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LUND UNIVERSITY

Abstract
Active stabilisation of a micro-sized fibre cavity using tilt locking to enable

quantum operations on single ions

by Jannek Jonas HANSEN

In this thesis, the tilt locking scheme is applied to create an error signal that moni-
tors length changes in a fibre-based microcavity. To find a robust and precise locking
technique is an essential step towards quantum operations on single rare-earth ions
doped in microcrystals as proposed in [1]. Quantum computing and information is
a frontier of modern physics. Many scholars believe that Quantum technology will
have a significant impact on future computation and communication [2]. It holds
the potential to not only enable a whole new area of science by simulating highly
relevant complex quantum systems like molecular structures but also to create the
possibility of computer encryption for which safety is guaranteed by the laws of
nature. The most recent publications demonstrating functioning quantum comput-
ers have shown that quantum computations are already in the realm of state of the
art technology [3, 4]. However, there are currently multiple approaches to building
quantum computers. At the moment, there is no clear picture of which approach
for quantum operation is going to be the most applicable. The quantum information
group at Lund University focuses on rare-earth-ions doped into crystals to be used
as qubits [5]. The long-lived energy levels of these ions can be used for quantum
computations. It is necessary to make use of the Purcell effect to enable the inter-
action with single ions. This effect describes the emission probability for a photon
by an atom in an optical resonator [6]. The reduction of the volume leads to an en-
hanced emission probability and therefore enables single ion readouts. By placing
the substrate in an optical microcavity with a length of just a few micrometres, the
phase volume is reduced. These planoconcave cavities consist of a coated concave
fibre-tip on one side and a highly reflective mirror on the other [7].
The main limitation towards single ion readout is mechanical vibration which in-
duces changes in the cavity length. There are well-known ways to actively stabilise
the length of cavities, such as the Pound–Drever–Hall stabilisation, side-of-fringe
locking, or the so-called tilt locking [8, 9]. In this work, the different locking tech-
niques are compared and tested for their applicability to stabilise fibre-based micro-
cavity. In a short cavity, the resonant peaks are very far apart such that we can only
use the resonant frequency, which is also used for the ion manipulations because the
next resonance is no longer in the high reflectivity range of the coating. To avoid in-
terfering with the main experiment, we base our locking scheme on the higher-order
transverse modes of the cavity. These higher orders naturally occur in the cavity due
to the asymmetric shape. This work derives the coupling coefficients of an incom-
ing Gaussian beam into the higher-order transverse modes of the cavity to study
the resulting error signal. The wavelength of the light which excites the higher or-
ders does not disturb the fundamental quantum operations because the higher-order
modes are resonant on a slightly shorter wavelength than the main resonance due to
the Gouy-shift. Furthermore, a test setup to show the functionality of the tilt locking
scheme for the microcavity was built and tested. In this thesis, I theoretically and
experimentally demonstrate the tilt locking error signal of a microcavity.

HTTPS://WWW.LUNDUNIVERSITY.LU.SE
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Popular science description
Active stabilisation of a micro-sized fibre cavity using tilt locking to enable

quantum operations on single ions

by Jannek Jonas HANSEN

Quantum mechanics is one of the most well-established theories in modern physics.
But in our day to day life, we barely observe any quantum effects. This is because
quantum states need to be kept isolated from the environment to stay in a quantum
state. To uncouple the quantum states from the environment is one of the main chal-
lenges that need to be overcome when building a quantum computer. In Lund, we
want to build a quantum computer prototype that uses ions in crystals as quantum
states. With laser light, we can interact with the single ions and measure their in-
ternal state. But single ions can always only emit and absorb a single photon. To
make it more likely for the ions to interact with the light, we put them into a cavity.
A cavity, in this case, is two mirrors in between which the light bounces back and
forth.
When a peak of the light wave in the cavity perfectly lines up with the peak of the
wave from the previous round-trip, so-called constructive interference occurs. This
means the light could bounce up to thousands of times before escaping the cavity.
This leads to a large enhancement of the emission from the ions. For the peaks from
all round-trips to line up perfectly, however, the distance between the mirrors has to
be exactly an integer number of wavelengths and very stable.
The biggest problem we face at the moment is that these mirrors are vibrating, which
disturbs the perfect line-up, and reduces the emission enhancement. There are tricks
on using the light that bounces back and forth in the cavity to detect these vibrations.
When we make the laser light enter the cavity with a slight angle, the light takes a
different path inside the cavity compared to the light without an angle. This differ-
ent path means that the vibrations of the mirrors affect them differently. We place
a detector behind the cavity to detect the two light beams. In this signal, we can
see the vibration of mirrors and correct them. Several techniques to do this are well
known and have been very successfully used, for example, to detect gravitational
waves. The difficulty for the cavity we use in Lund is that we have to work with
an extremely short cavity to interact with the single ions. The distance between the
two mirrors in our setup is less than the thickness of a human hair. This short length
makes it difficult to find a suitable scheme to measure the vibration in our cavity.
In this work, we find a method of using a tilted incoming beam to measure the vi-
brations sufficiently well. This technique, known as tilt locking, promises to enable
the interaction with single ions in the next-generation experiment.

HTTPS://WWW.LUNDUNIVERSITY.LU.SE
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Chapter 1

Introduction to single ion detection
using a stabilized micro-cavity

The Quantum information group at Lund’s University wants to demonstrate a flex-
ible microcavity setup. This microcavity should be able to be tuned to interact with
different single rare-earth ions in nano-crystals. Currently, the main limitations are
mechanical vibrations. One way to overcome these vibrations is to install a dedi-
cated locking scheme that corrects length changes in the cavity. In this thesis, the
theory describing microcavities is summarized and extended. The theory lays the
foundation to understand, simulate and compare different locking schemes in chap-
ter 3. The experimental work of this thesis is done by implementing the tilt locking
approach, which is the most promising following the calculations. The setup to test
the functionality of tilt locking was built from scratch.

Cavity locking is commonly used to lock the frequency and phase of laser light
to a stable cavity [8]. In this work, these techniques are applied in reverse to lock the
length of the cavity to the frequency or power of a laser source. This has been, on
a very different length scale, famously used to detect gravitational waves [10]. The
difficulties discussed and solved in this work result from the short cavity length of
just a few µm and the fact that the locking scheme should not affect or interfere with
the main single ion readout.

1.1 Quantum Computing

In the history of modern physics, there has been an immense output of applications
that are so deeply involved in our day-to-day life that it is hard to imagine living
without them. The most common examples include the laser, telecommunication,
or the modern camera, to mention a few. But the one which arguably has the most
significant impact on contemporary society is the computer in its various forms.

The use of quantum computers promises to have a significant impact on future
research and our understanding of the world [2]. Quantum supremacy has been
shown by a group from Google in 2018 [3] and very recently by the group around
Han-Sen Zhong in China, who built a quantum–computer based on photonics [4]
in contrast to the US group whose computer is based on superconducting circuits
using the concept of Josephson junctions for their qubits.

A quantum computer that can approach real-world problems better than a clas-
sical computer needs to consist of a sufficient number of qubits with a low error.
On the one hand, quantum mechanics is why this type of computer is in some cases
more efficient and has significant advantages over a classical computer, especially
when simulating quantum systems like molecules or semiconductor structures. On
the other hand, this is also why difficulties occur when realising such a device. The
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physics of quantum mechanics is sensitive to measuring the state of the system. This
is such that measuring the system projects the state of the system to one measure-
ment base, which means that the information in the other bases is lost. This be-
haviour is called collapsing the quantum state; thus, the system is fragile to noise
in any form which couples the system to the environment. How long the physical
setup can keep the qubits isolated from the environment determines the lifetime and
coherence time of the qubit. The lifetime of the qubit could be, for example, the life-
time of the energy state in a trapped ion. At the same time, the coherence time is
the time taken until the ion is out of phase with the laser pulse, which initiated the
energy transition [11, 12].

In 2000, DiVincenzo introduced his "five plus two requirements" for a working
quantum computer [13]. The first and currently the most critical requirement is to
have a "scalable physical system with well-characterised qubits". In order to build
a qualified quantum computer, the number of qubits must be scaled up compared
to the current working systems [5]. There are currently multiple approaches to a
functioning quantum computer. Until now, most attention went to superconduct-
ing circuit-based systems as described in [14]. On the other hand, there has been
much research on cold trapped ions for quantum computing, which has shown high
fidelity quantum gates [15, 16]. It is not yet clear which physical realisation of a
quantum computer will most efficiently upscale the number of high fidelity qubits.

The quantum information group in Lund is following the approach of designing
a quantum computer based on rare-earth-ion-doped crystals, which promise great
scalability once functioning on a single ion readout scheme [5]. The current limi-
tation which prevents the system from interacting with single ions in the crystal is
mechanical vibration. In order to suppress these vibrations, current work focuses
on a new mechanical setup holding the microcavity in which the crystal sits. Even
with this new setup, the implementation of active stabilisation of the cavity length
is required to meet the stability conditions. This active feedback loop to lock the
length will be based on so-called tilt locking. In this thesis, a tilt locking error signal
is demonstrated on a microcavity.

1.2 Cavity enhanced single ion computation

Ions doped into a crystal can be viewed as naturally trapped ions. The crystal struc-
ture holds the ions in place with much higher trap potential compared to artificial
ions traps. For comparison, the typical distance between two ions in an artificial
trap is on the order of µm, while the distance of the doped ions in the crystal is in
the order of nm.

In order to use this advantage of doped crystals, the crystal needs to be cooled
down below 4 K to suppress decoherence through phonon interaction. Long living
energy states with an optical transition can be used as qubits. Rare-earth elements
doped in Y2SiO5 crystals have an inner-shell dipole transition in the 4f shell which
has a long lifetime. Inner shell transitions are forbidden in the free atom but become
weakly allowed when doped into a crystal. Another advantage of transitions in the
4f shell is its long coherence time due to the fully populated 5s and 5p shells, which
are spatially further away from the core of the atom and act as a Faraday cage [11,
1]. The typical radial structure of rare-earth atoms is shown in figure 1.1

The idea of rare-earth-ion-doped crystal-based quantum computing is based on
long-living optical accessible energy states of the doped ions as qubits. It has already
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Rare-earth-ion-doped crystals

Figure 4.2. Radial distribution of 4f, 5s, 5p, and 6s electron orbitals in
Gadolinium (Gd). The 4f orbital is shielded from the environment by
the energetically favorable outer-lying orbitals. The figure is reprinted
with permission from [40].

tures T < 0.084TD, where TD is the Debye temperature, which is
equal to 580 K for Y2SiO5 [44]. Hence, at low temperatures ( 4
K), phonons no longer significantly disturb the properties of the
4f states.

Phonons can also cause non-radiative decay that reduces the
lifetime of states, but these processes are considered unlikely if the
transition require 5 or more phonons. For Y2SiO5, the maximum
phonon energy is about 12 THz, and so transitions above 60 THz
are mostly una↵ected [44, 45].

Figure 4.3 shows an overview of calculated 4fn energy levels of
trivalent rare-earth ions doped into Lanthanum trifluoride (LaF3).
Even if the host material is di↵erent from Y2SiO5, the placements
of the energy levels are similar.
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FIGURE 1.1: In this plot, the radial distributions of the outer shells
of Gadolinium are shown. The 4f shell is spatially closer to the core
than the 5s and 5p shells. The distribution of the shell structure can
be generalised for all rare-earth atoms. This figure is reprinted from

[17].

been shown that a functioning qubit can be created out of an ensemble of ions [1].
When scanning the crystals with a broad frequency around the transition frequency
of the 4f transition, it is revealed that the transition frequency is broad. This broaden-
ing results from the random position in the crystal structure as every ion is trapped
in a slightly different potential, this mean that the resonance frequency of the dipole
transition is shifted. The width of these frequencies is called the inhomogeneous
linewidth of the crystal, typically in the order of 5 to 50 GHz. The homogeneous
linewidth of the single ions is in the order of kHz as conceptually demonstrated in
figure 1.2 [11][18].

Using this effect, one can separate different qubits in frequency. These ensembles
consist of millions of ions, which is an advantage when using these for quantum
memory. When doing quantum computations, the dephasing between the ions is
a limitation for the coherence time of this qubit system. A truly scalable quantum
computer based on rare-earth doped crystals has to be designed to interact with
single ions in the crystal [18].

1.2.1 Single ion readout

To interact with single rare-earth ions in a crystal is challenging because of the low
fluorescence of a single ion by itself. Despite the difficulties, interactions with single
rare-earth ions in crystals have already been shown [19, 20]. The advantage of a
fibre-based microcavity is to have a very open system. The same microcavity can
target different ions by tuning the length to the resonance of that ion. In order to
have a larger sample, the microcavity is also tunable in the transverse axis and can
thereby target several nanocrystals on the mirror surface.

The long lifetime which is so desirable for quantum computing makes it harder
to read these states out due to low fluorescence. In an effort to overcome this prob-
lem, two different types of rare-earth ions get doped into the crystal. One has a long
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4.5 Pr3+:Y2SiO5 hyperfine and inhomogeneous absorption profiles
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Figure 4.7. Schematic view of the
absorption spectrum for a Pr ion,
doped into Y2SiO5, corresponding
to the transitions seen in
Figure 4.4. The peak heights
correspond to their relative
oscillator strengths, as written in
Table 4.3.
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Crystal

Figure 4.8. Due to the
randomness of the doping process,
each dopant ion experiences
slightly di↵erent electrical
surroundings, as shown
schematically in the crystal inset
figure, where the green symbols
represent dopant ions and the
gray spheres represent host atoms.
The transitions from ground to
excited states therefore vary in
the GHz range [38], leading to a
wide absorption profile if the
contributions of all ions in the
crystal are taken into account.

Levels ±1/2e ±3/2e ±5/2e
±1/2g 0.56 0.38 0.06
±3/2g 0.39 0.60 0.01
±5/2g 0.05 0.02 0.93

Table 4.3: Relative oscillator strengths for Pr3+:Y2SiO5, based on
experimental results in reference [49], but normalized to 1.

4.5 Pr3+:Y2SiO5 hyperfine and inhomogeneous
absorption profiles

In Pr3+:Y2SiO5, the energy splittings of the hyperfine ground
states are in the order of tens of MHz, which is much lower than
the thermal fluctuations (even at 4 K). Thus, ions at equilibrium
are equally likely to be in any of the three ground states. An
ion in the ±1/2g can absorb light to any of the excited states and
therefore has an absorption profile as seen in the blue peaks of Fig-
ure 4.7. These transition lines are in the order of kHz wide for Pr
and even narrower for Eu, see Tables 4.1, 4.2, and Equation (3.24).
By repopulating the Pr ion to any of the other two ground states,
its absorption features shift 10.2 MHz or 10.2 + 17.3 MHz = 27.5
MHz, respectively, as seen in the red and green peaks.

The nine possible transitions between the ground and excited
states have di↵erent oscillator strengths, as depicted by the peak
heights in Figure 4.7. The relative strengths can also be seen in
Table 4.3.

Furthermore, the local crystal field surrounding a particular ion
determines its exact excitation frequency through the DC Stark
e↵ect, see Section 3.4, which generally varies between ions in the
GHz range [38] but depends on the doping concentration [41]. The
combined absorption of all dopants in a crystal thereby creates
an inhomogeneous broadening that is roughly this wide and can
schematically be seen as the black line in Figure 4.8. As a result,
di↵erent ions in the crystal can absorb light at a particular fre-
quency on di↵erent transitions, thus forming nine groups of ions
at each frequency, corresponding to the nine di↵erent transitions.

Ions in the crystal can therefore be selected in groups depend-
ing on their excitation wavelength. Since the individual transitions
are in the order of kHz or less, whereas the inhomogeneous broad-
ening is GHz, this results in up to millions of addressable frequency
channels. This number is important for determining the capability
of storing or processing information.

Using clever spectral hole burning techniques, you can relocate
ions between their hyperfine ground states in order to tailor the
absorption profile in various ways [49], either to create sharp nar-
rowband absorption filters, as in Section 5.2, or more complicated
structures to initialize and control qubits, as in Chapter 7.1.
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FIGURE 1.2: The inhomogeneous linewidth is in the order of GHz.
Thereby it is many orders of magnitudes broader than the homoge-
neous linewidth of the ions, which is in the order of kHz. The fre-
quency of the dipole transition depends on the environment in the

crystal. This figure is reprinted from [11].

lifetime (e.g. Eu) acting as a qubit, and another ion (e.g. Nd or Pr) has a high capacity
for enhancement, functioning as the readout ion [5, 1].

A. WALTHER et al. PHYSICAL REVIEW A 92, 022319 (2015)

FIG. 1. (Color online) A chain consisting of one readout ion in
the vicinity of several qubit ions (e.g., Eu), where the closest qubit ion
is being used as a buffer stage (the bright one); see the text for more
details. The lines between the ions show which of them can interact
directly via frequency shifts caused by changes to the permanent
dipole moments. With a 4% doping concentration, it is expected that
each Eu ion can, on average, interact with about five other Eu ions
surrounding it.

ground-state nuclear-spin states (hyperfine states) with long
coherence times and where a long-lived optically excited
state can be used for ion-ion interactions. europium has
generally demonstrated impressive coherence properties [16],
and throughout the paper we will assume Eu as a qubit ion.
It is very difficult to detect single ions with long excited-state
lifetimes, however, and to circumvent this, several schemes
could be considered such as those where a readout ion of a
different species is used. Coupling between ions, both between
two qubit ions for gates and between a qubit ion and a readout
ion for detection, will be mediated via permanent dipole-dipole
interactions (dipole blockade effect). In either case, when two
ions are sufficiently close, the change in the static dipole
moment as one ion is excited is enough to shift the energy
level of the neighboring ion out of resonance with a driving
laser, thus providing a control mechanism.

Previously, considerable attention has been given to using
the short-lived 5d transition in Ce as a potential readout
ion [17–19]. However, recent measurements have revealed that
Eu absorbs at the same wavelength as the cycling transition
in Ce (at least in the favored host material, Y2 SiO5 ), which
makes it necessary to find an alternative readout ion. A very
promising scheme for detecting single rare-earth ions is via
Purcell enhancement of fluorescence due to coupling of the
ion to a high-finesse cavity with a very small mode volume. A
fiber-based cavity setup [20] is a suitable candidate and would
allow single-ion detection of, in principle, any rare-earth 4f
transitions. As an example we will here use Nd, which has a
relatively high oscillator strength, but in the case of unexpected
energy transfers or overlapping absorption lines, any other
rare-earth ion could be used with the same readout scheme
with no significant changes.

It will be assumed that we are working with a Eu3+:Y2 SiO5
crystal, where 4% of the yttrium ions in the crystal host have
been replaced with europium, distributed roughly equally in
each of two different sites (although with only one isotope).
This is a relatively high doping concentration, and simulations
have shown that, given the difference between the dipole
moment of the ground and excited states, any ion will, on
average, have more than five other ions sufficiently close to
be controlled by it. It is worth pointing out that it has been
shown that the coherence time for Eu is independent of the

doping concentration [21]. For the readout ion, on the other
hand, background trace elements of Nd are expected to be
enough; no special doping is required since one readout ion is
enough for an entire chain of qubits. Eu has an excited-state
transition frequency of about 517 THz (580 nm), whereas the
qubit nuclear spin levels have splittings on the order of tens
of MHz. Also note that while the inhomogeneous width of
the ensemble is increased at higher concentrations, the energy
splittings of individual ions remain largely unaffected.

Any state-to-state transfer will be done with complex
hyperbolic secant (sech) pulses. These chirped pulses have
the advantage over simple square pulses that they are robust
against certain errors, such as amplitude and frequency
fluctuations; see Ref. [22] for more details. Bloch simulations
suggest that the Eu ions can be transferred to and from
the excited state by such pulses of 400-ns duration with an
efficiency of 99.96% (i.e., an error of 4 × 10−4), which will be
used for the following calculations. The transfer efficiency is
limited almost entirely by the duration of the pulse relative
to the excited-state lifetime, where the lower limit of the
duration is set by the inverse of the qubit nuclear-spin-level
separations. It should be noted that the transfer efficiency
for Eu has not been fully verified by experiments and does
not include effects such as instantaneous spectral diffusion
(see, e.g., [23]). It is believed, however, that the effects from
spectral diffusion can be strongly mitigated by hole-burning
sequences that aim at keeping the total number of ions in the
qubit frequency channels very low. The high transfer efficiency
can be compared with experiments performed with the similar
element praseodymium, where the experimental transfer ef-
ficiency matches simulations rather well. For praseodymium,
the measured and calculated efficiency is about 96% [10],
and the main limitations are the short excited-state lifetime
and the limited Rabi frequency available, as well as the fact
that an ensemble was used as a qubit. Such an ensemble not
only has an inhomogeneous frequency spread but also sits in
different spatial parts of the beam profile, making different
ions experience different Rabi frequencies. For single-ion Eu
transfers inside a cavity, both of those limitations are strongly
reduced, and preliminary measurements on Eu ensembles
also supports that higher fidelities can be obtained in Eu
systems [24].

III. READOUT SCHEME

The state of the qubit ions can be read out with a readout
ion using a permanent dipole blockade mechanism, which is
also used for the quantum gates [11,25]. The dipole blockade
mechanism is demonstrated in Fig. 2, although for now we will
study only a single transfer step, i.e., from the buffer ion (which
is a type of qubit ion) to the readout ion. The full scheme of
Fig. 2 will be explained later. In order to determine whether
one ion is in state |0〉 or |1〉, it should be selectively excited to
state |e〉 with a pulse resonant with the |0〉 → |e〉 transition.
If the ion is excited, the readout ion’s transition frequency is
Stark shifted by the dc electric dipole field of the excited state
of the qubit ion. This means that a readout laser tuned to the
readout ion’s unshifted resonant frequency will not excite it.

The readout ion, in our example Nd, has a lifetime of
100 µs. With a reasonable cavity finesse of 104−105 and

022319-2

(a) (b)

FIGURE 1.3: In figure (a), the concept of a readout scheme is illus-
trated. One readout ion interacts with up to 100 qubit ions. Figure
(b) indicates the idea that the substrate containing the nanocrystals is
coated onto the flat mirror forming the cavity. Here, the fibre is com-
ing from above. When the light is resonant in the cavity, it forms a
standing wave, as indicated here by colour coding the phase of the
light. This Gaussian beam has its waist at the surface of the flat mir-
ror onto which the nanocrystals are coated. The figure (a) is reprinted

from [5].

The long-living qubit-ions surround the readout-ions with shorter living excited
states as conceptually demonstrated in figure 1.3. A laser beam with the right wave-
length can be tuned to communicate with readout-ions in different positions of the
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crystal. This makes use of the fact that the energy transition frequencies depend on
the ions position and its surrounding in the crystal.

The crystal is placed in a microcavity to enhance the photon’s probability of in-
teracting with the ions. This cavity enhancement is based on the Purcell–effect. This
effect describes the enhanced fluorescence in a small mode volume with a high fi-
nesse [21, 11]. This quantum mechanical effect enhances the spontaneous emission
of photons which are resonant in the mode-volume. Without this enhancement, it
would not be possible to detect the feedback from the single readout-ions in the
crystal.

In order to fit the rare-earth ions into the microcavity, they are doped into nanocrys-
tals. These nanocrystals are coated onto one of the mirrors of a microcavity as illus-
trated in figure 1.3. The length of this cavity is tuned to be resonant with the energy
transition of the readout-ions. With a focus on maximising the Purcell–enhancement,
the cavity needs to have a high finesse.

High finesse in a cavity translates into a narrow resonance peak; thus, when the
length of the cavity drifts off, the resonance with the readout frequency is lost. In
this thesis, options for monitoring cavity length changes producing an error signal
are theoretically discussed. For microcavities, tilt locking is a promising approach
to lock the cavity length with high precision. In chapter 3 the experimental setup
to demonstrate the error signal from tilt locking is reviewed. The properties of this
error signal are discussed in chapter 4. To build an active feedback loop that reacts to
the error signal correcting the length changes is the next logical step and is discussed
in chapter 5.

1.3 Overview of the thesis

In chapter 2 I give a summary of the theory needed to understand the physical prop-
erties of the resonant light inside the microcavity. The theoretical results in chapter
2.3 are an overview of the calculations I performed in detail in appendix A. These
calculations are my own worked, and I did them without help except for the cited
papers. I compared the different locking schemes side-of-fringe locking, Pound-
Drever-Hall (PDH) locking, and tilt locking in chapter 3. The locking schemes are
well known and understood techniques; my contributions were simulating them for
our system’s properties and comparing them in this respect. In order to distinguish
the best option for the microcavity, I simulated the expected error signal for the three
options. By discussing the result of the simulations and the technical installation of
locking schemes, I conclude that tilt locking is the most suited for this particular
experiment.

To demonstrate the error signal experimentally, I put a proof of principle exper-
iment together, measuring the tilt locking error signal. Chapter 4 gives an overview
of the experimental setup. My colleagues manufactured the fibre tip itself but I in-
dependently designed and built the optical setup and the electrical connection to
the detector. I calculated the behaviour of the beam waist after the cavity to order
a fitting aspheric lens. In chapter 5 I discuss the error signal by combining the re-
sults of the simulations and the experimental outcome. In chapter 6 I summarize the
few missing steps and required tools to lock the main experimental setup containing
rare-earth ions.
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Chapter 2

Theoretical discussion

The stability of the phase and frequency of the interacting light is crucial when per-
forming quantum operations on single ions in a nanocrystal. Length changes of the
microcavity induce phase changes in the resonant light. Therefore the length stabil-
ity of the cavity is one of the main limitations in single-ion detection. In order to lock
the cavity to the required length, different locking techniques are compared, namely
side-of-fringe locking, Pound-Drever-Hall stabilisation, and tilt locking. These tech-
niques are used to lock the cavity length to the frequency or the power of a laser [8,
22]. In this chapter, an overview of the theory required to understand the different
locking schemes is presented.

2.1 Physics of the cavity

The simplest example of an optical cavity would be two mirrors facing each other,
such that a photon would bounce back and forth between them. For the light to build
up a standing wave inside an optical resonator, the effective distance between these
two mirrors has to be an integer multiple of half the wavelength of the resonating
light. More generally speaking, the resonance condition is that the phase of the light
needs to be preserved after each round trip. A cavity can be described by its length
and the reflectivity of the mirrors. Knowing these properties, one can calculate the
finesse, which is a measure for the average number of round trips the light is doing
inside the cavity before it gets transmitted through one of the mirrors or is lost by
other means. In the following chapters, the focus will be on the plano-concave cavity
because that is the one formed between the fibre-tip and the highly reflective mirror
in the microcavity setup [7]. A fibre-base microcavity is conceptually visualised in
figure 2.1.

One characteristic measure of a cavity is its free spectral range:

∆ν =
c

2L
(2.1)

here L is the effective cavity length and c is the speed of light. The free spectral
range is the distance between the resonance peaks of the cavity in frequency space
as shown in figure 2.2. The width of these resonance peaks is characterised by the
spectral width δν.

δν =
∆ν

F (2.2)

Here F is the finesse. The finesse can be calculated with the reflectivity of the
mirrors.
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Fibre-tip

Flat mirrorFlat mirror

Fibre-tip

FIGURE 2.1: The coated fibre-tip and the flat mirror create a plano-
concave cavity.

F =

√
r1r2

1− r1r2
(2.3)

r1,2 are the field reflectivities of the two mirrors. If they are the same, the finesse can
also be written in terms of the power reflectivity R, which is experimentally easier
to determine.

F =

√
R

1− R
(2.4)

The shape of the resonance peaks shown in figure 2.2 have a Lorentzian shape:

I(ν) =
Imax

1 + (2F/π)2 sin2 (πν/νF)
(2.5)

as described in detail in [23]. Equation 2.5 is the function representing the power
intensity of the light transmitted through the cavity, where Imax is the maximal in-
tensity given by the incoming light at that frequency. νF = c

2L is the lowest frequency
that resonates inside the cavity.

From the formulae 2.1 and 2.2, one can see that the free spectral range, as well
as the spectral width of microcavities defined by their short length (of just a few
µ-meters), are very broad because of the 1/L dependency.

2.2 Characterising the cavity in the fibre-tip

The physical dimensions of the cavity distinguish the properties of the resonant
modes inside the cavity. The resonance condition in a cavity is that the phase of
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FIGURE 2.2: The free spectral range ∆ν is the distance of two reso-
nance peaks in frequency space while the spectral width δν is a mea-

sure for the width of the peak. This plot is reproduced from [23].

the resonant light has to be an integer multiple of 2π after one round-trip. The total
accumulated phase after travelling two times the length of the cavity can therefore
be expressed as:

exp [−ik2L + iξn(2L)] = exp [−i2πq] (2.6)

⇒ 2Lc
2π

λ
− cξn(2L) = 2πqc (2.7)

νres =
c
λ
=

cq
2L

+ c
ξn(2L)

4Lπ
(2.8)

where ξ(2L) is the additional phase shift known as the Gouy shift, explained below.
The index n indicates that the additional phase might vary for different allowed
solutions.

The concept of wave optics gives an accurate approximation when describing the
standing waves inside a cavity. From there, it can be derived that the Gaussian beam
is a solution to the paraxial Helmholtz equation. The Helmholtz equation governs
the way light expands. In a general form the Hermite–Gaussian mode function can
be written as:

un(x, z) =
(

2
π

)(1/4) (exp [i(n + 1)ξ(z)]
2nn!w(z)

)1/2

Hn

(
x
√

2
w(z)

)

exp
[
−i(kz +

kx2

2R(z)
)− x2

w2(z)

]
(2.9)

The derivation can be found in detail in [23]. To generalise the solution to three
dimensions, the third dimension can be added by multiplication:

unm(x, y, z) = un(x, z)um(y, z) (2.10)
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The equation consists of:

w(z) = w0

√
1 +

(
z
z0

)2

(2.11)

which is the behavior of the beam radius depending on the beam-waist w0 at z = 0.
This is the waist of the beam-spot at the focal point. The beam-waist of the Gaussian
beam has a flat wave-front; therefore, the radius of curvature at this point is infinity.
In general, the radius of curvature of a Gaussian beam can be written as:

R(z) = z
(

1 +
( z0

z

)2
)

(2.12)

Where z0 is the so-called Rayleigh length, which is the distance from z=0 to the point
where the beam radius has grown to w(z0) =

√
2w0. The Rayleigh length can then

be calculated.

z0 =
πw2

0
λ

(2.13)

Higher-order modes are multiplied with the Hermite polynomial Hn(
x
√

2
w(z) ) of the

same order. The Hermite polynomials are an orthogonal set of functions with respect
to the weight function e−x2

[24].
The additional phase ξ(z) in the Hermite-Gaussian beam is known as the Gouy shift.

ξ(z) = arctan
[

z
z0

]
(2.14)

This shift can be explained by considering the transverse momentum of the Gaus-
sian beam [25]. The higher orders experience a bigger Gouy shift because they are
spatially wider. Due to this shift, higher orders with the same frequency are reso-
nant at a different length according to the resonance condition in equation 2.8. In the
figure 2.3 the zeroth-order, generally referred to as the Gaussian beam, is visualised
inside a cavity with dimensions similar to those expected in the microcavity.
In microcavities, higher-order Hermite–Gaussian modes can be observed. To un-
derstand at which frequencies they resonate, equation 2.8 and equation 2.9 are com-
pared. The comparison reveals that the additional phase is the the Gouy shift and
the dependency on the index n is defined by the order.

νres = q
c

2L
+ (n + 1)

c
2L

ξ(2L)
2π

(2.15)

The Gouy shift depends on the Rayleigh length, which is a measure of how
quickly the beam spreads out in the transverse direction. It is therefore defined by
the radius of curvature of the concave mirror.

2.2.1 Higher order modes in the microcavity

The radius of curvature in the fibre-tip R f and the length of the cavity alone define
the frequency at which the light is resonant. Knowing these two parameters, one
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FIGURE 2.3: The zeroth-order mode in the cavity is a Gaussian beam.
The beam-waist located on the surface of the flat mirror and the ra-
dius of curvature of the fibre-tip at the corresponding length L. The
colour code represents the electric field component of the light oscil-

lating in the z-direction.

can calculate the frequencies of higher orders.

R(L) = R f = L
(

1 +
( z0

L

)2
)

(2.16)

⇒ z0(L, R f ) = L

√
R f

L
− 1 (2.17)

⇒ νresonance = q
c

2L
+ (n + 1)

c
2L

ξ(2L)
2π

(2.18)

The structure of the resonances for a cavity with an effective length of 3.6 µm,
and a radius of curvature in the fibre-tip of 35 µm, is displayed in wavelength space
in figure 2.4.

2.3 Theoretical results

In order to find the optimal locking system for the microcavity, it is useful to un-
derstand which wavelength and angle of light couples into the cavity. In particular,
the coupling from the Gaussian shaped beam into the zeroth, first and second-order
mode are of interest. The mode matching of one Gaussian beam into another is
described in [26]. The power transmission into the first and second order mode is
calculated in appendix A and discussed below.
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FIGURE 2.4: Here the resonant wavelength for a cavity with an effec-
tive length of 3.6 µm and a radius of curvature of 35 µm is shown. The

power is arbitrarily chosen.

FIGURE 2.5: The incoming flat wave-front couples to the different
modes in the cavity dependent mainly on the angle and the radius of

curvature in the fibre-tip.

2.3.1 Mode matching into the cavity

In equation 2.18, the frequencies at which the light is resonant in the cavity are de-
fined by q and different orders of n. Additionally, it is interesting to know how light
couples from the fibre into the different orders of the resonant modes. The idea is
visualised in figure 2.5. As the incoming beam can be approximated to have a flat
wave-front before reaching the fibre-tip, the cavity mode must have the radius of
curvature of the cavity at z = L, defined by the fibre-tip. In order to estimate the
coupling into the cavity, the overlap integral of the incoming beam and the resonant
beam profile must be solved. This can be done independently for both transverse
dimensions (x, y), then generalised to three dimensions by multiplication, since the
formula for the higher-order modes 2.9 is defined in that way.
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0. Order ε00(θ) = ε00 exp
[
−θ2ε00

k2

8

(
w2 + w̄2)]

1. Order ε10(θ) =
k2θ2ε2

00w̄2

4 exp
[
−θ2ε00

k2

8

(
w2 + w̄2)]

2. Order ε20(θ) =
1
2

(
ε00 − ε2

00
)

exp
[
−θ2ε00

k2

8

(
w2 + w̄2)]

TABLE 2.1: The power transmission coefficients are dependent on the
angle between the fibre and the flat mirror. The first-order mode is
only populated if there is a small angle, while the zeroth and second-

order always occur.

∣∣∣∣∣
∫ ∞

−∞
u(n, x, z, R, L, λ) u∗f (x, z, w̄, R̄, λ)dx

∣∣∣∣∣
2

(2.19)

The shape of the resonant beam in the cavity u(n, x, z, R, L, λ) is known from
equation 2.9. Here one can see the dependencies from the order n, on transverse
position x, the position along the cavity z, the radius of curvature R, the length of
the cavity L, and the wavelength of the light λ.

For light travelling through an optical fibre, the beam-waist w̄ is roughly equal
to the radius of the fibre core. The radius of curvature of the incoming beam gets
reshaped by the fibre-tip. The radius of curvature of the incoming light is estimated
by knowing the radius of curvature in the fibre-tip R f , and its refractive index [27].

R̄ =
R f

n f − 1
(2.20)

Using the approximations for the incoming Gaussian beam, the power transmis-
sion into the cavity modes can be calculated with equation 2.19. The exact deriva-
tions are displayed in the appendix A. The power transmission into the zeroth-order
mode when the fibre is perfectly perpendicular to the flat mirror is calculated as:

ε00 =
4

(
π(n f−2)w̄w

λR )2 +
( w̄

w + w
w̄

)2
(2.21)

which matches with the results in [26]. The parameters labelled with a bar (R̄, w̄)
are parameters of the incoming beam, while the unlabeled ones define the resonant
mode in the cavity. The angle between the fibre and the mirror, as it is indicated
in figure 2.6, is given by θ. An overview of the power transmission coefficients, in
terms of the ideal zeroth-order ε00, into the zeroth, first and second-order modes
is given in table 2.1. All of the coefficients have an exponentially decaying factor
exp

[
−θ2ε00

k2

8

(
w2 + w̄2)]. This exponential decay indicates that the overall cou-

pling into the cavity is reduced as the angle between the fibre and the flat mirror
grows. The incoming light follows the direction of the fibre, and the part of it that
couples into the cavity is the orthogonal component to the flat mirror.

The results in table 2.1 can also be used to calculate the mode matching for light
coming from the flat mirror side by adjusting the values of (R̄, w̄). In figure 2.7 the
power transmission in the three lowest order modes of the cavity are plotted.

By design of the cavity, the second-order mode is always excited due to the
change in radius of curvature between the incoming beam and the cavity mode.
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Out[]=

FIGURE 2.6: The angle between the fibre and the mirror strongly im-
pacts the coupling into the different transverse order modes of the

cavity.

Most of the power gets transmitted into the zeroth-order mode; this is desirable since
this mode is used to perform quantum operations. The first-order is only populated
if the fibre-tip has a small misalignment compared to the flat mirror; this creates an
overlap between the incoming symmetric beam and the anti-symmetric first-order
resonant beam.

2.3.2 The spectrum of the microcavity

Combining the results in equation 2.18 and the calculated power transmissions in
table 2.1, the spectrum of a cavity can be reconstructed knowing the properties of the
microcavity, as shown in figure 2.8. This plot is normalised such that the sum of the
power transmissions in one free spectral range add up to one. The first three orders
absorb more than 90 % of the incoming light, therefore calculating the coupling up
the second-order is sufficient. One must take into account that the second-order
mode is degenerate as ε02 and ε20 are both excited at the same wavelength under the
assumption that the fibre-tip is symmetric. The first-order is not degenerate since
it is only excited due to the misalignment angle θ. The coordinate system can be
chosen so that the angle lies in the x− z plane.

Studying the resonant higher-order modes reveals that it is possible to distin-
guish the radius of curvature and the angle of the fibre-tip to the flat mirror by com-
paring the power transmission through the cavity for the different resonant wave-
lengths forming the zeroth, first and second-orders. However, it is not trivial to com-
pare the power of the different order modes because of their spatial distribution. By
connecting a white light source to the microcavity, the spectrum can be made visi-
ble. The cavity length can be estimated using the free spectral range as the distance
between two neighbouring zeroth-order resonant peaks.

L ≈ c

2
(

c
λ1
− c

λ2

) =
λ1λ2

2(λ2 − λ1)
(2.22)
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FIGURE 2.7: Due to the change in radius of curvature at the fibre-tip,
the second-order transverse mode is always slightly excited. The first
order is only populated if there is an angle between the fibre-tip and
the mirror. As discussed in the text, odd orders are asymmetric while

the incoming beam is symmetric.

In order to estimate the radius of curvature in the fibre-tip, the distances be-
tween the zeroth and first-order modes in frequency space are measured. As shown
in equation 2.15, the higher orders experience a higher Gouy-shift due to their trans-
verse expansion and, they therefore resonate at a slightly shorter wavelength. This
separation depends on the length of the cavity and the radius of curvature in the
fibre-tip. Using the estimated length from equation 2.22 the radius of curvature can
be estimated.

R ≈ 4L
tan2

[ 2πL
c δν′

] + L (2.23)

Here δν′ = c
λ1
− c

λ0
is the difference in frequency space between a first-order and

neighboring zeroth-order. The radius of curvature in the fibre-tip can also be mea-
sured experimentally.
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FIGURE 2.8: This plot shows the power-transmission of the light en-
tering from the fibre at a small angle into the zeroth, first and second-

order modes.
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Chapter 3

Locking schemes

Reliable interaction with the rare-earth ions requires the cavity length to be stable.
Therefore, passive damping in the form of a stiff and well-isolated setup is required,
as well as active stabilisation to react to drifts in the system. The required length
stability is estimated to be around the FWHM of the resonance peak, which is calcu-
lated knowing the finesse and the resonant wavelength [28].

δL ≤ λ

2F (3.1)

For the resonant wavelength with Nd at 892 nm and a finesse of around 600 a length
stability of δL ≈ 0.75 nm is required. In order to increase the Purcell enhancement,
the next generation microcavity setup will have a finesse of around 6000; therefore,
the stability needs to be in the tens of picometer range.

FIGURE 3.1: The transmission of the fibre-tip coating is minimal be-
tween 850 nm and 950 nm so that the main wavelength of 892.16 nm is
centered in this range. The graph was provided with the fibres from

LASEROPTIK GmbH.

In this work, different techniques for actively stabilising microcavities are dis-
cussed. To re-correct the fibre position after a change in length, the fibre is mounted
onto a shear-piezo. The piezo crystal is controlled by a feedback loop connected to
the detection scheme, which observes the length of the cavity. When discussing the
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possible schemes, it must be considered that the main purpose of the cavity is to en-
hance the read-out of rare-earth ions. An ideal locking scheme would not interfere
with the experiment.
Another limitation of the locking is dictated by the reflectivity coating of the mirror
and the fibre-tip. The information about the coatings is displayed in figure 3.1 which
shows that the high reflectivity ranges from 850 nm to 950 nm. Comparing these val-
ues to the spectrum shown in figure 2.8, it is clear that when the main resonance is
tuned to the excitation wavelength of Nd at 892.16 nm the higher and lower reso-
nance zeroth-order peaks are outside of the high reflectivity range [29]. Therefore,
the locking scheme needs to rely on the same wavelength as the optical transition of
Nd or take advantage of the higher-order modes.

3.0.1 Side-of-fringe locking

Side-of-fringe locking uses power transmission as an error signal. The power trans-
mitted through the cavity is maximised when the laser light is in resonance with the
cavity length; by slightly detuning the cavity length with respect to the wavelength,
the measured power of the transmitted light decreases. Starting at the resonance
peak, a decrease in power does not indicate in which direction the cavity length has
shifted. In order to get this information, the locking scheme must not lock the cavity
to the top of the fringe. Rather, it uses the steepest slope on one side of the fringe
as the error signal. The power increases if the length shifts towards the peak and
decreases in the other direction. This is indicated in figure 3.2.

FIGURE 3.2: The transmission signal of the cavity with respect to fre-
quency detuning. The red line indicates the maximal derivative.

Side-of-fringe locking has some advantages due to its simplicity. The laser light
used for the locking does not have to be modulated, and the detection of the error
signal requires only a photo-detector. The precision in time is limited by the detector
and the response-time of the cavity, which is naturally extremely short for microcav-
ities.

The optimal error signal is obtained when the cavity is locked to the steepest
point of the Lorentzian function describing the transmission signal. The transmitted
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intensity as a function of frequency ν for one resonance peak is:

I(ν) =
Γ2

Γ2 + (ν− ν0)2 (3.2)

where ν0 is the resonant frequency and Γ is the FWHM. To get the best response in
the error signal, the laser should be locked to the frequency where the derivative of
the intensity is maximized.

νlock = ν0 ±
√

3
3

Γ ≈ ν0 ±
√

3
6

δν (3.3)

The responsiveness of the error signal is estimated as the maximal derivative of the
Lorentzian.

dI
dν

(νlock) =
3
√

3
8Γ
≈ 3
√

3
4

1
δν

(3.4)

The main disadvantages of side-of-fringe locking are that power fluctuation in the
light source directly translates into the error signal and that it can not lock the cavity
to the top of the fringe. In a noisy environment, the locking position would jump
from one side of the slope to the other, making it impossible to lock.

3.0.2 Pound–Drever–Hall locking

The PDH locking technique is widely used for laser locking and is very famously
applied to detect the gravitational waves where infinitesimal changes in the cavity
length are detected, as was already proposed by Drever in 1983 [30]. The technique
is based on the phase shift, which is induced in the light inside the cavity if the
length of the cavity is slightly detuned with respect to the wavelength and phase of
the incoming light [8]. This phase shift is indicated in figure 3.3. This plot shows the
power and the phase of the reflected light depending on the frequency in terms of
the free spectral range.

The PDH scheme is based frequency-modulated light, which interferes with the
light entering the cavity to generate the error signal. Through modulation of the
laser beam, two sidebands are excited, which are not affected by the cavity since
they are outside of the resonance peak, acting as a reference signal.

The signal of the central beam enters the cavity while the two sidebands get
mostly reflected in the optimal PDH-locking. The light that has entered the cavity
experiences a phase shift due to detuning in the cavity length regarding the fre-
quency of the resonating light. The light inside the cavity leaks out of the cavity on
both sides. The cavity perfectly aligns with the incoming laser light if the directly
reflected light exactly cancels with the light leaking out of the cavity. The reflected
light is described by the complex reflectivity as displayed in figure 3.3.

fr(ω) =
Ere f

Einc
=

r
(

e
i
c 2Lω − 1

)
1− r2e

i
c 2Lω

(3.5)

In [8] the PDH error signal using reflection is derived in detail.
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FIGURE 3.3: The complex reflection from a cavity is dependent on the
incoming light. A small mismatch between the cavity length and the
wavelength of the incoming light induces a phase shift into the re-
flected and transmitted light, as shown by the blue curve. This phase

shift induces the error signal of the PDH locking.

PDH in transmission

In the case of microcavities, the resonance peaks are so broad that the sidebands
are inside the resonance peak so that they enter the cavity. Nevertheless, they are
slightly less affected by cavity length changes than the main beam, such that an
error signal is created. Since the sidebands pass through the cavity, the error signal
in the transmission signal has a comparable magnitude as the reflected error signal,
as shown in figure 3.4.For example, suppose that the error signal is detected in the
transmitted light on the other side of the plane mirror. In that case, the microcavity
acts as a filter so that unwanted etalon effects in the fibre coupling are suppressed.

The transmitted electric field of an optical cavity can be written as:

Etrans

Einc
= − t1t2√

r1r2

√
g(ω)

1− g(ω)
(3.6)

following the derivations in [24]. In this equation, t and r are the field transmission
and reflectivity. The amplitude transmission is defined as t2 = 1− r2 where r1 =
r2 = r. g(ω) is known as the round–trip–voltage–gain.

g(ω) = r2 exp (−α ∗ 2L− iω2L/c) (3.7)

α represents the internal losses in the cavity which are not considered in the further
calculations. The incoming modulated beam is described as:

Einc = E0(J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t) (3.8)

here E0 is the electric field amplitude, J represents the Bessel functions of the first
kind and β is describing the modulation depth. This modulation depth determines
how much of the laser beam gets transferred from the centre-frequency ω to the
sideband frequencies ω±Ω [8].
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FIGURE 3.4: The error signal of the PDH locking for short cavities
with a wide resonant peak is almost equivalent in reflection and
transmission. The transmitted error signal has the advantage that the
cavity filters the light in all other wavelengths. These plots display
the dominant real part of the error signal for a cavity length corre-
sponding to four times the wavelength (approximately 3.5 µm) and

finesse of around 630.

For simplification it is convenient to define the complex transmission ft(ω) in
analogy to the complex reflection fr(ω).

ft(ω) =
Etras

Einc
=

(1− r2)e
i
c Lω

1− r2e−
i
c 2Lω

(3.9)

Therefore, the transmitted field can be rewritten as follows.

Etrans = E0

[
− ft(ω)J0(β)eiωt − ft(ω + Ω)J1(β)ei(ω+Ω)t + ft(ω−Ω)J1(β)ei(ω−Ω)t

]
(3.10)

The transmitted power is calculated as Ptrans = |Etrans|2.

Ptrans = Pc| f (ω)|2 + Ps{| f (ω + Ω)|2 + | f (ω−Ω)|2} (3.11)

+ 2
√

PcPs{Re[ f (ω) f ∗(ω + Ω)− f ∗(ω) f (ω−Ω)] cos Ωt (3.12)
+ Im[ f (ω) f ∗(ω + Ω)− f ∗(ω) f (ω−Ω)] sin Ωt} (3.13)
+ (2Ω terms) (3.14)

The error signal oscillates with the frequency Ω and has and the amplitude of
f (ω) f ∗(ω + Ω) − f ∗(ω) f (ω − Ω). When two times the modulation frequency is
smaller than the spectral width; the sidebands are inside the resonance peak, and
the error signals from transmission and reflection are similar.

Slope of the PDH error signal

In order to compare the different locking schemes, it is convenient to estimate the
slope of the error signal around the locked position. To calculate the slope of the
error signal, the approximation for slow modulation with respect the spectral width
given in equation 3.15 is a valid starting point [8].

ε = 2
√

PcPs
d| fr|2

dω
Ω (3.15)
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FIGURE 3.5: The slope of the PDH error signal around the resonance
frequency can be approximated by a linear function which gives the
signal per frequency displacement. Here the error signal is plotted for
a cavity length corresponding to four wavelengths (around 3.5 µm)
with a finesse of around 630 where the sidebands are modulated with

5GHz.

| fr|2 =
2r2(1− cos ( ω

∆ν ))

1 + r4 − 2r2 cos ( ω
∆ν )

(3.16)

To approximate the linear behaviour of the error signal, around the perfectly aligned
cavity, the function ε was Taylor expanded to the first-order around w = 2π∆ν.

ε ≈ 2
√

PcPs
4πr2

(r2 − 1)2∆ν2 Ωω (3.17)

For better comparison with the side-of-fringe slope, it is convenient to write the slope
in terms of the spectral width δν as it is done in the case of side-of-fringe locking.

dI
dν
∼ Ω

δν

1
δν

(3.18)

The approximation fits the error signal around the zero-crossing as shown in figure
3.5.

3.0.3 Tilt locking

Tilt locking is based on the overlap of symmetric and asymmetric solutions of the
paraxial wave equation [9]. One complete set of solutions are the Hermite–Gaussian
higher-order modes given in equation 2.9. The even-orders of the Hermite functions
are spatially symmetric functions, while the odd orders are asymmetric functions
along the transverse axis. Tilt locking takes advantage of the first and zeroth-order
spatial mode to monitor the length changes of cavities.

The electric field components along the transverse axis are displayed in figure
3.6. The corresponding power is symmetric for both orders independently because
the power is the electric field squared, as shown in figure 3.7.
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FIGURE 3.6: The electric field of the zeroth-order (TEM00) here in
blue is a symmetric function along the transverse plane, while the
first order (TEM10) component has an asymmetric shape along the

transverse axis.

FIGURE 3.7: These plots show the power distributions of the zeroth
(blue) and first (green) order respectively. The simulation is done for
a detector capturing the transmission signal of the cavity 5mm behind
the flat mirror with a cavity length of 4 times the wavelength (around

3.5 µm).

Higher-order modes are resonant for slightly different lengths of the cavity due to
the additional Gouy-shift as discussed in detail in chapter 2.2.1. Therefore, when
the cavity is resonant to the first-order mode, the asymmetric part of the incoming
beam enters the cavity. The zeroth-order is not resonant to that cavity length. The
symmetric part of the beam does not entering the cavity but directly reflected. That
means that the asymmetric part of the incoming beam is amplified by the cavity and
is affected by the phase shift, while the symmetric order stays unaffected. In this
case, the symmetric part of the light acts as the reference signal in analogy with the
sidebands in the PDH technique. For the microcavity in our setup, the separations
between the transverse modes are in the order of nm as discussed in 2.2.1.
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Tilt locking makes use of the phase shift induced in resonant light as the cavity
drifts out of resonance.

fr(ω) =
r
(
exp (i ω

∆ν )− 1
)

1− r2 exp (i ω
∆ν )

(3.19)

This complex reflection is shown in figure 3.3. The reflected beam consists of the
first-order mode, which is amplified in the cavity and experiences the phase shift
when slightly out of resonance. Meanwhile the zeroth transverse order is off-resonance
at the chosen wavelength and gets reflected by the flat mirror. The electric field of
the reflected light can be approximated by:

Ere f = fr(ω00)u00 +
iπθω0

λ
fr(ω10)u10 (3.20)

= fr(ω00)u00 +
iπθω0

λ
fr(ω10)

2x
ω(z)

exp [iξ]u00 (3.21)

with the assumption that θ is a small tilt angle [31]. The power of the beam is calcu-
lated as the absolute electric field squared.

Pre f = | fr(ω0)|2|u00|2 + | fr(ω1)|2|u00|2
2x2π2θ2ω2

0
λ2ω(z)2 + (3.22)

2xπω0θ

λω(z)
|u00|2i { f ∗r (ω00) fr(ω10) exp [iξ(z)]− f ∗r (ω10) fr(ω00) exp [−iξ(z)]}

(3.23)

The last term is responsible for the error signal. It is the phase-shifted first-order con-
tribution interfering with the none phase-shifted symmetric beam. To identify this
signal a split-detector can be used. To measure the power of the out-coming beam
independently for 0 → ∞ and −∞ → 0 the detector should be placed in the centre
of the light leaking out of the cavity. The two maxima of the intensity distribution
of the first-order mode, as shown in figure 3.7, should match the orientation of the
split detector. The error signal is the subtraction of the two measured powers.

Error =
∫ ∞

∞

∫ ∞

0
Pre f (x) dx dy−

∫ ∞

∞

∫ 0

−∞
Pre f (x) dx dy (3.24)

A simulation of the tilt locking error signal is displayed in figure 3.8. The length
of the cavity is scanned over the zeroth and first-order resonance. At both reso-
nances, the error signal spikes with the characteristic steep slope, which can be used
to lock the cavity. In the simulation, it shows that the shape of the length-dependent
curves representing the power of the two sides of the detector differs for the first and
zeroth-order resonance.
In figure 3.9 only the behaviour directly around the resonances is displayed. For the
first-order resonance, the light reshaped by the cavity has two peaks with a phase-
difference of 180◦; therefore, one of them will constructively interfere with the sym-
metric reflected light while the other one destructively interferes. In the case of the
resonant zeroth-order, the incoming beam is slightly tilted while the wave-front of
the resonant light is perfectly parallel to the flat mirror. Therefore, there is a certain
angle, dependent on the tilt of the beam between the light resonant with the cavity
and the directly reflected light. Thus, a phase change in the cavity can be seen along
the transverse axis as shown in figure 3.8 in the form of a phase shift between the
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FIGURE 3.8: Here, a simulation of the error signal which could be
acquired with the tilt locking technique is displayed. The laser light
has a wavelength of 860 nm, the cavity has a finesse of around 3000.
The detection plane was chosen to be one Rayleigh length (around
10 µm) behind the beam waist at the flat mirror. The first spike in the
error signal (red curve) occurs at the cavity length, which is resonant
to the first-order around 4.27 µm while the zeroth-order is resonant
at 4.3 µm. When looking at the curves representing the two detector
sides, one can see that the behaviour differs for the first-order and

zeroth-order resonances.

two dips corresponding to the two sides of the detector.

3.1 Comparing different locking schemes

When discussing suitable locking schemes for microcavities, the limitations need to
be taken into account. Firstly, due to the short length of the cavity, the free spectral
range and the spectral width are broad because of their one over L dependence.
Secondly, the coating limits the high reflectively range. In this case, the reflectivity
range only covers one spectral range.

As side-of-fringe locking is already installed into the current setup, it makes
sense to compare possible options with it. As discussed above, side-of-fringe lock-
ing locks the cavity length slightly off from the peak of the cavity transmission; thus,
when using this technique, one cannot use the full potential of the cavity enhance-
ment. Additionally, the locking laser has the same wavelength as the laser used for
the ion interactions. This means that one can use the same light source for both
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FIGURE 3.9: This simulation focuses on the behaviour around the
zeroth (on the right) and first-order (on the left) resonance. When
passing the resonant length of the first-order, the power on the two

sides of the detector spike in the opposite direction.

applications, but on the other hand, one has to turn off the locking when doing ex-
periments on the ions. This timing is not a problem as the interaction time with
the ions is shorter than the piezo crystal response time, which corrects the cavity
length. The disadvantage is that one needs to wait for the locking scheme to ensure
the correct length of the cavity after each ion interaction.

Using the PDH scheme would overcome the main disadvantage of side-of-fringe
locking as it locks the cavity to the top of the fringe. This method is based on inter-
fering resonant light with an off resonant reference signal. In order to create this
reference, the light is modulated to have two sidebands. In contrast to the side-of-
fringe locking, the laser power fluctuation does not translate directly into the error
signal. On the downside, due to the short distance between the mirrors of the cavity,
the spectral width is large following δν ∼ 1

L . When directly comparing the slope
of the error signal expected for PDH (equation 3.18) and side-of-fringe, (equation
3.4) one can see that the slope of the PDH scheme only has a better response when
Ω > δν. In our case, the spectral width is in the order of δν ∼ 60× 109, which would
mean that a 60 GHz modulation frequency would be required. This high modula-
tion is not practical since modern electro-optical modulators and detectors in this
frequency range are very expansive and the noise of a detector scales up with the
detection frequency; thus, PDH locking is only feasible if one increases the finesse
by an order of magnitude to decrease the spectral width.

Two potential ways to lock the cavity continuously without disturbing the ion
interaction are discussed. The light used for locking can either be separated spa-
tially or in frequency to distinguish between the locking and the ion interactions. To
separate the locking spatially, it has been demonstrated that one can lock the length
of a fibre-based cavity by glueing another fibre to it, exclusively used for the locking
scheme [32]. This method of using two fibres has the advantage that the fibre that
forms the cavity for the ion interactions can operate continuously. One could lock
the second one so that the main fibre cavity is on top of the fringe. The disadvantage
of this method is that long term thermal drifts between the two fibres still require
the re-locking of the main fibre after some time as discussed in [32]. Additionally,
assembling the two fibres in the experimental setup and controlling them indepen-
dently is experimentally challenging.

Instead of separating the light used for locking and for the ion interaction spa-
tially, one could use separation in frequency. While the free spectral range exceeds
the reflective range of the mirrors, the higher-order modes of the cavity are always
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inside this range. The first-order mode resonates at around a 10 nm shorter wave-
length as derived in chapter 2. This difference is sufficient to separate the light in the
detection to be able to run consciously without disturbing the ion read-out. When
combining either side-of-fringe or PDH locking with using the higher-order mode,
the error signal would be multiplied by the coupling coefficient into that higher-
order mode. This coupling coefficient is for a reasonable angle below 0.2 and, if one
would use the second-order, below 0.1 as displayed in 2.7.

As derived above, tilt locking creates a similar error signal around the first-order
mode as it does for the main resonance; thus, tilt locking can lock the first-order
mode without a drawback, while the main resonance is used to interact with the
ions. The slope of the error signal created by tilt locking is the subtraction of two
transmission peaks spiking in opposite directions. In contrast, the total transmis-
sion, which is the base for side-of-fringe locking, corresponds to the addition. The
simulated results displayed in figure 3.10 show that the error signal around the
zeroth-order resonance is comparable to the slope of the side of the fringe. When
the length of the cavity is passes the first-order resonance, the fringe is decreased,
which corresponds to the error signal of side-of-fringe locking.
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FIGURE 3.10: In this plot, the power measured by the two sides of the
split detector are added here in orange and subtracted in red. In the
right plot, the behaviour around the zeroth-order mode is shown. In

the left plot, the cavity length passes the first-order resonance.

Tilt locking is based on the same principle as PDH locking, namely using the
cavity length-dependent phase shift interfering with a reference signal to monitor
the length changes. The difference is that the reference signal of tilt locking is well
outside the spectral width. It does not require a modulator. The main drawback of
the tilt locking scheme is that it needs to be done from the mirror side of the cavity
because the fibre creating the cavity is a single-mode fibre and would suppress the
first-order mode.
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Chapter 4

Experimental methods

4.1 Overview optical setup

To test the tilt locking technique’s functionality to stabilise a microcavity, a test setup
was built. The goal was to mimic the setup that is currently being built for the
cryostat. The same coated fibres and the highly reflective mirror are used to create
the microcavity in the test setup to make it comparable.

In order to meet the stability condition of the microcavity, the fibre-tip must be
closer to the mirror than the radius of curvature in the fibre-tip. The coating of the
fibre-tip is susceptible to damage. It breaks if there is an abrupt physical interaction
with the mirror; thus, the fibre-tip is mounted on a micrometre stage. This stage
allows for moving the fibre-tip close enough to the mirror to form the microcavity
in a controlled way. The needle onto which the fibre-tip is glued is mounted on a
PL5FBP3 shear piezo chip from THORLABS. A conceptual overview of this is shown
in figure 4.1.
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FIGURE 4.1: The figure is out of proportion but gives a clear idea of
how the fibre-tip is mounted. The shear piezo has a theoretical range
of up to 1.3 µm while the micrometre-stage has a range of a few mm.

The fibre needs to be less than 10 µm away from the flat mirror.

As discussed in appendix B, the expansion of the beam waist leaving the cavity
is defined by the spatial dimension of the cavity and rapidly expands after it passes
the mirror. The beam needs to be refocused directly behind the mirror to get the
signal out of the setup without cutting off the higher-order spatial modes. In this
setup, the aspheric lens A240-B from THORLABS is used, which has an effective
working distance of 5.92 mm and a clear aperture with a diameter of 8 mm. The
high reflectivity mirror from LASEROPTIC is 3 mm thick. The focus point of the
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cavity is directly on the surface of the flat mirror. Therefore, the lens must be placed
about 2.9 mm behind the mirror. The lens is mounted on another micrometre-stage
to control its exact position in all three dimensions.

The general setup of the experiment is shown technically in 4.2. After passing
through an optical adjustment setup of two mirrors to have control of the height
and transverse position of the beam, the laser light is focused on the cavity by the
aspheric lens. A beam splitter redirects the reflected beam and the light coming from
the cavity towards the detector. The 10/90 beam splitter is set up so that 90 % of the
light from the cavity reaches the detector.

Cavity

<10 µm 2.9 mm

,5 ,5

Fibre-tip

Mirror

Aspheric lens

Beam splitter

Polariser

Detector

CCD

Spectro-
meter

Laser
935 nm

M2

M1

,5 ,5

FIGURE 4.2: The setup was designed to be similar to the actual setup
inside the cryostat. The cavity consists of the same fibre and coated
mirror. The laser light has a wavelength of 935 nm which is in the
high reflection range of the mirror and fibre coating. When looking at

the beam profile, the detector is interchanged with a CCD camera.

To control the polarisation of the light coming from the laser, a B-coated "Glan-
Laser Calcite Polariser" from THORLABS with an extinction ratio of 106 : 1 is mounted
in a rotation stage just in front of the laser. Setting the polarisation is helpful in max-
imising the signal-to-noise ratio, as only a certain polarisation couples into the cavity
which is an effect known as the Brewster’s angle. This is especially the case for the
asymmetric spatial modes.

The split-detector is mounted on a micrometre stage which is adjustable along
the transverse axis of the incoming beam. The detector itself is placed into a ro-
tatable holder to adjust the splitting axis of the detector. A QP5.6-TO5 quad pin
detector from first sensor was chosen because of its low dark current and the narrow
gap between the elements of just 24 µm. It has four elements with an active area of
1.22 mm2 each.

The simple electrical setup, used to read out the two sides of the split detector
and subtract them, is shown in figure 4.3. The detector is powered with a reverse
voltage between 20 V and 30 V. The two sides of the detector are connected to a
150 kΩ resistor across which an oscilloscope measures the voltage. The oscilloscope
is operated in AC mode to remove the constant offset due to directly reflected light.
In order to display the error signal, the two channels of the oscilloscope are sub-
tracted using the math menu.
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FIGURE 4.3: To have a simple readout option for the split detector,
the two sides of the detector are connected to resistors. Two channels
of an oscilloscope read out the voltage over the two resistors. The

detector is operated with a reverse voltage of 20 V to 30 V.

The light from the resonant cavity and the directly reflected light need to over-
lap to measure an error signal. It is helpful to place a CCD camera in front of the
detector to check this overlap. The camera allows for monitoring the beam profile
of the cavity modes and thereby set the axis of the split detector to match the axis of
the first-order mode. In this setup, the DCC1545M monochrome sensor from THOR-
LABS is used. This sensor has an active area of 6.66 mm × 5.32 mm.

As a light source a DFB laser from nanoplus with a center-wavelength of 935 nm
was installed. This laser has a power output of up to 20 mW and a FWHM of around
one nanometer. 935 nm is a suitable wavelength concerning the high reflectivity
range of the mirror, and the linewidth is smaller than the separation between the
zeroth and first-order cavity mode. This laser is not sufficient for the actual locking
system when the ions are targeted because of the missing tunability and the wrong
wavelength with respect to the Nd ion transition, but it was available in the lab and
sufficient to build this proof of principle test setup.

A spectrometer is connected to the end of the fibre forming the cavity. The spec-
trometer monitors the coupling into the cavity. In this setup, the AvaSec-ULS4096CL-
EVO from AVANTES is installed. In order to measure an error signal, the cavity
needs to be sufficiently stable so that the cavity length does not drift off immedi-
ately. The whole setup is mounted onto a floating optical table to meet the stability
requirements.

4.2 Aligning and initialising

The fibre-tip is extremely sensitive, and one needs to be careful not to destroy the
high reflectivity coating; thus, it is crucial to monitor the distance between the fibre-
tip and the flat mirror when adjusting the micrometre-stage to form the cavity. For
this purpose, a white light source that has a wavelength span from 600 nm to 1100 nm
is connected to the cavity fibre. The spectrometer is positioned on the flat-side of the
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cavity to observe the fringe pattern of the microcavity. Once the distance between
the fibre-tip and the mirror is short enough to meet the stability condition, the fringes
of the cavity appear on the spectrometer, as shown in figure 4.4.

860 880 900 920 940 960 980
0.0

0.2

0.4

0.6

0.8

1.0

Wavelength in nm

C
o
u
n
ts
n
o
rm
al
is
ed

FIGURE 4.4: When shining with a white light source onto the cavity,
one can observe its spectrum. The distance between two zeroth-order
resonances is measured to estimate the length of the cavity. In this
spectrum, one can see the zeroth and first-order modes of the cavity

with a length of about 13 µm.

The length of the cavity is estimated by measuring the distance between two
zeroth-order resonances as derived in chapter 2.3.2. Knowing the distance between
the fibre-tip and the mirror, it is possible to slowly decrease it with the micrometre-
stage until reaching the length regime of interest below 10 µm. The fibre is moved
until a zeroth or first-order resonance peak reaches 935 nm.

As soon as an overlap of the first-order resonance and the laser is detected, the
white light source is removed, and the spectrometer gets directly connected to the
cavity fibre. Now the laser is focused on the cavity coming from the mirror-side.
The transmission is monitored with the spectrometer. A good coupling into the first-
order resonance mode is shown in 4.5. This plot clearly shows that it is possible to
sufficiently focus the laser beam through the mirror into the cavity and excite the
first-order cavity mode.

Only light with particular polarisation couples into the first-order mode; thus,
the polariser can filter out light that cannot couple into the cavity. In this way, the
signal-to-noise ratio of the error signal is improved because it decreases the amount
of reflected light.

To be able to detect the tilt locking error signal, the light of the first-order and
the reflected symmetric beam need to overlap at the split detector. By placing the
CCD camera in front of the split detector, the first-order is observable when the laser
is directly connected to the cavity fibre. When the laser approaches the cavity from
the mirror-side, the CCD camera detects the reflected Gaussian-shaped beam, which
should spatially overlap with the cavity mode. The results of this scheme are dis-
cussed in chapter 5. This result is also important in order to see the orientation of
the first-order and to rotate the split detector accordingly.
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FIGURE 4.5: The first-order mode is excited by the 935nm laser which
enters the cavity from the mirror-side. The zeroth order is slightly
excited because the tail of the laser in this setup is very large and
covers this wavelength. This shot is taken by the spectrometer which

is connected to the fibre.

4.3 Creating the error signal

In order to create an error signal, the shear piezo under the fibre-tip is connected
to a function generator to drive the fibre-tip back and forth. The signal is amplified
with a gain of 25 V/V to create a sufficient offset in the length of the cavity. The
TD250 from PiezoDrive is used here. The two sides of the detector are connected to
the oscilloscope HDO6104A from LeCroy while the trigger is directly connected to
the function generator.

The oscilloscope is operated in AC mode to be able to zoom in on the error signal
despite the offset-voltage resulting from the directly reflected light. To calculate the
error signal, the math option of the oscilloscope subtracts channel one from channel
two. With the aim to find the optimal error signal, the split detector is slowly moved
along the transverse axis until the signal from the right and left side of the detector
is approximately equal. A photo of the optical setup is presented in figure 4.6.
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FIGURE 4.6: In this picture the optical setup on the floating table is
presented. The laser beam enters the setup in the bottom right corner
and is steered into the cavity by the two adjustment mirrors passing

the optical components discussed in the text.
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Chapter 5

Experimental results

The main goal of this work was to demonstrate an error signal monitoring the length
changes of the microcavity. In previous experiments, the group in Lund used side-
of-fringe locking to stabilise the microcavity. Tilt locking offers the advantage of
locking the cavity directly on the top to the fringe and using a wavelength that sits
nm apart from the main resonance wavelength. This chapter demonstrates and dis-
cusses experimental results applying the tilt locking scheme on the fibre-based mi-
crocavity.

In figure 5.1 a single oscilloscope shot is shown. The displayed signal nicely
demonstrates the concept of tilt locking. Comparing it to the theory presented in
chapter 2, this is identified as an error signal when the length of the cavity is pass-
ing a zeroth-order resonance. Before reaching the resonant length, during negative
voltages on the piezo, the left part of the detector is exposed to slightly more power
than the right side. This ratio switches after passing the resonant length.

FIGURE 5.1: The blue and the green curves correspond to the light
intensity on the two sides of the split-detector, respectively. The error
signal in red is given by the subtraction of one side from the other.
As the voltage on the piezo increases, the fibre gets pushed forwards,
and the cavity becomes resonant with the laser light (indicated by the
black bar). In resonance, the light leaking out of the cavity can be

detected, and the error signal is formed as explained above.
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The resonant length is reached at around the point where the voltages corre-
sponding to the two sides of the detector are equal. At that point, the error signal
has its steepest slope. The cavity length passes the resonance again when the voltage
on the piezo decreases. The position of the fibre-tip is not precisely linear with the
voltage on the piezo because the shear piezo follows a hysteresis curve. This data
is taken while applying a 1 V peak to peak voltage amplified by a factor of 25; the
frequency is set to 100 Hz. The error signal in this configuration is in the order of
a few tens of mV. The size of the error signal is increased below by more than one
order of magnitude by adjusting the bias voltage on the detector and better focusing
on the active area of the detector.

5.1 Zeroth-order resonance

In figure 5.2 a much stronger error signal is shown; here, the piezo was driven with
a 55 Hz and 7 V peak to peak signal before amplification. The cavity length oscillates
around a zeroth-order resonance. The cavity is in resonance with the laser around
the zero crossings of the piezo driving voltage. The error signal represented in red
has a linear steep slope around the resonance. In this plot, the data is averaged
over ten samples. This plot shows how the dips of the two sides of the detector are
phase-shifted, which is responsible for the error signal here, as discussed in chapter
3.

FIGURE 5.2: This plot shows the error signal resulting from the cavity
length oscillating around a zeroth-order resonance. The phase shift
between the two sides of the split detector can be seen. The reso-
nance is reached when the slope of the error signal is steepest. For
high positive voltages on the shear piezo, the cavity is closer to the
mirror than the resonance length. Before the first zero crossing of the
piezo voltage, the cavity length passes the resonance; at that point,
the error function has its steepest slope. After the piezo voltage in-
creases, the length passes the resonance again, and the mirrored error

signal occurs.

5.2 First-order resonance

When locking the cavity length to a first-order resonance while the single ion read-
out is done on the zeroth-order resonance, it enables continuous locking without
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disturbing the quantum operations as discussed in chapter 3. Here, it is shown that
the error signal around the first-order resonance using tilt locking is comparable to
the error signal around the zeroth-order.

When looking at a first-order mode resonance, the polariser is installed in front
of the laser to achieve a better signal-to-noise ratio. In the case of a first-order reso-
nance, the power on the two sides of the detector spike in opposite directions after
passing the resonant length. This behaviour is shown in figure 5.3. The first res-
onance of the cavity is roughly when the voltage of the two sides of the detector
cross at around 0.002 s. As the voltage on the piezo rises, and the cavity is tuned,
resonance occurs again at about 0.008 s. This data set demonstrates that the error
signal of the tilt locking technique produces a steep and fairly linear slope around
the first-order resonance of the cavity.

FIGURE 5.3: The blue and the green curves correspond to the power
of the two sides of the split-detector, respectively. The error signal is
given by the subtraction of the blue one from the green one. As the
voltage on the piezo increases, the fibre gets pushed forwards, and
the cavity becomes resonant with the used laser light such that the
light leaking out of the cavity can be detected, and the error signal

can form as described in the text.

5.3 Orientation of the detector

In chapter 4.2 it is discussed that the orientation of the first-order mode needs to be
matched with the detector. In figure 5.4 the right picture shows the beam profile of
the laser directly attached to the cavity fibre. The cavity is tuned to be resonant in the
first-order mode. The left picture shows the beam profile of the light coming from
the mirror side without changing the setup. The red circle with a diameter of about
1 mm is drawn in the same position for both pictures clarifying that the two beams
overlap on the active area of the camera.

The perfect error signal is achieved when the two intensity maxima of the first-
order mode are placed on the two sides of the split detector [31]. This effect is
demonstrated in figure 5.5 where one oscilloscope shot is taken when the detector is
oriented to match the first-order mode, here called horizontal orientation, and one
shot after a 90◦ rotation called the vertical orientation. The error signal only occurs
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FIGURE 5.4: In both pictures the cavity length is tuned to be resonant
with the first order spatial mode. The left picture is taken when the
laser is focused from the mirror side onto the cavity. In the right pic-
ture, the laser was connected to the fibre forming the cavity. The red
circle has a diameter of around 1 mm and is on both pictures in the
same position. The blurry effects in both pictures are artifacts from
the optical setup. Nevertheless, one can see that the main spot of the
reflected laser light is overlapping with the first-order mode of the

cavity.

FIGURE 5.5: It is demonstrated that the error signal depends on the
detector’s rotation. The signal is maximised when the two sides of
the detector measure the power of the two maxima of the first-order
mode independently. In the left plot, the detector is orientated 90◦

misaligned to the first-order. In the right-hand figure, the detector is
rotated by 90◦.

in the horizontal position of the detector because this matches the orientation of the
first-order.

5.4 Experimental conclusion

It has been shown that a rather simple setup around the mirror side of the microcav-
ity can return a sufficiently large error signal. The method is able to create a similar
error signal both around the first and zeroth-order resonance modes as predicted by
the simulations shown in chapter 3. It was demonstrated that higher-order modes
could be refocused behind the cavity without cutting off the beam. The collimation
was done in a way that is directly implementable into the new microcavity setup.



5.4. Experimental conclusion 39

This error signal could be directly fed back to the piezo to actively stabilise the cav-
ity length.
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Chapter 6

Outlook

The new microcavity setup of the quantum information group at Lund’s University
is currently in the design process. This new design will enable us to optically ap-
proach the cavity from the mirror side. In order to focus the laser beam onto the
fibre-tip, an aspheric lens is installed before the mirror. Having the opportunity to
approach the cavity from the mirror side enables the use of tilt locking.

For the quantum computing experiments with this stabilization, a dedicated
laser setup is needed. Here, I discuss what components are needed and available.
The tilt locking scheme offers to lock the cavity length independently from the main
experiment; the first-order mode of the cavity can be used for locking, while the ze-
roth order mode is used to read out the Nd ions. The wavelength at which the first
order is resonant when the zeroth-order is resonant at 892 nm is displayed in figure
6.1. This resonant wavelength depends on the radius of curvature in the fibre-tip
and the length of the microcavity; thus, the laser used for the locking scheme would
have to cover a specific wavelength range.
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FIGURE 6.1: The first-order mode is resonant at the shown wave-
length when the zeroth-order is at a wavelength of 892 nm; the tran-
sition wavelength of Neodymium. The resonant wavelength varies
depending on the radius of curvature of the fibre-tip and the length

of the microcavity.

A dedicated new laser needs to be bought to set up the proposed locking system.
The range of the laser would have to be around 875 nm to 885 nm. These kind of
tunable lasers are commercially available, for example, from Sacher Lasertechnik.

In the setup which will go into the cryostat, the aspheric lens will be fixed to one
position. The distance to the fibre-tip will be chosen to collimate the light from the
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cavity modes. In order to make the beam match the size of the split detector, another
lens between the beam-splitter and the detector is useful. The split detector itself
should be placed inside of a rotatable holder. This holder should be mounted on a
micrometre stage which covers all three degrees of freedom to find the optimal error
signal.

The electric circuit producing a measurable voltage signal from the amperage
coming from the detector has a vast potential for improvement. Currently, the volt-
age is measured across 150 kΩ resistors to amplify the signal, but the noise of a resis-
tor scales with the square root of its resistance. The noise could be reduced by using
low noise amplifiers to amplify the signal instead. In the current detector setup, the
connections are self-made and have long cables connecting the different parts of the
circuit. Long cables pick up electromagnetic signals from the environment; when
testing the detector, it was always possible to measure a 50 Hz signal originating in
the surrounding electronics. This indicates potential for improvement. There are
commercially available products like the QUAD-4 TRACK from Gentec-EO which
are considerably more expansive but solve the electrical setup more professionally
and are less sensitive to noise.

The feedback loop of the current locking setup relying on side-of-fringe locking
can be reused for tilt locking. The error signal is fed in a Red Pitaya which translates
the signal into a voltage driving the piezo to readjust the position of the fibre-tip.
The error signal of tilt locking can be processed in the same way.

Considering the results given in this thesis, I believe that tilt locking is the best
option for building a dedicated locking scheme for microcavities used for single ion
interactions. It would enable continuous locking because the wavelength used for
locking is nm apart from the main resonance and can be filtered out in the detection
setup. Contrary to side-of-fringe locking, it can lock the cavity length on the top
of the fringe; and compared to higher order PDH locking, tilt locking promises a
stronger error signal while having a lower price-tag.
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Appendix A

Overlap integrals

In this appendix, the power transmission into the zeroth, first and second-order mi-
crocavity mode, is calculated in detail. The fibre which steers the light towards the
cavity is a single-mode fibre; thus, only the zeroth-order transverse mode is trans-
mitted. The beam inside of the fibre can be approximated to have a Gaussian form
with a plane wavefront. Knowing the shape of the cavity, the power transmission
in the higher-order transverse modes are calculated using the Hermite-Gaussian
modes [24]. These are slightly more complicated solutions than the plane wave to
the paraxial wave equation, which means they are waves that mainly move in the
z-direction. Their wavefront curvature compared to the plane wave is adjusted with
an extra factor called the Gouy-shift. This phase shift makes these waves resonant
to a slightly different cavity length while having the same wavelength. The general
equation for the Hermite–Gaussian modes is:

ũn(x, z) =
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This is the equation for one transverse dimension, the overall mode can be assem-
bled by multiplying the two transverse dimensions:

unm(x, y, z) = ũn(x, z) ũm(y, z) (A.2)

Here w(z) is the beam waist of the Gaussian beam which has its minimum at z = 0
with w(z = 0) = w0 which is called the beam waist. z0 is the Rayleigh length.

Rayleigh length: z0 =
πω2

0
λ

(A.3)
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(A.4)

The radius of curvature is given by:

R(z) = z
[
1 + (

z0

z
)2
]

. (A.5)

The mode matching into the higher orders is calculated with the overlap integral:∣∣∣∣∣
∫ ∞

−∞
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2

(A.6)
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A.1 0. order

The mode in the fibre is similar to a Gaussian shape with a radius of curvature R̄
and the beam waist w̄ [7].
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This result matches the result found in [26]. In the case of fibre-tip microcavities, the
radius of curvature of the Gaussian beam coming from the fibre is estimated as R̄ =

R f
n f−1 where R f is the radius of curvature of the fibre-tip and n f is the refractive index
of the fibre-core [27]. Following these assumptions, one can rewrite the equation of
the power transmission coefficient to:

Power transmission into the 0. Order mode

ε2
0 = ε00 =

4

(
π(n f−2)w̄w
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( w̄

w + w
w̄

)2
(A.7)

The beam-waist of the Gaussian beam coming from the fibre w̄ can be approxi-
mated by the radius of the inner coating of the fibre [27].

A.1.1 Tilted fibre

The fibre can have a slight angle to the mirror indicated in figure 2.6. This angle is
a result of thermal contractions or imperfect aligning when glueing the fibre to the
mounting stage. This angle would affect the coupling into the higher-order modes
enabling a coupling into the odd modes of the cavity. According to [26] the Gaussian
beam with a small tilt-angle θ can be expressed as:
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w2 + ikθx
]

. (A.8)

Following that, the power transmission coefficient in one transverse direction is cal-
culated.
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The complex phase factor disappears in the absolute value.
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Power transmission into the tilted 0. Order mode
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Here the exponential term which is a result of the tilt is not squared because the
orientation can always be chosen in such a way that the angle is in one plane. This
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matches the results given in [26].

A.2 First-order power transmission coefficient

The overlap into the first-order vanishes if there is no angle between the fibre-tip and
the mirror because the odd-numbered Hermite-Gaussian modes are odd functions
while the incoming mode is even. If there is a small angle, θ in the alignment of the
fibre-tip towards the first-order transverse mode in the cavity is excited.
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A.3 Second-order power transmission coefficient

Due to the design of the cavity with one concave and one planar mirror, there will
always be an excited second-order transverse mode in the cavity even if the tilt angle
is zero.
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The second Hermite polynomial is: H2(x) = 4x2 − 2, thus the power transmis-
sion coefficient is calculated as:
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are used.
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A.3.1 Tilted fibre

The second-order is also affected by a tilt of the fibre toward the mirror as calculated
below.

ε2(θ) =
2
π

∣∣∣∣∣
∞∫
−∞

(
1

8w

)1/2 (8x2

w2 − 2
)

exp
[
−i

kx2

2R
− x2

w2

]
×

(
1
w̄

)1/2

exp
[

i
kx2

2R̄
− x2

w̄2 + ikθx
]

dx

∣∣∣∣∣
2



48 Appendix A. Overlap integrals

ε2(θ) =
2
π

∣∣∣∣∣
∞∫
−∞

(
1

8ww̄

)1/2 (8x2

w2 − 2
)

exp
[

x2
(
−i

kx2

2

(
1
R
− 1

R̄

)
−
(

1
w̄2 +

1
w2

))
+ ikθx

]
dx

∣∣∣∣∣
2

=
1

πww̄

∣∣∣∣∣
∞∫
−∞

(
4x2

w2 − 1
)

exp
[

x2
(
−i

kx2

2

(
1
R
− 1

R̄

)
−
(

1
w̄2 +

1
w2

))
+ ikθx

]
dx

∣∣∣∣∣
2

=
1

πww̄

∣∣∣∣∣
∞∫
−∞

(
4x2

w2 − 1
)

exp
[
x2 (−ia− b) + icx

]
dx

∣∣∣∣∣
2

Here I substituted for convenience:
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the solution is written as shown below.
Power transmission coefficient into the tilted second-order transverse mode
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00 term is neglectable because Ξ(θ)� 1
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Appendix B

Optical properties of the cavity

B.1 Derivation of a standing wave inside a cavity

To be a mode of the cavity, the beam has to have the same properties after one round
trip. The whole information about a Gaussian beam is in its q value:

q(z) = z + iz0 (B.1)

where z0 =
πω2

0
λ is the Rayleigh length and 1

q(z) = 1
R(z) − i λ

πω2(z) . Here the matrix
method is used to find the properties of the Gaussian mode which is an eigen-mode
of the cavity [23]. [
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0 1
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] [
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0 1

]
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R 2l − 2l2

R
−2/R 1− 2l

R

]
(B.2)

The formula to transform from q1 through an optical apparatus to a q2 is used. In
this case for the stable mode it needs to meet the condition q1 = q2.

q2 =
Aq1 + B
Cq1 + D

(B.3)
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q
− C (B.4)

1
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The stability requirements are defined.

AD− BC = 1 (B.6)
4BC = 4AD− 4 (B.7)

A + D/2− 1 ≤ 1 (B.8)

Thus the equation is simplified.
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The Beam-waist is at z = 0 which corresponds to the surface of the flat mirror.

ω0 =

(
λ

π

)1/2
√√√√ B√

1−
( A+D

2

)2
(B.10)

FIGURE B.1: The beam-waist ω0 at the flat mirror is fully confined
by the properties of the cavity. This plot shows the calculated beam-
waist for typical values in the microcavity for a wavelength of λ =
890nm. The beam-waist is plotted for different length L of the micro-

cavity.

B.2 Calculating the beam going out of the mirror

The matrix for a plane surface with two refractive index n1 and n2 is given by:[
1 0
0 n1/n2

]
(B.11)

this is used to calculate the q2 after the surface.

q2 = i
z0n2

n1
(B.12)

The part of the pass that travelled through the mirror with the different refractive
index is taken into account.

q3 = i
z0n2

n1
+ dmirror (B.13)

Before leaving the mirror on the other side it passes the outer surface of the mirror.

q4 = iz0 + dmirror
n1

n2
(B.14)

The expansion of the beam waist must be known to choose the right lens to collimate
the light without losing the transverse shape of the higher orders. The calculated
beam-waist is shown in figure B.2 and B.3. The lens in the setup needs to have a
large enough diameter. This diameter of the clear apparatus must be at least twice
the beam waist dependent on the distance from the inner plane of the flat mirror.
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