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Ivar Vänglund

Abstract

When growing grapevines there are common risks for disease outbreaks when the pathogen has
remained from earlier growing cycles and the weather and soil conditions work in the diseases’
favour. The diseases may spread a lot before being highly noticeable. This means that the harvests
of grapes for wine production are in jeopardy. This thesis concerns a branch of a, from the Swedish
Board of Agriculture funded, project "IoT and AI to increase the competiveness in Swedish fruit
and wine production" with the special focus for the thesis to use machine learning tools such
as convolutional neural networks to detect the most common grapevine diseases downy mildew
and powdery mildew. By using an image inventory from the project staff the purpose is to give
decision support regarding the mentioned diseases of an input image using neural networks and
image analysis. As being able to notice different types and stages of the grapevine diseases is
desired, the network was sought to have 5 class outputs but also testing to have fewer (3 and 2).
The resulting model, after training to reach a good validation accuracy, reached an accuracy of
∼ 65% when predicting to 5 labels, but with lower recall on the infected classes with fewer image
samples. Training for predicting 3 and 2 different outputs gave higher results of ∼ 70% and ∼ 75%

respectively and better tendencies of finding non-healthy leaves. It is believed that a larger amount
of training images could improve the performance of the network.
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Grapevine disease, Downy mildew, Powdery mildew, Image analysis, Deep learning, Convolutional
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1 Introduction

1.1 Background

Wine has an important role among food culture for many people all over the world with lots of
resources being put into preserving production quality. Within agriculture and wine production
there are many parameters to consider to make a harvest of crops successful. Each planting is a
biological process that takes weather conditions and caution of pests and diseases into consider-
ation in getting the desired result. As the society and technology develops it’s a natural step to
implement more technical resources to make wine production as profitable as possible. That is
what the Freja-AI project and this master thesis concerns, [1].

The European Union made in 2012 an investment, EIP-Agri, with the purpose to "foster competi-
tive and sustainable farming and forestry that ’achieves more and better from less’", [2]. Between
2014 and 2020 the Swedish Board of Agriculture (Jordbruksverket) launched several innovation
projects within EIP-Agri and one of those is IoT and AI to increase the competiveness in Swedish
fruit and wine production, also called Freja-AI. IoT stands for Internet of Things which are systems
to integrate and transfer data between physical components e.g. domestic supplies and machines.
AI is a more known abbreviation for Artificial Intelligence.

Freja-AI’s mission is to implement a decision-support system so that the planter can determine
when it’s time to take the right measures in the plantation process of grapes and apples, instead
of only doing manual inspections of the crops. It should also prevent variations of quality in the
harvest with respect to physiological damage, fruit size and colour. A decision tool that’s been
developed by the project is a mobile application which will provide the user with weather data and
analyze photographs of leaves, with more developing steps to be made with the software. Sensor
measurements of conditions as air and soil temperature, sun hours, wind and precipitation are
made at apple and viticultures outside of Lund and through AI and historical data the time of
harvest should be predicted more accurately, [1].

The next step of the Freja-AI project, that this thesis takes its starting point in, is to make
the decision-support system able to identify diseases appearing on vine leaves that could disrupt
yields and quality if not treated early. It will assist in being more economical in the amount of
pesticides being required.

1.2 Goal

The goal for this thesis is to try and implement an artificial neural network that can identify
grapevine diseases from images of vine leaves. It will be done using deep learning structures and
machine learning tools in MatLab. More precisely, the network will use annotated images of vine
leaves as inputs and possibly associated sensor data for the surrounding conditions, to try and
identify different stages of downy mildew and powdery mildew infections on leaves.

The performance of the program should be compared from having many output classes in the
program (different diseases and severity levels) to fewer (different diseases without stage separa-
tion or healthy) to just two (healthy or non-healthy). One boundary for the project is to not
handle leaves with multiple diseases present as it might be a too deviated focus. It will also focus
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on leaves instead of grapes or stalks as leaf images are more abundant of the available images.

1.3 Resources

Resources for the project will be a computer with MatLab and the Deep Learning Toolbox installed.
An inventory of images taken at vineyards by the Freja-AI staff will be used. There is also the
possibility of using the back-end of the Freja-AI application to acquire measured data of the weather
conditions from the sensors at the vineyard.

1.4 Outline

The outline for this thesis report is initially a theory section with subsections on descriptions of
the, for this thesis, relevant grapevine diseases (section 2.1). The complexity of the descriptions
are kept to a lower level than a thorough biology report/thesis as this thesis has machine learning
as its primal focus. It is followed by a larger section on the machine learning theory (section 2.2)
about the components of a neural network and the training and evaluation process.

The methodology is divided in two parts with the gathering and preparation of image data in
section 3.1 and the implementation of machine learning in section 3.2.

The results are shown in section 4 divided into subsections for the different number of outputs
and how the accuracy will differ. The results are then interpreted in the section for Discussion
(section 5) along with overall comments of the thesis and possible future development.

Finally there will be a section of summary and conclusions to wrap things up.
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2 Theory

2.1 Diseases concerning wine production

Plantations of grapevines tend to face issues from fungal and/or bacterial grapevine diseases during
a growing year that ends in harvest in September or October. Two of the most common are the
fungal diseases downy mildew and powdery mildew.

This section concerns shortened descriptions of the symptoms, disease cycles and conditions where
the diseases prosper, and not in-depth origins or treatment.

2.1.1 Downy mildew

Downy mildew, caused by the fungi known as Plasmopara viticola when attacking grapevines, is for
warm and humid climates considered the most troublesome grapevine disease. Oospores (sexual
spores) may exist on the vineyard floor or ground in dead leaves over the winter and may survive
up to 3-10 years. In late summer, the oospores produce zoospores under favorable conditions called
10-10-24 i.e. when there are at least 10 mm of rainfall and temperature above 10°C in 24 hours.
The zoospores may spread through rain and wind to lower parts of the vineyard, as many vineyards
are landscaped in slopes, and are the ones infecting the vines, [4].

Yellow oil spots appear on the vine leaves, as seen in figure 1a, which if untreated can cover
the entire leaf or the shoots. After warm and humid nights, white downy fungal growth develops
that can also cover the grapes as seen in figure 1b.

(a) Early stage of downy mildew infection with
yellow spots partly marked in a red ellipse.

(b) Further infection with white down on the
grapes. Image from [5].

Figure 1: Symptoms of downy mildew infection on a leaf and on grapes.

If the early stages of infection on the leaves are treated early, much of the yield of the harvest may
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be saved. If the disease reaches further the yield may be destroyed but it’s still important to locate
the infected areas as the fungi may live on and infect and disrupt future yields, [4].

2.1.2 Powdery mildew

Powdery mildew, caused by the fungi known as Uncinula necator when attacking grapevines, is the
most widespread disease of grapevines. It is a polycyclic disease and the pathogen may overwinter
in either the stalks and buds or in spherical fruiting bodies on stems, fruits and leaves lying on the
ground. Spores are developed during the spring and are spread to all green plant tissues (leaves,
twigs and berries) in the late summer. The spores then produce (germinate) gray-white powdery
mycelium, first on leaves and later on berries. The powder sucks nutrients of the leaves and grapes
leading to poor quality wine in the long run, or that grapes become destroyed entirely, [7].

(a) Early stage of powdery mildew infection
with gray-white powdery.

(b) Later stage with grapes covered in ash grey,
floury spores. Image from [8].

Figure 2: Symptoms of powdery mildew infection on a leaf and on grapes.

Powdery mildew is also abundant for warm (15-30°C) and humid (40-100 %) climates but not as
dependant on rainfall as downy mildew, [6]. Like downy mildew it’s important to identify what
stage the disease has reached, so that measures can be made for the upcoming planting cycles.

2.2 Machine learning and image analysis

2.2.1 Structure and layers of neural networks

An artificial neural network (ANN) is a computer structure where data information, such as an
image, is given as input to a layer of nodes to produce an output value at the output layer. The
output can be an image such as the input one with marked segments, or fewer nodes representing
classes that the input could belong to. Between the input and output are one or several hidden
layers with functions that process the information before the output layer. An exampled of ANN
structure is shown in figure 3.
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Figure 3: An example of a neural network structure. An image is sent as input and processed
through different hidden layers that finds features and alters the size to give an output in the end.
Image from [9].

The hidden layers are in general convolutional layers, pooling layers, fully connected layers and
activation functions. Towards the end of the network there is also a loss function that evaluates
the network performance so that the parameter are updated for the following iterations. This is
described in section 2.2.3. An ANN with a large number of hidden layers forms, if visualized, a
more tube-like structure of the layers which is interpreted as a Deep Learning network, or just
having more than one hidden layer could be considered Deep Learning, [10].

Convolutional layer

An ANN that uses one or many convolutional layer in the network is called a Convolutional neural
network (CNN). A convolutional layer has one, or often many, filters that are convolved over
the image. The 2D-convolution consists of a filter in shape of a m × n-matrix that moves along
the width and height of the image matrix. For each pixel region matching the filter size a new
pixel value is calculated through a dot product of the pixel region and the filter flipped along its
antidiagonal. As the filter is larger than 1 × 1 the resulting image will be (m − 1) smaller in row
width and (n − 1) smaller in column height. To retain the image size the output image can use
padding to pad out the edges with zeros. One can also define the hyper parameter stride to select
how long steps the filter should move along the sides, which also results in a smaller new image.
An example of a small dimensional convolution is shown in figure 4.

Figure 4: An example of a convolutional layer. A 2 × 2-filter convolves a 4 × 4-matrix (image)
resulting in a 3 × 3-matrix with its elements being features convolved from 2 × 2-regions of the
previous matrix. This particular filter is symmetrical along its (non-zero) antidiagonal meaning
the addition is simple along this diagonal.
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Pooling layer

A pooling layer uses a filter to extract or calculate one new value for each region it overlays, but
the filter itself does not have matrix elements as parameters. Instead the type of pooling layer
defines the calculation that is made over the filter-sized region, such as extracting the largest value
(max pooling) or calculating an average value (average pooling). There is only one filter for each
pooling layer, producing one output matrix per input instead of several as in the convolving case.
An example of a maxpooling layer is shown in figure 5. A pooling layer also has filter size, stride
and padding as hyper parameters that defines the layer. The stride determines how large pixel
steps the filter takes between each calculation. For instance, a 2 × 2-sized filter with a stride of
2× 2 only uses each element once, and halves the dimension size to the next layer.

Figure 5: An example of a maxpooling filter. The filter is of size 2× 2 with a stride of 2× 2 and
extracts the largest element from each 2× 2-region and taking two pixel steps at the time.

Batch normalization

The network processes what is known as a batch (or mini-batch) of data for one iteration and
then updates the parameters of the layers after each iteration. The time it takes for the network
to process the entire training set is called an epoch meaning that a batch is one fraction of an epoch.

Deep learning networks produces a vast number of parameters and output elements at each layer
for each input image to handle. To make the computing process go faster and avoiding unsta-
ble gradients for optimization, batch normalization (batch norm) layers is used to transform each
batch of data. The data is transformed to get a zero-mean, µB = 0 and unit standard deviation,
σB = 1 which speeds up computation and rate of convergence which in turn reduces the number
of training epochs that’s needed to produce a high performing network, [11].

Activation function - ReLU

A layer of activation functions is a layer of nodes that then defines an output from an input
through a function. A non-linear activation function can create complex mappings from input to
output making the network more powerful in approximating functions. The function most used for
deep neural network is the Rectified Linear Unit (ReLU), defined as g(x) = max(x,0) and shown
in figure 6, which is the only one used for this thesis. It is piecewise linear, and therefore easy
to optimize through gradient-based methods (such as stochastic gradient descent, SGD) but still
produces nonlinear outputs from linear transformation.
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Figure 6: The Rectified Linear Unit (ReLU) activation function which is g(x) = 0 for x ≤ 0 and
g(x) = 0 otherwise.

Softmax layer

In a neural network the final hidden layer before classification is one that prepares the data to
being treated as probabilities where the node with the highest probability assigns the label of the
input image. A probability must be in the interval of [0,1] with all individual probabilities adding
up to 1. A softmax function σ turns an input vector ~z = z{i···K} to a probability distribution using
the exponential function and normalizing according to equation

σ(~z)i =
ezi∑K
j=1 e

zj
. (1)

2.2.2 Learning and training process

Supervised learning

For a problem where an input X belongs to a output y and should be classified as such through
machine learning, the quest for the mapping y = f(X) is called Supervised learning. Each sample
used for training the network has a known correct output and for each classification a result of
whether the output is correct or not is supervised. In Unsupervised learning algorithms may be
used to find structures and similar features between the samples such by clustering data, but
classification is better set for supervised learning. To have supervised learning, the training data
(images) must be labelled so the performance of the network may be sequentially evaluated by
comparing the predicted outputs to the ground truth i.e. the correct labels.

Training, validation and testing

After selecting a structure for the neural network all nodes and filters of the layers must have
their parameters trained. In other words, the network must learn to classify images correctly. The
process of training is done by having a set of data or images called the training set and making
the network process the set and predict the output for each data sample. The network then tries
to improve its score for each iteration as the parameters of the layers and weights between nodes
are updated.

The training set is sought to be large in numbers and diverse with respect to what the out-
puts are sought to be. It must have representatives for each sought output label or it won’t be
able to train the network’s parameters in finding that label’s defining traits and features. The
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training set is sent as inputs to the network as smaller (mini)-batches to get parameter updates
along the way, and not after the entire set has been processed. An entire pass of the data set is
called an epoch. The network will after more and more training epochs tend to perform better as
the parameters and weights are updated, but the goal for a classifying neural network is rarely to
perform flawlessly in classifying the training set, overfit to the training data, and then perform less
than good on new data. After training the network should be sufficiently generalized to perform
well for new and unknown data as well.

Figure 7: An illustration of having different sets of data for evaluating a machine learning process.
The validation data may be interchangeable with the training data while the test set should be
independent.

One approach is to evaluate the network with another (often) smaller data set, a validation set
that is independent to the training set, throughout the training process. The performance for the
validation set gives indications in how to tune the hyperparameters and architecture of the struc-
ture. The validation set is passed every epoch, or at another rate if preferred, and its performance
is noted. The goal is then to have the validation accuracy increase as it means that the model
performs better for new data. Doing too many attempts to reach an acceptable validation accuracy
could however also lead to a risk of overfitting to the validation data.

The final subset to evaluating the model is a testing set containing more data independent to
the training and validation set. While the training and validation set may interchange data be-
tween attempts, the testing set should be set aside from the start of the data acquiring, as seen
in figure 7. The validation data is not part of the training phase and affecting parameter updates
while the testing set is a more final representation of ’new data’ that the finished network model
should be evaluated to handle. The testing set is just passed through the network once in the end
of the completed training.

2.2.3 Loss functions

A loss function in an ANN is what is used to optimise parameters and make the network learn to
correctly classify the data. Different loss functions define different prices to pay for making errors
during the training process. This affects how quick the parameters adapt to more high performing
iterations. An ANN will strive to minimize the loss given by the function, which decreases as more
correct predictions are made by the network.

Categorical cross-entropy loss

Categorical cross-entropy loss is a loss function used for multi-label classification, where there are
more than two output labels. For one data or image sample, output probabilities ŷ have been
calculated through the softmax function. The loss function of comparing the probabilities to its
true label y can be expressed as
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L(y,ŷ) = −
N∑
i=1

K∑
k=1

yik log(ŷik). (2)

The loss function iterates over all N data values and K possible labels. If the sample i truly
belongs to label k then yik = 1, otherwise it’s yik = 0. The predicted probability of belonging to
label k is ŷik ∈ (0,1] meaning the logarithm will return a non-positive value which the first minus
sign changes to a positive value of the loss. The contribution to the loss is larger if it’s less likely
to be correctly predicted i.e. when the probability value is low.

Weighted cross-entropy loss

A further application of the categorical cross-entropy loss is to adjust for when the data set has a
skew distribution of the ground truth labels. To force the network to put emphasis in predicting
the more rare labels, equation (2) can be supplemented with an array of weights, wk corresponding
to their inverted prominence in the data set. The new loss function is shown as

L(y,ŷ) = −
N∑
i=1

K∑
k=1

wkyik log(ŷik). (3)

If a data set has the label distribution of c =
[
c1 c2 c3

]
=

[
0.8 0.15 0.05

]
then their weights

for the weighted cross-entropy loss are the inverted concentration i.e. w = c−1 =
[
5
4

20
3 20

]
∝[

1 16
3 16

]
. Applying this to equation (3) means that misclassifying the third label is 16 times

more costly than misclassifying the first label, giving the network more incentive to classify the
rarer labels correct. The factor wk in the formula may be altered to be e.g. squared to increase
the penalty further, or to use log(wk) to dampen the penalty. For this thesis, the linear approach
to wk of equation (3) is used.

2.2.4 Performance analysis

The evaluation for a classification problem is efficiently done by plotting a confusion matrix where
each case of label prediction is noted along with its true label. One example of a confusion matrix
for classifying fruits is shown in figure 8.

A few measures for evaluating the model are Accuracy, Precision and Recall, defined as



Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
. (6)

TP refer to true positives, correct classifications to the first label defined as positive, TN refer to
true negatives, correct classification to the other (negative) labels, FP refer to false positive, incor-
rect classifications to the positive label and FN refer to false negatives, incorrect classifications of
the other labels. For multilabel classification, which label is positive or negative is interchangeable
for which label should be in focus. In figure 8 for the label ’Orange’ the precision is 33.3 % since
there are 2 true positives and 3+1 false positives (other fruits predicted as oranges).

12
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Figure 8: An example of a confusion chart for a prediction of 36 fruits to three labels. The row
declares what the true label of each sample while the column declares what it was predicted as.
The statistics in the left represents recall for each label while the statistics in the bottom declares
precision. The accuracy of the model is calculated as the sum of the elements in the blue diagonal
divided by the sum of all matrix elements.

The precision defines how well a model finds correct positives out of predicted positives while
recall defines how well it finds positives and may be interpreted as a relative accuracy for each
label. Other definitions are that recall for positives are called Sensitivity and for negatives are
called Specificity. A further measure that may be used for evaluation of classes with a skewed
distribution is Balanced accuracy defined as

Balanced accuracy =
1

n

n∑
i

Ri. (7)

where Ri is the recall for each of the n classes. An optimal prediction model has an accuracy,
precision and recall close to 1.

2.3 Previous work in similar fields

One similar project to scouting for grapevine diseases using technology is VineSens, a decision sup-
port system and application developed by Pérez-Expósito et. al. from Universidade da Coruña,
[13]. It differs from this project in that it doesn’t use machine learning or neural networks but
gave inspiration in how data from installed sensors could be used for downy mildew detection.

A previous work in image analysis and convolutional neural networks are the U-Net by Ron-
neberger et. al., [14]. The project concerned effective biomedical segmentations using few training
images and repeated convolutions, ReLU and maxpooling without fully connected layers.

Another project of using image analysis and machine learning for improving agriculture was a
project of detecting movements for cows around automatic milking stations by Guzhva et. al.,
[15].
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3 Methods

3.1 Preparation of image data

The first task of the project was to go through the inventory of images already taken by Lotta
Nordmark of Swedish University of Agricultural Sciences and Mikael Gilbertsson of RISE, who are
two participants of the Freja AI-project. In total there were 1295 images taken between 2019-08-15
and 2020-09-29 with wine leaves, apple leaves, grapes, stalks or shrubbery as motives. The only
documented information about each image were the date each photograph was taken along with
geographical coordinates. The purpose of going through the inventory was to find the ones with
wine leaves (healthy and non-healthy) as a clear focus.

3.1.1 Image motives and ground truth labelling

By going through the images sorted by date it was possible to discard 463 images that only con-
tained leaves from apple trees, which wasn’t of interest for this branch of the Freja AI-project. The
images taken between October 2019 and May 2020 (in total around 170 images) were also for the
most part discarded, as the image motive were branches and stalks without leaves. All remaining
images were also inspected to remove the images with grapes (healthy or non-healthy) or bushes
and shrubbery as motives.

In total 520 original images remained for possible use. An initial labelling of the images was
made by the author to four different labels; Healthy and powdery mildew (stage 1, 2 and 3). The
lay labelling was made by looking for the known symptoms of powdery mildew and evaluating the
date as leaf infections mostly occur in late summer.

Map plots of all images using their coordinates was made to check which locations most im-
ages originated from and also if the initial lay labelling seemed accurate. The latter was done by
looking for if there were clusters of images with infections. The map plots are shown in figure 9
and 10. The colour of each spot corresponds to the label (stage of disease outbreak) made by the
author defined by the legend (in Swedish) in the lower right of the images: 0 (no outbreak), 1
(small outbreak), 2 (medium outbreak) and 3 (large outbreak).
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Gradering bladmögel
0 - Inget angrepp

1 - Litet angrepp

2 - Medel angrepp

3 - Stort angrepp

Google Hybride Map

Grading downy mildew

0 - no outbreak

1 - small outbreak

2 - medium outbreak

3 - large outbreak

Figure 9: Map plot showing the geographical position of each image around the vineyard in
Glemmingebro. A few spots are far off from the planting site meaning that the GPS data may be
inaccurate to an extent.

Gradering bladmögel
0 - Inget angrepp

1 - Litet angrepp

2 - Medel angrepp

3 - Stort angrepp

Google Hybride Map

Grading downy mildew

0 - no outbreak

1 - small outbreak

2 - medium outbreak

3 - large outbreak

Figure 10: Map plot showing the geographical position of each image around the vineyard in
Flyinge.

The map plots showed that most images were taken in Glemmingebro, where no weather and soil
sensors had been installed on the vineyard, in contrast to Flyinge. Therefore the possibility of
using weather and soil data from the Freja AI application backend as additional model parameters
was too limited. The focus was instead kept solely on image analysis for this thesis project. There
were also a few (18) images that were taken in Linköping and Mikael Gilbertsson recommended
that those were discarded as they could be too deviant from the other images that were taken in
Scania.
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In consultation with the more biology proficient Nordmark and Gilbertsson a more thorough la-
beling of the remaining images was made. It was initally sought to have seven different labels:
Healthy, downy mildew (stage 1, 2 and 3) and powdery mildew (stage 1, 2 and 3). There were
however only three and nine images labeled as stage 3 downy mildew and stage 3 powdery mildew
respectively. A decision was made to merge the labels of stage 2 and 3 for each disease into two
new stage 2 labels. 22 images showing leaves with signs of malnutritions were also discarded as it
would be too difficult to take into account those along with images of downy and powdery mildew.
The number of images in each new label is shown in table 1.

Table 1: Number of images assigned to each label. In total there are five labels combining the
leftmost column and uppermost row, except for the healthy ones.

Stage 0 Stage 1 Stage 2
Healthy 336
Downy mildew 37 26
Powdery mildew 23 26

(a) Healthy leaf (b) Downy mildew, stage 1 (c) Downy mildew, stage 2
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(d) Powdery mildew, stage 1 (e) Powdery mildew, stage 2

Figure 11: One sample image from each label is shown above. As seen by comparing figure 11a
and 11d it can be very difficult to distinguish infected leaves from healthy. In this case the leaf
with stage 1 downy mildew have a few yellow spots on the right side of the larger leaf. The light
from the sun may also make it difficult in finding the infected regions.

Furthermore it was decided to also run network training and classification with fewer labels by
merging label categories to see if the performance would improve. Different tests were made for
three different labels, by merging stages 1 and 2 for each disease, and two different labels, by
merging all labels with disease stages. The label spread for three and two different labels is shown
in table 2 and 3 respectively.

Table 2: Number of images assigned to each
label if merging stage 1 and 2 of the infected
labels, leading to three usable labels.

Healthy 336
Downy mildew 63
Powdery mildew 49

Table 3: Number of images assigned to each
label if merging all of the infected labels,
leading to two usable labels.

Healthy 336
Non-healthy 112

3.1.2 Image size and augmentation

The original resolution for the majority of the available images were 2360 × 4032 pixels with 3
colour channels (It’s always assumed to have 3 colour channels from now on). As the network
would be enormous and take very long time to execute with the original image size all images were
scaled down to a more manageable size. By starting off small with an image size of 28× 28 a few
images were ocularly inspected by the author. As it was close to impossible to distinguish any
infectious regions from images with known infections it was concluded that it would be too difficult
for the deep learning network as well, with the given resolution. With an image size of 56× 56 the
infected regions of some stage 2 images were visible but most were not. By raising the resolution
by another factor of 2 for each side to 112× 112 most features of infected images were visible so it
would be more feasible for the network.
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20 % (89 images) out of the 448 original images were removed and saved as a testing set, and
the remaining 359 were used for training and validation. It was made sure that all individual
classes were present in the testing set. To get more data for the training and validation of the
network a few augmentation techniques were performed. By getting an expanded data set the
network would be more robust by learning more generalised characteristics of the images instead
of memorizing details.

The first goal was to generate images that were zoomed in at different regions of the original
images. The original images were reshaped to 224 × 224, then regions at a fourth of the size i.e.
112×112-regions were cropped from the larger ones. Firstly, all 448 original images of size 224×224
were added together and then divided by 448 to get an average image out of the ones focused on
a wine leaf. The calculated average image is shown in figure 12a.

The average image had a vague resemblance to a leaf meaning that it can be assumed that most
images have the leaf in central focus of the image. This average image was used to choose four
coordinates where 112×112-regions could be cropped that has different corners of the leaf zoomed
in focus. In figure 12b four 112 × 112-boxes were marked and the same coordinates were used to
generate four extra images for each original. Assumptions were made that a corner of a leaf will
be featured in each new image.

(a) Average image of all 448 leaf images of size
224× 224 summed together

(b) Smaller 112×112 image croppings at differ-
ent corners of the lighter region.

Figure 12: Average image of all 448 leaf images, with and without 112 × 112 image croppings.
The lighter green vaguely resembles a leaf in the left image, so croppings according to the right
image might be effective in getting a zoomed in region of a leaf for each original image.

Using this procudure an additional 1436 images of size 112 × 112 were created out of the 359
original images for training and validation. To simplify the labelling, each new image were given
the same label as the image it was cropped from, even though an infected pixel region only may
be clearly visible in another part of the leaf, that’s not part of the cropping.

The second goal was to augment the image inventory by rotating the 1795 images by small angles
to make the network more applicable for input images of different camera angles. Each image was
rotated 10 and 20 degrees to the left and right with the command imrotate in MatLab along with
the option to crop the rotated image to maintain it’s size of 112 × 112. Two rotated images are
shown in figure 13a and 13b.
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(a) An original image rotated 10 degrees to the
left.

(b) A zoomed image rotated 20 degrees to the
left.

Figure 13: Two sample images rotated 10 and 20 degrees respectively. The imrotate method
extrapolates the image with black pixels and crops away the corner areas to maintain the wanted
size.

The rotating procedure gave an additional 7180 images to the inventory for training and validation.
The spread of the labels is shown in table 4 for five output labels, and in table 5 and 6 for three
and two labels respectively.

Table 4: Number of images assigned to each label with the augmented image inventory.

Stage 0 Stage 1 Stage 2
Healthy 6725
Downy mildew 750 525
Powdery mildew 450 525

Table 5: Label spread with three output
labels.

Healthy 6725
Downy mildew 1275
Powdery mildew 975

Table 6: Label spread with two output la-
bels.

Healthy 6725
Non-healthy 2250

3.2 Design of deep learning network

The first attempt at a deep learning network structure was taken with inspiration of an assign-
ment in the Machine Learning course (FMAN45) at LTH in Spring 2019. The network concerned
classifying digits of size 28 × 28 from the MNIST data base which was used as a starting point.
The layer array as printed from MatLab is shown below in table 7, including a few adjustments
made at the start:

• The image input (layer 1) was changed to have 3 colour channels

• The number of convolutions in layer 13 was changed to match the number of output classes.
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Table 7: Overview of the initial deep learning network which was later expanded.

# Layer Type of layer Specification
1 Image Input 28× 28× 3 images with ’zerocenter’ normalization
2 Convolution 5 3× 3 convolutions with stride [1 1] and padding [0 0 0 0]
3 Batch Normalization Batch normalization
4 ReLU Rectified linear unit
5 Max Pooling 2× 2 max pooling with stride [2 2] and padding [0 0 0 0]
6 Convolution 10 4× 4 convolutions with stride [1 1] and padding [0 0 0 0]
7 Batch Normalization Batch normalization
8 ReLU Rectified linear unit
9 Max Pooling 2× 2 max pooling with stride [2 2] and padding [0 0 0 0]
10 Convolution 20 3× 3 convolutions with stride [1 1] and padding [0 0 0 0]
11 Batch Normalization Batch normalization
12 ReLU Rectified linear unit
13 Convolution 5 3× 3 convolutions with stride [1 1] and padding [0 0 0 0]
14 Softmax Softmax
15 Classification Output Cross entropy

For each quadrupling of the input resolution i.e. increasing the 2D dimensions by a factor of 2
for each side, additional layers had to be added to lower the dimensions for the final layers. After
the first convolution layer another batch normalization, ReLU and maxpooling layer was added
when raising the input size to 56× 56× 3, with the max pooling layer (with stride 2× 2) efficiently
halving the dimensions further in the network.

The usable image inventory was very skewed with nearly 75 % of the images being labelled as
healthy and the spare 25 % was divided into four infected labels. Early network testing faced
the problem that the network "took a shortcut" in getting a high performance rate by converging
to classifying all images as healthy. By doing so the network nearly always got an accuracy of
around 75 %. This was fixed by replacing the final classification layer from regular Cross entropy
to Weighted cross entropy and using an array of inverted occurrence of all labels. The weights of
occurrence, w is

w =
1

N


NH

NPM1

NPM2

NDM1

NDM2

 ≈

0.75

0.08

0.06

0.05

0.06

 (8)

and the inverse weights w−1 was used as parameters for the classification layer. A similar calcula-
tion was made for the cases with three or two output classes.

The final structure of the deep learning network was chosen as below with an input size of 112×112
and layer 19 being adjustable to how many output classes that were desired.
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Table 8: Overview of the final deep learning network.

# Layer Type of layer Specification
1 Image Input 112× 112× 3 images with ’zerocenter’ normalization
2 Convolution 5 3× 3 convolutions with stride [1 1] and padding [0 0 0 0]
3 Batch Normalization Batch normalization
4 ReLU ReLU
5 Max Pooling 2× 2 max pooling with stride [2 2] and padding [0 0 0 0]
6 Batch Normalization Batch normalization
7 ReLU ReLU
8 Max Pooling 2× 2 max pooling with stride [2 2] and padding [0 0 0 0]
9 Batch Normalization Batch normalization
10 ReLU ReLU
11 Max Pooling 2× 2 max pooling with stride [2 2] and padding [0 0 0 0]
12 Convolution 10 4× 4 convolutions with stride [1 1] and padding [0 0 0 0]
13 Batch Normalization Batch normalization
14 ReLU ReLU
15 Max Pooling 2× 2 max pooling with stride [2 2] and padding [0 0 0 0]
16 Convolution 20 3× 3 convolutions with stride [1 1] and padding [0 0 0 0]
17 Batch Normalization Batch normalization
18 ReLU ReLU
19 Convolution 5 3× 3 convolutions with stride [1 1] and padding [0 0 0 0]
20 Softmax Softmax
21 Classification Output Weighted cross entropy

For each attempt, the 8975 images were shuffled and 25 %, 2244 images, were held out as the
validation set, and the remaining 6731 images became the training set. The mini batch size for
each training period were set to 336 giving 20 iterations per epoch. The learning rate was kept
constant as 0.1.

To evaluate how well the network performed with respect to being able to distinguish all classes,
and not just the healthy ones, Balanced accuracy was used as the mean of the recall for all classes.

For example in a case where all healthy images are classified correctly but none of the others
would result in an accuracy of 75 % for the total set. It would be a recall of 100 % for the healthy
images and 0 % for each of the infected classes. This would result in a balanced accuracy of
1
5 (100 + 0 + 0 + 0 + 0)% = 20% which is low. While trying to improve the overall performance
by tuning the network and image augmentations it become useful to take balanced accuracy into
ongoing consideration.
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4 Results

In the sections below are prediction scores for when declaring 5, 3 or 2 different output classes
of the data set. In section 4.4 are tables that compare the different models’ abilities to classify
infected leaves.

4.1 5 output classes

Training and validation

In figure 14 graphs are shown of how the performance (accuracy) and loss progresses when the
model is trained for 30 epochs i.e., 600 iterations with a validation once per epoch. Towards the end
of the training period the increase and decrease for the validation performance and loss function
respectively stagnates as they won’t keep up with the training plots. The graphs appeared to have
converged and if training further there would be risk of overfitting the model to the training data.

Figure 14: The progression for performance and loss when training the 5-class network in 30
epochs and validating once per epoch. The upper graph shows the accuracy for each iteration
when the classification layer compares to the ground truth. The lower graph shows the total loss
for each iteration (the classification part) which tends to decrease as the performance increases.

Table 9 summarizes the scores of the model when classifying the entire training and validation
sets after completed training with the training set naturally having a higher accuracy as the
parameters of the network layers are better adjusted to its images. The higher balanced accuracy
for the training means that the network got higher accuracy on the infected classes with fewer
images, as can be seen in the right margin of the confusion matrix in figure 15.
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Table 9: Summary of the classification scores for training and validation of the 5-class problem
after training in 30 epochs.

# Correct images Accuracy Balanced acc.
Training set 5740 / 6731 0.8528 0.9535

Validation set 1688 / 2244 0.7522 0.7448

Figure 15 and 16 show the confusion matrices for the classification of the training and validation
set respectively. The matrices summarizes which individual class each image has been classified to
rather than just declaring right or wrong. For the training matrix, the recall was very high for each
infected class and slightly lower for the more abundant healthy class. Conversely the precision was
superb for healthy and lower for the infected ones. Especially ’Downy_1’ had a low precision and
it occurred often that healthy images were classified as ’Downy_1’.

Figure 15: Confusion matrix of the predictions for the training set after completed 5-class training.
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The validation matrix showed that the recall was weaker for most infected classes but still high for
’Powdery_2’. The precision stats were similar in pattern to the training ones and still weakest for
’Downy_1’ and also relatively worse for ’Powdery_1’ compared to training. More healthy leaves
were classified as ’Downy_1’ compared to the true label itself.

Figure 16: Confusion matrix of the predictions for the validation set after completed 5-class
training.

Testing

The testing set was originally set aside as 20 % of the 448 original images ≈ 89 images. As it would
be a very small data set the same images were augmented by first adding 336 images of zoomed
quarters and also 1780 images of when the 445 images had been rotated ±10° and ±20°.

The classification scores of the testing sets are listed in table 10 with the smallest set reaching
the highest accuracy of 66 %. All sets however showed a fallback in the balanced accuracy by
only reaching around 40 % meaning that the healthy leaves carried the largest weight of the high
accuracy at the expense of the infected leaves.

Table 10: Summary of the classification score for the different sized testing sets of the 5-class
problem after training in 30 epochs.

# Correct images Accuracy Balanced acc.
Original testing set 59 / 89 0.6629 0.3754

Incl. zoomed images 288 / 445 0.6472 0.4082
Zoomed and rotated images 1330 / 2225 0.5978 0.3985
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In figure 17 the confusion matrix for the medium sized testing set is shown. Recall and precision
were still good for healthy leaves and a solid recall for ’Powdery_2’, but very low performing for
all others leading to the low balanced accuracy. The precision are lowest for the stage 1 diseases
with it being more that healthy leaves are classified as infected.

Figure 17: Confusion matrix of the predictions to the 5-class problem for the testing set with the
original images and zoomed quarters (445 images in total).
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4.2 3 output classes

Training and validation

In figure 18 the progression of the training and validation accuracy and loss is shown when the
3-class network is trained for 20 epochs. The network was trained for a shorter period compared
to the 5-class network, as the validation performance appeared to have converged earlier, but still
reached a higher performance for both training and validation.

Figure 18: The progression of training the network for 20 epochs (400 iterations), with 3 sought
output classes, and validating once per epoch.

Table 11 summarized the final training and validation scores of the 3-class model with the accuracies
being higher than for 5 classes (except that the BA for training is slightly lower). The accuracy and
balanced accuracy are closer to each other for the training set, compared to the 5-class problem
where they differed 10 percentage points.

Table 11: Summary of the classification scores for training and validation of the 3-class problem
after training in 20 epochs.

# Correct images Accuracy Balanced acc.
Training set 5873 / 6731 0.8770 0.9260

Validation set 1790 / 2244 0.7977 0.8054

Figure 19 shows the confusion matrix for the classification of the training set. The recall for the
healthy leaves was higher here compared to the 5 class problem (with the healthy class being
nearly unchanged in size) meaning fewer healthy leaves had been classified as infected. Otherwise
the recall was similar to the stats in 15. The precision was higher for the ’Downy’ images compared
to the separate stages in the 5-class problem but slightly lower for the ’Powdery’ images.
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Figure 19: Confusion matrix of the predictions for the training set after completed 3-class training.

Figure 20 shows the confusion matrix for the classification of the validation set. The recall was
similar but higher than the stats in 15 when combining the separate stages. The precision was
also higher for both diseases, instead of slightly decreased for ’Powdery’ as in figure 19 compared
to figure 15.

Figure 20: Confusion matrix of the predictions for the validation set after completed 3-class
training.
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Testing

The classification scores for the different sized test sets are shown in table 12. The accuracy was
similar but 4-8 percentage points higher than in table 10. The balanced accuracy was however
much better and in this case better for the smallest set compared to the 5-class testing.

Table 12: Summary of the classification score for the testing set (with and without augmentations)
of the 3-class problem after training in 20 epochs.

# Correct images Accuracy Balanced acc.
Original testing set 63 / 89 0.7079 0.6716

Incl. zoomed images 310 / 445 0.6966 0.6336
Zoomed and rotated images 1504 / 2225 0.6760 0.6253

The confusion matrix for the medium sized testing set is shown in figure 21. The results were more
positive than the 5 class testing, by having a recall above 50 % for each label and the precision
were also higher for the infected labels. Only the recall for ’Powdery_2’ in figure 17 out of the
stats of the infected labels was comparable to these results.

Figure 21: Confusion matrix of the predictions to the 3-class problem for the testing set with the
original images and zoomed quarters.
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4.3 2 output classes

Training and validation

In figure 22 the progression of the training and validation accuracy and loss is shown when the
2-class network is trained for 15 epochs. The performance reaches high level (above 80 %) even
faster and the loss shows peculiar traits in its few spikes in training loss that are larger than the
validation loss.

Figure 22: The progression of training the network for 15 epochs (300 iterations), with 2 sought
output classes, and validating once per epoch.

Table 13 shows the final classification scores for the training and validation sets after 15 epochs of
training to classify binary as healthy or not. All accuracy measures are higher compared to the
3-class and 5-class problem (except for the BA of the 5-class training set).

Table 13: Summary of the classification scores for training and validation of the 2-class problem
after training in 15 epochs.

# Correct images Accuracy Balanced acc.
Training set 6108 / 6731 0.9074 0.9301

Validation set 1996 / 2244 0.8574 0.8614

Figure 23 shows the confusion matrix for the classification of the training set. Following the trend
when decreasing the number of outputs, the precision are higher for this matrix compared to
the matrix in figure 19. The recall for the non-healthy is similar to the average of ’Downy’ and
’Powdery’ in the aforementioned matrix.
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Figure 23: Confusion matrix of the predictions for the training set after completed 2-class training.

Figure 24 shows the confusion matrix for the classification of the validation set. The recall and
precision are higher for this table compared to the other validation scores, especially the recall for
non-healthy ones being solid above 60 %.

Figure 24: Confusion matrix of the predictions for the validation set after completed 2-class
training.
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Testing

The classification scores for the different sized test sets are shown in table 14. The accuracy reached
around 75 % for each testing try which were higher than for 5 and 3 classes, while the balanced
accuracy also reached the best score out of the models.

Table 14: Summary of the classification score for the testing set (with and without augmentations)
of the 2-class problem after training in 15 epochs.

# Correct images Accuracy Balanced acc.
Original testing set 69 / 89 0.7753 0.7286

Incl. zoomed images 339 / 445 0.7618 0.7502
Zoomed and rotated images 1666 / 2225 0.7488 0.7422

The confusion matrix for the medium sized testing set is shown in figure 25. Both classes reached
a recall of over 70 % and the non-healthy leaves had a precision of over 50 % for the first time of
the testing scores for the different models.

Figure 25: Confusion matrix of the predictions to the 2-class problem for the testing set with the
original images and zoomed quarters.
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4.4 Comparison between output predictions

Predicting separate grapevine diseases

Table 15 lists the scores and recall of the 5-class model predicting each disease (e.g. adding the
scores of Downy_1 and Downy_2 to a collected label Downy) and compares it to the 3-class
model. The * means also including the wrongly predicted stage of the same disease, for instance
a ’Downy_1’-image classified as ’Downy_2’ is included in Downy*, as a way of displaying a lower
performance threshold for the model with more classes and making it more comparable with the
model that has a wider scope.

Table 15: A summary for adding up the specific disease stage predictions of the 5-class problem
(figure 16) to a collected amount for each disease and compared against the 3-class results (figure
20). The testing scores correspond to the matrices in figure 17 and 21.

Val. predictions Val. recall Test. predictions Test. recall
5-class, Downy 229/333 0.6877 16/60 0.2667
5-class, Downy* 262/333 0.7868 33/60 0.5500
3-class, Downy 244/326 0.7485 34/60 0.5667
5-class, Powdery 193/241 0.8008 19/50 0.3800
5-class, Powdery* 211/241 0.8755 27/50 0.5400
3-class, Dowdery 217/249 0.8715 30/50 0.6000

The table shows that the 3-class model’s two infected labels got better recall for the testing set
but slightly lower than the labels with * for the validation recall.

Predicting non-healthy leaves

Table 16 lists the scores and recalls of the 5-class and 3-class model predicting non-healthy (NH)
images and compares to the 2-class model. The * means also including all images predicted as
infected, and not necessarily the specific true label, to make it more comparable with the 2-class
model.

Table 16: A summary for adding up the specific diseases and stage predictions of the 5-class
(figure 16) and 3-class (figure 20) problems to a collected amount representing non-healthy (NH)
and comparing against the 2-class results (figure 24). The testing scores correspond to the matrices
in figure 17, 21 and 25.

Val. predictions Val. recall Test. predictions Test. recall
5-class, NH 422/574 0.7352 35/110 0.3182
5-class, NH* 524/574 0.9129 77/110 0.7000
3-class, NH 461/575 0.8017 64/110 0.5818
3-class, NH* 490/575 0.8522 77/110 0.7000
2-class, NH 479/551 0.8693 80/110 0.7273

The table shows that the 2-class model’s two infected labels got better recall for the testing set
and the validation set except for the 5-class model that includes all non-healthy predictions.
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5 Discussion

5.1 Interpretation of results

In general the results of the 5-class problem were satisfying when looking at the scores of the
validation set that gave an accuracy and balanced accuracy of around 75 % as shown in table
9. Another execution, not featured here, tried using 40 epochs of training but the results didn’t
improve. Instead the validation loss would increase meaning that 30 epochs for training feels suf-
ficient. When trying the testing set the accuracy was still solid being between 60-66 % as shown
in table 10 depending on including the augmentations or not.

The accuracy could however be interpreted as misleadingly large as for each run of the differ-
ent sized testing sets the rate of healthy images among the correctly classified was around 87 %.
The healthy images did constitute 75 % out of the data set so the results show that it is easier to
predict the Healthy leaves. It is reflected in the column of balanced accuracy in table 10 which
is around 40 % as figure 17 shown that the recall is very low for all infected labels except ’Pow-
dery_2’, as its symptoms could be considered more distinct with more white spores on the leaves.

Comparing the 5-class testing results to the table results for 3 and 2 classes it is apparent that the
network faces issues in classifying many classes and finding the distinctions for the different diseases
and infection stages. The confusion matrices for validation and testing showed that the precision
was lowest throughout for the stage 1 diseases and there were more healthy images classified as
’Downy_1’ than true ’Downy_1’ images themselves. There were though about nine times more
healthy images than ’Downy_1’ and 11 % (one ninth) of the healthy ones classified as ’Downy_1’
meaning that it might not be too extraordinary.

The images with powdery mildew performed collectively better recall-wise than the ones with
downy mildew and ’Powdery_2’ always performing best precision-wise of the infected labels.
Through the author’s eyes it could be derived that the leaves with downy mildew had less dis-
tinctive symptoms on many of the images of the inventory. As seen in figures 11, the powdery
mildew images are more distinctive with their grey-white areas, than the more obscure yellow
spots. ’Powdery_2’ were the most distinctive and least prone to being classified as healthy, while
’Downy_1’ were most frequently classified as healthy and healthy ones were had ’Downy_1’ as the
most common misclassification, as they could be very similar to a healthy leaf.

The tables for comparing different output predictions 15 and 16 showed that the testing recall
were higher for when having a model for predicting fewer different labels than when having several
labels but merging the results for the different stages and diseases.

Balanced accuracy was used to compensate for that the network is better at predicting healthy
images than the non-healthy. What should be taken into consideration when comparing the BA for
different number of outputs is the effect of the denominator in equation 7. In a skewed prediction
result classifying all healthy ones as correct and none others gives a BA = 0.2 for 5 classes, 0.33
for 3 classes and 0.5 for 2 classes, meaning the columns showing balanced accuracy in the tables
should have that in consideration.

Having different sizes of the test sets didn’t affect the testing results remarkably. Instead, the sets
including the images rotated ±10° and ±20° had the lowest accuracy.
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5.2 Sources of errors

When evaluating the methods used in the thesis, possible errors exist primarly in the image inven-
tory and effects of the chosen augmentation techniques.

Even when collaborating with biologists of the project and sifting out the images for usable ones
with vine leaves in focus, some images have more than one leaf that may to an extent compete for
the focus of the network predictions. The light from the sun could vary a lot on some images and
either affect the lightness of the entire leaf and background of an image or produce small spots of
lights on the leaf surface. These lighting effects could affect the possibility of finding the yellow
spots of leaves with downy mildew. Data augmentation techniques of applying new lightness or
color to the images could possibly improve the model’s ability in aspect to this.

The choice of augmenting the data set by producing zoomed quarters at certain coordinates of
each image might have had some fallbacks. A simplified approach was used in cropping the same
coordinates for all images without inspecting all hundreds of them. The zooming might lead to a
leaf not being a prime focus anymore and especially the infected (white or yellow) regions might
not be included while the image is still labelled as infected. One zoomed image is figure 26 where
more soil than leaf is in focus, and other images might have similar problems.

Figure 26: A zoomed quarter of a leaf image where a larger contiguous area of soil is in focus
than the leaf.

5.3 Future work and suggestions

If all or more images could be associated to the weather data from the sensor stations then prob-
ably would another implementation be possible that is not limited to image analysis and looking
for visible symptoms.

Another approach of augmentation for the image data could be to crop the entire leaf from each
original image and then project to other backgrounds to train the network to distinguish leaves
from varying settings. A large work load would be needed to manually crop each leaf from the
image, or finding a usable tool to make it automated, that was too specific too put focus on for
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this thesis.

There are probably an astronomical amount of different choices to be made regarding the net-
work structure and hyperparameters for each layer that could improve the performance. A more
simplified approach was used in layer selection for this thesis that found satisfaction in reaching
high training and validation results, rather than trying to experiment further and further.

There are many known convolutional neural networks and detection tools that could be used
as a method of transfer learning. The method would be to have pre-trained layers at the start and
then manually implement the final layers that define the sought output labels.

The most general reflection obtained is that a larger inventory of images for training would largely
help improving the performance and robustness of the network, rather than having just 448 original
images, at least for the objective of having 5 output classes.
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6 Summary and conclusions

In this thesis we study how machine learning methods improve wine production, by detecting
grapevine diseases such as downy mildew and powdery that may spoil coveted harvests.

The results showed that a deep learning network, that has trained with nearly 7000 images, could
reach acceptable (∼60 %) to high classification accuracies (∼80 %) depending on the sought speci-
ficity of the outputs. Having a narrow scope of 5 different output classes, with the purpose of
detecting separate kinds and stages of grapevine diseases, performed worse when tested against
entirely new data as the recall for each infected label was low. Having a wider scope by taking
disease stage (3 classes) or disease type (2 classes) out of notice performed better so for this im-
plementation and image data set too many specific labels was suboptimal.

Conclusions are that to try and classify objects, that are very homogeneous in visual traits, into
a large number of outputs the data set has to be large in numbers so that the network can learn
the not so distinctive traits as good as possible. More experimentation can be made regarding
the network design and more carefulness could be taken into consideration regarding the image
augmentation to make sure that each image shown something relevant.

There are further work to be done for Freja-AI to have a foolproof decision support system for
working to preserve the quality of wine production, but this thesis have been a few steps down the
road towards it and partially shown that technology such as machine learning has a developable
place for agriculture in Sweden.
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