the training data , i.e. g(Yi,91). The
orange yellow line represents the RMSE mean of the 15 best estimations, i.e.
(3321 9(Yar, §)) /15.

It can be observed that the noisiness differs between the different versions of
the GP. It should be mentioned that tuning the parameters o and o of the
fitness sharing function, may change the noisiness. By changing the o and o
value, the difference in noise between plot (a) and (e) could change, conclud-
ing that the noise rate of plot (a) and (e) is not significantly different. On
the other hand, the convergence wheggusing a MLP for speciation remained
noisy, see plot (c¢) and (d). Plot (c¢) also show that there are some species
that find it hard to converge.

5 Discussion

The gene frequency in figure 18c and figure 19¢ clearly show that the GP
leverages the neural networks functions when these are added to the combined
set. The lag-signals are the genes that decrease the most. The ANNs contain
information about the lags (the lag-signals are inputs to the ANNs) and this
might explain why such a vast part of the lags is no longer needed.

The result of figure 20 and figure 21 is that the chromosome length decreases
when ANNs are added to the combined set. The neural network functions
are more powerful functions than standard arithmetic, trigonometric and
exponential functions, which probably explains this behavior. Instead of
making a complex combination of several variables and simpler functions, the
GP can achieve the same by using one of the ANNs. At the same time, the
ANN is an already defined function which cannot be destroyed by crossover or
mutation, while the complex combination of variables and simpler functions
can.

By examine the sensitivity and specificity i figure 14, one could argue that
some of the networks has been over-fit. For example, class 10 has 100% on
both sensitivity and specificity for all top three individuals. This has not been
considered a direct problem. First, the GP does not know what is right or
wrong in terms of classification. It will use functions that it finds to be useful
and suppress functions it finds to be less useful. Second, the classification is
based on our partitioning of the data, which also has no distinct rule of right
or wrong. Many other approaches to partitioning the data can be carried
out, but in the end, it is the GP that is the magistrate of what is useful and
not.

The data partitioning approach taken in this work is up for discussion as
well as further improvements. An article by Lin and Keogh [47], arguing
that subsequence clustering of time series (STS) provides no value. They
argue that using this method while clustering gives the same result as if one
would have clustered a time series of a random walk. An opposing view is
presented in the paper Making subsequence time series clustering meaningful
by Chen [48], showing that STS clustering can indeed be meaningful.

The clustering approach in this thesis may explain the increased noise in the
convergence in figure 22c and figure 22d.

51

6 Conclusions

In this masters thesis, the effects of leveraging neural information processing
has been studied. Two slightly different methods has been employed for this
purpose. The first method has used a MLP for speciation and the second
has incorporated ANNs in the GP’s combined set.

Using a MLP for speciation did not make any improvement. The gene
frequency did not change at all. The single solutions performed a little worse
than the standard GP, and the weighted solutions performed worse. In fact,
the most significant difference were that the convergence became more unsta-
ble, or noisy. Making it possible for the algorithm to stop when the precision
where suboptimal. Resulting in a larger spread of the prediction error when
examine the weighted solutions. The noise in convergence probably indicates
that there is room for improvement of the partitioning of the data.

Using the ANNs in the combined set C' resulted in less terminals ap-
pearing in the population. The GP filled that gap with the ANNs instead,
that got the second highest gene frequency within the population.

This method appears to have a significant and positive effect, as it decreases
the bloat. The mean of the total chromosome length of each individual con-
tinue to grow at about the same pace during the whole run for the other
two version of the GP. While for this method, the growth rate of the mean
of the total chromosome length of each individual lower, resulting in a de-
crease of bloat. The same trend is observed for the mean size of the evolved
programs (the active chromosome length for each individual), but less signif-
icant. Overall this show that leveraging neural information processing can
act as a way of controlling the bloat.

The single solutions improved when the ANNs were added to the GP, when
applied on unseen data. Taking the mean of the individual predictions, i.e.
the weighted solution, further improved the prediction accuracy (for all meth-
ods). Comparing the weighted solutions, the prediction accuracy were not
significantly improved when the ANNs where added to the GP. Indicating
that mainly single solutions benefits from leveraging neural information pro-
cessing.

52

7 Further research

A univariate time series has been studied in this work, given the defined con-
straints of the study. Including more dimensions is believed to be beneficial,

for prediction accuracy, such as leveraging news sentiments within the sector
that BVI is at.

Speciation using ANNs did not work as expected. The idea is still believed
to be useful, but the way of partitioning the data will probably benefit from
further investigations. Advisedly, one could study other clustering methods
and maybe using more dimensions when partitioning the data.

As mentioned in section 1.5, Yu et al. [9, 10] published two papers. In their
second paper, they incorporated A abstractions in their GP and reported this
to have a positive effect [10]. Further investigations covering that area seems
promising.

53

o4

References

1]

2]

Julia 1.5 documentation. The Julia Language. Accessed March. 16, 2021.
[Online]. URL https://docs.julialang.org/en/v1/.

Mehar Vijh, Deeksha Chandola, Vinay Anand Tikkiwal, and Arun
Kumar. Stock closing price prediction using machine learning tech-
niques. Procedia Computer Science, 167:599-606, 2020. ISSN 1877-0509.
doi: https://doi.org/10.1016/j.procs.2020.03.326. URL https://www.
sciencedirect.com/science/article/pii/S1877050920307924. In-
ternational Conference on Computational Intelligence and Data Science.

Mingyue Qiu and Yu Song. Predicting the direction of stock market
index movement using an optimized artificial neural network model.
PLOS ONE, 11:e0155133, 05 2016. doi: 10.1371/journal.pone.0155133.

Kyoung jae Kim and Ingoo Han. Genetic algorithms approach to fea-
ture discretization in artificial neural networks for the prediction of
stock price index. Expert Systems with Applications, 19(2):125-132,
2000. ISSN 0957-4174. doi: https://doi.org/10.1016/S0957-4174(00)
00027-0. URL https://www.sciencedirect.com/science/article/
pii/S0957417400000270.

Kenneth O. Stanley. Neuroevolution: A different kind of
deep learning, Jul 2017. URL https://www.oreilly.com/radar/
neuroevolution-a-different-kind-of-deep-learning/.

Lean Yu, Wei Huang, Kin Keung Lai, Yoshiteru Nakamori, and
Shouyang Wang. Neural networks in finance and economics forecast-
ing. International Journal of Information Technology & Decision Mak-
ing (IJITDM), 06:113-140, 03 2007. doi: 10.1142/5021962200700237X.

Crina Grosan and Ajith Abraham. Stock Market Modeling Using Ge-
netic Programming Ensembles, volume 13 of Studies in Computational
Intelligence, chapter 6, pages 131-146. Springer-Verlag Berlin Heidel-
berg, 2006.

Christopher Neely, Paul Weller, and Rob Dittmar. Is technical analysis
in the foreign exchange market profitable? a genetic programming ap-
proach. Journal of Financial and Quantitative Analysis, 32:405-426, 10
1996. doi: 10.2307/2331231.

Tina Yu, Shu-Heng Chen, and Tzu-Wen Kuo. A genetic programming
approach to model international short-term capital flow, volume 19 of

95

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Advances in Econometrics, pages 45-69. Emerald Group Publishing
Limited, 2004. ISBN 9781849503037.

Tina Yu, Shu-Heng Chen, and Tzu-Wen Kuo. Discovering Techni-
cal Trading Rules Using A Abstraction GP, chapter 2, pages 215-226.
Springer Science 4+ Business Media, Inc., 2005.

Brian Beers. How a buy-and-hold strategy works, Aug 2020. URL
https://www.investopedia.com/terms/b/buyandhold.asp.

James McDermott, Alexandros Agapitos, Anthony Brabazon, and
Michael O’Neill. Geometric Semantic Genetic Programming for Finan-
cial Data, pages 215-226. Springer-Verlag Berlin Heidelberg, 2014.

J. Arshad, A. Zameer, and A. Khan. Wind power prediction us-
ing genetic programming based ensemble of artificial neural networks
(GPeANN). In 2014 12th International Conference on Frontiers of In-
formation Technology, pages 257-262. The Institute of Electrical and
Electronics Engineers, Inc., 2014. doi: 10.1109/FIT.2014.55.

Genome. Wikipedia. Accessed March. 2, 2021. [Online], . URL https:
//en.wikipedia.org/wiki/Genome#Coding_sequences.

Chromosomes. Khan Academy. Accessed March. 18, 2021.
[Online|, . URL https://www.khanacademy.org/science/
high-school-biology/hs-reproduction-and-cell-division/
hs-chromosome-structure-and-numbers/a/
dna-and-chromosomes-article.

Genotype. Wikipedia. Accessed March. 4, 2021. [Online], . URL https:
//en.wikipedia.org/wiki/Genotype.

Phenotype. Wikipedia. Accessed March. 4, 2021. [Online|, . URL https:
//en.wikipedia.org/wiki/Phenotype.

Mathematical optimization. Wikipedia. Accessed March. 29, 2021.
[Online], . URL https://en.wikipedia.org/wiki/Mathematical_
optimization.

Lars-Christer Boiers. Mathemaical Methods of Optimization. Studentlit-
teratur, 2010. ISBN 978-91-44-07075-9.

Yongsheng Fang and Jun li. A review of tournament selection in genetic
programming. pages 181-192, 10 2010. ISBN 978-3-642-16492-7. doi:
10.1007/978-3-642-16493-4_19.

56

[21] John R. Koza. Genetic Programming - On the Programming of Com-
puters by Means of Natural Selection. Massachusetts Institute of Tech-
nology, 1998. ISBN 0262111705.

[22] Biman Chakraborty and Probal Chaudhuri. On the use of genetic al-
gorithm with elitism in robust and nonparametric multivariate analysis.
32, 01 2003.

[23] Friden, inc. Wikipedia. Accessed March. 17, 2021. [Online], . URL
https://en.wikipedia.org/wiki/Friden, _Inc.

[24] Hewlett-packard voyager series. Wikipedia. Accessed March. 17, 2021.
[Online|, . URL https://en.wikipedia.org/wiki/Hewlett-Packard_
Voyager_series.

[25] Rpn. The Museum of HP Calculators. Accessed March. 29, 2021. [On-
line]. URL https://www.hpmuseum.org/rpn.htm.

[26] Riccardo Poli, William Langdon, and Nicholas Mcphee. A Field Guide
to Genetic Programming. 2008. ISBN 978-1-4092-0073-4.

[27] Leonardo Trujillo, Enrique Naredo, and Yuliana Martinez. Preliminary
study of bloat in genetic programming with behavior-based search. In
Michael Emmerich, Andre Deutz, Oliver Schuetze, Thomas Béck, Emilia
Tantar, Alexandru-Adrian Tantar, Pierre Del Moral, Pierrick Legrand,
Pascal Bouvry, and Carlos A. Coello, editors, EVOLVE - A Bridge be-
tween Probability, Set Oriented Numerics, and Evolutionary Computa-
tion IV, pages 293-305, Heidelberg, 2013. Springer International Pub-
lishing. ISBN 978-3-319-01128-8.

[28] Fixation (popultion genetics). Wikipedia. Accessed March. 4,
2021. [Online], . URL https://en.wikipedia.org/wiki/Fixation_
(population_genetics).

[29] Genetic drift. Khan Academy. Accessed March. 2, 2021.
[Online|, . URL https://www.khanacademy.org/science/
ap-biology/natural-selection/population-genetics/a/
genetic-drift-founder-bottleneck.

[30] Niches & competition. Khan Academy. Accessed March. 16, 2021. [On-
line], . URL https://www.khanacademy.org/science/ap-biology/
ecology-ap/community-ecology/a/niches-competition.

57

[31] Steven Gustafson. An analysis of diversity in genetic programming. 05
2004.

[32] Universal approximation theorem. Wikipedia. Accessed March. 2
2021. [Online], . URL https://en.wikipedia.org/wiki/Universal_
approximation_theorem.

[33] Ding-Xuan Zhou. Universality of deep convolutional neural networks,
2018.

[34] R Dhanapal and D. Bhanu. Electroencephalogram classification using
various artficial neural networks. Journal of critical reviews, 7:891-894,
2020. doi: 10.31838/jcr.07.04.170.

[35] Alexander Waibel, Toshiyuki Hanazawa, G. Hinton, Kiyohiro Shikano,
and K.J. Lang. Phoneme recognition using time-delay neural networks.

Acoustics, Speech and Signal Processing, IEEE Transactions on, 37:328~
339, 04 1989. doi: 10.1109/29.21701.

[36] Sam Schechner. Facebook boosts ai to block terrorist pro-
paganda, Jun 2017. URL https://www.wsj.com/articles/
facebook-boosts-a-i-to-block-terrorist-propaganda-1497546000.

[37] Jack V. Tu. Advantages and disadvantages of using artificial neural net-
works versus logistic regression for predicting medical outcomes. Jour-
nal of Clinical Epidemiology, 49(11):1225-1231, 1996. doi: 10.1016/
S0895-4356(96)00002-9.

[38] Yavar Bathaee. The artificial intelligence black box and the failure of
intent and causation. Harvard Journal of Law & Technology, 31:889,
2018.

[39] Thomas Grote and Philipp Berens. On the ethics of algorithmic decision-
making in healthcare, Mar 2020. URL https://jme.bmj.com/content/
46/3/205.

[40] Daniel Faggella. Ai transparency in finance - understanding the
black box, Jan 2020. URL https://emerj.com/partner-content/
ai-transparency-in-finance/.

[41] Frank Rosenblatt. The perceptron: A probabailistic model for
information storage and organization in the brain, 1958. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
335.3398&rep=repl&type=pdf.

58

[42] Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[43] Greg Hamerly and Charles Elkan. Alternatives to the k-means algo-
rithmthat find better clusterings. pages 600607, 2002.

[44] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[45] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms, 2017.

[46] Species & speciation. Khan Academy. Accessed Feb. 8, 2021. [On-
line], . URL https://www.khanacademy.org/science/biology/her/
tree-of-1life/a/species-speciation.

[47] Jessica Lin and Eamonn Keogh. Finding or Not Finding Rules in Time
Series, volume 19 of Advances in Econometrics, pages 175-201. Emerald
Group Publishing Limited, 2004. ISBN 9781849503037.

[48] Jason R. Chen. Making subsequence time series clustering meaningful.
In Fifth IEEE International Conference on Data Mining (ICDM’05),
pages 8 pp.—, 2005. doi: 10.1109/ICDM.2005.91.

59

Master’s Theses in Mathematical Sciences 2021:E6
ISSN 1404-6342

LUTFMA-3438-2021

Mathematics
Centre for Mathematical Sciences
Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

