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Abstract

In order to automate anaesthesia in patients using propofol, closed-loop control sys-
tems with models that describe the time course of the drug effects on the body are
required, usually being represented by pharmacokinetics and pharmacodynamics
(PKPD). This thesis focused on evaluating parameter identifiability for the PK part
of the model, using a model proposed by Eleveld et al. that has six parameters. Dif-
ferent sets of data were simulated with said model and Gaussian noise was added.
To identify the parameters in the simulated data, Markov Chain Monte Carlo with
the Metropolis-Hastings algorithm was applied for a set of different test cases. The
results show that the estimations are dependent on the choice of priors and that the
system is not uniquely identifiable. Although the estimated values differed from
the parameters which were used for simulating data, the estimated parameters were
able to fit the observed data very well in all trials. The conclusion of this work is
that a PKPD model structure using six parameters is not practically identifiable and
suggestions for future work would be to investigate whether a structure with fewer
parameters could be more suitable for closed-loop control systems in anaesthesia.
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1
Background

1.1 Introduction

To facilitate serious operational procedures for surgeons, as well as prevent pain
and discomfort for the person undergoing the operation, general anaesthesia is in-
duced in the patient. Anaesthesia means loss of sensation and amounts to safely and
reversibly put the patient in an unconscious state [NHS, 2018].

Non-invasive continuous measuring systems, along with in-depth knowledge
about drug effects on the human body, enable anaesthesiologists to manually ad-
minister drugs, observe the responses and adjust the doses accordingly. However,
automating drug administration may contribute to a series of advantages in regards
to patient safety and healthcare cost reductions [Jing and Syafiie, 2020].

In order to accomplish automation, closed-loop control systems with models
that describe the time course of the drug effects are required, most commonly rep-
resented by pharmacokinetics and pharmacodynamics (PKPD). Pharmacokinetics
describe how the body affects the induced drug, whereas pharmacodynamics de-
scribe how the drug affects the body [Soltesz et al., 2020].

Implementing closed-loop control systems comes with multiple challenges, and
among those are model uncertainties [Jing and Syafiie, 2020]. The aim of this work
was to provide further insight on the performance of a recently proposed model by
Eleveld et al., which was developed for drug effect prediction for a broad population
[Eleveld et al., 2018].

1.2 Anaesthesia

General anaesthesia is a reversibly induced state which causes loss of conscious-
ness through hypnosis1, amnesia2, analgesia3, and reduces the effect of reflexes of

1 Hypnosis: a state of altered consciousness.
2 Amnesia: loss of memories.
3 Analgesia: loss of sensation of pain.
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Chapter 1. Background

the autonomic nervous system4. The main goal is for the patient that undergoes
general anaesthesia to be unable to process the information of the environment, as
well as have no recollection of the events that occurred during the procedure. This
includes physically painful events as well as experiences that may cause psycholog-
ical trauma [Cascella, 2020b].

The induction of anaesthesia is conducted through a bolus dose5, that puts the
patient in the desired unconscious state. This is usually followed by constant rate
infusions of the chosen drug or drugs. Once anaesthesia is reached, the forthcoming
phase is maintenance. The maintenance phase aims to prolong the anaesthetic state
in order for the intended procedure to be carried out successfully. Lastly, the ending
stage, emergence, will be reached and it is characterized by the transition from
unconsciousness to wakefulness [Soltesz, 2013].

The depth of anaesthesia (DoA) can be evaluated by measuring brain activity
through a processed electroencephalogram (pEEG). One of the more commonly
used non-invasive monitors in anaesthesia is the BIS monitor (Bispectral Index™
(BIS™), Medtronic, UK). It consists of a single adhesive sensor, placed on the
patient’s forehead, which collects EEG data. Once the signal has been processed,
the system outputs a dimensionless number, referred to as the BIS-index. This index
represents the DoA and ranges from 0, meaning there is no EEG signal, to 100,
which represents a fully conscious patient. Values between 40-60 are appropriate
levels of general anaesthesia and are hence suitable during the maintenance phase
[Cascella, 2020a].

In current standard practice, an anaesthesiologist induces the desired state of un-
consciousness in the patient and thereafter monitors it. However, automating drug
administration may contribute to a series of advantages in regards to patient safety
and healthcare cost reductions [Jing and Syafiie, 2020]. Furthermore, it shifts the
focus of the anaesthesiologist to clinical events as opposed to monitoring and regu-
lating the process [Soltesz, 2013].

Drugs used in anaesthesia are administered through injection or inhalation. The
most common anaesthetics that are administered through injection are propofol,
etomidate, midazolam, thiopental and ketamine. Inhaled drugs used in anaesthesia
are halothane, desflurane, isoflurane, sevoflurande, nitrous oxide and xenon. Since
these medications have small, uncharged molecules, they can cross the blood-brain
barrier, giving the desired unconscious effect during surgery [Cascella, 2020a].
Remifentanil is an opioid6 that is available for clinical use in anaesthesia in order to
block noxious stimuli7. The drug assures deep intra-operative analgesia and assures
safe and stable hemodynamics8 during the procedure, without compromising on the

4 Autonomic nervous system: the part of the nervous system that unconsciously controls and regulates
bodily functions.

5 Bolus dose: a dose given intravenously at a controlled, rapid rate.
6 Opioids: drugs used to reduce pain.
7 Noxious stimulus: an actually or potentially tissue damaging event.
8 Hemodynamics: the study of blood flow and circulation.
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1.3 Model structures

desire of rapid awakening post operation. Another advantage of remifentanil is that
it enables pharmacokinetic predictions [Komatsu et al., 2007].

1.3 Model structures

To automate the process of anaesthesia through closed-loop control systems9, mod-
els are required that describe the mechanisms from the intravenous bolus dose and
continuous infusion to the displayed signal on a BIS monitor. The following chapter
introduces the reader to different model structures used in anaesthesia.

PKPD model structure
The traditional approach to model anaesthesia is achieved by using a pharmacoki-
netic pharmacodynamic (PKPD) model. Pharmacokinetics (PK) describe how the
body handles the administered drug whereas pharmacodynamics (PD) describe the
course in which the drug affects the body.

In order to receive an output of the model in terms of a BIS-number, the drug
concentration in the body needs to be modelled. The final concentration of interest
in this case is the effect site concentration, which is the concentration of the drug
located in the brain, where the EEG activity is measured. If anaesthesia is induced
intravenously or by inhalation, the goal is to describe the time course in which the
drug travels throughout the body and eventually acts on the brain before it loses
its effect. Modelling this process starts with pharmacokinetics and is followed by
pharmacodynamics.

Pharmacokinetics Pharmacokinetics when using propofol is modelled by three
compartments. A compartment is a homogeneous entity that specifies a state of
a distributed substance. The three compartments that are constructing the pharma-
cokinetic structure exchange material with each other through transfer rate constants
[Swietaszczyk and Jødal, 2019].

An alternative way of modelling pharmacokinetics is through physiological
models that take all organ volumes and clearances10 into account, creating an
anatomically accurate description of how drugs distribute in the body over time.
However, this approach seems to be unnecessarily complicated since it has not
shown any superiority to the compartmental modelling. Hence, the compartment
model structure has taken the lead as the most commonly used PK describer.

Pharmacokinetics are linked to the concentration of the drug in the plasma. This
concentration is represented by the main compartment, Compartment 1 in Figure
1.1. From the main compartment, the rapid peripheral compartment (Compartment
2), and the slow peripheral compartment (Compartment 3) are connected through

9 Closed-loop control system: a type of control system in which the controlling action shows depen-
dency on the generated output of the system

10 Clearance: the elimination of a substance from the body or other biological system.
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Chapter 1. Background

drug transfer rate constants ki j that go from compartment i to j. Constants k10 and
ke0 are elimination rate constants [Jing and Syafiie, 2020]. The main compartment
corresponds to the blood plasma, the rapid peripheral compartment represents the
organs where the drug effect is instantaneous, such as heart and liver, and the slow
peripheral compartment describes the drug distribution in organs where the effect is
slower, such as fat and skeletal muscle [Savoca and Manca, 2020].

Figure 1.1 The traditional PKPD model structure, containing three compartments
(PK), an effect compartment that accounts to the time lag between the drug effect
in the blood plasma and the effect site, and a Hill function which outputs the BIS-
numbers (PD).

With the aim to obtain the plasma drug concentration over time, the compartment
models can mathematically be described by solving for C1 in (1.1).

Ċ1 =−(k10 + k12 + k13)C1 + k21C2 + k31C3 +
1

V1
u

Ċ2 = k12C1− k21C2
Ċ3 = k13C1− k31C3

(1.1)

where Ċ1,Ċ2 and Ċ3 are the derivatives of the respective compartment concentra-
tions over time, ki j are the drug transfer rate constants, k10 is the elimination rate
constant, V1 is the volume of Compartment 1 and u is the input, which in this case
is the drug dose [Jing and Syafiie, 2020].

Pharmacodynamics From the point when the drug is administered into the body
until there is an observed effect on the brain, a time lag occurs. Therefore, another
compartment that takes this lag into account is added (Effect Compartment), see
Figure 1.1. The effect compartment is described by a first order differential equation

Ċe = ke0(C1−Ce) (1.2)
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1.3 Model structures

where Ċe is the derivative of the effect compartment concentration over time and
ke0 is both the drug transfer rate constant and the elimination rate constant. This
compartment relates to the effect site concentration of the drug. Lastly, effect site
concentration is related to the drug effect in the brain with a non-linear Hill Sigmoid
function,

E(t) = E0 +(Emax−E0)
Ce(t)γ

Ce(t)γ +Ce,50(t)γ
, 1≤ γ. (1.3)

where E0 represents the value when drugs are absent, i.e. BIS index 100, Emax repre-
sents the largest possible drug concentration, yielding BIS index 0, Ce,50 is the effect
site drug concentration that gives the effect E(t) = 50, and γ is the Hill parameter
[Soltesz et al., 2020]. The total amount of parameters in this model, combining
(1.1), (1.2) and (1.3), are the following:

θθθ = (k10,k12,k21,k13,k31,V1,ke0,Ce50,γ)
T (1.4)

Reduced parameter PKPD model structure
Another proposed model structure [Silva et al., 2010], describing the joint effect
of propofol and remifentanil in the human body, is presented in this section. The
model has fewer parameters than the traditional PKPD model.

Pharmacokinetics For modelling the pharmacokinetics, a linear third order con-
tinuous model is used, see (1.5).

Ce(s) =
k1k2k3α3

(s+ k1α)(s+ k2α)(s+ k3α)
U(s) (1.5)

where U(s) is the Laplace transform of the input signal, i.e. propofol or remifentanil,
k1, k2 and k3 are predefined and determine the ratio between the poles, and α is the
pole location selected to be a parameter.

Pharmacodynamics In order to describe the Depth of Anaesthesia, (1.5) Cp
e for

propofol is combined into a nonlinear function as follows

E = E0 +(Emax−E0)
1

1+(mvp(t))γ (1.6)

where

vp =
Cp

e

Cp
e,50

, (1.7)

and Cp
e,50 is a fixed value. The total amount of parameters in this model, combining

(1.5) and (1.6) are hence
θ = (αp,m,γ)T (1.8)
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Chapter 1. Background

1.4 Estimation theory

Bayesian Inference
In order to obtain estimations of parameters for this work, Bayesian inference meth-
ods were used. In Bayesian inference, the goal is to fit a model with parameters θθθ to
a data-set y. The result can be summarized in a probability distribution of the model
parameters, in this case, a posterior distribution.

To make a probability statement about a parameter given some data y, a joint
probability distribution for θθθ and y is needed. This distribution is described as (1.9).

p(θθθ ,y) = p(θθθ)p(y|θθθ) (1.9)

where p(θθθ) is the prior distribution and p(y|θθθ) is the sampling distribution. The
prior distribution describes a distribution of beliefs before having access to any
data. The sampling distribution, also referred to as the likelihood, describes the
probability that data y is observed given that the proposed model with parameters θθθ

is true.
Conditioning the parameters on the observed data y, using (1.9), yields Bayes’

rule, describing the posterior distribution

p(θθθ |y) = p(θθθ ,y)
p(y)

=
p(θθθ)p(y|θθθ)

p(y)
(1.10)

where p(y) is the sum over all possible values of θθθ . Due to this factor being inde-
pendent of θθθ , it is usually omitted, yielding the unnormalized posterior density,

p(θθθ |y) ∝ p(θθθ)p(y|θθθ) (1.11)

This is the fundamental formula for Bayesian inference [Gelman et al., 2013]. Typ-
ically, explicit solutions to solve for the posterior density are not available. When
explicit solutions are unavailable, the distributions can be approximated with sam-
pling methods. If enough samples exist, any important information about a distri-
bution can be recovered. Therefore, approximation methods are widely used, one
of which is the Markov Chain Monte Carlo (MCMC) sampling method [Wang and
Park, 2020].

Markov Chain Monte Carlo
Monte Carlo Sampling Monte Carlo sampling is a method that models complex
systems through the use of repeated random sampling. If a large number of realisa-
tions are produced, the true distribution of a process can be approximated according
to the Law of Large Numbers.

Markov Chain A Markov Chain is a chain of variables in which the current value
is dependent only on the previous value according to the Markov Property, (1.12).

P(Xt = i|Xt−1 = j,Xt−2, · · · ,X1) = P(Xk = i|Xk−1 = j) (1.12)
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1.4 Estimation theory

Metropolis-Hastings Algorithm Metropolis-Hastings is a Markov Chain simula-
tion method. The algorithm in this work is based on independent proposals with
acceptance-rejection rules in order for the Markov Chain to converge to the poste-
rior distribution. This is achieved in the following steps:

1. A starting point, θ 0, is drawn from a prior distribution, p0(θ).

2. For each iteration t;

a) A proposal value, θ ∗, is sampled from a proposal distribution
Jt(θ

∗|θ t−1) at time t. This value is not dependent of the previous
position of the Markov Chain, hence being an independent proposal.

b) The ratio between the current position and the previous is calculated as
follows

r =
p(θ ∗|y)Jt(θ

∗|θ t−1)

p(θ t−1|y)Jt(θ t−1|θ ∗)
(1.13)

c) The current value of the Markov Chain is then set according to (1.14).

θ
t =

{
θ ∗, with probability min(r, 1)
θ t−1, otherwise

(1.14)

In other words, if the current proposal value has a larger probability than
the previous, the value is accepted. However, if it is not, the previous
value is set as the current state in the chain [Gelman et al., 2013].

The acceptance rate of the Metropolis-Hastings algorithm can be calculated by
keeping track of the number of acceptances in 2 c) and dividing them by the total
number of iterations, t. The acceptance rate for the Metropolis-Hastings algorithm
should lie between 10−60% [McElreath, 2016].

MCMC Markov Chain Monte Carlo method is obtained by combining the Monte
Carlo random sampling method with Markov Chains generated with the Metropolis-
Hastings algorithm. The proposed value in step 2 a) of the Metropolis-Hastings al-
gorithm is generated through the Monte Carlo method. Allowing the currently gen-
erated number to influence the next value is in agreement with the Markov Property,
and the stationary part of the produced Markov Chain represents the posterior dis-
tribution of interest, p(θ |y).

Figure 1.2 represents an example of convergence of the Metropolis-Hastings
algorithm with a trace plot (left) and the distribution plot (right) of the MCMC
sampling.
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Chapter 1. Background

Figure 1.2 An example of the Monte Carlo random sampling method with Markov
Chains generated with the Metropolis-Hastings algorithm. The left figure shows the
trace plot and the right figure shows the distribution plot.
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2
Methodology

This thesis focused on evaluating parameter identifiability for the PK part of the tra-
ditional PKPD model using the proposed Eleveld model. The parameters that were
estimated correspond to (1.1), leaving the pharmacodynamic parameters ke0,Ce50
and γ from (1.4) out. Since the linear model is used as an input to the non-linear
model, examining the linear part only as a starting point is motivated. The analysis
can be parted into two main tasks;

1. Simulating data with the model, adding Gaussian noise, and then estimating
the model parameters using Bayesian inference. Gaussian noise was added in
order to obtain more realistic data points. Identification was performed using
MCMC sampling and the estimated parameters were compared to the true
values1, which were calculated using the Eleveld model.

2. Attempting to create simulations for all 1033 subjects from the Eleveld article
in the same manner as the authors did [Eleveld et al., 2018]. The method for
this simulation differs from the one above by being without approximations
and applicable for the entire data-set acquired by the studies from the article.
Once the simulation was performed, further analysis was planned, such as
estimating the PK parameters from real data using LS to be able to compare
them to the values obtained by calculation of the Eleveld model.

2.1 The Eleveld Model

Eleveld et al. [Eleveld et al., 2018] developed a PKPD model using the traditional
model structure to predict propofol concentrations and BIS values which can be
used for a broad, diverse population. The model is based on actual data collected
from 30 published studies that include a total of 1033 subjects. All studies included
PK measurements and 5 of them also contained BIS measurements. The parameter
values for an individual can be calculated using this model by supplying information

1 The values which were used for the simulations, and are hence referred to as the true value.
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Chapter 2. Methodology

about the subject’s age, height, weight, gender and if additional drugs other than
propofol were used as well as if the samples are venous or arterial.

The authors applied their proposed model for propofol prediction for all 1033
subjects by calculating the six parameters required for the PK part of the model
and having logged rates and amounts for the registered times from each study as
inputs to the system which in turn outputted the predictions. To do these predictions,
the software NONMEM (ICON Development Solutions, Ellicott City, MD, USA)
was used. The predicted propofol concentrations were plotted against the observed
concentrations, and the result can be seen in Figure 2.1.

Figure 2.1 Predicted plasma concentration (obtained using NONMEM) against
the observed plasma concentration for all 1033 subjects which were available in the
Eleveld collection of data.

2.2 Parameter Estimation using MCMC sampling

In this section, the reader is familiarized with the approach which was used to esti-
mate parameters from noisy simulations based on the Eleveld model.

Simulation
The simulations were coded using the programming language Julia and are based
on the proposed Eleveld model for anaesthesia. They were compared with real mea-
surements in order to confirm that the simulated data is as realistic as possible.

In order to simulate data points to be used as the target, studies, in which the
propofol concentration in blood was measured, were used as a starting point. The
studies described what doses were injected and at what times the plasma concentra-
tions were extracted. To replicate these studies with the Eleveld model, the doses,

18



2.2 Parameter Estimation using MCMC sampling

u, were used as an input into the system PK, which in turn outputted Cp, see Figure
2.2. The output Cp was generated using lsim from the package ControlSystems.jl
and the system was discretized with sampling time 1 s. Thereafter, specified points
according to the measurements in the respective study were extracted and used for
MCMC sampling. This method was used due to two reasons:

• To check if the Eleveld model is able to reproduce the shape of the real data.

• To create a target distribution that can be generated in the same way as the
observations.

Figure 2.2 Block diagram of pharmacokinetic system, where u is the dose input
and Cp is the plasma concentration of propofol.

In the first study, conducted by Struys et al. [Struys et al., 2007], seven points
were measured over a time span of five minutes for each subject after injecting a
bolus dose of 2.5 mg/kg during 10 seconds. The points in time were: 0, 30, 60, 120,
180, 240, and 300 s. The number of points as well as the doses are presented in
Table 2.1.

In the second study, conducted by Schnider et al. [Schnider et al., 1998], 23
points were measured over a time span of 600 minutes for each subject after inject-
ing a bolus dose of 2 mg/kg during 20 seconds followed by a continuous injection
of 2 µg/kg starting at time 60 minutes and stopping at 120 minutes. The time points
in which the concentration of propofol was measured were: 0, 1, 2, 4, 8, 16, 30, 60,
62, 64, 68, 76, 90, 120, 122, 124, 128, 136, 150, 180, 240, 300, and 600 min. The
number of points as well as the doses are presented in Table 2.1.

Table 2.1 Table of studies used to replicate data points as targets for parameter
estimations

Number of points Dose
Struys et al. 7 Bolus

(2.5 mg/kg for 10 s)
Schnider et al. 23 Bolus + Injection

(2 mg/kg for 20 s + 2 µg/kg for 60 min)
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Chapter 2. Methodology

The subject information of the data obtained by Struys and Schnider are visual-
ized in Table 2.2. Using this subject information, the PK parameter values calculated
with the Eleveld model are presented in Table 2.3 for the Struys study, and 2.4 for
Schnider.

Table 2.2 Subject information from each study used to obtain calculated parameter
values using the Eleveld model. Propofol was the only drug injected and the samples
are arterial.

Struys Schnider
Gender (F/M) F F

Age (yr) 48 34
Weight (kg) 58 46.3

BMI 22.7 18.7

Table 2.3 True parameter values obtained using the Struys subject in the Eleveld
model calculations.

Parameters True value
k10 (1/s) 0.004402
k12 (1/s) 0.007568
k21 (1/s) 0.002907
k13 (1/s) 0.002582
k31 (1/s) 8.988e-05
V1 (ml) 5885

Table 2.4 True parameter values obtained using the Schnider subject in the Eleveld
model calculations.

Parameters True value
k10 (1/s) 0.004063
k12 (1/s) 0.007393
k21 (1/s) 0.002299
k13 (1/s) 0.002324
k31 (1/s) 7.557e-05
V1 (ml) 5386

Parameter estimation
To identify the model described in (1.1), parameter estimation was performed using
MCMC with the Metropolis-Hastings algorithm. The parameters to be estimated
were

20



2.2 Parameter Estimation using MCMC sampling

θθθ = (k10,k12,k21,k13,k31,V1)
T . (2.1)

For each of the studies, multiple cases with different prior distributions for the
parameters and noise levels on the generated propofol plasma concentration data
were used in order to estimate the PK parameters. The two most relevant cases are
described more in detail below. The parameter estimation was coded by using the
package Gen.jl.

Case I The plasma concentration data noise was selected to be 0.1 µg propofol,
and narrow prior distributions for the MCMC sampling were selected. In this case,
narrow implies that the distribution is roughly in the same order as the true param-
eter values. This case was included in the thesis in order to explore whether the
parameters would be identified if the prior distributions are narrow. The distribu-
tions from Case I are given in Table 2.5.

Case II The plasma concentration data noise was selected to be 0.1 µg propofol,
and wide prior distributions for the MCMC sampling were selected. In this case,
wide implies that the distribution for most parameters, except for the volume, is
about a thousand times lager than the true parameter values.This case was included
in the thesis in order to explore whether the parameters would be identified if the
prior distributions are wide. The distributions from Case II are given in Table 2.5.
The prior for the parameter V1 was not changed between Case I and II due to the
value being less than 10000 regardless of the prior interval.

Table 2.5 Prior distributions for each of the parameters that are to be estimated in
all cases.

Parameter Prior Case I Prior Case II
k10 U(0,0.01) U(0,4)
k12 U(k13,0.01) U(k13,8)
k21 U(k31,0.01) U(k31,3)
k13 U(0,0.01) U(0,3)
k31 U(0,0.001) U(0,0.1)
V1 U(0,10000) U(0,10000)

Presentation of Results
Three chains with length 10000 for the narrow prior case 30000 and for the wide
prior case were created. The latter chain was chosen to be longer in order to allow
for convergence since the span of possible values for the parameters is larger. Every
case was repeated three times, yielding 3 x 2 posterior distributions for one param-
eter in total. The results of the cases for each of the parameters were presented by:

1. Calculating the acceptance rates for the Metropolis-Hastings algorithm to find
out if it is in accordance to the desired theoretical value.
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Chapter 2. Methodology

2. Removing 10 % of the first iterations of the Markov Chain in order to get its
stable state and plotting every 10th sample of the remaining chain.

3. Plotting the approximated posterior distribution.

4. Extracting the last value of the chain and creating data points in the same
way that the simulation data was obtained. Thereafter, plotting the points in
the same graph as the true simulation values, which were obtained by the
Eleveld PK model.

5. Plotting the Bode diagrams of each chain with the true Bode plot from the
Eleveld PK model in order to be able to compare the dynamics of the system
with estimated parameters with the true system dynamic.

Figure 2.3 A visualisation of the method used in order to estimate parameters us-
ing MCMC sampling.

Figure 2.3 shows a visualization of the method used in order to estimate the param-
eters using MCMC described in this section.

2.3 Replicating Eleveld simulations

In this section, the reader is familiarized with the approach that was used to attempt
to replicate Figure 2.1. The reason why replicating this plot was used as a starting
point was to be able to reliably proceed with Least Square optimization as an alter-
native to the method applied by the software which was used in the Eleveld article
to estimate parameters.
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2.3 Replicating Eleveld simulations

Interpretation of Data
All data used by Eleveld et al. is available for download. It contains various infor-
mation about each subject from the time at which they received anaesthetic drugs
to when the anaesthesia reached emergence. In order to calculate the true PK pa-
rameters for each subject, the following information collected from the data-set was
used; age, height, weight, gender, if additional drugs other than propofol were used
and if the samples are venous or arterial. To obtain inputs to the system, the time,
amount and rate columns available in the data were important. Each row represents
an event in time where either the concentration was measured, an amount was in-
jected, a rate was changed or all of the mentioned events occurred. An example of
the first row in the data-set is presented in Table 2.6

Table 2.6 An example of the first row in the data-set with information about all
1033 subjects. CP is the propofol concentration in the plasma, M1F2 is if the subject
is male (1) or female (2) and TECH is whether there was an additional drug injected
(2) or not (1).

Time (min) CP (µg/ml) Amount (mg) Rate (mg/min) Age (yrs) Weight (kg) Height (cm) M1F2 TECH
0 0 39.398 236.34 59 64 166 2 2

0.167 0 8.862 52.98 59 64 166 2 2
0.333 0 3.921 23.52 59 64 166 2 2

...
...

...
...

...
...

...
...

...

Discretization of Continuous Time Systems
The simulations are based on an exact solution from discretization of state-space
differential equations. This method was used because it is possible to calculate the
time in which a specific rate or amount was given to a patient and the sampling rate
between consecutive time measurements. A continuous system

q̇(t) = Acq(t)+Bcu(t)
y(t) =Ccq(t)+Dcu(t) (2.2)

with solution
q(t) = eActq(0)+

∫ t

0
eAc(t−τ)Bcu(τ)dτ (2.3)

has the discrete time equivalent

q[n+1] = Adq[n]+Bdu[n]
y[n] =Cdq[n]+Ddu[n] (2.4)

where Ad and Bd are obtained through

Ad = eAcTs and Bd = (
∫ Ts

0
eAcτ dτ)Bc (2.5)

with sampling period Ts [Wittenmark et al., 2002], that in this case corresponds to
the time between two measuring points. These calculations were performed for the
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Chapter 2. Methodology

entire data-set in Julia, using the package ControlSystems.jl and obtaining matrices
Ad ,Bd through the method c2d(Gc, Ts) for each time iteration in the data.

Once the predictions for the propofol concentrations were obtained, the results
were plotted in the same manner as Figure 2.1, i.e. predicted concentration against
observed concentration in a figure with logarithmized x- and y-axis.

All code that was produced for the thesis is available on GitLab [Gojak, 2021].
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3
Results

The results are presented in two sections for each of the main tasks in the thesis; pa-
rameter estimation using MCMC sampling for both test cases described in Chapter
2, and replicating simulations for future LS parameter estimation.

3.1 Parameter Estimation using MCMC sampling

Since the parameter estimation using MCMC sampling was applied to simulated
data based on two studies, the results are presented for each study used as a starting
point below.

Struys
The acceptance rates for each parameter in every chain created for the Struys data
estimation is presented in Table 3.1.

Case I This case represents MCMC sampling with narrow prior distributions, as
seen in Table 2.1, with a propofol concentration of 0.1 µg. Three chains were cre-
ated, whose trace plots can be viewed in Figure 2.5. Their corresponding distri-
bution plots are found in Figure 3.2. By choosing the last parameter value in the
chain from the trace plots for each chain, three new simulations were created and
are plotted in Figure 3.3 and the Bode plot for each system can be seen in Figure
3.4. Each chain is plotted with the same colour throughout all figures in order for
all results to be easily compared. The acceptance rates for the parameters from the
Metropolis-Hastings algorithm are presented in Table 3.1.

The results for Case I using data simulated with the Struys subject show that
parameters k21, k12 and V1 are converging to the values that were used when creating
the simulations. The other parameters in this case have chains that neither converge
towards the true value, nor towards similar values among themselves. Although
their Bode plots differ in phases between each chain, the simulations created with
the estimated parameters fit the observed data very well, as seen in Figure 3.3.

25



Chapter 3. Results

0
20
0

40
0

60
0

80
0

0.002

0.003

0.004

0.005

0.006

0.007

0.008

k10

0
20
0

40
0

60
0

80
0

0.004

0.005

0.006

0.007

0.008

k12

0
20
0

40
0

60
0

80
0

0.002

0.004

0.006

0.008

0.010

k21

0
20
0

40
0

60
0

80
0

0.001

0.002

0.003

0.004

0.005

0.006

k13

0
20
0

40
0

60
0

80
0

0.00000

0.00025

0.00050

0.00075

0.00100

k31

0
20
0

40
0

60
0

80
0

5500

5600

5700

5800

5900

6000

V1

Figure 3.1 The trace plots of three chains for each parameter in Case I. Every set
of chains is represented by the same colour. The horizontal purple lines are the true
parameter values according to the Eleveld model calculations. In each subplot, the
x-axis represents every tenth iteration sample after 10% of the chains were removed,
and the y-axis represents the sampled values.
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Figure 3.2 The distribution plot of three chains for each parameter in Case I. Every
set of chains is represented by the same colour. The vertical purple lines are the true
parameter values according to the Eleveld model calculations. In each subplot, the
x-axis represents the sampled values, and the y-axis represents the density.
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Figure 3.3 The true PK graph plotted with the PK graphs created with the esti-
mated parameters from each chain in Case I. The lower plot shows the input to the
system.
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Figure 3.4 The true Bode plot (purple) with the Bode plots created with the esti-
mated parameters from each chain in Case I.

Case II This case represents MCMC sampling with wide prior distributions, as
seen in Table 2.1, with a propofol concentration of 0.1 µg. The trace plots for each
chain can be seen in Figure 3.5 and the distribution plots in Figure 3.6. Figure 3.7
represents the simulations created using the last value from each chain in the PK-
model and the Bode plots for each system can be seen in Figure 3.8. Each chain
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is plotted with the same colour throughout all Figures in order for all results to
be easily compared. The acceptance rates for the parameters from the Metropolis-
Hastings algorithm are presented in Table 3.1.

For this case, the values between each chain for all parameters differ more than
in Case I. In Case II, the only parameter whose chains converge towards similar
values is k31, and the value is off by a factor close to 20 from the true value. All
other parameters are both poorly estimated and converge towards different values.
The Bode plots show that the three estimated systems and the true system differ both
in terms of magnitude and in terms of phase. Even though the estimated parameters
are very different from the parameters used to simulate the data, they fit the data
very well, as seen in Figure 3.7.
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Figure 3.5 The trace plots of three chains for each parameter in Case II. Every set
of chains is represented by the same colour. The horizontal purple lines are the true
parameter values according to the Eleveld model calculations. In each subplot, the
x-axis represents every tenth iteration sample after 10% of the chains were removed,
and the y-axis represents the sampled values.
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Figure 3.6 The distribution plot of three chains for each parameter in Case II.
Every set of chains is represented by the same colour. The vertical purple lines are the
true parameter values according to the Eleveld model calculations. In each subplot,
the x-axis represents the sampled values, and the y-axis represents the density.
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Figure 3.7 The true PK graph plotted with the PK graphs created with the esti-
mated parameters from each chain in Case II. The lower plot shows the input to the
system.
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Figure 3.8 The true Bode plot (purple) with the Bode plots created with the esti-
mated parameters from each chain in Case II.

Schnider
The acceptance rates for each parameter in every chain created for the Schnider data
estimation is presented in Table 3.2.

Case I This case represents MCMC sampling with narrow prior distributions, as
seen in Table 2.1, with a propofol concentration of 0.1 µg. Three chains were cre-
ated, whose trace plots can be viewed in Figure 2.5. Their corresponding distribu-
tion plots are found in Figure 3.10. By choosing the last parameter value in the
chain from the trace plots for each chain, three new simulations were created and
are plotted in Figure 3.11 and the Bode plot for each system can be seen in Figure
3.12. Each chain is plotted with the same colour throughout all Figures in order for
all results to be easily compared. The acceptance rates for the parameters from the
Metropolis-Hastings algorithm are presented in Table 3.2.

For this case, parameters k21, k13 and V1 show convergence towards the true pa-
rameter values for most chains. The other parameters lie close in what value they are
estimating between each chain, however, their convergence is not close in regards
to the true values. The systems created with the different set of chains are resulting
in similar Bode diagrams, see Figure 3.12, and the fit to the observed data using the
estimated parameters is very good, see Figure 3.11.
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Figure 3.9 The trace plots of three chains for each parameter in Case I. Every set
of chains is represented by the same colour. The horizontal purple lines are the true
parameter values according to the Eleveld model calculations. In each subplot, the
x-axis represents every tenth iteration sample after 10% of the chains were removed,
and the y-axis represents the sampled values.
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Figure 3.10 The distribution plot of three chains for each parameter in Case I.
Every set of chains is represented by the same colour. The vertical purple lines are the
true parameter values according to the Eleveld model calculations. In each subplot,
the x-axis represents the sampled values, and the y-axis represents the density.
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Figure 3.11 The true PK graph plotted with the PK graphs created with the esti-
mated parameters from each chain in Case I.
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Figure 3.12 The true Bode plot (purple) with the Bode plots created with the esti-
mated parameters from each chain in Case I. The lower plot shows a logarithmized
input to the system in for visualization reasons.

Case II This case represents MCMC sampling with wide prior distributions, as
seen in Table 2.1, with a propofol concentration of 0.1 µg. The trace plots for each
chain can be seen in Figure 3.13 and the distribution plots in Figure 3.14. Figure
3.15 represents the simulations created using the last value from each chain in the
PK-model and the Bode plots for each system can be seen in Figure 3.16. Each
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3.1 Parameter Estimation using MCMC sampling

chain is plotted with the same colour throughout all Figures in order for all results
to be easily compared. The acceptance rates for the parameters from the Metropolis-
Hastings algorithm are presented in Table 3.2.

The results in Case II for Schnider show that all parameters are converging to-
wards similar values, however none of the estimated values are close to the true
values that were calculated when creating the simulated data that was used as ob-
served data. The system dynamics are similar for all three trials in magnitude, and
differ slightly in phase as seen in Figure 3.16. The plotted PK graphs that were cre-
ated using estimated parameters from each chain in Case II are fitting the observed
data very well.
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Figure 3.13 The trace plots of three chains for each parameter in Case II. Every set
of chains is represented by the same colour. The horizontal purple lines are the true
parameter values according to the Eleveld model calculations. In each subplot, the
x-axis represents every tenth iteration sample after 10% of the chains were removed,
and the y-axis represents the sampled values.
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Figure 3.14 The distribution plot of three chains for each parameter in Case II.
Every set of chains is represented by the same colour. The vertical purple lines are the
true parameter values according to the Eleveld model calculations. In each subplot,
the x-axis represents the sampled values, and the y-axis represents the density.

0 60 120 180 240 300
0

2

4

6

8

t (min)

C
p
(µ
g
/m

l)

PK graph with estimated parameters from chain A
PK graph with estimated parameters from chain B
PK graph with estimated parameters from chain C
True PK graph

0 60 120 300
0

2

4

6

8

t (min)

In
fu

sio
n

(lo
g(
µ
g
/s
))

Figure 3.15 The true PK graph plotted with the PK graphs created with the esti-
mated parameters from each chain in Case II. The lower plot shows a logarithmized
input to the system in for visualization reasons.
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Figure 3.16 The true Bode plot(purple) with the Bode plots created with the esti-
mated parameters from each chain in Case II.

Table 3.1 Acceptance rates for all parameters for both Case I and II in the Struys
simulated data.

Case I Case II
A (%) B (%) C (%) A (%) B (%) C (%)

k10 (1/s) 2.65 2.65 2.89 0.09 1.0 0.063
k12 (1/s) 8.14 6.43 8.23 1.47 6.29 0.51
k21 (1/s) 10.07 10.28 5.65 3.83 0.71 4.11
k13 (1/s) 2.81 3.01 2.69 0.24 2.03 0.17
k31 (1/s) 32.59 43.49 24.11 0.35 0.77 0.25
V1 (ml) 0.84 0.90 0.77 0.48 0.033 0.67

Table 3.2 Acceptance rates for all parameters for both Case I and II in the Schnider
simulated data.

Case I Case II
A (%) B (%) C (%) A (%) B (%) C (%)

k10 (1/s) 4.22 3.8 4.26 0.42 0.64 0.53
k12 (1/s) 9.13 13.37 9.31 9.81 10.8 8.37
k21 (1/s) 11.55 13.06 12.39 6.53 5.6 5.38
k13 (1/s) 4.59 4.77 4.91 0.89 1.56 0.82
k31 (1/s) 36.2 37.41 42.51 0.81 1.16 0.76
V1 (ml) 1.64 1.52 1.65 0.43 0.26 0.32
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Chapter 3. Results

3.2 Replicating Simulations for LS parameter estimation

The result of replication of Figure 2.1 is visualized in Figure 3.17 and shows the
actual Eleveld predictions and the replicated Eleveld prediction that was obtained
through this thesis in one plot. The results show that although the simulated Eleveld
predictions are similar to the predictions from the NONMEM software, they are not
identical or close to identical.

Figure 3.17 Replicated Figure 2 from the Eleveld article. The blue dots show the
predictions obtained in the article using NONMEM, whereas the black crosses show
what was obtained in this thesis based on exact solutions from discretization of the
state-space differential equations implemented in Julia.
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4
Discussion

This thesis aimed to provide further insight on parameter identifiability of a recently
proposed model by Eleveld et al. for closed-loop control systems in anaesthesia. The
model is based on the standard PKPD structure, with PK being a LTI system and PD
being described by a non-linear Hill function. Only the linear part of the model was
investigated in this work. Pharmacokinetic modelling in this case aims to predict the
propofol concentration in the blood plasma for a subject that undergoes anaesthesia.
Since there are six parameters in this structure, see (2.1), it is desirable to analyze
the identifiability in order to comment on the usefulness of applying this model for
closed-loop control systems in anaesthesia. Therefore, data was simulated using the
proposed Eleveld model with additional Gaussian noise and the parameters were
identified using MCMC sampling. Once the planned work focusing on individual
models was finished, preparatory work was started for analysing identifiability of
the population model proposed by Eleveld. A framework for simulating this model
was set up in Julia, and this framework will allow for identifying parameters using
other methods than the one used in the original article. This direction constitutes
early work in progress, with nominal results presented above.

Identifiability with simulated data
For the identification of parameters using simulated data with noise, two studies
with different amounts of points and different duration were used. The performance
of identification is interesting in a case with both short duration and few points (i.e.
Struys), as well as in cases with longer duration and more points (i.e. Schnider).
Identifying a model with as few points as seven, using six parameters, is expected
to suffer from overparameterization. Therefore, the behaviour of convergence for
the different chains in Figure 3.5 are not surprising. Using more points would make
identification better and this is partially confirmed in Figures 3.9 and 3.13 from the
Schnider simulations. During the ongoing work, it was concluded that the priors
chosen for the Metropolis-Hastings algorithm using MCMC sampling was impor-
tant. Ideally, given that the chain can reach convergence, the width of the prior
distributions used for initialization should not matter. Since this was not the case,
two prior distributions were chosen to be presented as results in this work. No matter
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the priors and the different values obtained from each chain, all simulations with the
estimated parameters could fit the simulated data very well, as seen in Figures 3.3,
3.7, 3.11 and 3.15. This suggests that there are many parameter values that can fit
the data and that the calculated Eleveld model parameters are not uniquely describ-
ing the system. Further supporting this conclusion are the acceptance rates from
the Metropolis-Hastings algorithm. They are, for most parameters in most chains
and cases, very low, implying that the MCMC sampling process does not reach a
reliably estimated value.

Replicating Eleveld simulations
Considering that the simulated data was created using a model which is said to
describe real data, identification of real data would be even worse due to reasons
such as disturbances other than added noise. To look into identification of real data,
the aim was to make use of the data which was available from the Eleveld article
that contained PK measurements and information from 1033 subjects in total. The
results of attempting to replicate the propofol predicted concentration seen in Figure
2.1 show that the predictions made in this thesis are not identical as the results in
the article. Differences between the predictions in the article and from this work lie
mainly in the software that was used to simulate data. Eleveld et al. used a software
frequently which is common for parameter estimation of models within anaesthesia,
NONMEM, whereas the replication in this thesis was performed using Julia. In
addition to this difference, Eleveld et al. combined sequential infusion records if
they were separated by < 1 s and infusion rates differed by 0.5 mg/min in order to
speed up execution. This was not done in the replication, however, it should not be
the main reason for the two to vary to that extent and it is hence more likely that
the differences are a product of the implementations in the softwares. The scope
of the thesis only allowed for insufficient simulations when replicating Figure 2
in the Eleveld article, and further analysis would be required to fully understand
how the NONMEM predictions are obtained, by looking into the NONMEM code
documentation.

4.1 Future work

The result of this thesis suggest that a model structure with six parameters is not
practically identifiable from representative data. Therefore, suggestions on future
work would be to look into if model structures with less parameters, such as the
model reduced parameter PKPD model structure described in Chapter 1.

Other interesting future extensions would be to investigate how allowing for
other population pharmacokinetic model structures than the one in Eleveld (chosen
more or less ad hoc) would affect model fit. If the replication of Figure 2.1 would
be improved, it would be interesting to use these simulations in order to look at
the Hessians and the LS at the optimum which would give information about how
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4.1 Future work

identifiable the system is. Another suggestion would be to use LS optimization to
estimate parameters based on the data-set that was provided in the Eleveld article
in order to compare the obtained parameters to the calculated parameters obtained
from the Eleveld model.
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5
Conclusion

This work aimed to evaluate parameter identifiability for the pharmacokinetic part
of the PKPD model that is commonly used to describe the time course of drug ef-
fects on the body during anaesthesia. The results show that a model structure using
six parameters for pharmacokinetics is not practically identifiable from representa-
tive data.

Identifiability was examined from simulated data using several patients with
varying excitation between patients and where some data-sets had many measure-
ments whereas others had few. The method therefore represents a range that is on
different spectrums of challenging in regards to parameter identifiability.

Despite the mentioned levels of challenge to identify the model, no trial was
able to find the parameter values used in simulations for the full set of parameters.
The identified values were. nevertheless, fitting the observed data very well, and it
was therefore concluded that a model structure with six parameters is overparame-
terized.

A model that causes this much uncertainty when it comes to identifiability sug-
gests that perhaps the traditional PKPD model structure should not be used for
closed-loop control systems in anaesthesia. An alternative, and suggestion for future
work, would be to instead look into model structures that require less parameters.
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