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Abstract

Propagation-based X-ray phase-contrast tomography is a 3d imaging technique that
utilizes two-dimensional projections from different angular views θ = [0, π] to recon-
struct the 3D object information. The phase-contrast allows for higher feature contrast
than conventional transmission tomography, as the phase interference gives rise to a
sharp edge contrast. These phase fringes can then be utilized in so-called phase re-
trieval algorithms to retrieve the original imaged object. One of the most commonly
used phase retrievals is derived using the transport-of-intensity TIE framework. This
method has for a long time been applied in the projections space with single param-
eters assuming a single material sample. However, recent results indicate that phase
retrieval in the reconstructed volume, using 3D TIE phase retrieval, could allow for
the use of localized phase information in the retrieval step. This thesis aims to test
the underlying approximation that allows for the use of 3D phase retrieval. It will also
compare the two methods in unfavourable conditions. Utilizing simulations, we show
that the approximation holds for organic materials, re-enforcing the current consensus.
Additionally, both the 2d and 3d phase retrieval methods show comparable results in
simulations, while laboratory measurement data show the same retrieved structure but
with lower contrast.
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1 Introduction

X-rays are part of the electromagnetic spectrum and occupy the regions between 0.1→ 100
keV, making the radiation highly susceptible for interactions with inner shell electrons. This
high chance of interaction makes X-rays ideal for differentiating dense materials, as the
relative amount of electrons with a binding energy matching that of the X-rays scales with
the electron density. Hence materials with a high density and high atomic number interact
strongly, while low density and low atomic number materials interact weakly. This material
sensitivity has made X-rays transmission imaging applicable in medical analysis, as bone
absorbs most of the radiation while soft tissue lets it pass.

The limiting factor of X-ray transmission imaging has been its inability to image weakly
absorbing objects. Due to this, another X-ray imaging technique can be deployed, partic-
ularly propagation-based X-ray phase-contrast imaging PB-PCI. In this imaging technique,
the object exit-wave is allowed to propagate behind the sample. The propagation distance
increases edge contrast, as near-field phase interference of the propagated radiation gives rise
to distinct sharp intensity features at the interface between two materials. This is especially
useful for low contrast features comprised of materials with a low atomic number and density
(e.g. organic samples).

For cases where an object displays intricate geometrical structures, three-dimensional
analysis is beneficial, and then X-ray tomography can be utilized. This imaging method
works by collecting a set of images for an object at different angles. These images, more
commonly called projections, are associated with a specific angular view of the object. By
rotating the object around a centre point and acquiring a set of angular equidistant pro-
jections between 0◦ → 180◦, the 3d information of the object can be retrieved. The reason
for this can qualitatively be explained when viewing the process in terms of a cylindrical
coordinate system. Here each projection will span a planar view of the object space for a
specific angular position, and as the projections span angles between 0◦ → 180◦, the whole
object space can be filled. When combining tomography with PB-PCI, the technique can
also be deployed to make structural analysis of complex organic structures. Consequently,
propagation-based X-ray phase-contrast tomography PB-PCT has seen a high adoption rate
in areas of biological, medical and material research [1, 2, 3].

The phase contrast induced by the interference effects are generally not ideal, and the
real spatial information of an object is of interest. Hence phase retrieval algorithms have
been developed to correct for these phase interference effects [4]. These algorithms have
predominately been applied as a 2d filter on the projections. However, recent results have
shown the possibility of applying the phase correction in localized regions of the reconstructed
3d volume [5]. The 3d phase retrieval approach includes additional approximations to the
in-line contrast function utilizing the constraint of a weak phase object, which is ordinarily
justified. However, samples composed of long straight features, as encountered in the cellular
structure of wood, could invalidate this constraint.

Therefore, a closer investigation of how long straight features displays phase contrast is
of importance, as it could potentially exhibit unknown effects. Furthermore, the comparison
between 3d phase retrieval and 2d phase retrieval has seen minimal testing in lab-based
settings where samples often are larger, which could increase the differentiation between
the two methods. Thus by combining the rectangular features with the phase retrieval
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comparison, an unexplored area will hopefully be revealed.
By simulating PB-PCT for a rectangular cuboid, section 4.1, we show that sharp edges

give rise to phase fringe artefacts. Additionally, the rapid changes in integrated thickness for
the projections appear to increase the reconstruction errors. A defect that to our knowledge
only has been documented in transmission tomography [6]. Including these artefacts, the
discrepancy in the intensity terms coming from the approximated in-line contrast function
remained within tolerable levels at the phase fringes for organic materials, re-enforcing the
current consensus. The 2d and 3d phase retrieval approaches were also compared, showing
similar results.

Laboratory measurements were also done on a wood splinter, section 4.2, to verify the
existence of the issues encountered in the simulations. These could not give quantifiable
evidence of the defect due to external alignment problems but qualitatively showed an overall
decreased contrast. The phase retrieval methods were also applied to one of the datasets
and showed a larger difference in the retrieved contrast compared to the simulation but
maintained the same feature size for both. Due to the external alignment problems for the
laboratory measurements, another simulation using a segmented wood splinter as a phantom
and following the same experimental methodology as the laboratory measurements. The
same decreased contrast could be shown, including a quantifiable comparison between phase
fringes, revealing a feature size discrepancy.

2 Theory
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Figure 1: A propagation-based phase-contrast image taken at θ = 0, resulting in qualitatively acquiring a
plane spanning the object space for that angle.

This thesis will predominately revolve around the numerical implementation of PB-PCT and
3d phase retrieval. As such, the underlying theoretical framework needs careful consideration.
We will start by introducing the physics around propagation-based phase-contrast imaging
and then move on to the fundamentals of tomography, followed by phase retrieval. The
first sections in propagation-based phase-contrast imaging will contain the description of a
pure light field and its spectral decomposition into monochromatic components. These are
then separately propagated, though the propagation is restricted to vacuum and forward
propagating fields.
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Constraints are then further imposed on the light to be paraxial, resulting in Fresnel
diffraction. This limited form of propagation is extended to interactions with matter, where
phase interference effects manifest after the object-perturbed wave field propagates, fig. 1.
The effects of a lab-based source are explained, and finally included with the detector re-
sponse to the radiation in the optical transfer function.

In the tomography section, we will first start with the introduction of the Radon trans-
form. This transform creates a direct link between the acquired projected spatial information
and the Fourier domain. However, due to discrete angular sampling, the inverse Radon trans-
form creates reconstruction artefacts. To overcome these issues the filtered back projection
algorithm will be derived utilizing the Radon transform. Lastly, we will formulate the theory
behind two and three- dimensional TIE phase retrieval.

2.1 Propagation-based phase-contrast imaging

2.1.1 Spectral decomposition

The propagation of pure light fields can in many cases be too arduous to work with directly.
Therefore light fields are often expressed as a superposition of monochromatic fields, as this
can levitate some of the immediate complexity. To that end, we assume a complex scalar
light field function of the form Ψ(x, y, z, t) that lie within a limited volume of free space,
i.e. a perfect vacuum. This function is spectrally decomposed via the Fourier integral as a
superposition of monochromatic fields,

Ψ(x, y, z, t) =
1√
2π

∫ ∞
0

ψ(x, y, z)e−iωtdω (1)

Here ψ(x, y, z) and e−iωt represents the spatial and temporal factors in the monochromatic
components respectively. Additionally, the decomposing integral only includes positive an-
gular frequencies ω, allowing for another analytic formulation, as the time variable t for the
wave-function Ψ(x, y, z, t) can be chosen as a complex number [7].

Now, attention is turned to the evolution of the monochromatic spatial components of
the decomposed wave-function via substitution of eq. (1) into the d’Alembert wave equation,(

1

c2

∂2

∂t2
−∇2

)
Ψ(x, y, z, t) = 0 =⇒

(
1

c2

∂2

∂t2
−∇2

)
1√
2π

∫ ∞
0

ψ(x, y, z)e−iωtdω = 0 (2)

=⇒ 1√
2π

∫ ∞
0

[(
(−iω)2

c2
−∇2

)
ψ(x, y, z)

]
e−iωtdω = 0

=⇒ −1√
2π

∫ ∞
0

[(
∇2 +

ω2

c2

)
ψ(x, y, z)

]
e−iωtdω = 0 (3)

From this point, it is clear that the monochromatic spatial components must vanish. Re-
sulting in a time-independent equation, the so-called Helmholtz equation,(

∇2 + k2
)
ψ(x, y, z) = 0, k =

w

c
(4)

where k is the angular wavenumber and c the speed of light in vacuum.
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2.1.2 Forward propagating fields

The general form of propagation for a monochromatic component is handled by the Helmholtz
equation. However, to get a simpler picture of the problem we restrict our formulation to
only include propagation which is going in the positive optical direction, meaning that the
wave is no longer able to propagate backwards. We also try to look at a one solution to the
Helmholtz equation, namely the elementary plane waves, to gain some useful insights.

Using the aforementioned restriction we can further the derivation by presuming a wave-
field to be forward propagating along the z−axis, where the magnitude of a single monochro-
matic component is known. By the angular spectrum formalism the initial disturbance can
be used to acquire the propagated disturbance further downstream at z > 0. We therefore
choose a Cartesian coordinate system (x, y, z), where the positive z-axis is the nominal op-
tical axis. The two planes z = 0 and z = ∆,∆ > 0 are assumed to be parallel with vacuum
in-between [7], for a visual representation see fig. 2.

Turning the attention to a simple solutions for the Helmholtz equation, the elementary
plane waves,

Φ(x, y, z) = ei(kxx+kyy+kzz), k2 = k2
x + k2

y + k2
z , |k| = 2π

λ
(5)

we can see how a simple disturbance will behave through propagation. As the wave-field is
propagating along the z−axis, we chose to solve the wave vector for this direction kz,

kz =
√
k2 − k2

x − k2
y (6)

Reminding ourselves that the wave-field is restricted to be forward-propagating, thus the
only solutions to kz which are valid, are the ones which are strictly positive and real. As
such, the elementary plane waves can take the form of,

Φ(x, y, z) = ei(kxx+kyy)eiz
√
k2−k2

x−k2
y (7)

for which the boundary z = 0 is,

Φ(x, y, z = 0) = ei(kxx+kyy) (8)

Now it can be seen that the propagated disturbance Φ(x, y, z > 0) will be the unpropagated

disturbance Φ(x, y, z = 0) times the propagation factor eiz
√
k2−k2

x−k2
y or more commonly, the

free space propagator.
With the new found information, we turn back to the general solution of the Helmholtz

equation and try to evaluate its disturbance at z = ∆. Starting by taking the two-
dimensional Fourier integral of ψ(x, y, z = 0),

ψ(x, y, z = 0) =
1

2π

∫∫
ψ̂(kx, ky, z = 0)ei(kxx+kyy)dkxdky (9)

for which ψ̂(kx, ky, z = 0) represents the Fourier transform of ψ(x, y, z = 0). Subsequently,
the initial wave-field is now decomposed to a linear combination of plane waves, each of which
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solves the Helmholtz equation in the same way as before. Thus multiplying each plane wave
component with the free space propagator the desired outcome is retrieved,

ψ(x, y, z = ∆) =
1

2π

∫∫
ψ̂(kx, ky, z = 0)ei(kxx+kyy) · ei∆

√
k2−k2

x−k2
ydkxdky (10)

This way of retrieving the propagated wave-field is referred to as the angular-spectrum
representation. However, for simplicity we also state the free-space propagator as a diffraction
operator D∆ which acts on the initial field [7],

ψ(x, y, z = ∆) = D∆ψ(x, y, z = 0) =⇒ D∆ = F−1ei∆
√
k2−k2

x−k2
yF , ∆ ≥ 0 (11)

2.1.3 Fresnel diffraction

y

θ

z
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x
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z=0

z=Δ

Figure 2: A view of the forward propagating wave-field going along the z-axis. The dashed line represents a
X-ray ray path going trough the vacuum region z = [0,∆], θ depicts the angle from the optical path in the
z direction. For the paraxial approximation to be valid this angle would be small.

So far the angular spectrum formalism has only been used to formulate the free-space propa-
gation of a coherent scalar field between parallel planes. However, we further limit ourselves,
by assuming that the X-rays follow a paraxial path, fig. 2. Meaning that the rays can only
have a small angle θ from the optical axis, such that,

sin(θ) ≈ θ, tan(θ) ≈ θ, cos(θ) ≈ 1 (12)

This implicitly means that plane-wave components for |kx|, |ky| will be much less than |kz|,
once z ≥ 0. Hence eq. (6) can be approximated with the binomial approximation as,

kz ≈ k −
k2
x + k2

y

2k
(13)
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which in turn allows for a reformulation of the diffraction operator D∆ as the Fresnel diffrac-
tion operator DF∆,

D∆ ≈ DF∆ = eik∆F−1e
−i∆(k2

x+k2
y)

2k F =⇒ (14)

ψ(x, y, z = ∆) = DF∆ψ(x, y, z = 0) = eik∆F−1e
−i∆(k2

x+k2
y)

2k Fψ(x, y, z = 0) (15)

Note that eik∆ is a constant phase term and will have no effect on the intensity and is in
many cases ignored [7].

Furthermore, one commonly uses the dimensionless Fresnel number NF to described
which diffraction theory correctly describes the diffraction approximations. That being either
Fraunhofer diffraction describing the far-field and Fresnel diffraction the near-field. The
Fresnel number can be defined by assuming an unpropagated disturbance at z = 0 which
exists only over a diameter a

NF =
ka2

2π∆
(16)

Then if the propagation distance ∆ is large we have NF � 1 and we subsequently are in the
far field, and if the propagation distance ∆ is small, NF ≥ 1, we are in the near-field [8].

2.1.4 The projection approximation

z

x

y

z>z0

y

x

z<0
z=0

z=z0

Figure 3: A schematic of the projection approximation, where a non-magnetic weakly scattering objects is
located between the regions z = [0, z0], while the half spaces z ≤ 0 and z ≥ z0 consist of vacuum.

X-ray imaging exclusively revolves around matter, however, up till now propagation has
only occurred in a vacuum. We, therefore, start by assuming that our complex scalar light
field function Ψ(x, y, z, t) lies within a limited volume containing a non-magnetic material1.

1This is a good approximation even for magnetic materials given that lab-sources generally produces
unpolarized light.
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Correspondingly the d’Alembert wave equation no longer holds, and instead, the disturbance
obeys, (

ε(x, y, z)µ0
∂2

∂t2
−∇2

)
Ψ(x, y, z, t) = 0 (17)

Using the same decomposition as in section 2.1.1 and substituting into eq. (17) the following
is obtained,

−1√
2π

∫ ∞
0

[(
∇2 + ε(x, y, z)µ0ω

2
)
ψ(x, y, z)

]
e−iωtdω = 0 (18)

Again the spatial part must vanish independently of time,(
∇2 + ε(x, y, z)µ0c

2k2
)
ψ(x, y, z) = 0, ck = ω (19)

Noting that ε(x, y, z)µ0c
2 equals the square of the refractive index n(x, y, z) for a non-

magnetic material,

n(x, y, z) =
√
εrµr =

√
ε(x, y, z)

ε0
· 1, =⇒ (20)

ε(x, y, z)µ0c
2 =

ε(x, y, z)

ε0
= n2(x, y, z), c =

1
√
ε0µ0

(21)

one arrives at the Helmholtz equation for a inhomogeneous medium,(
∇2 + n2(x, y, z)k2

)
ψ(x, y, z) = 0 (22)

Additionally, by virtue of the linearity from eq. (17), we implicitly have that distinct angular
frequencies are uncoupled [7]. The direct result of this means that inelastic scattering is
undescribed within the considered model. However, because of the specified energy regime
of E < 50 keV, inelastic scattering cross-sections will remain small.

The regions z ≤ 0 and z ≥ z0 again consist of vacuum while the space between 0 < z < z0

is comprised of a non-magnetic weakly scattering object as in fig. 3. Due to the object being
weakly scattering, the wave-field will only perturb slightly by propagating through it. Thus
the incident perturbed plane wave ψ(x, y, z) can be expressed as an unscattered plane wave
eikz, and an envelop function ψ̃(x, y, z) where the envelop and field have the same intensity,

ψ(x, y, z) ≡ ψ̃(x, y, z)eikz, |ψ(x, y, z)|2 = |ψ̃(x, y, z)|2 (23)

Insert the above into eq. (22)(
∇2 + n2(x, y, z)k2

)
ψ̃(x, y, z)eikz = 0 =⇒ (24)(

ψ̃(x, y, z)∇2eikz + eikz∇2ψ̃(x, y, z) + 2∇ψ̃(x, y, z)∇eikz + n2(x, y, z)k2ψ̃(x, y, z)eikz
)

= 0

=⇒
(

(ik)2eikz + eikz∇2 + 2ikeikz
∂

∂z
+ n2(x, y, z)k2eikz

)
ψ̃(x, y, z) = 0
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Drop the linear phase factor eikz and rewrite the Laplacian ∇2 via its transverse component
∇2
⊥ in xy. This is possible as our field is paraxial, allowing us to ignoring the second derivative

in the z direction. (
2ik

∂

∂z
+∇2

⊥ + k2(n2(x, y, z)− 1)

)
ψ̃(x, y, z) = 0 (25)

By the essence of the projection approximation, the transverse Laplacian can largely be
ignored, as the object does not provide sufficiently large scattering for the rays to deflect
from their original path. The envelope at z = z0, it will be set by the phase and amplitude
shifts that occurred during the propagation in the object. Finally, rearranging results in the
partial differential equation,

∂

∂z
ψ̃(x, y, z) ≈ k

2i

(
1− (n2(x, y, z)

)
ψ̃(x, y, z) (26)

and solving the boundary value problem one obtains,

ψ̃(x, y, z = z0) ≈ e
k
2i

∫ z=z0
z=0 (1−(n2(x,y,z))ψ̃(x, y, z = 0) (27)

Here we use that the refractive index in the X-ray regime is usually denoted by its complex
form,

n = 1− δ + iβ (28)

where both δ and β are real numbers much smaller than one. Hence a first order evaluation
of the term (1− (n2(x, y, z)) is valid and gives,(

1− (n2(x, y, z)
)
≈ 2 (δ(x, y, z)− iβ(x, y, z)) (29)

Consequently, we arrive at the final result,

ψ̃(x, y, z = z0) ≈ e−ik
∫ z=z0
z=0 (δ(x,y,z)−iβ(x,y,z))dzψ̃(x, y, z = 0) (30)

A interesting remark is that the phase shift ∆φ(x, y) for the weakly scattering object is given
by,

∆φ(x, y) = −k
∫
δ(x, y, z)dz (31)

If the object is strictly comprised of a single material, the phase shift can be simplified by
taking the projected thickness T (x, y) along the optical axis, resulting in,

∆φ(x, y) = −kδT (x, y) (32)

Now identifying the squared modulus of eq. (30),

I(x, y, z = z0) = e−2k
∫ z=z0
z=0 β(x,y,z)dzI(x, y, z = 0) (33)

it becomes apparent that for a single material object this reduces to Beer’s law of absorption,

I(x, y, z = z0) = e−µT (x,y)I(x, y, z = 0) = e−µT (x,y)I in, µ = 2kβ (34)

where µ is the linear attenuation coefficient [7].
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2.1.5 Propagation-based phase contrast

z=0

y

z

x

y

x

z=Δ

Figure 4: In the idealized case of propagation-based phase contrast the phase variations occurring in the
weakly scattering object gives rise to intensity shift in the measured image.

Up to now, the theory for near-field propagation has briefly been reviewed. However, to
readably show how phase variations induced by free-space propagation gives rise intensity
variations on a detector plane, some further approximations are needed. Consider a weakly
scattering object that is being illuminated along the z-axis with paraxial monochromatic
scalar electromagnetic radiation, as depicted in fig. 4. The exit-surface plane which we say
to exist over z = 0 will be,

ψ(x, y, z = 0) =
√
I(x, y, z = 0)eiφ(x,y,z=0) (35)

where
√
I(x, y, z = 0) and φ(x, y, z = 0) are the intensity and phase of the radiation over

said plane. Also, infer that the propagation distance ∆ is small enough that the second-order
Taylor expansion approximates the second exponent in the Fresnel propagator, see eq. (15),

e
−i∆(k2

x+k2
y)

2k ≈ 1−
i∆
(
k2
x + k2

y

)
2k

(36)

Now substitute eq. (36) and eq. (35) into eq. (15) and exert the Fourier derivative theorem,
for which we obtain the propagated wave-field at z = ∆,

ψ(x, y, z = ∆) = eik∆

(
1 +

i∆∇2
⊥

2k

)√
I(x, y, z = 0)eiφ(x,y,z=0) (37)

Furthermore, given that we would like to know the intensity at the detector plane we take
the modulus squared of the propagated wave-field. Here the quadratic propagation distances
∆ terms are disregard, as they are sufficiently small.

I(x, y, z = ∆) = I(x, y, z = 0)

+ 2Re

[√
I(x, y, z = 0)eiφ(x,y,z=0) i∆

2k
∇2
⊥

√
I(x, y, z = 0)eiφ(x,y,z=0)

]
=⇒ (38)
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I(x, y, z = ∆) = I(x, y, z = 0)− ∆

k
∇⊥ [I(x, y, z = 0)∇⊥φ(x, y, z = 0)] (39)

This final equation is referred to as the transport-of-intensity equation and is of high impor-
tance due to its use in many phase retrieval algorithms [7].

2.1.6 Fresnel scaling

x

y

z

z=z1z=0 z=z2

O DS

z1 z2

Figure 5: In a cone-beam geometry, a monochromatic divergent point source is located at the point S. The
source S, in turn, emits X-rays further downstream in the positive z direction hitting a weakly scattering
object at O for which an exit wave is produced at z1. This exit wave then propagates in free space towards
the detector plane D at z2 where a Fresnel diffraction pattern is measured. As a result of the cone-beam,
the image will be a magnified by a factor M , given by z1+z2

z1
.

In lab-based imaging, an extended source with a defined size produces quite divergent X-
rays and consequently requires appropriate detector intensity scaling. To fix the divergence
effects, we can use a cone-beam geometry to retrieve the effective propagation distance zeff
[9]. However, to account for the source size, we will in a later section 2.1.7, develop a
simplistic way to apply the blurring effects across the detector plane resulting from the finite
size.

Going back to the problem of divergence, we can use the geometry from fig. 5, where
S denotes the divergent point source which produces monochromatic scalar X-ray waves.
The entire system is as in the previous sections surrounded by vacuum, and the propagation
occurs along the optical axis chosen as z. The source is located downstream from a weakly
scattering object O by a distance z1 which is far enough away to allow for the X-rays to be
paraxial at the object surface. As for the object, it is a distance z2 from the detector D, and
the total propagation distance from the source to the detector is thus ztot = z1 + z2.

Further assume that Fresnel diffraction is valid between the object exit wave ψ(x, y, z =
z1) and the wave hitting the detector ψ(x, y, z = z2). Start by rewriting the Fresnel diffraction
in terms of its convolutional formulation, the Fresnel diffraction integral [7],

ψ(x, y, z = z2) =
−ikeikz2

2πz2

e
ik

2z2
(x2+y2)·∫∫ ∞

−∞
ψ(x′, y′, z = z1)e

ik
2z2

(x′2+y′2)
e
−ik
z2

(xx′+yy′)
dx′dy′ (40)
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Given that our object is weakly scattering the projection approximation can be used. Com-
bine this with the paraxial approximation, then the exit wave for point-source illumination
ψ(x, y, z = z1), can be described as an exit wave by plane-wave illumination ψ∞(x, y, z = z1)
via,

ψ(x, y, z = z1) = ψ∞(x, y, z = z1)e
ik

2z1
(x2+y2)

(41)

substitute eq. (41) into eq. (40),

ψ(x, y, z = z2) =
−ikeikz2

2πz2

e
ik

2z2
(x2+y2)·∫∫ ∞
−∞

ψ∞(x′, y′, z = z1)e
ik
2

(
1
z2

+ 1
z1

)
(x′2+y′2)

e
−ik
z2

(xx′+yy′)
dx′dy′ (42)

Now introduce the geometrical magnification M given by the ratio between the total prop-
agation distance and the source-to-sample distance,

M =
ztot
z1

=
z1 + z2

z1

(43)

and the effective propagation distance zeff ,

1

zeff
=

1

z2

+
1

z1

=
1

z2

(
z1 + z2

z1

)
=
M

z2

(44)

Use eq. (44) and take the squared modulus of eq. (42), i.e. the intensity at the detector.

I(x, y, z = z2) =
k2

4π2z2
2

∣∣∣∣∫∫ ∞
−∞

ψ∞(x′, y′, z = z1)e
ikM
2z2

(x′2+y′2)− ik
z2

(xx′+yy′)
dx′dy′

∣∣∣∣2 (45)

To check the validity of our derivation we go the limit z1 → ∞ where M = 1 and we have
parallel beam,

I∞(x, y, z = z2) =
k2

4π2z2
2

∣∣∣∣∫∫ ∞
−∞

ψ∞(x′, y′, z = z1)e
ik

2z2
(x′2+y′2)− ik

z2
(xx′+yy′)

dx′dy′
∣∣∣∣2 (46)

Here we return at the intensity given by Fresnel diffraction. Furthermore, comparing the
two equations eq. (45) and eq. (46) directly we get the Fresnel scaling theorem [7].

I(x, y, z = z2) =
1

M2
I∞
( x
M
,
y

M
, z =

z2

M

)
(47)
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2.1.7 The optical transfer function
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x
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Figure 6: For a small propagation distance where 0 < z < ∆ the near-field approximation can be well
described by the use of TIE. However, when the propagation distance becomes large enough z = ∆ this ap-
proximation no longer holds. Instead, it will be appropriately evaluated via free-space propagation, meaning
that the measured image will occupy the holographic regime, containing higher-order phase fringes. As a
result of the limited resolution from the X-ray source and the detector, the image will be blurred, thus losing
the higher-order fringes.

The idealized case of propagation-based X-ray imaging is a useful tool for simulation, but
as in most cases will not reflect a realistic picture. Instead, the blurring effects ruled by
the X-ray source and the detector restrict the resolution. To that end, the optical transfer
functions describing this behaviour will be introduced. However, here we will limit ourselves
to a simplistic picture where its existence is explained without any rigorous derivation.

Suppose that the source takes the form of an X-ray tube where high energy electrons are
bombarded onto a metal anode creating a spectrum of X-rays. This spectrum is partially
composed of bremsstrahlung radiation, producing a broad spectrum. Superimposed on top
of this is much stronger characteristic line profiles of the fluorescent radiation due to electron
collisions with the target atoms [10]. The produced X-ray will also be incoherent as the rays
are in no way correlated to each other. Nonetheless, using a small pinhole and only letting
through a subset of the rays, a more coherent source can be formed.

As a result, the source can no longer be viewed as a perfect point source but instead as
an extended source of size d. Given that it still keeps with the small-angle approximation,
each point on the new area source will give an identical image of the object. However, there
will be a small translation at the detector plane resulting in an blurring effect.

The effect can be describe as a convolution with the source spatial distribution

I(x, y, z = z2) =

∫∫
I(x′, y′, z = 0)

1

(M − 1)2A

(
x′ − x
M − 1

,
y′ − y
M − 1

)
dx′dy′ (48)

here A(x, y) denotes the source brightness which is normalized to one [11]. This can then be
combined with the results obtained in eq. (30) and eq. (15) to yield the blurred intensity IB
of the object after free-space propagation,

IB = F−1

[
F
(∣∣DF∆ψ(x, y, z = z1)

∣∣2) · F ( 1

(M − 1)2A

(
x′ − x
M − 1

,
y′ − y
M − 1

))]
(49)
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where ψ(x, y, z = z1) is the object exit wave.
While this creates a more realistic final evaluation, there is still the detector response to

the radiation. The idea is that each photon has a high chance of interacting with more than
one pixel on the imaging device. This effect intrinsically reduces the resolution by forming
additional blurring. The blurring, can by the same idea as before, be calculated through the
convolution of the point spread function (PSF).

This function describes the distribution of the signal from the incident X-rays on a single
detector point. To note is that the PSF is sometimes interchangeably used with the detector
modulation transfer function (MFT), this is because it equals the Fourier transform of the
point spread function, MFT = |F(PSF)|.

Hence by convoluting the these two blurring effects we can describe the optical transfer
function (OTF) of the system,

OTF = MFT · F
(

1

(M − 1)2A

(
x′ − x
M − 1

,
y′ − y
M − 1

))
(50)

for which we obtained the final blurred intensity as,

IB = F−1
[
F
(∣∣DF∆ψ(x, y, z = z1)

∣∣2) ·OTF
]

(51)

Another result of the blurring effects is that the feature size a, in the Fresnel number eq. (16),
can be expressed in terms of the system resolution and the magnification geometry [12].
Resulting in an extended near-field regime given that ”feature size” is restricted by the
resolution of the system. Furthermore, as seen in fig. 6, the image ideally occupies the
holographic regime at z = ∆ and subsequently contains higher-order fringes. Although as
mentioned before the resolution is limited by the OTF. Meaning that these higher-order
terms are lost, and instead the final image is a broad near-field image.

2.2 Tomography

2.2.1 Radon transform

With the fundamentals of propagation-based phase-contrast imaging in place, one would now
like to spend some time on how to obtain the refractive index of a three-dimensional object.
The general idea is quite straight forward, take a two-dimensional image containing the
projected index of refraction of the object. Then rotate the object by a number of rotation
angles θ, and collect an image for each rotation. Use this set of projections to reconstruct
the 3d object.

To that end, let (x′, y′, z′) denote the coordinate system of the laboratory frame of refer-
ence and (x, y, z) the object frame as in fig. 7, in which the laboratory frame can be rotated
clockwise by the angle θ [13],x′y′

z′

 =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

xy
z

 (52)
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Figure 7: To extract the original object f(x, y, z), a set of tomographic projections are collected pθ(x
′, y′). If

the y′ component is locked on to a single value, as depicted with the black line the projections, a sinogram
can be formed. The sinogram shows the set of Radon transform for all projection angles θ = [0, π], which
creates the basis for the filter back projection algorithm.

Like before, assume a forward propagating beam along the z′ direction. Next, consider a
function f(x, z) which describes either the real δ or complex β part of the refractive index
for a constant y value, meaning one slice through the 3d volume. The projection pθ(x

′) of
this function for a certain rotation angle θ will then be given by,

pθ(x
′) = Rθf(x′) =

∫
R
f(x, z)dz′

=

∫
R
f(x′ cos(θ)− z′ sin(θ), x′ sin(θ) + z′ cos(θ))dz′

=

∫
R2

f(x, z)δD(x cos(θ) + z sin(θ)− x′)dxdz (53)

where Rθ denotes the two-dimensional Radon transform and δD the Dirac delta distribution
[13]. As a result, the Radon transform is the integration over the lines going along z′ with
length x′ from the origin. If only a single point located at (x0, z0) with an associated function
f(x, z) = δD(x− x0)δD(z − z0) is considered, the Radon transform of the point will be,

Rθf(x′) =

∫
R
δD(x′ cos(θ)− z′ sin(θ)− x0)δD(x′ sin(θ) + z′ cos(θ)− z0)dz′

=
1

| cos(θ)|

∫
R
δD(x′ cos(θ)− z′ sin(θ)− x0)δD

(
z′ −

(
z0

cos(θ)
− x′ sin(θ)

cos(θ)

))
dz′

=
1

| cos(θ)|
δD(x′ cos(θ)−

(
z0

cos(θ)
− x′ sin(θ)

cos(θ)

)
sin(θ)− x0)

= δD(x′ − sin(θ)z0 − cos(θ)x0)

= δD(x′ − |r| sin(θ − γ)), |r| =
√
x2

0 + z2
0 , γ = arctan

(
x0

y0

)
(54)
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where we in the first step use the scaling property of the delta function allowing the integral
to be evaluated. Thus, we see that the Radon transform of one point is going to follow a sinu-
soidal path. Recognizing that an object, can be constructed as an ensemble of many points,
the Radon transform of the object becomes a superposition of sine curves. Subsequently,
the plot of projections pθ(x

′) against the angle θ, is referred to as a sinogram [13].
Moreover, for the cases of imaging, the probed factor, is once again the projections pθ(x

′).
Hence the inverse form of the Radon transform is required to retrieve back the information
about the original function f(x, z),

f(x, z) = R−1
θ [pθ(x

′)] (55)

To prove the validity of this action, the Fourier slice theorem is outlined. Start with the
Fourier transform of the projection pθ(x

′),

Fpθ(x′) = Fx′ [Rθf(x, z)](k′x)

= p̂θ(k
′
x)

=
1√
2π

∫
R3

f(x, z)δD(x cos(θ) + z sin(θ)− x′)e−ik′xx′dxdzdx′

=
1√
2π

∫
R2

f(x, z)e−ik
′
x(x cos(θ)+z sin(θ))dxdz (56)

Take the reciprocal coordinate q = k′x(cos(θ), sin(θ)) and revaluate the 2d Fourier transforms
as Fr[f(x, z)](q),

p̂θ(k
′
x) = Fx′ [Rθf(x, z)](k′x) = Fr[f(x, z)](q) = Fr[f(x, z)](k′x cos(θ), k′x sin(θ)) (57)

which proves the invertibility of the Radon transform. In more general terms, it means that
the 1d Fourier transform of the pθ(x

′) is equal to 2d Fourier transform of f(x, z) at a certain
angle θ. Accordingly, by collecting many projections at different angles the Fourier domain of
f(x, z) is filled, meaning that the inverse Fourier transform, in practice retrieves the original
3d object. However, when implementing the numerical method for this algorithm one runs
into a problem, namely that the Fourier domain is sampled on a rectangular grid and the
projections on a polar grid. This creates significant artefacts when interpolating between
the two systems. Consequently, other reconstruction algorithms are used, one of which is
known as filtered back projection [14].

2.2.2 Filtered back projection

In filtered back projection the reconstruction procedure can be started by first looking at
f(x, z) in its inverse Fourier transform representation,

f(x, z) =
1√
2π

∫
R2

f̂(kx, kz)e
i(kxx+kzz)dkxdkz (58)

form this point the rectangular coordinates is converted into polar coordinates,

kx = k′x cos(θ), kz = k′x sin(θ), dkxdkz = k′xdk
′
xdθ (59)
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Thus yielding,

f(x, z) =
1√
2π

∫ 2π

0

∫ ∞
0

f̂(k′x cos(θ), k′x sin(θ))ei(xk
′
x cos(θ)+zk′x sin(θ))k′xdk

′
xdθ (60)

if the outer integral is split into θ = [0, π], θ = [π, 2π] and the θ = [π, 2π] is shifted by a
factor π in the exponential, the following is obtained,

f(x, z) =
1√
2π

∫ π

0

∫ ∞
0

f̂(k′x cos(θ), k′x sin(θ))ei(xk
′
x cos(θ)+zk′x sin(θ))k′xdk

′
xdθ

+
1√
2π

∫ π

0

∫ ∞
0

f̂(k′x cos(θ + π), k′x sin(θ + π))ei(xk
′
x cos(θ+π)+zk′x sin(θ+π))k′xdk

′
xdθ (61)

Assuming real projection data, using the symmetry properties of the Fourier transform and
taking advantage of eq. (57), eq. (61) can be written as one term,

f(x, z) =
1√
2π

∫ π

0

∫ ∞
−∞

p̂θ(k
′
x)e

i(xk′x cos(θ)+zk′x sin(θ))|k′x|dk′xdθ (62)

Here the factor |k′x| acts as a high-pass filter to the projection, and is therefore usually
identified by a filter function ĥ(k′x) = |k′x|. Additionally, we can rewrite the inner integral as
the filtered projections Qθ,

Qθ(x
′) =

1√
2π

∫ ∞
−∞

p̂θ(k
′
x)e

ix′k′x|k′x|dk′x (63)

and expand x′ = x cos(θ) + z sin(θ),

f(x, z) =

∫ π

0

Qθ(x cos(θ) + z sin(θ))dθ (64)

Retrieving the final form of the filtered back projection [15]. To note is that our derivation
was limited to a single slice in the vertical direction y′. However this is not the case for an
image which is sampled on a 2d grid (x′, y′), but the same method can be applied to each
vertical segment as these are not coupled together for parallel beam geometries. The polar
coordinate system can therefore be expanded to cylindrical coordinates, allowing the y axis
to be implemented without difficulty. Meaning that for a complete projection dataset of 2d
images, spanning θ = [0, π] the 3d volume can be constructed via the filtered back projection
operator R acting on the p̂θ(k

′
x, k

′
y) [5],

f(x, y, z) = Rp̂θ(k
′
x, k

′
y) =

1

2π

∫ π

0

∫ ∞
−∞

∫ ∞
−∞

p̂θ(k
′
x, k

′
y)e

i(xk′x cos(θ)+zk′x sin(θ)+yk′y)|k′x|dk′xdk′ydθ

(65)

2.3 Phase retrieval

To effectively use the phase information to enhance contrast is essential when using propagation-
based phase contrast imaging. There are a few ways to go about it, however, here we will
limit ourselves to one of the more widely used methods derived by Paganin et al.[4] using
a homogenous object in the transport-of-intensity framework, which subsequently gives the
method its name, the homogeneous TIE phase retrieval algorithm (TIE-Hom) [5].
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2.3.1 Two-dimensional phase retrieval

Start by assuming all constraints given in section 2.1.5, allowing the wave propagation to
describe by the transport-of-intensity-equation eq. (39). Consider further that the imaged
object can be approximated by Beer’s Law eq. (34) and that the object is sufficiently thin
for the phase shift to be given by eq. (32). If these two equation are substituted into eq. (39)
and the exit surface at the object is said to be located at z = 0, it can be re-written as,

I(x, y, z = ∆) = I ine−µT (x,y) − ∆δ

µ
I in∇2

⊥e
−µT (x,y) = I in

(
1− ∆δ

µ
∇2
⊥

)
e−µT (x,y) =⇒ (66)

I(x, y, z = ∆)

I in
=

(
1− ∆δ

µ
∇2
⊥

)
e−µT (x,y) (67)

Now represent the exit wave image and the propagated phase contrast image as their Fourier
integrals representations,

I ine−µT (x,y) =
I in

2π

∫∫
F
(
e−µT (x,y)

)
ei(kxx+kyy)dkxdky (68)

I(x, y, z = ∆) =
1

2π

∫∫
F (I(x, y, z = ∆)) ei(kxx+kyy)dkxdky (69)

Using the Fourier integrals representations, eq. (67) can be written as,

F
(
e−µT (x,y)

)
= µ

F (I(x, y, z = ∆))

I in (∆δ(kx + ky)2 + µ)
(70)

By taking the inverse Fourier transform and then the natural logarithm, the equation can
be solved for the projected thickness T (x, y) [4],

T (x, y) = − 1

µ
ln

(
F−1

(
µ
F (I(x, y, z = ∆))

I in (∆δ(kx + ky)2 + µ)

))
(71)

2.3.2 Three-dimensional phase retrieval

To extend the phase retrieval to three dimensions, we need to recall section 2.2, as the filtered
back projection algorithm is essential. Attention can now be directed towards the problem
at hand, namely trying to extract the filtering step from the two-dimensional projections,
into the reconstructed 3d volume [5].

Hence the first step is to linearize the exponential coming from Beer’s law of transmission
eq. (34) and connecting it to the projection of the object,

e−µT (x′,y) u 1− µT (x′, y) = 1− µpθ(x′, y) (72)

If we further assume that the object is composed of a single light element, then a propor-
tionality constant α = δ/β could be introduced and would hold for the complex refractive
index of the material. A reasonable assumption, given our material restriction is currently
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to uphold the projection approximation. To that end when can apply this assumption and
rearrange eq. (67),

1− I(x′, y′, z′ = ∆)

I in
=

(
2k

α
−∆∇2

⊥

)
pθ(x

′, y) (73)

Now the projection approximation is reasserted with emphasis on the constraint of weak
phase contrast, which the approximation enforces. Implicitly this has been done before
within the TIE derivation, but not explicitly expressed. Then use the in-line contrast function
K(x′, y′, z′), as introduced by D.A. Thompson et al. [5], to express the intensity terms, and
then approximate the function with a first-order Taylor expansion,

K(x′, y′, z′) = − ln

(
I(x′, y′, z′ = ∆)

Iin

)
≈ 1 −

I(x′, y′, z′ = ∆)

Iin
(74)

Taking the Fourier transform of eq. (73), we again obtain the 2d phase retrieval step from
before eq. (70),

Fpθ(x′, y) =
F(K(x′, y′))

2k
α

+ ∆(kx + ky)2
(75)

Here the left hand side can be identified in the same way as in eq. (57) giving,

p̂θ(k
′
x, k

′
y) =

F(K(x′, y′))
2k
α

+ ∆(kx + ky)2
(76)

From this point the filtered back projection operator R can be applied to both sides,

Rp̂θ(k
′
x, k

′
y) = R

[
F(K(x′, y′))

2k
α

+ ∆(kx + ky)2

]
= f(x, y, z) (77)

Note that the Laplacian in eq. (73) was evaluate by the Fourier space Laplacian identity.
However if the

(
2k
α
−∆∇2

)
factor is directly applied to eq. (77),(

2k

α
−∆∇2

)
f(x, y, z) =

(
2k

α
−∆∇2

)
R

[
F(K(x′, y′))

2k
α

+ ∆(kx + ky)2

]
(78)

Evaluating the right hand side by first taking the Laplacian of the explicit form of R,

∇2ei(xk
′
x cos(θ)+zk′x sin(θ)+yk′y) = −(kx + ky)

2ei(xk
′
x cos(θ)+zk′x sin(θ)+yk′y) (79)

the denominator factor cancels out,

R

[(
2k
α

+ ∆(kx + ky)
2
)
F(K(x′, y′))

2k
α

+ ∆(kx + ky)2

]
= R [F(K(x′, y′))] (80)

Inverting the left hand side of eq. (78) concludes the derivation, showing the validity of phase
retrieval in the reconstructed 3d volume [5].

f(x, y, z) =

(
2k

α
−∆∇2

)−1

R [F(K(x′, y′))] (81)
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3 Method

3.1 Laboratory equipment

SourceRotation Stage

Detector

Figure 8: Overview of the main components contributing to the propagation-based phase-contrast imaging.
Starting from the right is the source, a microfocus X-ray tube with a copper target, producing X-rays by
bremsstrahlung and X-ray fluorescence. Next is the rotation stage, which is comprised of three different
interlinked components. The first level is a step motor allowing for motion along the optical axis and in
the horizontal direction. On top of that is the rotation motor and finally a high precision step motor. This
one can move along all axes allowing the user to align the rotation centre of the sample. The last main
component is the detector, it uses a scintillator-based lens-coupled CCD to capture the X-rays and convert
them into an electrical signal.

3.1.1 X-ray source

Since the discovery of X-rays in 1895 by Wilhelm Röntgen, X-ray tubes have been used as the
primary source for X-rays. Yet, during the 1980s, dedicated synchrotron radiation facility
overtook them as the primary means of production for X-ray research, as they provide higher
photon flux coupled with higher coherence. As a result, X-ray tubes saw less use in areas
where a high resolution was necessary.

However, with the development of microfocus X-ray tubes, the micrometre regime was
available to lab-based set-ups. Hence these experimental stations opened up the possibility
for much smaller modular systems as seen in fig. 8, where nanometer resolution was not
necessary, and this is where they come in for propagation-based phase-contrast tomography.
In many cases, tomography would benefit from higher resolution, but if the sample in question
has interesting features on the micrometre scale, doing a measurement on the more available
lab-based system could save time and resources.

There are a few available types of microfocus X-ray tubes, but most commonly, X-rays are
produced via acceleration of electrons onto a metal anode target resulting in two effects. The
first is a deceleration of the electrons, which subsequently gives a continuous broad spectrum
of radiation known as bremsstrahlung or braking radiation. The second effect is fluorescent
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radiation, which occurs when an electron knocks out an electron in an inner shell, such that
an electron vacancy can be created. Once an outer shell electron undergoes relaxation, it fills
the inner shell vacancy, which can result in the emission of a characteristic X-ray photon. Its
energy will be that of the difference between the two states. As a result, these lines are highly
monochromatic compared to the bremsstrahlung [10]. The characteristic line transitions are
usually denoted in Siegbahn notation.

For X-ray tubes, the most pronounced peaks are that of the Kα and Kβ, which are
due to the transition of either an L shell or M shell electron to the K shell respectively.
These are commonly further split into Kα1 , Kα2 and Kβ1 , Kβ3 which denotes the spin-orbit
state of the electron. These spin-orbit states can usually not be distinguished, and hence
the transition is only denoted by the primary line. The spectrum produced by our specific
model, a microfocus copper X-ray tube, can be seen in fig. 9.

Kα

Kβ

Figure 9: Logarithmic intensities for the Bremsstrahlung spectrum with the characteristics fluorescent radi-
ation lines Kα, Kβ superimposed. The spectrum was produced by the laboratory Cu X-ray tube.

The produced radiation coming from the metal target is approximately isotropic. Therefore,
to increase the effectiveness, the electron beam is magnetically focused onto a small spot
on the target, as in fig. 10. Unfortunately, this results in the drawback that the target gets
extremely hot, as only 1% of the energy coming from the electron beam gets converted into
X-rays. Hence the system needs to be cooled, and for a stationary target, this means an
external cooling system, usually a water cooling loop [11].

This increased heat further limits the choice of material to ones that can withstand high
heat and have good thermal conductivity. Due to the heat limitations for a small electron
beam spot the overall operational power of the system is constrained, lowering the flux and
resulting in overall longer measurement times. The benefit is that the coherence of the beam
is increased, allowing for higher resolution measurements. Finally, the specific model of X-
ray tube used at the laboratory is, as mentioned before, a microfocus Cu X-ray tube from
Rigaku, with a nominal spot size of 25 µm (FWHM 45 kV).
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Heated 

cathode

Metal anode

Magnetic focus

Electron beam
X-rays

Figure 10: Simplified schematic of the main components inside a microfocus X-ray tube. The electrons are
generated by exerting a high negative voltage on a heating cathode. Once created, the electrons accelerate
towards the positive metal anode. On the way to the target, the electron beam is magnetically focused onto
a smaller region of the target, which subsequently produces X-rays. These rays are still divergent, hence
only a small selection of the X-rays can pass through the beam spot.

3.1.2 Scintillator based detector

X-rays detectors based on direct illumination, such as photon-counting detectors have lim-
ited resolution, since the pixel size generally ranges between tens and hundreds of microns.
However, by indirectly detecting the X-rays with a scintillator screen, the radiation can first
be absorbed and converted into visible light. The light can subsequently be detected by a
CCD or a complementary metal-oxide-semiconductor (CMOS).

This additional step allows the light to be focused using regular optics, such as a focusing
lens or a fibre-optic plate. As a result, the effective resolution of an indirect detection system
can be much higher than for a direct detector. The main caveat is that these detectors are
inefficient due to the scintillation and smaller pixel size, which together leads to longer
exposure times [13]. Our setup uses a scintillator-based lens-coupled CCD with an effective
pixel size of 0.55 µm, from Rigaku XSight (lens unit LC 0540), see fig. 9.

3.1.3 Rotation stage

So far, we have given an overview of the source and detector, but we have yet to mention
one of the most important pieces of equipment for tomography, namely the rotation stage.
It needs to be highly precise, since any drift or instabilities in the sampling of the projec-
tions will cause the Radon transform to be incorrectly sampled, resulting in artefacts in the
reconstructed volume. Later sections will identify and try to numerical solve some of these
issues, but a precise rotation stage severely alleviates these problems.

One problem that can happen with the rotation stage is that it is not perfectly aligned.
In that case, the misalignment gives rise to two possible tilting angles, the pitch angle ν and
the roll angle ζ, as seen in fig. 11. The pitch angle ν results in a translation along the z axis,
which in turn causes a shift along the tomographic axis y. A misaligned pitch angled can be
corrected by tilting the detector by the same amount such that the effect cancels out. The
pitch angle can then be calculated as,

ν = arctan
∆y

∆z
(82)
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where, ∆y is the shift along the vertical direction, and ∆z is the horizontal shift.
As for the roll angle ζ it can readily be corrected by pre-processing procedure where each

projection is tilted in accord with,

ζ = arctan
∆x

∆y
(83)

where, ∆y again is the shift along the vertical direction, and ∆x is the horizontal shift [13].
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Figure 11: Schematic of the two misalignment angels in the rotations stage. The beam direction is z and
the correct tomographic axis is y, with (a) depicting the pitch angle ν which causes a translation along the z
axis, resulting in a shift along the tomographic axis y. This effect is solved by correctly aligning the detector.
In the right figure (b), the roll angle ζ can be seen. This also causes a shift along the tomographic axis, but
it can readily be fixed in pre-processing [13].

3.2 Tomographic artefacts

Artefacts in tomography are a frequent occurrence for most lab-based step-ups. As such,
knowledge of where these issues come from and how to potentially resolve them or limit their
effect is of great importance. This section will describe four of the more common artefacts,
their origins and how they can be resolved.

For reconstruction algorithms such as the filtered back projection, a common assumption
is that the sample is rotated around the vertical centre line of the detector plane. However,
this is not true in most cases, and the result of this misalignment is that the reconstruction
algorithms incorrectly correlate the projections information leading to artefacts as can be
seen in fig. 12 (b). However, if the object is always contained within the field of view, the
correct position of the rotation axis can be found unless other defects are present.

There is also a possibility for a misaligned roll angle ζ, see section 3.1.3. The problem
then is that each rotation angle is slightly tilted, leading to a linear difference in the rotation
centre for the top and bottom feature. To fix this each projection can be tilted in accord
with eq. (83) [13].
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Figure 12: Illustration of three different tomographic artefacts for a spherical object. In figure (a) the
object has been reconstructed with the correct rotation centre while in (b) the rotation centre has been
assigned slightly off-centre. This results in the reconstruction not correctly closing. In (c) a few detector
pixels have been randomly selected to be unresponsive, which results in the common stripe defects inside of
the sinogram and ring artefacts in the reconstruction. Finally, in (d), each projection has been randomly
shift in the horizontal direction by small amount, indicative of a unstable rotation stage. The resulting
reconstruction is not severely disturbed as the motion is much smaller than the size of the object.

Another common tomographic artefact is ring artefacts. These artefacts are due to faulty
pixel values, and as such, are stationary throughout the acquisition. Hence they appear as
rings in reconstructions. However, due to the sampling rate of θ = [0, π], these artefacts
instead appears as half-rings as seen by fig. 12 (c). Ring artefacts can reliably be resolved
by numerical algorithms that target their stationary nature, In this thesis, two approaches
have been used and will be described in section 3.4.

There can also be a problem with the stability of the sample, which can either be an
unstable rotation stage or the effect of something external. The result is a motion artefact.
These artefacts are among the most difficult ones to solve as they can have many forms
and destroy the assumption of a stationary geometry. In the case of randomized horizontal
motion, as in fig. 12 (d), it can be hard to resolve the correct object unless there is some
symmetry to exploit. There are a few methods that have been able to resolve the issue but at
the cost of high computational times [16]. If the motion is linear and the object is contained
within the field of view (FoV) for all projection, then each projection can simply be shifted
by the same amount as it has moved.

For large vertical motion, the tomography reconstruction will be meaningless, since the
back projection of each line will now be associated with the incorrect attenuation [17]. But
if the motion is sufficiently small, a well-defined feature can be tracked throughout the
projections, and the motion recorded, allowing for a motion-correction. Another possibility
is that the rotation stage has run-out errors, but this motion is difficult to measure without
specialised equipment that precisely track the sample rotation [18].
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3.3 Experimental operation

Due to the modular nature of the used lab-based system, there is always a need for a new
alignment when operating at a new geometry fig. 8. The first step is to align of the detector
to the optical axis. This is done via the use of a circular centring jig. The shadow image
of the pinhole will show deviations from a circular shape when the detector is shifted or
tilted to the optical axis. The alignment includes shifting the detector along the horizontal
direction and the source vertically with a manual micrometer-step stage until the pinhole
appears circular.

Assume that an already prepared sampled is placed on the rotation stage. The first
procedure is then to align the rotation centre. This can be achieved by first moving the
sample into the FoV using the lower linear motors and collecting a projection. The object
is then rotated by 180◦, and another image is acquired. If the object moves outside of the
FoV, the upper horizontal motor x is moved, and the object is rotated back to 0◦. This
process continues until the rotation is stable. The same procured is the repeated, but for
the z direction by viewing the 90◦ to 270◦ rotation.

Once the rotation centre has been aligned, the object is moved out of the FoV to allow for
the collection of the background images. This background is divided into two parts. The first
one is dark fields, which refers to the background intensity caused by electrical fluctuations
and cosmic particles. The second part is the bright field, referring to the detector being
illuminated by the source beam. Together these are referred to as flat fields. Furthermore,
by applying flat field corrections to the projections, they can be normalized and corrected
for the fixed-pattern noise. Additionally, the flat fields are always collected in pairs of 10 to
decrease the effect of hot pixels and use the same exposure time as the subsequent projection
acquisition.

With the first set of flat fields collected, an appropriate exposure time and angles step
size is selected, and tomographic measurement starts. Furthermore, as the detector response
sometimes changes through time, due to saturation, a second set of flat fields are collect
directly after the projection acquisition, concluding the experimental operation. The next
step will deal with the pre-processing of the acquired data.

3.4 Preprocessing

Artefacts are an ever-present problem in tomographic imaging. Luckily algorithms have been
developed which effectively minimize or even removes some of the artefacts from section 3.2.
In thesis work has been done in developing new ways and implementing exiting ones into a
coherent python pipeline. Most of the new functions has been personally devolved, except
for the 3d phase retrieval and the locating of unresponsive pixel fig. 13, which has undergone
iterative development with supervision.

Correcting for a misaligned rotation axis can either be straight forward or very hard,
depending on the severity of the problem. So start by assuming that the object is in the FoV
throughout the acquisition. The issue can then be that the object is not rotating around the
exact centre of the horizontal detector length nx. To find the correct rotation centre a feature
located at x1, y1 in the first projection where the angle is 0◦ is selected. The same feature
is then selected from the horizontally flipped last projection at angle 180◦ now located at
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x2, y2. The length ∆ between the two positions can then be calculated,

∆ =
x1 + x2

2
− nx

2
(84)

from which the correct rotation centre can be found.

1. Load flat-field images.  
2. Locate unresponsive pixels.
3. Calculate the mean flat-field.
4. Apply flat-field corrections and 
    blur unresponsive pixels. 

1. Apply the stripe removal algorithm from TomoPy. 

2. Set undefined pixel values to 1.

3. Set a lower intensity value limit of 0.0001.

4. Normalize the outer corners of each projection to 1.

5. Apply -ln(I) or (1-I) to the projections.

6. Rotate each projection by the roll angle. 

 

This depends on how the in-line contrast function is approximated.

1. Locate the rotation centre. 

1.Reconstruct the object using 

Tomopy's filtered back projection 

algorithm with a cosine frequency filter.

1. Apply the 2D phase retrieval. 

1.Reconstruct the object using 

Tomopy's filtered back projection 

algorithm with a cosine frequency filter.

1. Apply the 3D phase retrieval. 

Figure 13: Flowchart of standard preprocessing procedure. Assumes that the roll angle has already been
found. If this is not the case skip step 6 in box two and instead do it as step 2 in box three.

Furthermore, there might be a problem with the rotation stage roll angle ζ, see fig. 11. This
problem can be fixed after the rotation centre has been found, as there will still be a slight
deviation in accord with eq. (83). By calculating the roll angle and rotating each projection
by the found angle, the tilt artefact can be resolved [13]. To note here is this tilt should
always be the last thing that is corrected, as it could otherwise introduce problems for the
other algorithms. Furthermore, the roll angle rarely moves, so once it has been found for
the system, there is usually little need to adjusted the value.

Ring artefacts are another commonly encountered problem, and we opted to use two
methods to limit their effect on the image quality. The first method was developed in-
house and it probed the dark and bright-field images for inconsistency still remaining in
the detector response, meaning that the location of unresponsive pixels could be recorded
and then corrected for when doing the flat field corrections. Even so, this approach did not
deal with all ring artefacts. Therefore, the second used algorithm was the three-step method
developed by Vo et al. [19]. This algorithm is part of TomoPy, a widely used python package
for tomographic data processing and image reconstruction and has many useful features for
dealing with these types of problems. The algorithm works by finding and targeting small,
medium and large stripe artefacts individually in the sinograms, and consequently blurring
them, which eliminates most of the present defects.

After ring removal, undefined pixel values are set to 1, which represent a pixel value of
no absorption. A lower intensity bound is also asserted to 0.0001 to not run into potential
problems if the in-line contrast function is evaluated as the negative natural logarithm.
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Assuming that the rotation centre has already found, the method now splits into two paths.
One path dealing with phase retrieval in the projections, and another where the phase
corrections are done in the reconstructed volume.

In both cases, the reconstruction step is done via filtered back projection section 2.2.2.
The numerical implementation of this algorithm is provided by TomoPy, as is the 2d TIE
phase retrieval step. For the sake of clarity, we note that TomoPy uses what they call the
regularization parameter as an input variable, this is simply the inverse of the proportionality
constant. Additionally, the numerical implementation of 3d TIE phase retrieval has been
done internally by extending the TomoPy function with an additional dimension.

3.5 Numerical modelling

Create Phantom Polychromatic corrections
Multiply the phantom with 

each effective value creating 

two 3d arrays

1. Project each array around the centre of the

volume for θ = [0, π]

Apply cylindrical mask

For each projection, 

1. Upscale image by a factor of 2 

2. Calculate transmission and use the Fresnel filter 

3. Take the modulus square of the result 

4. Apply the OTF of the system 

5. Interpolate to the detector plane

Figure 14: Flowchart of the main elements inside of the numerical model.

The numerical modelling of phase propagation for this thesis is based on the work by Ulf
Lundström, where the numerical model was used for angiography, the imaging of blood
vessels [11]. However, to make this method viable for our specific needs, a few extension
were made. One of these extensions was the creation of a phantom object. This phantom
gave us more information when evaluating the final reconstruction, as the phantom could
be used as ground truth for the simulated object. We opted to create a complete 3d volume
through a python package, know as TomoPhantom [20].

Given that the simulations should be as close as possible to our experimental parameters,
they had to properly deal with the broadband radiation coming from the source. It can be
sufficient to approximate the radiation by selecting the characteristics line produced by the
bremsstrahlung. However, this can lead to an incorrect depiction of the phase contrast.
Hence a better approximation is to deal with the polychromatic case and do a complete
integration of the energy dependant terms (E, λ, k). Yet, this is, in most cases, quite
difficult, so another way of obtaining a similar result is to do a weighted average of the
bremsstrahlung spectrum and the detector response for each energy. In this way an effective
wavelength λeff for the setup can be calculated [12].

In the same way, as with the wavelength, the atomic scattering factors were evaluated.
The user only needs to specify what atomic composition and mass density the material has.
These variables then allow the determination of the effective linear attenuation coefficient
µeff and effective phase shift φeff . Before µeff , φeff are inserted the phantom is prepared for
projecting by applying a cylindrical mask around the tomographic axis. Doing this ensures
that the object always is within the simulated FoV.
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The phantom now contains two 3d objects, one with the effective linear attenuation
coefficient of each pixel and another with the effective phase shift. To form the tomographic
dataset each volume had to be projected onto a 2d plane. This was done by taking each
pixel and integrating it in the direction of optical axis. The object was then rotated by a
specified angle around a set rotation centre, upon which the object was projected on to the
2d plane again. By doing this for a linear step of angles going from 0◦ → 180◦ two projection
dataset were created.

This concludes the extensions to the numerical model, and the next steps will handle the
propagation of the individual projections. To start, a few variables are needed, namely the
size of each pixel in the 3d phantom, the detector pixel size, the source to detector distance
ztot and the object to detector distance z2. These values define the simulation planes, the
magnification and effective propagation distance zeff . Additionally, if the optical transfer
function of the system is to be included, see section 2.1.7, one needs to assign the standard
deviation of intensity PSF due to the detector σdetector and the source σsource.

In order to calculate the Fresnel propagator the first step is to create the Fourier grid,
upon which the simulation takes places. This is done by upsampling each projection by a
factor of two, such that the higher frequency terms are accurately represented. Additionally
the Cartesian grid defining the detector plane is calculated using the detector pixel size
scaled by the magnification.

When both grids have been created, the upsampled projections are used for the prop-
agation. First the transmission function is calculated in according with the projection ap-
proximation eq. (30). The transmission is then propagated via convolution with the Fresnel
propagator eq. (15) in the Fourier domain. The intensity of the exit wave is then acquired
by inverse Fourier transforming the result and taking the modulus squared.

The next step is to blur the image with the MTF of the detector, an area pixel and the
source. Here we assume that both detector and source have a Gaussian profile. For the
pixels, an area integration is done as this help with interpolating the simulation plane values
on to the detector plane.

The intensity image now represent the one obtained from eq. (51). However, as we want
the final image to be representative of a real measurement the image is finally interpolated
onto the detector grid. This procedure is done for all projections. Once the whole tomo-
graphic dataset has been propagated, either the 2d projections are phase-retrieved and then
the volume is reconstructed or the volume is directly reconstructed and then phase retrieved
in 3d.
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4 Results

Phase retrieval based on the TIE framework is one of the most commonly used methods to
retrieve the projected object thickness for propagation-based X-ray phase-contrast tomog-
raphy. In this framework two algorithms exists, one based on retrieval in the projections (
see section 2.3.1) and another in the reconstructed volume (see section 2.3.2). The 3d phase
retrieval has been shown to increase noise suppression while reducing overall computational
times [5]. However, this approach assumes a linear in-line contrast function which require
the object to uphold weak phase contrast.

In the first section, we aim to test this approximation and compare both phase re-
trieval approaches on a phantom composed of rectangular cuboids features. This phantom
shape exaggerates the potential shortcomings for objects features with long, straight and
aligned features, which should exhibit rapidly changing integrated thickness while rotated,
and increased edge phase contrast. The second section deals with similar feature types in a
laboratory setting, with a wood splinter as a sample. The final section aims to bridge the
information gap between the laboratory measurement and the first simulation, by using a
segmented version of a wood splinter as a phantom for the simulation.

4.1 Simulations with overlapping rectangular cuboids

4.1.1 Validity of a weakly absorbing object

Figure 15: A illustrative overview of the created phantom.

Propagation-based X-ray phase-contrast imaging relies on the validity of a weakly absorbing
object with a weak phase contrast. However, lab-based samples can potentially reach object
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sizes where the absorption or phase contrast is too high, restricting the use of an approxi-
mated in-line contrast function eq. (74). As a result, the phase retrieval operator on the 3d
reconstructed object would not be valid, motivating a closer evaluation.

To test this hypothesis, we will first look at the discrepancy in the in-line contrast function
for unfavourable objects geometries, particularly where long straight feature are perpendic-
ular to the tomographic axis. Large deviations would imply that phase retrieval in the
reconstructed 3d volume is not valid.

We therefore created a phantom object that contains two distinct groups of side planes,
see fig. 15. These groups are straight sections with an surface normal either parallel to
perpendicular to the tomographic axis. Additionally, the object is assumed to be composed
of only a single material, that being C5O6H with a density of 700 kg/m3. Here, the chemical
properties were disregarded and the material was selected to have a comparable composition
to wood [21]. The phantom pixel size was set to be 0.55 µm and the whole matrix was 512
pixels in all directions. This is relatively small compared to lab-based objects, which are
usually about 2 to 3 times larger. However, wood is rarely perfectly straight and contains
tubular structures filled with air when dry, making the width of the phantom closer to the
total integrated thickness of such an object.

The simulated distances were selected in accordance to real distances used during a
measurement, which have been found to be optimal for the targeted experimental station
[12]. As such, the total distance ztot was set to 9.9 cm, with the sample to detector distance
z2 being 0.9 cm, which assures a preferable magnification of M = 1.1.

Figure 16: In the top section is a reconstruction of the simulation with propagation distance of z2 = 0.9 cm,
resulting in the formation of distinct phase fringes. The intensity has further be assumed to follow the none
approximated version of the in-line contrast function. The bottom section shows the same cut-outs but for
an object in the contact region z2 = 0 which only shows the absorption contrast, again with the intensity as
− ln(I). The three different region of interest (ROIs) shows areas that will be further investigated. This as
they all show very different phase fringe formation.

Simulating the propagation via the method described before, in section 3.5, using the afore-
mentioned parameters, a set of 400 equidistant projections between θ = [0, π] was obtained.
In addition, another simulation in the contact regime (z2=0) was also performed. The con-
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tact regime was used to provide a control set which only deals with the intensity due to
Beer-Lambert’s law of absorption eq. (34), and as such acts as a reference for the absorption
contrast.

After creating both datasets we choose to test the validity of the in-line contrast function
eq. (74) by seeing how the Taylor expansion holds when it is used for the reconstruction. The
analysis was only done on three different limited regions, denoted by yellow, purple and black
in fig. 16. Note that there are some peculiar features on this object in particular the phase
fringes. However, in this section we will primarily deal with the validity of approximating
the in-line contrast function, leaving the review of the fringes shape to section 4.1.2.

Figure 17: Closer inspection of the yellow ROI edge profiles. The main plot shows the average line profile
for the different simulations, with (lightgreen) showing the phase fringe with the in-line contrast function
approximated while the (lightblue) one has remained untouched. The same is true for the contact region
where the (darkgreen) displays the edge when the intensity approximated and (darkblue) not. Next to the
average line profiles are the surface plots of the phase fringe and contact edge with intensity set as − ln(I).

In fig. 17 the fringe/edge is averaged along the x-direction and the absolute difference between
the reconstruction with and without approximated intensity is taken. To get a value that is
more easily comparable when using different simulation parameters, the absolute difference is
also normalized with the maximum value of the averaged none approximated L̄− ln(I) fringe.

AD =

∣∣L̄− ln(I) − L̄1−I
∣∣

max
(
L̄− ln(I)

) (85)

To obtain a single value representing the discrepancy between the two reconstructions the
mean of the normalized absolute difference ĀD is taken. From this point the same simulation
is repeated with different mass densities to see where the approximation starts to affect the
reconstruction.

In fig. 18, the difference is higher for the phase fringe than for the contact region. This
increased difference for the phase fringe is quite natural given that the maximum and min-
imum intensities are higher, resulting in it being more affected by the approximation. The
results show that the dependence of the phase fringe difference on the mass density is not
logarithmic. It especially appears to deviate for mass density over 100 kg/m3.
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Looking at the black region of interest, one might expect the approximation to perform
poorly, as the intensity is higher. Yet, this not the case since the approximation is applied
on each projection, and the integrated thickness of this section is small, resulting in a good
agreement of eq. (74).

Figure 18: The normalized absolute difference when the in-line contrast has been given by − ln(I) and 1− I
for a logarithmic range of densities. The blue features depict the difference in the phase fringe, while the
green shows the difference in the contact region. The black rectangle indicates the reference value of 700
kg/m3. Each plot shows the difference in a local area, as indicated by the coloured ROI on the reconstructed
slice.

The higher intensity seen in the reconstruction can qualitatively be understood when viewing
the sinogram in this region, fig. 19. Here the sinogram displays a smooth and stable nature,
such that when viewing the reconstruction step eq. (65) the line integrals will retrieve an
object with well-defined edges.

Applying the same line of reasoning for a sinogram located within the yellow region, we
see that the consistency between different angles is not optimal. Especially with angular
views close to where the object is parallel with the optical axis 90◦, as this angular region
will have an object that is rapidly changing in integrated thickness due to the shape of the
phantom.

Figure 19: Sinograms for the straight-edged phantom with a mass density of 700 kg/m3. The left image
shows the sinogram at y = 200 µm which show a smooth intensity curve. The second sinogram to the right
is taken at y = 140 µm and for which sharp intensity fluctuations occurs at around 90◦ when the object is
parallel to the beam.
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This argument of consistency in the sinogram due to a rapidly changing integrated thickness
have previously been encountered within the contact region. The defect was then attributed
to the exponential edge-gradient effect [6], a non-linear error resulting from the exponen-
tial integration of different intensity components. The effect is found for long and highly
absorbing features, as the relative change from one projection to another can be very large.

However, if the difference was to be correlated with the exponential edge-gradient effect,
the reconstruction within the contact region should exhibit deviations from the logarithmic
path for higher mass densities. This is not the case given the low absorbing nature of the
object. As a result, the higher degree of inconsistency in the sinogram for the propagate
object could be due to the phase interference increasing the feature contrast and subsequently
enlarging the discrepancy, allowing for this defect to appear for low absorbing features.

Even so, the small deviations from the contact region for the phase fringes reinforce the
current consensus, namely that the in-line contrast function can be approximated with a
first-order Taylor expansion, if the material is low absorbing. However, there will be a slight
difference in the contrast, which could affect the result.

The next section will focus on the deteriorating effects on the fringe structure due to the
sharp edges of the object. Also, the Taylor expansion of the in-line contrast function will
henceforth always be applied, unless stated otherwise, as the approximation is essential for
the derivation of 3d phase retrieval, eq. (81).

4.1.2 Deteriorating fringes

In the previous section, we saw variations in the normalized absolute difference between sep-
arate phase fringes regions. To understand the underlying problem, we distinguish between
two groups of phase fringes based on the direction of the side plane surface normal. A rea-
sonable assumption as the yellow, purple and black ROI in fig. 18, each had a surface normal
vector either parallel or perpendicular to the tomographic axis. With this distinction, we
hope to determine why different regions of phase fringes appear so varied and if there is a
correlation between the surface normal direction and the structure of the phase fringe.

Figure 20: Overview of the reconstructed simulated object with a mass density of 700 kg/m3. The coloured
ROIs indicates a specific edge where the surface normal vector ~n is parallel to a specific axis ~x, ~y, ~z. These
regions will further be used as the area of interest for additional investigation.

It can qualitatively be seen in fig. 20 that different phase fringe experience a wide range
of deformation. This deformation is even more apparent in fig. 21, where the purple phase
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fringe exhibits a complete inversion, meanwhile the red region shows slight deviations, and
finally black with no visible defects, and being close to idealized phase fringe.

Figure 21: On the upper row the surface plot of three ROIs denoted by (red, purple and black) is shown.
These regions are different in that the direction of the surface normal vector ~n is parallel towards ~x, ~y, ~z
respectively. Below a transversal view of the fringe can be seen, here the colour map indicates the parallel
distance of the edge, with yellow being the closest and purple the farthest.

As such, the first step is to create a way of quantifying how deformed a specific phase fringe
is. Given that it is known that all edges in the phantoms are actually straight, we can check
the deviation across a fringe, as the perfect edge would have very small deviations. With
that reasoning, we start by taking the average across all line-outs along the edge profile L̄,

L̄ =
L1 + L2...+ LN

N
(86)

where L1 + L2...+ LN denotes the line-out perpendicular to the edge.
From this point we take the squared deviation of each line from the average L̄ and then

the square root of the mean to get the standard deviation,

σ =

√√√√[ 1

N

N∑
i=1

(Li − L̄)2

]
(87)

To make the standard deviation comparable with other fringes, we normalize σ with the
maximum value of the intensity for the ROI. The standard deviation can, as such, be repre-
sented as a percentage of the maximum value in each specific region, allowing for a relative
representation of the standard deviation. In fig. 22 the normalized standard deviation has
been plotted against the transverse distance for each of the six regions. Here are two very
distinct pairs of fringes, the blue and black, and the rest. This splitting is expected when
viewing the features in terms of the sinogram consistency assumption from before, as the
blue and black regions will have a smoothly changing integrated thickness.
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Figure 22: The normalized standard deviation for every ROI looking in the transverse direction of the edge.

The yellow and red regions will, by the same reasoning as in section 4.1.1, have a rapidly
changing integrated thickness at around 0◦, 90◦ and 180◦. For which the reconstruction
lacks information, resulting in an unstable phase fringe. In the purple and green regions, the
normalized standard deviation is roughly an order of magnitude larger than for the red and
yellow ROI, indicating a very deformed fringe. A result which is evident when viewing the
transversal view of the purple fringe in fig. 21 as there is a complete inversion of the phase
fringe.

To unravel why features perpendicular to the tomographic axis appears distorted, another
phantom only consisting of a single rectangular bar is simulated, again utilizing the same
simulation parameters. This simulation allows for a better qualitatively comparison of how
the Fresnel propagator eq. (15) interacts with the object transmission function eq. (30), as
there are no interfering features.

x & z x & zx & z

θ=90° θ=75° θ=14°

Figure 23: To the left is the retrieve phase contrast image for both phantom with θ = [90, 75, 14]◦. To the
right is the coronal view of the reconstructed object, here it is evident that the weak phase contrast in the
reconstruction is a direct result of the rapidly changing integrated thickness.
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In fig. 23 the propagated projections for the pure rectangular cuboid and the original phantom
both show a fringe inversion in the angular views where the integrated thickness is large and
rapidly changing along x − z. Also, the phase fringe in the reconstructed volume for the
simplified phantom still exhibits phase contrasts defects. Hence, a fair assumption would
be to attribute the inverted phase fringes to the rectangular feature shape, as the integrate
thickness between 90◦ and 14◦ is an order of magnitude different, which would result in the
observed variant phase fringes. However, to show the exact cause for the fringe inversion,
one would ideally need an analytic treatment of the problem.

To continue the analysis from the previous section we again include the effects of mass
density on the phase fringe formation, here the same logarithmic scale is used. Thus to see
this behaviour we have to simplify the fringe difference even further by taking the average
of the normalized standard deviation in each ROI.

Figure 24: Average normalized standard deviation for each ROI for a logarithmic scale of densities. The
black ROI indicates the values for a mass density of 700 kg/m3.

The resulting figure can be seen in fig. 24 where again each colour represent the specific region
of interest. Interesting here is that the green and purple region where the edges surface plane
normal vector is aligned to the tomographic axis ~n = ~y appears to start as more stable and
grows faster with the increase of the mass density of the object. The blue and black regions
have continuously low deviations, regardless of the mass density of the object.

As before, the reason seems to be due to the smooth nature of the sinogram fig. 19,
meaning the reconstruction algorithm can correctly reconstruct these features. The same
goes for the red and yellow regions, but here the sinogram is not sampled smoothly, for
which the reconstruction produces larger defects. Finally, for the green and purple regions,
the issue appears to be more involved and is partially the result of phase inversion seen
in fig. 23. This phase inversion would, in turn, result in even worse sinogram consistency,
further enhancing the already existing defect.

Yet this is only a speculative answer based on qualitative evidence and previously seen
effects in the contact regime. To see where these issues are initially coming from, one
would need an in-depth analytic treatment of the phase fringe formation. Given that this
problem currently can not be solved, the next step is to see how it affects the phase retrieval
algorithms.
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4.1.3 The effect of phase retrieval on straight edges

The normal approach as stated in section 2.3.1 is to do the phase retrieval for each projection
and then reconstruct the object. The advantage of doing it in this order is that we are not
required to linearise the in-line contrast function. However as previously outline there are
some quite unfavourable effects that occurs for even seemingly simple objects that appears
to be a more localized problem. Something that currently can not be account for. Here the
analysis is limited to the original simulation with a mass density of 700 kg/m3 as the effect
of the algorithms on a realistic object is of interest.

To apply the phase retrieval a few known parameters are needed, the effective propagation
distance, which is given by inverting eq. (44). The effective detector pixel size given by
the detector pixel size divided by the magnification, and the energy. Here the effective
energy Eeff has to be calculated with polychromaticity corrections and is 12.7 keV. The
final parameter is the proportionally constant α, which has to be approximated with prior
information about the reconstructed object. Due to the simulation, the exact composition
is known, and hence the proportionally constant can be calculated.

The following analysis is not aiming to find the optimal filtering parameters but instead
is meant to serve as a demonstration of the difference between the 3d and 2d TIE phase
retrieval approaches. To that end we use the value of α = 1300 given by the polychromatic
corrections.

Phase fringe [ref]

3D phase retrieval

2D phase retrieval, 1-I

2D phase retrieval, -ln(I)

Phase fringe [ref]

3D phase retrieval

2D phase retrieval, 1-I

2D phase retrieval, -ln(I)

Phase fringe [ref]

3D phase retrieval

2D phase retrieval, 1-I

2D phase retrieval, -ln(I)

Figure 25: Average phase fringe profiles for three different ROIs. In all plots, the black line represents the
non-retrieved phase fringe i.e. the reference. The blue and red line shows the 3d and 2d phase retrieval on an
in-line contrast function given as (1− I). Finally, the green line is the line profile when 2d phase correction
has been applied to the (− ln(I)) projections.

We have restricted the analysis to the same regions as in section 4.1.1 given that we
showed these regions where roughly equivalent. Additionally, the 2d phase retrieval step
for an approximated in-line contrast function is also included to show the direct difference
between the two methods.
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Even if the in-line contrast function was shown to not be an exact fit, the phase retrieval
indicates that the edge location is unaffected, but as before there is a slight intensity dif-
ference, only now to a lesser extent. As such the simulations conclude that both methods
perform very similarly and there is no significant loss when applying the phase retrieval step
after reconstructing the object.

Figure 26: Average line profiles for three different ROIs, black indicates local phase retrieval while the
yellow profile is the fringe when retrieval has been applied across the whole object. The local phase retrieval
has been applied individually on the three regions going from y = [0, 121.5] µm, y = [122, 157.5] µm and
y = [157.5, 280.5] µm denoted by the red, blue and green regions in the bottom left 3d volume. This interface
separation is also include in the purple ROI and is indicated by the blue and red gradient line.

Given that the results indicate that the two methods perform very similar, we would now
like to know how localized 3d phase retrieval would perform. It would be expected that
the filtering is not behaving the same as we are limiting the spatial dimensions and hence
restrict the frequency domain, which should result in a difference in the phase filtering.
Again, keeping all variables the same the only difference is that we divide the object into
three regions in the y direction. These go from y = [0, 121.5] µm, y = [122, 157.5] µm and
y = [157.5, 280.5] µm

From fig. 26 we see that local and global phase retrieval effectively retrieves the same
object thickness, but issues arise at the interface between regions, as seen in the lineout
from the purple ROI in fig. 26. The reason for this is that the local phase retrieval does
not contain the outer voxels neighbouring information. To solve this, one would need to
deploy a more sophisticated approach to deal with the local region interface than the simple
recombination of the local regions used here. This approach could include smoothing at
the interface between regions, or the addition of overlapping regions where the interface is
constructed from the overlapping values.

However, the results shows that we can restrict the 3d volume to a smaller region and
still obtain approximately equal results. A result that is beneficial as a real reconstructed
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dataset can be very large. Thus having the option to divide it into a smaller sub-region for
analysis is highly useful.

4.2 Wood splinter

4.2.1 Laboratory measurements

Given the result of the varied fringe contrast in the simulations, we tried to reproduce the
effect in a real measurement. We choose to measure a wood splinter as it composed of fairly
straight cellular structures which should give rise to the effects seen in section 4.1.2. To
be able to see the dependence on the edge orientation the splinter was measured in two
different sample orientations. In this way each different category of edges would be flipped
and compared, according to the results from the simulations.

0 [rad] π/2 [rad]

π [rad]0 [rad] π/2 [rad]

π [rad]

Figure 27: The projections of the vertically (upper), and horizontally (lower) aligned sample. The images
from left to right show the projection of 0, 90◦, 180◦ respectively.

The normal experimental alignment, section 3.3, was done and the sample was prepared by
gluing the splinter with epoxy onto a small Kapton tube. To ensure stability, the system was
allowed to rest for several hours before starting the measurement and each orientation was
measured more than once. When the dataset for the first orientation had been collected the
second one was retrieved by flipping the kapton tube on its side such that only the splinter
was inside the FoV, see fig. 27. Additionally the distance where set to be the same as in
the simulations. Therefore the total distance (ztot) was set to 9.9 cm, with the sample to
detector distance z2 being 0.9 cm, giving a magnification of M = 1.1.

Once datasets from both orientations were collected, the data was pre-processed as outline
in section 3.4 and reconstructed using parallel beam geometry. Unfortunately, even the best
dataset for each orientation resulted in reconstructions with noticeable artefacts, as can be
seen in fig. 28. Thus, it was difficult to determine if the cause for the impaired quality was
due to the sample orientation or other factors. The artefacts appear to be the result of a
misalignment pitch angle ν as the reconstruction has clear stripes along the tomographic
axis y, which is accompanied with this type of misalignment section 3.1.3. Thus the defect
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cannot easily be solved by known pre-processing algorithms and will subsequently impair
the analysis.

horizontal alignment 

vertical alignment 

Figure 28: View of a smaller part of the reconstruction for the two different sample orientations. The
upper slice shows the reconstruction for vertical alignment to the tomographic axis, while the lower one is
horizontally aligned. The black ROI indicates a region where the horizontal dataset shows stripe artefacts
parallel to the tomographic axis. The blue and red ROI displays a region with similar features. These two
regions have their intensity represented as a histogram in the upper right corner.

Therefore, instead of quantitatively comparing the same features throughout the volume,
we will have to limit ourselves to a qualitative analysis of potential defects. In fig. 28 and
fig. 29 we can see stripe artefacts parallel to the tomographic axis, which appear similar to
the defects we saw in the simulations. Yet as the artefact is only present for a few of the
feature it makes it less likely that the effect is related to the sample orientation.

Another general defect given from the blue and red regions in fig. 28 and fig. 29 is that
the horizontally sampled reconstruction shows a lowered contrast. Something that could be
attributed to the fact that the object is not perfectly symmetric and is longer on one side.
This is further evident when looking at the 90◦ projection in fig. 27. Here the absorption
is much higher, which would result in it and the neighbouring angular region containing
lacking sinogram consistency, resulting in a reconstruction with less contrast.

If we assume that the misalignment errors are stationary for both measurements, a fair
assumption as the misalignment drift should be small. Then the decreased contrast could
be evidence of the same effect from the simulations. However, it has to be stated that due
to the splinter being rectangular the effect is exacerbated for the horizontal alignment, and
the decreased contrast would be present for unaligned features as well. The reason for this
comes directly from Beer-Lambert law, eq. (34), as the thickness z is higher in horizontal
alignment. Thus to obtain better evidence for fringe defects due to the alignment features,
one would ideally have a cubic sample, as it would alleviate the decreased contrast coming
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from the shape. To that end, the cause for the lowered fringes contrast remains indecisive,
as there are two potential candidates that both explain the decreased contrast.

horizontal alignment 

vertical alignment 

Figure 29: Another smaller region of the reconstructions. Here the left image is vertically aligned, while the
right one is horizontally aligned. The black ROI indicates a region in the vertical measurement where the
stripe artefacts parallel to the tomographic axis occurs. The blue and red ROI again shows an area where
both datasets have a similar feature, and to the left is the histograms for these regions.

The main objective of this work is to compare how the two TIE phase retrieval methods
behave. But as the horizontal measurement exhibits poor contrast, the analysis will be
restricted to the blue region of the vertically aligned measurement, seen in fig. 29. Here we
follow the same methodology as in section 4.1.3, meaning that the in-line contrast function
has been approximated for the use of 3D phase retrieval and kept as − ln(I) for the standard
2d retrieval.

Phase fringe [ref]

3D phase retrieval

2D phase retrieval, 1-I

2D phase retrieval, -ln(I)

Figure 30: Average phase fringe profiles for the blue ROI in fig. 29. The black line shows the line profile
for the phase fringe i.e. the reference, note that the in-line contrast still is approximated as (1 − I) due to
the finds in section 4.1.1. The blue and red dashed line shows the 3d and 2d phase retrieval on (1 − I),
which are still approximately giving the same results. Finally, the green line is the line profile when 2d phase
correction has been applied to the (− ln(I)) projections.

43



We have also opted to include the 2d phase retrieval on an in-line contrast function given
by (1 − I) to see if there are any direct difference between the two. Additionally, the final
result from section 4.1.3 is used to restrict the 3D phase retrieval to half of the object, this
as only half of the reconstructed volume contains the wood splinter.

The discrepancy between the 2d and 3d phase retrieval approaches is higher than what
the previous simulation have shown, fig. 30. This discrepancy is due to the larger object,
as the absorption is an order of magnitude larger than in the simulations. As a result,
the laboratory measurement has a lesser agreement of eq. (74) giving weaker contrast when
applied. Even with decreased contrast due to an approximated in-line contrast function, the
edge profile remains largely intact, as can be concluded by the location of the maxima.

With this information in mind, 3d phase retrieval has a case of being the option for
performing phase corrections in localized regions for multi-material structures. As the phase
retrieval parameters can be locally tuned, to still hold the mono-material approximation.
Something that the 2d method severely struggles with, due to the integrated object infor-
mation of the projections. Hence there might be more to gain with optimal phase retrieval
parameter than is lost by the decreased contrast. However, the 2d phase retrieval would be
superior for homogeneous samples where one step phase retrieval suffice as the contrast is
higher.

Furthermore, for the 3d case, it could be imagined that the phase retrieval algorithm
and a segmentation algorithm is combined. Here the segmentation algorithm would try to
distinguishing different features based on a set of constraints. Thus, the segmentation could
deal with the categorization of distinct phase regions. These local phase fringes could then
be fitted with a phase-contrast function to receive the proportionally constant. Alternatively,
an iterative method could be deployed where each region is phase retrieved until a specific
criterion is reached. In this way, the combined approach would be constrained based on
physical parameters, which would limit the ordinary subjective selection of parameters.

4.2.2 Segmentation as phantom

Figure 31: Illustrative overview of the two different orientation for the segmented wood splinter.

In section 4.1 the phantom was created to give ill-behaved features, and as the measurement
only gave hints to the existence of the defects due to the sample orientation another simu-
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lation will be performed. This simulation will use a segmented version of an earlier wood
splinter measurement with better quality. The motivation for this simulation is that it could
serve as a bridge between the simplified phantom simulations and the real experiment.

To limit other potential defects only a symmetric cube of the segmentation will be used,
as we would otherwise run into the same problem as in the laboratory measurement when
the tomographic axis is changed. The simulation also assumes the distances from before,
that being a total distance (ztot) of 9.9 cm, with the sample to detector distance z2 being 0.9
cm. Due to the larger matrix size, we also increased the number of projections to 501.

Figure 32: Reconstruction of wood splinter oriented in two different directions. The upper row of slices are
when the object has be rotated parallel with the length of the features. For the lower row the object the
opposite is true, and the object features are now perpendicular to the tomographic axis. The blue and red
ROI indicates the regions we will give a closer view.

From the reconstruction of the two different orientations, fig. 32, it can qualitatively be seen
that when feature are vertically aligned along the tomographic axis, i.e. the edge surface
normal vector is perpendicular to the tomographic axis we get a higher contrast. A better
view can be seen in fig. 33 where the average fringe profile and histograms for the blue and
red regions are depicted.

It can be seen that there is an overall decrease of contrast for the horizontally aligned
sample. Yet, more interesting is that the phase profile has changed quite drastically, with
both edges being shifted inwards by a few microns. Given that the sample might contain
both of these aligned features in a given measurement there will be a definite possibility for
higher uncertainties in the size of features for the feature which are horizontally aligned.

In simulations, the edge shift effect can be quantified as the ground truth is known, given
the phantom. However, for laboratory measurements, the ground truth is unknown, and real
samples are generally larger. Meaning that the edge shift might be even more substantial for
laboratory measurements, resulting in larger features size uncertainties. Thus to quantify
the edge shift, a sample with a well-defined size would be needed, in addition to the other
previously mentioned requirement of a cubic structure and better alignment procedures,
section 4.2.1.
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Even if we have shown the validity of 3d phase retrieval in the prior sections, the result
of how these artefacts propagate in the phase retrieval is of value. fig. 34 shows the phase
profile for both sample orientation, with the ground truth edge indicated by the gradient
vertical line.

horizontal alignment 

vertical alignment 

Figure 33: To the left is the average phase fringe profiles for the blue and black ROI in fig. 32. The blue
line depicts the phase fringe when the objects edge surface normal is perpendicular to the tomographic axis.
The red line shows the same area, but for an object with a surface normal parallel to the tomographic axis,
and the black line is the average phantom edge profile indicating the true edge. The right plots show the
histograms of both regions, with the colour representing the same areas as before.

For these simulations, both phase retrieval methods perform well, but the edge shift is still
present in the horizontal measurement where the edge surface normal is parallel to the
tomographic axis. This result is natural given that the initial phase fringe already indicated
the edge shift. As such, the features size uncertainties are still present after phase retrieval,
meaning that the size information is effectively lost when the sample has features aligned
with the optical axis.

Figure 34: Line profiles for the phase retrieved simulated wood splinter. The upper plot shows the phase
fringe for ~n = ~z and its subsequent profiles after phase retrieval. The same is true for the lower one, only
here the surface normal is parallel to the tomographic axis. The grey dashed line now depicts the phantom
profile and the two gradient vertical lines indicate the phantom edges.
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5 Conclusions

In this work, we have demonstrated, via numerical modelling, the validity of approximating
the in-line contrast function by a first-order Taylor expansion in PB-PCT for rectangular-
shaped objects, section 4.1.1. However, the object shape gave rise to unique phase-contrast
effects for edges oriented perpendicular to the tomographic axis and for features that ex-
perience rapidly changing integrated thickness while rotated. These effects both lead to
increased phase contrast, which we argue as partially interlinked in that both decreased
sinogram consistency constraints, resulting in a faulty reconstruction, section 4.1.2. The 2d
and 3d phase retrieval method based on the TIE framework has also been tested, showing
comparable results. The 3d algorithm has further been limited to local regions for phase
retrieval, where it performed equivalent to the global approach except for values close to the
interface between local regions, section 4.1.3.

The simulations produced different phase contrast on features oriented perpendicular and
parallel to the tomographic axis. For this reason, two sets of laboratory measurement on a
wood splinter were acquired. These measurements had the sample oriented vertically and
then horizontally, allowing the effects of aligned features to be investigated. Here a decreased
contrast was observed when the internal features were perpendicular to the tomographic
axis. We could not exclusive attribute this reduced contrast to the alignment, as there was
an inherent increased absorption due to the rectangular shape of the sample. Resulting in
indecisive evidence as two potential candidates both explained the seen effects, section 4.2.1.

Additionally to the reduced contrast in the horizontally aligned measurement, there were
misalignment issues with the pitch angle, limiting the quantitative analysis. Hence the phase
retrieval comparison was restricted to the measurement with the sample vertically aligned
as it had better feature contrast. In this comparison, the methods showed similar results in
the retrieved feature size. But due to the large object size of the wood splinter, the in-line
contrast function approximation was in less agreement, leading to decreased contrast for the
3d algorithm compared to the 2d approach. As such, the 2d phase retrieval was deemed to
be superior for homogeneous samples where one step phase retrieval suffice. Meanwhile, the
3d method could see a use for samples where local phase retrieval outweighs the decreased
contrast.

Moreover, the local phase retrieval provided by the 3d approach could potentially be com-
bined with segmentation. In this way, the segmentation could deal with the categorization
of different phase regions, where the local phase fringes can be fitted with a phase-contrast
function to receive the corrected phase retrieval parameters, limiting the need for prior ma-
terial knowledge. Alternatively, an iterative method could be deployed where each region is
phase retrieved until a specific criterion is reached.

In hopes of bridging simulations and experiments, the effect of internally aligned features
was also tested in simulations where the phantom had been created from a segmentation of
a previous wood splinter measurement with higher quality, section 4.2.2. These simulations
showed related artefacts seen in the laboratory measurement in terms of reduced contrast,
providing further evidence to the hypothesis that the decreased contrast is associated with
the feature alignment. It also revealed that when features are perpendicular to the tomo-
graphic axis, the phase-contrast is shifted from the true edge. Indicating that features size
uncertainties are present whenever features are aligned with the optical axis.
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[3] M. Krenkel, C. Töpperwien, M.and Dullin, F. Alves, and T. Salditt. Propagation-based
phase-contrast tomography for high-resolution lung imaging with laboratory sources.
AIP Advances, 6(3):035007, 2016.

[4] D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins. Simultaneous
phase and amplitude extraction from a single defocused image of a homogeneous object.
Journal of microscopy, 206(1):33–40, 2002.

[5] D. A. Thompson, Y. I. Nesterets, K. M. Pavlov, and T. E. Gureyev. Fast three-
dimensional phase retrieval in propagation-based X-ray tomography. Journal of syn-
chrotron radiation, 26(3):825–838, 2019.

[6] P. M. Joseph and R. D. Spital. The exponential edge-gradient effect in x-ray computed
tomography. Physics in Medicine & Biology, 26(3):473, 1981.

[7] D. Paganin. Coherent X-ray optics. Oxford University Press on Demand, 2006.

[8] A. Ruhlandt. Time-resolved X-ray phase-contrast tomography. Universitätsverlag
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