
Semi-Classical Calculations of Multiple
Trajectories in High-Harmonic Generation

Tom Causer

Thesis submitted for the degree: Bachelor of Science
Project Duration: 2 months

Supervised by: Johan Mauritsson
Cosupervised by: Samuel Bengtsson

Department of Physics
Atomic Division

May 2021

Abstract

The purpose of this thesis is to investigate the High-Harmonic Generation (HHG) process
by simulating electron trajectories, and their resulting Extreme Ultra Violet (XUV) output.
The HHG process is one in which a focused beam of infrared (IR) light can rival (in terms
of intensity) the potentials of atoms, which makes tunnelling likely – this sets off a chain of
events resulting in an XUV pulse.

The thesis utilises a semi-classical method in order to predict where one might look for fur-
ther trajectories. This method is programmed into MATLAB in order to run simulations and
investigate the results.

The code allows for a deep-dive into different aspects of the process, including laser profile
shape, laser properties (wavelength and intensity) and number of atoms within the beam.

One of the conclusions of the thesis is the reaffirmation that finding the third trajectory is
not simply a case of knowing what settings to apply, but moreso the principle that trajecto-
ries past the second are much less likely to be taken by electrons (even in a purely classical
regime, before taking into account phenomena like Electron Wave Packet (EWP) spreading).
The thesis also demonstrates an approximation of the HHG process to the tenth trajectory,
where usually only up to the second is shown, which provides an interesting insight into how
they are grouped around certain harmonics.

Popular Description

Imagine going to the park with your dog and playing fetch. We’re going to assume that your
dog always at least attempts to fetch the ball once you throw it. Let’s also assume that upon
returning the ball to you, the dog shows her excitement by barking in a frequency (your dog
is a tad odd) that depends on the speed she returns to you. This basic premise takes place on
an atomic level within the field of atomic physics, in a process called “Higher-order Harmonic
Generation” (HHG).

How hard would you have to throw the ball before it leaves the park and your friend can no
longer retrieve it? Or if you have a penchant for annoying others, you might ask the question
“How hard do I have to throw this ball so that my dog sounds like a nail scratching a chalk-
board?”

These questions have analogues in HHG. The frequency of your dog’s bark in this analogy
corresponds to the frequency (and by extension: energy) of the light that comes out of the
HHG process.

There’s more to the process than just you and the dog though – one of the reasons the HHG
process can take place at all is because of the ability of electrons to “tunnel through the po-
tential barrier”. In our dog analogy, this means that your willingness to play fetch as the
owner will change depending on your environment. You are perhaps not so willing to play
fetch in Auntie Gertrude’s antique store, but once you reach an open field – you almost have
to resist throwing the ball.

There are equations that allow for the simulation of this atomic scenario and also for much
more interesting questions to be asked. You might think that the way to ensure your loyal
companion sounds like she’s imbibed helium is simply to throw it as hard as you can. This
would be true if she were incapable of tiring. In reality, if you throw it too hard (but still
inside the park) then your companion might return to you at a walking pace, sounding like a
deflating balloon.

One of the unanswered (or rather unmeasured) questions in the field that studies this, is
based upon the premise that your dog physically “misses you” (think of it as running in-
between your legs by accident) when she tries to return the ball to you. Upon passing you,
she’ll turn and come back – and when she does successfully return the ball to you, her speed
will still be measurable, and it is guaranteed to be a speed that could have been measured
had she not missed you the first time. The problem is – such an event has not yet been ex-
perimentally observed; the dog always seems to be successful in returning the ball the first
pass despite the theory pointing out that the miss scenario should be possible.

The subject of my thesis is to simulate your visit to the park with the dog and investigate the
ways in which we might be able to make your dog run past you instead of returning the ball
directly to you.

Abbreviations, Acronyms & Terms

as (attosecond) - 10−18 seconds, a unit of time

DFT - Discrete Fourier Transform

FFT - Fast Fourier Transform

EWP - Electron Wave Packet

HHG - High-order Harmonic Generation

IR - Infrared

V/m - Volts per Metre, equivalent to Newtons per Coulomb, a unit of electric field strength.

SFA - Strong Field Approximation

TDSE - Time Dependent Schrödinger Equation

Contents
1 Introduction, Background & Theory 1

1.1 High-order Harmonic Generation . 1
1.1.1 Semi-Classical Model . 2
1.1.2 SFA/Lewenstein Model . 6

1.2 Phase . 7
1.2.1 Introduction To Phase . 7
1.2.2 Choosing The Type of Delay . 8
1.2.3 Semi-Classical Approximation of Equation (8) 10

1.3 Fourier Transformations . 12
1.3.1 The Discrete Fourier Transform . 12
1.3.2 The Shannon-Nyquist Sampling Theorem & Aliasing 14
1.3.3 The Fast Fourier Transform (FFT) . 16
1.3.4 The Spatial Fourier Transform . 16

2 Method 19
2.1 Simulation Code . 19
2.2 Theoretical Laser Profile . 20

3 Results 22
3.1 The Third Trajectory . 22

3.1.1 Single Atom - Phase Location . 22
3.1.2 Unlikelihood of Observation/Electron ’Survival’ 22
3.1.3 Many Atoms, Far-field Projection . 23

3.2 Further Trajectories . 23
3.2.1 Single Atom - Phase Locations . 23
3.2.2 Far-field Projection . 24

3.3 Far-field Projections of Different Harmonics, Third Trajectory 25
3.3.1 1.0 ·1018 W/m2 Intensity . 25
3.3.2 1.2 ·1018 W/m2 Intensity . 26
3.3.3 2.0 ·1018 W/m2 Intensity . 27

4 Discussion 28

5 Acknowledgements 31

6 Appendices 32
6.1 Appendix 1 - Fourier Transform Steps . 32
6.2 Appendix 2 - Code Functions . 32
6.3 Appendix 3 - Code . 36

6.3.1 Superposition Code . 36
6.3.2 Discrete Fourier Transform Code . 37
6.3.3 Full Simulation Code . 38

1 Introduction, Background & Theory
Light is composed of oscillating electric and magnetic fields. In this thesis, the magnetic field
component will be neglected – to be specific, there will be the assumption that all light is lin-
early polarised. The electric fields are taken into account though and need to be considered.
A simple way of visualising the oscillations of the electric field is to use a sine function, as in
equation 1.

~E(t) = ~E0 sin(ωt) (1)

where ~E(t) is the electric field strength [V/m] at time t, ~E0 is the peak electric field strength,
ω is angular frequency [rads/s] and t is time [s].

In a linear system, waves obey the superposition principle and can either interact construc-
tively, or destructively. This is the basis for creating pulses of light. If a sufficient number of
light waves are summed, then it is possible to ensure that there is destructive interference
everywhere except at a point of interest. Using this principle, it is possible to create short
pulses– this is demonstrated in figure 1. For simplicity, there are only five waves summed.

0 2 4 6 8 10 12

Time (Arbitrary)

0

2

4

6

8

10

12

14

16

18

20

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

Figure 1: Due to the superposition principle, five individual waves sum to create a combined wave.
Note: This figure is provided purely to show the shape adjustment due to constructive and destructive
interference; the reader will observe that the summed wave has been translated downwards in order
to make the point clearer.

A short pulse is created by taking a broad range of frequencies and manipulating them in
such a way. With these basics explained, the focus moves onto the central theme of this thesis
– High-order Harmonic Generation (HHG).

1.1 High-order Harmonic Generation
HHG is the generation of harmonics (multiples of driving laser frequency), with an emphasis
on the higher harmonics, whose upper energetic limit is called the ’cut-off ’. HHG is only pos-
sible because of a particular setup, wherein infrared (IR) light (supplying the electric field) is

1

focused to reach a high intensity, such that it rivals the atomic potential.

A standard setup when performing an experiment using HHG would include the apparatus
shown in figure 2.

Figure 2: The standard components required to create HHG. (A) is a laser source, with produced light
shown as a green line for visual clarity (B) represents the focusing into the target medium and (C)
represents the ’control and filter’ stages.

Stage (A) is usually an IR laser within the range of 800 nm - 1100 nm, emitting an ultra
short pulse of between 20 - 200 fs duration. The laser in the above image for example could
be a Ti:sapphire laser, which supports a large bandwidth, however other optical components
in the laser path can further limit this bandwidth.

Stage (B) is an initial control of the IR light, such that it is focused into what is traditionally a
container of gas (the pink box in the figure), a gas jet, or can even be done with a solid target
[1]. The IR light needs to be focused like this in order to obtain the intensities required to
match that of the atomic potential. Outside of the medium container will be vacuum, which
ensures that the high frequency Extreme Ultra Violet (XUV) photons are not absorbed on
their way to the destination.

Stage (C) is used for filtering out the IR pulse, so that the useful XUV light remains. This
XUV light can then be manipulated and controlled by further mirrors and gratings. It is not
trivial to control the light with mirrors – one can only expect to do ’simple’ manipulations.

The standard setup will not be in a straight line as shown above, and the figure does not re-
semble the real life scale – there are also usually several reflections and refractions between
these stages in any real life setup to manipulate the beam required for the experiment.

Stage (B) in figure 2 houses the atomic medium, which is where the HHG process takes place.
The IR light will interact with the atoms in the medium, and the model used in this thesis
takes the semi-classical approach to explain it.

1.1.1 Semi-Classical Model

HHG can be explained semi-classically using the Three Step Model, which breaks down the
process into three steps:

1. Ionisation, through tunnelling of the electron

2. Propagation, where the electron propagates freely in the electric field

3. Recombination, resulting in the transmission of a photon (with energy dependent upon
the kinetic energy of the returning electron)

2

The process can be explained simply by figure 3.

Figure 3: The three step model explained. (Step 0) shows an atom with no bias applied. The other
steps line up with the three step model. Note that the ionisation potential, Ip is a value unique to the
atom from which the electron will be liberated.

This process has been portrayed in many different ways, throughout many different theses
and papers and has reached the point where it is considered "textbook" for the average at-
tosecond physicist [2].

Using figure 3 to explain the three different stages in more depth:

The setup will consist of a laser, usually IR, which will be focused into a medium containing
an element – typically a noble gas, although solid targets are also used. Step 0 gives an over-
simplified view of how the average atom looks at ground state energy (without an external
field). In Step 1, the IR laser is focused on the sample, which provides an intensity that must
be in the same ballpark as the atomic potential to be effective – this is why it is so important
that the pulses are ultra short, as intensity is inversely proportional to time. The ionisation
potential (Ip) that can be seen in small font in Step 0, is an energy that is unique to each atom
– it is the energy required to extract the least stable electron from the atom. The electric field
lowers this ionisation energy sufficiently that the electrons have a significant probability to
tunnel.

Once an electron tunnels, the process can be treated classically (although in reality it is more
accurate to describe it as an electron wave packet (EWP)). The electron will now follow a
specific trajectory while outside of the atom, which is dictated by the external laser field. The
trajectory of the electron can be calculated by taking equation (1) and substituting this into
Newton’s second law, F = ma.

Noting that F = −eV , where −e is the charge of the electron and V is potential energy, a
substitution is made, providing equation (2), which relates the acceleration of the newly
freed electron to the laser field.

a = ẍ = − eE0

me
sin(ωt) (2)

With the acceleration defined, we can then take a step further and integrate, which provides
equation 3, the velocity of the electron at a time t after ionisation at ti. An assumption is
made that the electron has no velocity upon initially tunnelling.

3

v = ẋ = eE0

meω

(
cos(ωt) − cos(ωti)

)
(3)

Taking the final logical step, another integration is done (noting that ti is a constant, mean-
ing that the second term in equation (3) is a constant in the process of integration). This
leads to equation (4) and the ability to tell exactly where the electron is at all times. This
is based upon the assumption that the tunnelling is sufficiently close to the atom that the
initial displacement is set to 0, and the initial velocity will be 0.

x = eE0

meω2

(
sin(ωt) − sin(ωti) − ω(t− ti)cos(ωti)

)
(4)

This equation is arguably the most important one for the investigations done in this thesis,
and is the basis for all of the results in section 3.

The reason that this equation in-particular is so important is that it, along with its deriva-
tives, allow for a complete knowledge regarding the electron and all its attributes. At any
single time, t, the electron’s current position, velocity, and acceleration can all be calculated
– and by extension, the calculation of the velocity of the electron (equation (3)) allows us to
easily find the kinetic energy of the electron by a substitution, as performed in equation (5).

With this in mind, from a simulation point of view, the trajectories can be coloured based
upon the "recombination energy" that they encompass.

Ekin = 1
2

mv2 = 1
2

e2E2
0

meω2

(
cos2(ωt) − cos2(ωti)

)
(5)

The cycle-average of the electron’s kinetic energy is taken, which is given its own name: pon-
deromotive energy, symbol Up. In the literature, this is often expanded upon by noting that
ω= 2πc/λ [3, 4].

The figure following will be shown in terms of the electric field strength, and the ponderomo-
tive energy will then be defined as equation (6). As mentioned, ponderomotive energy is the
cycle-averaged energy of an oscillating electric field, which means taking the expected value
of the squared cosine. This results in an extra factor of 2 in the denominator, leading to

Up = 〈Ekin〉 = 1
2

1
2

e2E2
0

meω2 = e2E2
0

4meω2 (6)

When considering the energy gained along the different trajectories by the electron, the clas-
sical approach results in a maximal potential gain of 3.17Up – which can be verified by
plotting all of the different trajectories and their respective energies, and then finding the
peak amplitude of the electron kinetic energy. This is shown in figure 4 on the y-axis.

The energy calculations done for this figure have been based only on classical trajectories,
however quantum effects can be included by making adjustments to the equation – which
have been performed by Lewenstein et al. [5].

One can predict the highest harmonic order that the HHG process can produce semi-classically,
with the cut-off law, given by equation (7). When performing calculations of this nature, it is
important to consider that the electron is not going to be in-vacuum once released – therefore
this is a theoretical cut-off not usually reached in experiment.

4

Ephoton = qhf = 3.17Up + Ip (7)

where q is the harmonic order (integer), h is the Planck Constant, f is the driving frequency
of the laser, Up is the ponderomotive energy and Ip is the ionisation potential of the gaseous/-
solid target.

The left hand side represents the energy of the produced XUV photon, and of the two terms
on the right hand side, 3.17Up is the maximum attainable kinetic energy of the electron while
outside of its parent atom, and Ip is the ionisation energy that will be gained due to the atom
re-accepting the electron. This a bit less simple when tunnelling is involved, but if thought of
classically, it costs energy to remove an electron from an atom and provides energy to return
it, provided that the atom is made more stable by accepting it.

Considering an arbitrary atom with one electron, and allowing the trajectory to be purely
classical, we arrive at figure 4. A one electron system is a good model for a many-electron
system, as the ionisation potentials of different electrons in a many-electron system will all
have varying potentials. As an extension of this, noble gases (such as Neon or Argon) are
among the most frequently used target mediums and have a full outer shell.

There are two factors involved in withdrawing only one electron – the first is that the in-
tensity of the ionising light is on the same magnitude as the atomic potential of the atom,
so tunnelling becomes likely. The second is when the IR laser interacts with the atom, one
electron will get slightly perturbed before the others, which increases its likelihood of being
the one that will be ejected. The other electrons that haven’t been perturbed (as much) will
be bound more tightly than the perturbed one.

5

0 1 2

Time (seconds) 10-15

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
le

c
tr

o
n

 D
is

p
la

c
e

m
e

n
t

F
ro

m
 A

to
m

 (
m

)

10-9

-6

-4

-2

0

2

4

6

E
le

c
tr

ic
 F

ie
ld

 S
tr

e
n

g
th

,
E

0
 (

V
/m

)

1010

0 0.5 1 1.5 2 2.5

Excursion Time (s) 10-15

0

0.5

1

1.5

2

2.5

3

3.5

E
n

e
rg

y
 (

U
p
)

Figure 4: Left: A number of possible trajectories for an electron ejected within the first half-cycle.
Right: The energies of returning electrons, as a function of their time outside of the atom. Grey
trajectories indicate electrons that do not return to the parent atom. The dark green line shows the
strength of the IR electric field as time progresses (with units along the right hand y-axis of the graph).
In terms of trajectory line colour, yellow represents the most energetic trajectories, while as red rep-
resents the lower-energy trajectories. The grey trajectories in the positive-y axis are trajectories of
electrons that never return from the initial ionisation, while as the negative-y axis grey trajectories
are electrons that complete at least one cycle before being expelled by the electric field.

In figure 4, the right image represents a continuum of possible kinetic energies that the elec-
trons can have upon returning to the parent atom – the image represents one cycle of the
IR laser. As was mentioned in the preceding introduction of ponderomotive energy, it can be
seen that the maximum electron kinetic energy is 3.17 Up. The quadratic shape of the graph
indicates that there is more than one path sharing the same kinetic energy. These different
paths are the different possible trajectories that can be taken.

The dotted line shows the "first" time that each energy is reached, and has been designated
the logical name – the "short" trajectory (as the electrons have a lower excursion time than
any other trajectory). Further to this, the solid line following it is known as the "long" trajec-
tory. Multiple passes of the electron (should it not recombine upon returning) are examined
further in the thesis, however the above image only shows the short and long trajectories.
After the short and long, trajectories are labelled by number (ie: third, fourth, fifth, etc).

1.1.2 SFA/Lewenstein Model

Although the approach of this thesis is based upon the three step model, there are more an-
gles from which the phenomenon of HHG is approached. Modern approaches tend to view
HHG through the lens of the SFA (Strong Field Approximation, used in Lewenstein’s model
[6]), and through the TDSE (Time-Dependent Schrödinger Equation). It is noted by Lewen-
stein that use of the TDSE tends to be computationally expensive [5].

In their paper, Lewenstein and colleagues note that a particular problem with the three step
model arises from the cut-off energy (equation (7)), which although a good approximation,

6

appears to not be completely accurate experimentally (the difference is explained in Lewen-
stein’s paper as being due to "propogation effects" [5]).

The paper improves upon the three step model by introducing quantum mechanics, which
allow for the discrepancies between theory and experiment to be smaller. The theory is some-
times referred to as the ’SFA Model’ because of the assumptions made in the development of
the theory. These assumptions [5, 6, 7] are

1. The electron, once outside of the atom, has a trajectory that is not influenced at all by
the atomic potential.

2. The atom can only be described by one bound state. This means in essence that all/any
contribution from the excited bound states can be ignored. In other words, the atoms
that make up the medium are assumed to all be in the same state, which has a set
ionisation potential much greater than that of the laser.

3. Atoms cannot be completely depleted of electrons – most electrons typically remain, as
electrons are only stripped typically at the peak of the electric field strength.

Lewenstein et al. in his paper goes on to break down these restrictions and explain where
they can be relaxed, why they are needed, among other notes [5].

The central differences between the more advanced theory and the one used in this thesis, is
that the semi-classical approach appears to be called ’semi-classical’ for the fact that it qual-
itatively requires quantum mechanics in order to explain the ionisation and recombination,
however does not have within its repertoire the ability to explain interference, or how a wave
packet propagates due to quantum effects.

An example of why it is important to take into account these effects, is because several dif-
ferent quantum paths can produce the same EWP energy, and these different paths can
interfere with each other [8].

In contrast with the semi-classical model, the SFA model treats the electron as an EWP,
which at the time of recombination produces not one single energy, but the whole harmonic
spectrum of solutions at once. The SFA is good at finding trajectories, however requires the
assumptions previously mentioned. The SFA ignores the atom (and by extension: atomic po-
tential) completely and treats the electron as if it is travelling freely within the electric field.

It can be summarised by saying that the classical model allows for greater intuition, but
misses some of the subtleties [3].

1.2 Phase
1.2.1 Introduction To Phase

When working with more than one wave, it is important to be aware of how different fre-
quency waves behave in combination with each other. The HHG process takes place in many
atoms at the same time and thus the emitted XUV photons are numerous in quantity. Each
of these photons have their own phase value, which is an important quantity to be able to
calculate. The following section will delve into the phase of these photons and how to calcu-
late it.

7

There is an SFA approach to phase, which extends beyond the simple semi-classical picture
through use of Feynman path integrals and quantum orbital numbers. It leads to equation
(8). This equation, although not used in this thesis, calculates phase through the integration
of EWP momentum.

Φ
q
j ([r j(ti, tr,b)]) = qωtr −

∫ tr

ti

((p+A(t))2

2
+ Ip

)
dt (8)

The breakdown and use of this equation can be observed in the paper by K. Varjú et al. [9],
however this thesis will use an approximation of the integral, suggested by Chen Guo [10].
This approximation is based upon dipole-phase and obtains a good match with the integral
above.

In order to introduce and justify the approach suggested by Chen, it is important that the
distinction between phase delay and group delay be made first.

1.2.2 Choosing The Type of Delay

A delay is simply the amount of time between two points, however one of the important dis-
tinctions that needs to be made when talking about delay in optics, is how this delay is to be
quantified.

In a world where all frequencies travel at the same speed through all mediums, this wouldn’t
need to be discussed, however the two types of delay to choose from are ’phase’ delay, and
’group’ delay. In order to facilitate an explanation of the difference, equation (9) is provided.

Φ = ξ(ω) ω (9)

Here, ξ(ω) is a function relating phase to angular frequency. What this means is that the
value of ξ(ω) decides whether different frequencies are treated differently in terms of their
phase.

Before continuing this explanation, it is important to also know the mathematical definitions
of phase delay and group delay, given by equation (10) and (11) respectively.

Phase delay is simply the number of cycles, for a given frequency, between two different
points in time. Group delay has its focus on the envelope as a whole rather than individual
points, while as phase delay would indicate that all frequencies are delayed equally.

Phase Delay (P.D) = Φ

ω
(10)

Group Delay (G.D) = dΦ
dω

(11)

A few different scenarios can take place here, depending on the form that ξ(ω) takes.

Scenario 1 - ξ(ω) is a constant. This means that the relationship between phase and fre-
quency is linear. As equation (12) demonstrates (by setting ξ(ω) = 2 as an example), the
differentiation would result in only a constant remaining, meaning that all points on the
envelope would be adjusted equally. As can be observed by using equation (10), this means
that the group delay is the same as the phase delay, meaning that the resultant shift is a
translation of the wave, with the sum wave retaining its shape.

8

G.D = d
dω

(
2ω

) = 2 (12)

Scenario 2 - ξ(ω) is not a constant, but rather a variable defined by a function. This scenario
is more accurate within the field of HHG. The experimentally observed relationship between
phase and frequency in HHG is non-linear [9] and hence it is important to take this into
account. To demonstrate this in the same manner as before, an arbitrary non-linear ξ(ω)
is chosen to make this demonstration (exp(2(2ω+ 3))), as demonstrated in equation (13).
Calculating the phase delay will provide a result that is not equal to the group delay.

G.D = d
dω

(
ωexp(2(2ω+3))

) = (4ω+1)exp(2(2ω+3)) (13)

These two scenarios have been coded into MATLAB, in figure 5. Scenario 1 is the central
panel, and scenario 2 is the right panel.

0 5 10

Time (Arbitrary)

0

2

4

6

8

10

12

14

16

18

20

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

Before Adding A Delay

0 5 10

Time (Arbitrary)

() = Constant

0 5 10

Time (Arbitrary)

() = Variable

Figure 5: Left: Superposition involving 5 waves with no delay applied. Centre: Same setup, but all
frequencies delayed by an equal amount. Right: Same setup, but with all frequencies delayed by
varying amounts. The MATLAB code to reproduce this is provided in the appendices.

It can be seen in the figure that, depending on the form of ξ(ω), the envelope either retains its
shape or it deforms. This is the reason that it is important to know the relationship between
phase and frequency. In other words – it is important to have some sense of what ξ(ω) is.

In thinking about how phase might be adjusted with time, there is an intuitive sense that the
recombination time, tr relates to the group delay through the trajectories, as the frequencies
can be seen changing continuously over small regions of time - as demonstrated in figure 6.

9

Figure 6: It can be seen in only half of one IR cycle (dark green), that the XUV photon frequency
experiences the full range of lowest frequency (red) to highest frequency (yellow).

Although presented purely based upon intuition, this does allow for a good approximation of
the SFA approach, as presented in the next section.

1.2.3 Semi-Classical Approximation of Equation (8)

Chen provides a way to get the approximate results, which can be done as follows:

1. Ascertain a relationship between tr (where tr is used to approximate group delay) and
frequency (made by approximating the energies with a linear fit)

2. Integrate the area under the each trajectory

3. ’Stitch’ them together in such a way that the phases at the intermediary points between
trajectories is continuous.

4. Multiply the result by 2π, noting that group delay is defined based upon angular fre-
quency.

The result of using this approximation is figure 7, which has a good tie with figure 2a of
’Frequency chirp of harmonic and attosecond pulses’, a paper by K. Varjú et al. [9]. The
constants/settings were made to match the reference study, with the following setup:

Laser Wavelength: 800 nm
Laser Intensity: 1.2e18 W/m^2
Atom: Argon

10

10 15 20 25

Harmonic Order

-40

-20

0

20

40

60

80

P
h

a
s
e

Figure 7: The result of following the procedure shown at the beginning of this section. The solid line
is the short trajectory, and the dashed line is the long trajectory.

As was mentioned briefly in section 1.1.2, there is a difference between the maximum cut-off
energies, wherein the semi-classical version displays circa 25 as the cut-off, while as the ref-
erence displays 30.

One can also relate laser intensity and phase, as seen in figure 8. This matches up reasonably
well with figure 1a of the reference study.

0 0.5 1 1.5 2 2.5 3

Intensity (W/m
2
) 1018

-30

-20

-10

0

10

20

30

40

P
h
a
s
e

Figure 8: The 19th harmonic of Argon at different laser intensities. The method allows for a good
approximation to the reference study. The solid line is the short trajectory, and the dotted line is the
long trajectory.

Experimentally, one can take additional measures to reduce the discrepancy in results from

11

the theory by phase matching [3]. In essence, phase matching consists of taking into account
several additional factors such as the Gaussian profile (Gouy phase shift), shift due to mis-
match of the dipoles, mismatch due to dispersion of the gas and mismatch due to plasma
dispersion. This thesis only mentions these and does not go into depth on this topic.

1.3 Fourier Transformations
An important process that will be utilised throughout the thesis is that of the Fourier trans-
formation. Initially, the time-frequency Fourier transform will be explained, and then the
focus will move to the spatial version of the transform, which is the one that will be used.

The HHG process all happens within the focus of the IR light, however the XUV light output
will be measured up to several metres away on a detector. To retrieve how the shape will look
on the detector, the emitted photons are Fourier transformed. The thesis up to this point has
been investigating the ’immediate’ photon output (known as ’near-field’), however will now
change scenery slightly to look at how the output light will behave once it has propagated
(known as ’far-field’).

The Fourier transform does this by switching between two different domains in order to get
information about a repeating function. Imagine a situation where there is an audio clip
playing of a person talking, but there is an irritating high-pitched noise in the background.
A Fourier transform allows you to sample the clip and find out where this annoying noise is
coming from (by informing you of its frequency and amplitude). You might then reconstruct
the audio clip with this frequency filtered out.

There is a continuous version defined as an integral, and a discrete version defined as a
discrete sum. The discrete version will be explained here due to its pedagogical nature,
however the continuous version works on the same principle.

1.3.1 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is the version of the transform where points are sam-
pled at discrete points, making it simple to program (although time-consuming in terms of
processing time). As long as there is a manner in which the wave can be regularly sampled,
then a DFT can be taken.

The DFT is given by equation (14).

Xk =
N−1∑
n=0

xn ·exp
(
− i2πkn/N

)
(14)

where Xk represents the kth frequency sample, N is the number of samples taken, xn is the
value of the amplitude at the nth sample. k is a counter for the current frequency being used,
and n is a counter for the current sample being used.

Pedagogically, one can think of this formula as checking how much ’agreement’ there is be-
tween all of the different terms in each Xk sum. For example, if a frequency is found which
is absolutely required to produce the wave, then the different terms of the Xk sum will add
constructively. If the frequency is not present at all, then all of the terms in the particular
Xk sample will destructively interfere to produce a value of 0.

12

An appendix has been created, section 6.1, which goes into further detail about the process
that was used to program the DFT. In this appendix, step 4 is where the Fourier transform
takes place. To demonstrate this process, two waves have been combined in figure 9 below.
The wave in this figure is the result of expression (15).

2∑
α=1

αcos(αωt) (15)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-3

-2

-1

0

1

2

3

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

Figure 9: A visual representation of the wave in expression (15)

After samples at equidistant points have been taken, these are noted as the xn values. A
value of k is then taken, and cancellations/constructions will take place depending on the
"tuning variable", which is the exponential factor.

To give an example using figure 9, k = 0 will look as per equation (16), for N=5.

X0 = x0e
−i2π·0·0

5 + x1e
−i2π·0·1

5 + x2e
−i2π·0·2

5 + x3e
−i2π·0·3

5 + x4e
−i2π·0·4

5 (16)

Each of the n terms has an opportunity to increase or decrease the value on the right hand
side of the equation, with the xn value contributing to the sign and amplitude.

For the next k in the sequence, equation (17).

X1 = x0e
−i2π·1·0

5 + x1e
−i2π·1·1

5 + x2e
−i2π·1·2

5 + x3e
−i2π·1·3

5 + x4e
−i2π·1·4

5 (17)

A single value of Xk takes information about all of the amplitudes spread throughout the
sample, and because of the presence of the imaginary unit (i), can even "cancel out" the
negative sign of the amplitude. In the event that this happens, a frequency plot can be
created, which provides information about the wave. The Fourier transform of figure 9 is
given in figure 10.

13

0 0.5 1 1.5 2 2.5 3

Frequency (Hz)

0

0.5

1

1.5

2

2.5

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

Figure 10: The Fourier transform of figure 15, with a time span of 10 seconds, and N=500.

One can improve the fidelity of the Fourier transform by increasing the time that the sample
is taken, however the number of samples must be sufficient that the Nyquist Limit is not
crossed, or the results will be partially meaningless.

1.3.2 The Shannon-Nyquist Sampling Theorem & Aliasing

The Shannon-Nyquist Sampling Theorem was the child of two titans within the field of com-
munication and telegraphing theory (Harry Nyquist and Claude Shannon), whose papers
[11, 12] gave the subject a more rigorous mathematical basis.

The result was the expression of a limitation on the frequencies found through the Fourier
process, which is known as the Nyquist Limit.

In short, if there are frequencies of interest which are greater than half of the sampling
frequency, there will be a distortion within the signal known as aliasing and if the Nyquist
Limit is not respected, then these frequencies will not be visible at all. In the field of signal
processing, this means that the bandwidth (highest frequency) needs to be chosen specifically
to prevent distortion, by ensuring that the Nyquist Limit is greater [13].

For the sake of demonstrating this, figure 11 is the plot of expression (18).

3∑
α=1

αcos(αωt) (18)

While the expression itself is plotted in black, the sampling is shown in red, which appears
to record a completely different wave profile.

14

0 1 2 3 4

Time (s)

-4

-2

0

2

4

6

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

0 0.5 1 1.5 2 2.5 3

Frequency (Hz)

0

2

4

6

8

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

Figure 11: The Fourier transform of the wave of expression (11). 8 samples have been taken, while
as 24 samples are the indicated minimum required to pass the Nyquist Limit. The red indicates the
sampling.

An extreme-case example of this can be seen by taking a simple wave: 2cos(2ωt). If a 4
second time-period of this wave is plotted, and one attempts to Fourier transform it with too
few samples (half the required number, for example), then figure 12 arises.

0 1 2 3 4

Time (s)

-2

-1

0

1

2

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

0 0.5 1 1.5 2 2.5 3

Frequency (Hz)

0

1

2

3

4

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

Figure 12: The Fourier transform of a 2cos(2ωt) wave. 8 samples have been taken, while as 16 sam-
ples are the indicated minimum required to pass the Nyquist Limit. The red indicates the sampling.

This is an extreme case, but it demonstrates why observing this limit is important.

Even if one adheres to the limit precisely, the resultant plot may display the correct frequen-
cies, but appear to have a symmetry. A good way to demonstrate this is by re-sampling figure
11, but with the sampling frequency at the Nyquist Limit. This is done in figure 13.

15

0 1 2 3 4

Time (s)

-4

-2

0

2

4

6

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

0 1 2 3 4 5 6

Frequency (Hz)

0

1

2

3

4

5

6

A
m

p
lit

u
d

e
 (

A
rb

it
ra

ry
 U

n
it
s
)

Figure 13: The Fourier transform of expression (18). The sampling frequency has been set to the
Nyquist Limit. Symmetry can be observed.

The amplitude for the 3 Hz peak is incorrect – It is double what it should be. This is an
artefact of Euler’s formula, as the plotted wave was the sum of cosine waves, and cos(x) =
1
2

(
eix + e−ix). The frequencies past the Nyquist Limit are "negative frequencies", and rep-

resented by the second term in Euler’s formula. These can therefore be ignored – however
if one wishes to get the correct amplitude for the frequencies present, one should proceed a
good distance beyond the sampling frequency.

1.3.3 The Fast Fourier Transform (FFT)

In reality, the DFT is costly in terms of computation for a large number of samples. For this
reason, an algorithm often used is the FFT (Fast Fourier Transform), which in several pro-
gramming languages already has a defined module for the user (fft in MATLAB, scipy.fft in
Python, etc).

The previous subsections have gone into reasonable depth describing both the process and
limitations of the Fourier process, so the specifics of the FFT are not covered here.

What the FFT does is take advantage of the fact that points over the Nyquist Frequency can
be disregarded, and performs an elegant algorithm including complex numbers. The exact
process of the algorithm is covered by numerous videos, but here it is enough to know that
the MATLAB function FFT() is used, instead of the author’s own DFT function.

1.3.4 The Spatial Fourier Transform

The spatial Fourier transform is the distance analogue of the traditional Fourier transform,
where distance is the analogue of the time domain, while as what is referred to as "spatial
frequency" is the analogue of the frequency domain. The idea behind doing a Fourier trans-
form of distance is, in effect, that one can see the underlying characteristics of the image.

These characteristics mentioned manifest when the source is sufficiently far from the canvas
that the waves can be treated as ’planar’ in nature. When the light source reaches a target
as one planar wave, it can be classed as being in the ’far-field’. A good way to demonstrate
this is to first show two samples, which have a different number of slits present. In order to
make it clear of the setup in question, figure 14 has been provided.

16

Figure 14: On the left, the near-field source is seen, with waves spreading upon reaching the aperture.
On the right, far-field waves are seen propagating in a plane.

It is worth mentioning that the experimental situation is more complicated than figure 14,
as the figure would indicate no interference. The reality is that there will be interference,
due to Huygens’ Principle.

A way to gain intuition as to why the Fourier transform relates the near-field to far-field can
be seen in figure 15. The green light approaching the aperture has a continuous wave-front,
wherein all points are a source of wavelets.

If one considers a simple scenario, the breaking down of the aperture into four sources of
wavelets, then interference results. This can be seen in the image if one looks horizontally to
the centre of the aperture, where all four semicircles can be seen to be lining up.

17

Figure 15: An expansion of figure 14, wherein four Huygens’ wavelets are considered. Path difference
is added to facilitate discussion.

As seen in the figure, there is a path difference, k, between the wavelets resulting from ’1’,
and from point ’4’. This path difference contributes to the difference in phase, based upon
how this path difference compares to the wavelength. Following through section 1.3.1, it is
this path difference that contributes to the phase in the exponent. The resulting interference
pattern forms now as a sum of all the different path contributions, over all angles of θ over
the far-field.

Experimentally, the result of using a one-slit setup is shown in figure 16.

18

Figure 16: Far-field imagery with a single slit source (the experimental version of figure 14).

In order to demonstrate the programming analogue of the left image of figure 16, a similar
setup has been programmed into MATLAB, producing figure 17. The similarities are clearly
visible and show the clear benefit of the spatial Fourier transform in replicating the far-field
output.

-0.05 0 0.05

Displacement (m)

0

0.2

0.4

0.6

0.8

1

N
e

a
rf

ie
ld

 I
n

te
n

s
it
y
 (

A
rb

it
ra

ry
 U

n
it
s
)

-5000 0 5000

Spatial Frequency/Divergence (m-1)

0

0.2

0.4

0.6

0.8

1

F
a

rf
ie

ld
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
 U

n
it
s
)

Figure 17: Demonstration of a Fourier transform of a 10cm long board, with a 2mm wide slit in the
centre. Left demonstrates the slit, and right is the Fourier transformation.

It is then clear that one can gain knowledge about the far-field characteristics of an XUV
photon by analysing its near-field characteristics.

2 Method

2.1 Simulation Code
The simulation code of this thesis is written in MATLAB. The basic code began with simu-
lating all possible trajectories of a single electron, and grew by adding layers of complexity
to the simulation. On top of the basic code, built-in commands such as "FFT" (Fast Fourier

19

Transform) were used.

Initially, the code was written with a "plot and overwrite/forget" method, however it quickly
became apparent that this was a bad decision for numerous reasons. As a consequence, the
code was re-written and a function-based code was used instead.

The raw code can be found in section 6.3, including comments to explain different sections
and what the intention was. Section 6.2 offers an explanation and breakdown of all of the
different functions used in the code.

The functions work in combination with one-another, so for example if the requirement is to
produce a table of all of the possible energies stemming from a laser of intensity I, then the
code would be written as follows;

Matrix = DisplacementMatrixMaker(Time, EjectionTimes, q, E0, m_e, w_0);
Table = BasicEnergyTableMaker(Matrix, lastEjectionTime, q, E0, m_e, w_0);
plot(Table(:, 1), Table(:, 2))
xlabel(’Excursion Time (seconds)’)
ylabel(’Energy (Joules)’)
grid on

Note that the inputs used in the functions would be defined before and can be seen in the
raw code in Appendix 2, at the top.

2.2 Theoretical Laser Profile
The code allows the user to specify a select number of equispaced atoms to place within the
laser field. The laser profile is displayed as a Gaussian, which would take place at the focus
of the IR laser. The profile is shown in figure 18.

20

-2 -1 0 1 2

Displacement From Laser Centre (m) 10-4

0

0.5

1

1.5

2

2.5

3

3.5

E
le

c
tr

ic
 F

ie
ld

 S
tr

e
n

g
th

 (
V

/m
)

1010

Figure 18: A visualisation of the laser field used for the results section. There are 200 atoms placed
within a 200 micron radius laser profile. Each circle represents an atom, and its height represents
the field that it experiences.

The default settings for the set-up are

Centre of interval = 0 m
Standard deviation = 0.2*(laser radius)

The electric field of an XUV photon signal before it is sent into the farfield is given by equation
(19).

Ep = Aeiθ (19)

where Ep is the electric field of the photon, A is the XUV intensity and θ is the phase of the
XUV photon, given by the number trajectory it belongs to.

An important relationship to be made is the relationship between the intensity of the IR laser
and the intensity of emitted XUV photons. The raw intensity of the produced XUV photons
is usually on the order of about 106 lower than that of the IR laser, however this would imply
a linear relationship between the two.

For the purpose of this thesis, the relationship is taken to be non-linear, with a relationship
given by equation (20).

Intensityxuv = (Intensitylaser)
6 (20)

This is done for shaping purposes, in order to account for the fact that a higher intensity
will lead to a greater quantity of XUV photons being liberated from the target medium in a

21

non-linear manner.

The resultant number for XUV photon intensity, although fundamentally incorrect in terms
of raw intensity value, will be normalised against the highest XUV photon intensity in the
set it belongs to, meaning that the XUV photon intensity will be labelled "arbitrary".

3 Results
Results and outcomes of the code are put into this section. Results will be placed without
explanation other than the figure description here – further discussion of them is reserved
for section 4. If not otherwise specified, the settings used to produce results are, as default
values:

Laser Wavelength: 800 nm
Laser Intensity: 1.2e18 W/m^2
Atom: Argon

3.1 The Third Trajectory
3.1.1 Single Atom - Phase Location

Expanding upon figure 7, figure 19 is presented, which demonstrates the position of the third
trajectory according to this approximation of the HHG process.

10 15 20 25

Harmonic Order

-40

-20

0

20

40

60

80

P
h

a
s
e

Short Trajectory

Long Trajectory

Third Trajectory

Figure 19: According to the approximation discussed in section 1.2.3, the phase of the third trajectory
is given.

3.1.2 Unlikelihood of Observation/Electron ’Survival’

This simulation begins with 4097 electrons, all released at different points within a half-cycle
period. This is based upon an 800 nm laser, operating at an intensity of 1.2e18 W/m2. There
are 4097 unique trajectories displayed and the graph shows how many are in effect "stable"
enough to produce further trajectories.

22

0 5 10 15

Recombination Attempt

0

1000

2000

3000

4000

5000

E
le

c
tr

o
n

s
 R

e
m

a
in

in
g

0 2 4 6 8

Recombination Attempt

10
2

10
3

10
4

E
le

c
tr

o
n

s
 R

e
m

a
in

in
g

Figure 20: Both graphs correspond to the "survival rate" of an electron after a number of cycles. Left:
linear y axis, right: log y axis.

3.1.3 Many Atoms, Far-field Projection

Figure 21 shows an example of the third trajectory in the far-field.

0 0.2 0.4 0.6 0.8 1

Excursion Time (s) 10-14

0

0.5

1

1.5

2

2.5

3

3.5

4

E
n
e
rg

y
 (

J
o
u
le

s
)

10-18

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
h
o
to

n
 I
n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

Figure 21: Left: The fifteenth harmonic (red dotted line) on the laser’s respective energy/time graph.
Right: The fifteenth harmonic projected in the far-field, with first, second and third trajectories visible.

3.2 Further Trajectories
3.2.1 Single Atom - Phase Locations

If the code is used to find phases up to the tenth trajectory, figure 22 results.

23

10 15 20 25

Harmonic Order

-80

-60

-40

-20

0

20

40

60

80

100

120
P

h
a

s
e

 Short

Long

Third

Fourth

Fifth

Sixth

Seventh

Eighth

Ninth

Tenth

Figure 22: According to the approximation discussed in section 1.2.3, the phase of the further trajec-
tories is given.

3.2.2 Far-field Projection

The harmonic cut-offs can be seen in figure 22, resulting in a far-field diagram of 23.

0 0.2 0.4 0.6 0.8 1

Excursion Time (s) 10-14

0

0.5

1

1.5

2

2.5

3

3.5

4

E
n

e
rg

y
 (

J
o

u
le

s
)

10-18

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Spatial Freq/Divergence (m-1) 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

Fourth

Fifth

Sixth

Seventh

Eighth

Ninth

Tenth

Figure 23: The fifteenth harmonic projected in the far-field, with trajectories up to the tenth trajectory
visible.

24

3.3 Far-field Projections of Different Harmonics, Third Trajectory
The following settings are still in use through these results;

Wavelength: 800nm
Atom: Argon

The laser intensity will be given in the subsection header, and the harmonics will be given in
the figure description. In order to demonstrate where the harmonics lie, an energy spectrum
is provided prior to each figure.

3.3.1 1.0 ·1018 W/m2 Intensity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Excursion Time (s) 10-14

0

0.5

1

1.5

2

2.5

3

3.5

E
le

c
tr

o
n

 K
E

 (
J
o

u
le

s
)

10-18

Possible Kinetic Energies

11th Harmonic

13th Harmonic

15th Harmonic

Figure 24: Odd harmonics capable of displaying a third trajectory for a laser source with intensity
1.0e18 W/m2.

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

Figure 25: 1.0e18 W/m2 laser source intensity, far-field image. Left: 11th harmonic, centre: 13th
harmonic, right: 15th harmonic.

25

3.3.2 1.2 ·1018 W/m2 Intensity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Excursion Time (s) 10-14

0

0.5

1

1.5

2

2.5

3

3.5

4

E
le

c
tr

o
n

 K
E

 (
J
o

u
le

s
)

10-18

Possible Kinetic Energies

11th Harmonic

13th Harmonic

15th Harmonic

17th Harmonic

Figure 26: Odd harmonics capable of displaying a third trajectory for a laser source with intensity
1.2e18 W/m2.

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.5

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.5

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.5

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.5

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

Figure 27: 1.2e18 W/m2 laser source intensity, far-field image. Top left: 11th harmonic, top right: 13th
harmonic, bottom left: 15th harmonic, bottom right: 17th harmonic.

26

3.3.3 2.0 ·1018 W/m2 Intensity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Excursion Time (s) 10-14

0

1

2

3

4

5

6

7

E
le

c
tr

o
n

 K
E

 (
J
o

u
le

s
)

10-18

Possible Kinetic Energies

11th Harmonic

13th Harmonic

15th Harmonic

17th Harmonic

19th Harmonic

21st Harmonic

Figure 28: Odd harmonics capable of displaying a third trajectory for a laser source with intensity
2.0e18 W/m2.

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.5

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.5

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.5

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

-2 -1 0 1 2

Spatial Freq/Divergence (m-1) 10
5

0

0.5

1

P
h

o
to

n
 I

n
te

n
s
it
y
 (

A
rb

it
ra

ry
)

Short

Long

Third

Figure 29: 2.0e18 W/m2 laser source intensity, far-field image. Top left: 15th harmonic, top right: 17th
harmonic, bottom left: 19th harmonic, bottom right: 21st harmonic.

27

4 Discussion
As far as the author is aware at this present moment from reading the literature, the third
trajectory has only been theoretically predicted, but not yet experimentally observed [5, 3, 9].
There are a great number of difficulties in performing this task, but in an attempt to display
one or two of them, figure 20 has been plotted.

The "survival rate" of different trajectories has been measured, by noting the number of elec-
trons that still have the possibility to recombine after each pass of the atom. This figure
in-effect measures the number of paths remaining which do not diverge due to the electric
field.

Figure 20 was plotted based upon 4097 trajectories, which had ejection times 0 ≤ t ≤ 0.5 IR
cycles (as seen in figure 4).

• Half of the electrons do not get a chance to recombine, due to being ejected by the
unfavourable phase of the electric field.

• By the second opportunity to recombine (one pass of the atom, trajectories 3-4), less
than ∼7% of the initial electron population remains.

• By the 8th pass of the atom, less than 1% of the initially ejected electrons can still
recombine.

The third point in this list is not useful in any manner besides to demonstrate that the chance
of an electron ejecting at such a favourable time is unlikely.

A second reason why the third trajectory might be difficult to locate experimentally is that
in terms of phase (if based upon the SFA), it appears to fall between the first and second
trajectories. It becomes apparent that a good place to search for the third trajectory might be
where its separation is maximised from the short and long trajectories simultaneously. Look-
ing at figure 19, which is for an 800 nm laser at a 1.2e18 W/m2 laser intensity, this would
in theory be around harmonic 17 for Argon. This is interestingly not supported by figure 27,
which appears to suggest that in this set-up, the third trajectory seems to be ’obscured’ by
the other two trajectories. A possible reason for this though is perhaps that the further tra-
jectories require more sampling than the shorter ones in order to get them to a high degree
of fidelity – which might mean that the third trajectory is under-sampled here.

Although not taken into account in this semi-classical-based thesis, a third reason for the
difficulty in finding the third harmonic is that the more accurate models regard the electron
as a wave packet which spreads over time, which has a dependence upon the wavelength of
the driving laser [14].

Based upon figures 26 and 27, a method of seeing if this is possible is perhaps by process of
elimination, using cut-off energies. In figure 26, the 17th harmonic sits nearly at the peak of
the third trajectory – therefore observing the energies of the 15th and 19th harmonic would
give a ’control’ on either side. Ideally, the 19th harmonic would be a signal which has less
’noise’ (due to the fact that the fact that this energy is beyond energies that the third trajec-
tory is capable of producing).

28

It is possible to upon looking at figure 22 to consider that viewing the 17th harmonic might
present its own problems, namely that there appear to be a large cluster of trajectories in
this region and hence there might be a reasonably large amount of ’noise’, although the
’noise’ appears to peak around harmonic 15. This worry can however be remedied based
upon the qualitative discussion of statistics previously had on "surviving electrons" earlier.
In other words, with every trajectory, the chance of observing it becomes notably less as the
trajectory number increases, purely by dint of the few electrons that are not expelled by an
unfavourable oscillation in the laser field.

There is an aspect of the code that has been artificially chosen in this thesis instead of being
programmed, which is the interplay between the harmonics. In a real experiment, one would
witness a dampening of the even harmonics, which can be seen in figure 2.5c of Neven’s the-
sis [3]. The reason for this dampening of the even harmonics is due to the half-cycle rate, as
oppose to a single-cycle rate. In the code, this is neglected, as only electrons born from one
half-cycle of the IR are simulated – however it is accounted for by only selecting odd harmon-
ics.

The top-right image in figure 27 shows the second and third trajectories behaving differently
(one peaks when the other troughs) for the 13th harmonic, which is surprising as the second
and third trajectories only have a very slight difference in phase at this value.

One potential explanation for this might be an unintentional "single slit" effect exhibited by
the third trajectory. Figure 18 shows that the beam is narrow, meaning that the intensity
fades very quickly as one moves away from the centre. The reality of this is that the third tra-
jectory will stop being produced at a much lower cutoff than the first and second trajectories.
Although this is a concern – it should reflect an experimental situation. The third trajectory
cannot be produced under its respective cutoff energy. This allows for another interesting
reason as to why detection of the third trajectory is difficult – namely because the pattern for
a single-slit is very dense spots of light, while as many-slit tend to exhibit greater distances
between the nodes. It’s possible that the central node from the first and second trajectories
are masking the third. As far as can be seen, the only way around this would be to control
a laser pulse in such a way where the beam is "square" in nature – ie. all points of equal
intensity on the wave front.

The intensities used in the results section were chosen to give a range to choose from when
looking at results. It is clear from figure 24 that a lower intensity laser produces a lower
number of harmonics, which is to be expected. This can be replicated similarly by using a
lower frequency laser. For example, if one were to use a 1000 nm laser instead of an 800 nm
one, more harmonics could be observed.

As well as there being a cut-off for the highest harmonic that a particular set-up (laser wave-
length, laser intensity and medium composition) can achieve, there is also a cut-off of mini-
mal energy as well, due to the energy gained by the photon upon the electron re-combining
with the atom.

This thesis has operated on a semi-classical framework and does not take into account the
more recent developments and theories of HHG. While limited to this semi-classical frame-
work, the best that one can do is show how one might go about predicting where one might
find the third trajectory through use of the model.

29

As expressed in the paragraphs above, the search for the third trajectory (if the goal of an
experiment) might be best suited in simply probing around the cut-off value of the third tra-
jectory for that particular laser.

30

5 Acknowledgements
As a result of the COVID-19 pandemic - I have been deprived the pleasure of getting to know
many people that I would have otherwise known if this were a "normal" bachelor process.
Even though the process has been all online, I still owe a debt of gratitude to many.

Firstly, I would like to thank Isa Hendriks. If we had not had that small discussion in the
hallway about your bachelor degree, I would never have discovered this interesting topic and
the possibility of working under Johan.

I would like to thank my two supervisors Johan Mauritsson and Samuel Bengtsson. Johan,
for taking me on in the first place, your tutorial on the Fourier transform in Swedish, and
guidance when requested. I am also very grateful that you listened to what I wanted to learn
during my bachelor, and picked the perfect topic – I have learned a lot from this. Samuel,
for answering my constant stream of questions with not only patience, but taking the time to
contact other people and get their inputs as well. Your several readings and suggestions for
additions/changes to my thesis have been greatly valuable as well.

My sambo Emma, who is the light of my life and has been for the last 10 years. You inspire
me with your compassion and hard work with your nursing degree and I believe you will be
a fantastic nurse.

I would also like to thank Ivan Ahmed – who I have almost had a symbiosis with, in the
sense that I’ve complained about my bugs in my code and numerous other small things that
I’ve been stuck on, and you’ve likewise ranted about particular difficulties in your medical
science course. You have certainly been an agent of sanity for me – thank you.

31

6 Appendices

6.1 Appendix 1 - Fourier Transform Steps
In order to perform a Discrete Fourier transform, the following steps are taken:

1. A number of samples is chosen, N.

2. Two times are chosen as the initial and final sampling times, between which the N
samples are evenly distributed. The sampling rate is calculated as being the equal to
the difference between the initial and final time, divided by the number of samples.
The sampling frequency is then the reciprocal of the sampling rate.

3. The amplitude of the wave at each of these sampling times is noted, wherein x0 will
correspond to the amplitude at the ’zeroth’ sampling time, and so on.

4. Once a vector is obtained of amplitudes at all sampling times, one can begin to calcu-
late the frequency samples using equation (14). (For example: For X0, set k = 0 as a
constant, and then use all of the amplitude samples to complete.)

5. The magnitudes of the Xk values are taken, and the x axis is then scaled to correspond
to frequency, rather than arbitrary bins. This is done as follows:

(a) A number line is set up, which extends from 0 to N −1, in steps of 1.

(b) This line is then multiplied by the sampling resolution, which the inverse of the
total sampling time.

6. The resultant plot can be symmetrical, which is an artefact of the trigonometry and
how it is represented in terms of Euler’s formula and mentioned at the end of section
1.3.1. Provided that the sampling frequency is high enough, the amplitudes to the left
of the Nyquist Limit are doubled and then divided by N.

6.2 Appendix 2 - Code Functions
This section offers an explanation of all of the functions, and their purpose. For the purpose
of not being repetitive, if an input has been explained in another function, it will not be ex-
plained again.

Variable names will be put in bold, with their explanation following them. In all of the
functions where a table is produced, there is a comment provided just below the function
definition which explains what the different columns are.

VelocityCalculator/DisplacementCalculator

Inputs:

t_i/initialTime, the ionisation time of the electron. Time, a list containing all moments
of time between two set boundaries. q, the electron charge constant. E0, the electric field
strength. m_e, the mass of an electron. w_0, the angular frequency of the driving laser.
returnTime, the recombination time of the electron with the atom.

32

Description:

These functions use equations (3) and (4) to find the velocity and displacement values at a
particular instant of time. Velocity is never used for presentation, but it is used in the calcu-
lation of energy.

DisplacementMatrixMaker

Inputs:

EjectionTimes, a list of ionisation times between two periods, equidistant.

Description:

This function creates a matrix containing where the electron is at all times, for the different
ionisation times presented to it. The first column represents all of the times within the simu-
lation, and all columns after it represent different ionisation times. One can find out what the
ionisation times are by finding the first instant where the displacement has a non-zero value.

BasicEnergyTableMaker

Inputs:

DisplacementMatrix, which is the output of DisplacementMatrixMaker. lastEjection-
Time, which is the last possible time that an atom can be ionised, chosen by the user.

Description:

This function creates a table which houses a lot of information about the different trajec-
tories that are possible with the starting conditions provided. The initial purpose of this
function was to produce an energy/time plot to show the ponderomotive energy, and hence
"PonderoTable" is another name given.

EnergyTableExtended

Inputs:

PonderoTable, which is the output of BasicEnergyTableMaker.

Description:

This function’s purpose is to add another two columns, one where the recombination time
is fit with linear functions in an attempt to simplify the shape, and another which uses a
definition proposed by Chen Guo in their thesis to define phase. This is discussed further in
section 1.2.

ColourTableCreator & ColourMapUser

Inputs:

33

IncrementCount is how many different shades the user would prefer. RGBLow & RGB-
High are the RGB value of the lowest and highest value colours respectively. ColourMap is
the output of ColourTableCreator. Value is the numerical value which needs to be assigned
a colour. MinValue & MaxValue are values designated with RGBLow and RGBHigh to cre-
ate boundaries.

Description:

With how DisplacementMatrixMaker was programmed, it houses within it all of the infor-
mation about the different trajectories. Due to the fact that an electron can fail to recombine
with the atom on a pass, there is a need to re-calculate the energy of the trajectory based
upon the next recombination time. This means that the already-defined functions in MAT-
LAB became inconvenient to use. These functions effectively allow the user to choose what
the colours are when viewing a trajectory plot.

RecombinationFinder

Inputs:

matrixTimeFirstCol is the output of DisplacementMatrixMaker, where there was an em-
phasis on the fact that the first column must be ’Time’.

Description:

This function takes the DisplacementMatrix output and finds all of the recombinations and
"passes" of the electron. There are many different ways to program this, but the method that
was used in the end is to check for a change in sign. This function would be redundant if the
trajectories were all continuous, or if the displacement equation had an analytical solution.
Unfortunately the points are discrete, meaning that the solutions are not exact in this pro-
gram – they are approximations.

IntensityToElectricFieldCalculator

Inputs:

I_in_WattsperSquaredMetre, vacuumPermitivity_inFaradsperMetre and speedOfLight_inMetresPerSecond,
which are self-explanatory. The reason for the long variable names is that it is important to
ensure that units are clear.

Description:

The purpose of this function is to allow an easy conversion between a laser intensity, and the
maximum electric field strength. Useful because electric field strength is usually the variable
used in equations, but intensity is often the supplied quantity.

TrajectoryPlotter

Inputs:

34

CMap is the output of ColourTableCreator.

Description:

The purpose of this function is to take in the variables provided and produce a graph show-
ing all of the trajectories, which are all coloured with their respective energies. Light grey
indicates a trajectory that diverged without a single chance to recombine, while as darker
grey indicates a trajectory that has passed the atom at least once.

EnergyExaminer

Inputs:

energyOfInterest is the electron kinetic energy, in Joules, that the user wants to test,
E0_1_by_n_List is for the case that the user wants to provide a list of electric field values to
run through the examiner (in other words, if the laser’s electric field changes), IncludeFur-
therTrajectoriesYN is answered with "Y" or "N", which will include/exclude trajectories
after the long trajectory.

Description:

The purpose of this function is to allow the user to get a lot of information about one particu-
lar electron kinetic energy. One can check a photon energy as well by removing the ionisation
potential from it.

LaserSimulator

Inputs:

maxDisplacement is the radius of the laser which is shone on a sample size. For example,
200e-6 will simulate a laser shining on a circle of 200 micron radius. numberOfAtoms is
self-explanitory. maxE0 is the maximum electric field of which the laser is capable. By de-
fault, the laser simulator assumes a 1D Gaussian shape, with a pre-set standard deviation.
The user can adjust this for their own purposes.

Description:

In one dimension, this function allows the user to simulate what happens to different atoms
at different positions within the laser field. All of the energetically possible trajectories are
recorded and can be accessed.

NearfieldEnvelopeBuilder

Description:

The purpose of this function is to produce a complex amplitude corresponding to the photon
immediately after conception. This functions essentially only exists as an input to the next
function, unless one wishes to see the real part of it.

35

FarfieldEnvelopeBuilder

Description:

This function takes the output of NearfieldEnvelopeBuilder and Fourier transforms it, mov-
ing from the spatial domain to the spatial frequency domain. The principle here is that, in
the far-field, certain elements of the spatial domain will be represented differently (discussed
in section 1.3.4). This function serves as destination of this thesis, which is to attempt to get
the third trajectory to ’stand out’.

6.3 Appendix 3 - Code
6.3.1 Superposition Code

1 Time = [0 : 0 . 0 1 : 4 * pi] ;
2
3 % First , p lo t the s t a t i c waves
4
5 subplot (1 , 3 , 1)
6 BigWave1 = 0*Time −15;
7 hold on
8 for frequency = 1 :1 :5
9 plot (Time , waveMaker (Time , frequency , 0 , 2* frequency) , ’ Color ’ , ’ [0 0 0 1] ’)

10 BigWave1 = BigWave1 + waveMaker (Time , frequency , 0 , 2* frequency) ;
11 end
12 plot (Time , BigWave1 , ’ Color ’ , ’ [0 0 0 1] ’ , " LineWidth " , 1 .33)
13 hold o f f
14 t i t le (’No Delay ’)
15 xlabel (’Time (Arbitrary) ’)
16 ylabel (’ Intensity (Arbitrary Units) ’)
17 xlim ([0 4*pi])
18
19 % Now, plo t the waves with a LINEAR phase delay applied
20
21 subplot (1 , 3 , 2)
22 BigWave2 = 0*Time −15;
23 hold on
24 for frequency = 1 :1 :5
25 plot (Time , waveMaker (Time , frequency , l in_phaser (frequency) , 2* frequency) , ’ Color

’ , ’ [0 0 0 1] ’)
26 BigWave2 = BigWave2 + waveMaker (Time , frequency , l in_phaser (frequency) , 2*

frequency) ;
27 end
28 plot (Time , BigWave2 , ’ Color ’ , ’ [0 0 0 1] ’ , " LineWidth " , 1 .33)
29 hold o f f
30 t i t le (’\xi (\omega) = Constant ’)
31 set (gca , ’ YTickLabel ’ , []) ;
32 xlabel (’Time (Arbitrary) ’)
33 xlim ([0 4*pi])
34
35 % Now, plo t the waves with an EXPONENTIAL phase delay applied
36
37 subplot (1 , 3 , 3)
38 BigWave3 = 0*Time −15;
39 hold on

36

40 for frequency = 1 :1 :5
41 plot (Time , waveMaker (Time , frequency , exp_phaser (frequency) , 2* frequency) , ’ Color

’ , ’ [0 0 0 1] ’)
42 BigWave3 = BigWave3 + waveMaker (Time , frequency , exp_phaser (frequency) , 2*

frequency) ;
43 end
44 plot (Time , BigWave3 , ’ Color ’ , ’ [0 0 0 1] ’ , " LineWidth " , 1 .33)
45 hold o f f
46 t i t le (’\xi (\omega) = Variable ’)
47 set (gca , ’ YTickLabel ’ , []) ;
48 xlabel (’Time (Arbitrary) ’)
49 xlim ([0 4*pi])
50
51 % Functions must go at the end of the f i l e
52
53 function wavesum = waveMaker (Time , f , phi , adjustment)
54 wavesum = cos (Time* f + phi) + adjustment ;
55 end
56
57 function l in_phase = lin_phaser (frequency)
58 lin_phase = frequency *2;
59 end
60
61 function exp_phase = exp_phaser (frequency)
62 exp_phase = exp(2* frequency +3) .^2 ;
63 end

6.3.2 Discrete Fourier Transform Code

1 % Spatial Fourier Transform Code
2
3 subplot (1 ,2 ,1)
4
5 f i n a l = 10e−2;
6 i n i t i a l = 0 ;
7 increment = (f inal−i n i t i a l) / (1 e4) ;
8 x = i n i t i a l : increment : f i n a l ; % seconds
9

10 w = 2*pi ;
11 sum = x *0;
12
13 halfWay = length (x) / 2 ;
14 broadness = floor (0 .01* length (x)) ;
15
16 sum(halfWay−broadness : halfWay+broadness) = 1 ;
17
18 % Write Fourier code to f igure out frequenc ies
19
20 N = 1000;
21 samplingRate = (f inal−i n i t i a l) / (N) ;
22 samplingFrequency = 1/ samplingRate ;
23 fprintf (’The Nyquist l imi t i s %f .\n ’ , samplingFrequency / 2) ;
24 fprintf (’ In order to get a good resolution , N has to be at least %f . \n ’ , (f ina l−

i n i t i a l) *2*maxF) ;
25 fprintf (’ Aperture s ize i s %f . \n ’ , (length (sum(halfWay−broadness : halfWay+broadness)) *

increment)) ;
26
27 x_n = zeros ([1 , N]) ;
28 t_n = 0*x_n ;

37

29 modifier = length (x) /N;
30
31 for n = 1 : 1 :N
32 t_n (1 , n) = x (1 , floor (modifier) *n) ;
33 x_n (1 , n) = sum(1 , floor (modifier) *n) ;
34 end
35
36 hold on
37 figure (1)
38 set (gcf , ’ Posit ion ’ , [250 500 600 300])
39 plot (x , sum, " Color " , "k ")
40 %plot (t_n , x_n , " LineStyle " , "−−", "Marker " , " o " , " Color " , " r ") % This l ine shows the

sampling
41 xlabel (’ Displacement (m) ’)
42 ylabel (’ Nearfield Intensity (Arbitrary Units) ’)
43 grid on
44
45 X_k = 0*x_n ;
46
47 for k = 0 : 1 : (length (X_k) −1)
48 storageValue = 0;
49 for n = 0 : 1 : (length (x_n) −1)
50 storageValue = storageValue + x_n (n+1)*exp((−1 i *2*pi*k*n) /N) ;
51 end
52 X_k(k+1) = storageValue ;
53 end
54
55 X_k = abs (X_k) ;
56
57 samplingResolution = 1 / (f inal−i n i t i a l) ;
58
59 xAxis = 0*x_n ;
60
61 for index = 0 : 1 :N−1
62 xAxis (1 , index +1) = index*samplingResolution ;
63 end
64
65 halfWay = floor (length (xAxis) / 2) ;
66 length (xAxis) ;
67
68 subplot (1 ,2 ,2)
69 set (gcf , ’ Posit ion ’ , [900 500 900 300])
70 yIntensity = f f t shi f t (2*X_k /N) ;
71 plot (xAxis , yIntensity /max(yIntensity))
72 xlabel (" Spatial Frequency / Divergence (m^{−1}) ")
73 ylabel (" Farf ie ld Intensity (Arbitrary Units) ")
74 grid on

6.3.3 Full Simulation Code

1 % Tom Causer − Bachelor Pro j ec t Code
2
3 % .
4
5 % Constants Section
6
7 m_e = 9.11e−31; % kg
8 q = −1.602e−19; % Coulombs
9 c = 2.998e8 ; % m/s

38

10 vacuumPermitivity = 8.854e−12; % Farads/metre
11 h = 6.626e−34; % J*s
12
13 % .
14
15 % Important user−chosen parameters
16
17 IR_Cycles = 4;
18 LaserWavelength = 800e−9; % meters
19 LaserIntensity = 1.2 e18 ; % W/m^2
20 NoOfTimeIncrements = 2^13; % larger = more t r a j e c t o r i e s included , 2^13 default
21
22 % .
23
24 f = c / LaserWavelength ; % s^−1 (Hz)
25 w_0 = 2*pi* f ; % laser angular frequency
26 lastEjectionTime = 0 . 5 * (1 / f) ; % la s t time that e l e c t r ons can be e j e c t e d
27 TimeBegin = 0; % units : depends on frequency
28 TimeEnd = IR_Cycles * 1 / (f) ; % end time of simulation
29 Increment = (TimeEnd−TimeBegin) / NoOfTimeIncrements ;
30 Time = TimeBegin : Increment : TimeEnd ; % Column 1 in table
31 EjectionTimes = 0: Increment : lastEjectionTime ;
32
33 % Energy re lated calculat ions
34
35 E0 = Intensi tyToElectr icFie ldCalculator (LaserIntensity , vacuumPermitivity , c) ; %

Volts per metre
36 U_p = ((q^2) * (E0^2)) / (4 * (m_e) * (w_0^2)) ; % ponderomotive energy
37 maxEnergy = 3.18*U_p ; % Set to 3.18 to prevent indexing errors
38 CMap = ColourTableCreator (NoOfTimeIncrements , [255 , 0 , 0] , [255 , 255 , 0]) ;
39
40 % Chosen Harmonic
41
42 ion isat i on_potent ia l = 15.75*abs (q) ; % 15.75 eV i s Argon
43
44 SoughtAfterHarmonic = 15;
45 harmonicFrequency = f *SoughtAfterHarmonic ; % Hz
46 photon_energy = h*harmonicFrequency ; % Joules
47 electron_KE = photon_energy − i on i sat i on_potent ia l ;
48 c u t o f f = ((3 .17*U_p + ion isat ion_potent ia l) / h) / (f) ;
49
50 % All funct ions
51
52 function FarfieldTable = FarfieldEnvelopeBuilder (maxDisplacement , numberOfAtoms ,

maxE0, Time , EjectionTimes , GroupOrPhaseDelay , energyOfInterest , q , m_e , w_0 , c ,
vacuumPermitivity , h , IncludeFurtherTrajectoriesYN)

53 % The columns of th i s function are :
54 % (1) Farf ie ld distance
55 % (2) Amplitude of the f i r s t t r a j e c t o r y
56 % (3) Amplitude of second t r a j e c t o r y
57 % (4+) and so on . . .
58
59 % First , " import " the near f i e ld table
60 nearFieldTable = NearfieldEnvelopeBuilder (maxDisplacement , numberOfAtoms , maxE0,

Time , EjectionTimes , GroupOrPhaseDelay , energyOfInterest , q , m_e , w_0 , c ,
vacuumPermitivity , h , IncludeFurtherTrajectoriesYN) ;

61
62 sampleSizeFactor = 5;
63 % I n i t i a l i s e a f a r f i e l d table and take the f i r s t column as an x−axis
64 farFieldTable = zeros ([length (nearFieldTable (: , 1)) *sampleSizeFactor −(

39

sampleSizeFactor −1) , length (nearFieldTable (1 , :))]) ;
65 DistanceList = nearFieldTable (: , 1) ;
66 farFieldTable (: , 1) = (0 : (1 / (length (DistanceList) −1)) / sampleSizeFactor : 1) / (

DistanceList (2) − DistanceList (1)) ;
67
68 % For each column in the near f i e ld table , go ahead and Fourier transform
69 % i t using the f f t function
70 for column = 2 : 1 : length (farFieldTable (1 , :))
71 farFieldTable (: , column) = f f t shi f t (abs (f f t (nearFieldTable (: , column) , length

(farFieldTable (: , 1) *sampleSizeFactor)))) ;
72 end
73
74 % The aim with th i s next b i t o f code i s to normalise the values
75
76 columnLength = length (farFieldTable (1 , :)) ;
77
78 % I f you want to only do up to the third t ra j e c t o ry , have these next 3
79 % l ines uncommented , otherwise comment them out .
80
81 i f columnLength > 4
82 columnLength = 4;
83 end
84
85 % Find the max value in order to normalise a l l o f the values against
86 % the highest value .
87
88 maxValue = max(max(farFieldTable (: , 2 : columnLength))) ;
89 farFieldTable (: , 2 : length (farFieldTable (1 , :))) = farFieldTable (: , 2 : length (

farFieldTable (1 , :))) / maxValue ;
90
91 % Because of the f f t s h i f t function used above , the en t i r e x axis needs
92 % to be translated half i t s maximum to the l e f t .
93
94 farFieldTable (: , 1) = farFieldTable (: , 1) − 0.5* farFieldTable (end , 1) ;
95
96 FarfieldTable = farFieldTable ;
97 end
98
99 function NearFieldTable = NearfieldEnvelopeBuilder (maxDisplacement , numberOfAtoms ,

maxE0, Time , EjectionTimes , GroupOrPhaseDelay , energyOfInterest , q , m_e , w_0 , c ,
vacuumPermitivity , h , IncludeFurtherTrajectoriesYN)

100 % Outputs a table
101 %
102 % Columns are :
103 % (1) Displacement from laser centre
104 % (2+) Complex photon e l e c t r i c f i e l d values of increasing t r a j e c t o r i e s
105
106 atomTable = LaserSimulator (maxDisplacement , numberOfAtoms , maxE0, Time ,

EjectionTimes , GroupOrPhaseDelay , energyOfInterest , q , m_e , w_0 , c ,
vacuumPermitivity , h , IncludeFurtherTrajectoriesYN) ;

107
108 % The next l ine so lves an issue where values that go to NaN do not show
109 % up on the near f i e ld table even when they should .
110
111 %atomTable (isnan (atomTable)) = 0 ;
112
113 numRows = length (atomTable (: , 1)) ;
114 numCols = length (atomTable (1 , :)) ;
115
116 % When building the template table , I remove two columns because I ’m

40

117 % not going to use column 2 of atomTable , and columns 3 and onwards
118 % wil l be used to create an extra column cal led " Envelope "
119
120 outputTable = zeros ([numRows, numCols−2]) ;
121 outputTable (: , 1) = atomTable (: , 1) ; % Firs t column i s displacement
122
123 % Go through the columns and f i l l in what the e l e c t r i c f i e l d values are
124
125 for column = 4 : 1 : numCols
126 outputTable (: , column−2) = atomTable (: , 3) . * exp(1 i . * atomTable (: , column)) ;
127 end
128
129 % You now have the e l e c t r i c f i e l d s of the photons −− convert to
130 % i n t e n s i t i e s .
131
132 outputTable (: , 2 : length (outputTable (1 , :))) = 0.5* c*vacuumPermitivity * (

outputTable (: , 2 : length (outputTable (1 , :)))) .^2 ;
133
134 outputTable (isnan (outputTable)) = 0 ;
135
136 NearFieldTable = outputTable ;
137
138 end
139
140 function LaserTable = LaserSimulator (maxDisplacement , numberOfAtoms , maxE0, Time ,

EjectionTimes , GroupOrPhaseDelay , energyOfInterest , q , m_e , w_0 , c ,
vacuumPermitivity , h , IncludeFurtherTrajectoriesYN)

141 % This function returns a table that contains the fol lowing columns
142 %
143 % (1) Displacement of atoms
144 % (2) The external e l e c t r i c f i e l d applied to each atom
145 % (3) The i n t e n s i t y o f the photons produced from each atom
146 % (4+) The remaining columns represent the phases o f further t r a j e c t o r i e s
147
148 intervalSize = maxDisplacement * 2 / (numberOfAtoms−1) ;
149 centreOfInterval = 0 ; % centre o f laser
150 atomPlacement = −maxDisplacement : intervalSize : maxDisplacement ; % laser diameter
151
152 %laserToPhotonIntensityReductionFactor = 10^(−6) ;
153 laserToPhotonIntensityShapingFactor = 6;
154
155 % Gaussian shape i s a*exp (−(x−b) ^2/(2c ^2))
156 % where a=height o f peak , b=centre o f peak , c=standard deviation
157 gaussianStandardDeviation = maxDisplacement *0 .2 ;
158 E0_function = maxE0*exp(−(atomPlacement−centreOfInterval) . ^ 2 . / (2 *

gaussianStandardDeviation ^2)) ;
159
160 phaseTable = EnergyExaminer (Time , EjectionTimes , GroupOrPhaseDelay , energyOfInterest ,

E0_function , q , m_e , w_0 , c , vacuumPermitivity , h , IncludeFurtherTrajectoriesYN)
;

161
162 % I want to find the number of extra columns required due to there being
163 % multiple t r a j e c t o r i e s that give the energy .
164
165 additionalColumnCount = 0;
166 for E0_Index = 1 : 1 : length (E0_function)
167 E0Value = E0_function (E0_Index) ;
168 numAppearances = sum(phaseTable (: , 4)==E0Value) ;
169 i f numAppearances > additionalColumnCount
170 additionalColumnCount = numAppearances ;

41

171 end
172 end
173
174 combinedTable = zeros ([length (atomPlacement) , 3 + additionalColumnCount]) ;
175
176 % These are the " predefined columns "
177 combinedTable (: , 1) = atomPlacement ;
178 combinedTable (: , 2) = E0_function ;
179 %combinedTable (: , 3) = 0.5* c*vacuumPermitivity * (E0_function .^2) *

laserToPhotonIntensityReductionFactor ;
180 combinedTable (: , 3) = 0.5* c*vacuumPermitivity * (E0_function .^2) . ^ (

laserToPhotonIntensityShapingFactor) ;
181
182 % There wi l l then be more columns which wi l l be f i l l e d up with the
183 % d i f f e r e n t phases
184
185 % Begin by looking at the d i f f e r e n t values in phaseTable
186
187 for phaseIndex = 1 : 1 : length (phaseTable (: , 2))
188 currentPhaseValue = phaseTable (phaseIndex , 7) ;
189 respectiveE0Value = phaseTable (phaseIndex , 4) ;
190 respectiveTrajectoryNumber = phaseTable (phaseIndex , 5) ;
191
192 % First , f ind the equivalent E0 value in combinedTable
193 combinedTableRowIndex = find (combinedTable (: , 2) == respectiveE0Value) ;
194
195 % F i l l in the phase value , using the t r a j e c t o r y number column
196 combinedTable (combinedTableRowIndex , 3+respectiveTrajectoryNumber) =

currentPhaseValue ; %#ok<FNDSB>
197 end
198
199 % Want to pontent ia l ly make the values of 0 in the phase columns change to "NaN" so

that
200 % they don ’ t show up on graphs .
201
202 phaseColumns = combinedTable (: , 4:3 + additionalColumnCount) ;
203 phaseColumns (phaseColumns==0) = nan ;
204 combinedTable (: , 4 : 3+additionalColumnCount) = phaseColumns ;
205
206 % We want to get rid of use l e ss columns which are jus t f u l l o f NaN
207
208 lastFilledColumn = 0;
209
210 for column = 1 : 1 : length (combinedTable (1 , :))
211 NanBoolean = isnan (combinedTable (: , column)) ;
212 notNaN = find (NanBoolean==0) ; %#ok<EFIND>
213 i f isempty (notNaN)
214 lastFilledColumn = column−1;
215 break
216 end
217 end
218
219 combinedTable (: , lastFilledColumn +1: length (combinedTable (1 , :))) = [] ;
220
221 LaserTable = combinedTable ;
222 end
223
224 function PhotonInformation = EnergyExaminer (Time , EjectionTimes , GroupOrPhaseDelay ,

energyOfInterest , E0_1_by_n_List , q , m_e , w_0 , c , vacuumPermitivity , h ,
IncludeFurtherTrajectoriesYN)

42

225 % Designed to zone in on an energy of the user ’ s choice , and find out
226 % various things about that part icular energy .
227
228 % GroupOrPhaseDelay i s " phase " or " Phase " to show phase , and "Group" or
229 % " group " to show group delay . The point o f the E0_1_by_n_List i s that i t
230 % allows you to find energy values for d i f f e r e n t values of E0, when cyc l ing
231 % through a l i s t . Very useful when working toge ther with the laser p r o f i l e
232 % function .
233
234 % The columns are as fo l lows
235
236 % (1) Laser i n t e n s i t y
237 % (2) Recombination Time
238 % (3) Excursion time
239 % (4) E0 Value
240 % (5) TrajectoryNumber
241 % (6) Photon Energy
242 % (7) Phase
243 %
244 % The table is , by default sorted by phase .
245
246 numberOfIRCycles = round (Time (end) / (2 * pi / w_0)) ;
247 outputMatrix = zeros (numberOfIRCycles*4 , 7) ;
248
249 outputRowCounter = 1;
250
251 for EValue = E0_1_by_n_List
252 % First , take a part icular E0 value through the cyc l e
253 Intensity = 0.5* c*vacuumPermitivity * (EValue^2) ;
254 Matrix = DisplacementMatrixMaker (Time , EjectionTimes , q , EValue , m_e , w_0) ;
255 lastEjectionTime = Matrix (length (Matrix (1 , :)) , 1) ;
256
257 energyIndices = zeros ([1 , length (numberOfIRCycles *4)]) ;
258 energyIndicesCounter = 1;
259
260 BasicPonderoTable = BasicEnergyTableMaker (Matrix , lastEjectionTime , q , EValue ,

m_e , w_0) ;
261 EValuePonderoTable = EnergyTableExtended (BasicPonderoTable , h , w_0) ;
262
263 % I t e r a t e through a l l excursion times , find the i r associated energies ,
264 % and note i f the energy of i n t e r e s t i s found .
265
266 for excursionValueIndex = 2 : 1 : length (EValuePonderoTable (: , 1))
267 currentEValue = EValuePonderoTable (excursionValueIndex , 2) ;
268 previousEValue = EValuePonderoTable (excursionValueIndex −1, 2) ;
269 i f energyOfInterest > previousEValue && energyOfInterest <= currentEValue
270 energyIndices (1 , energyIndicesCounter) = excursionValueIndex ;
271 energyIndicesCounter = energyIndicesCounter + 1;
272 elseif energyOfInterest < previousEValue && energyOfInterest >= currentEValue
273 energyIndices (1 , energyIndicesCounter) = excursionValueIndex ;
274 energyIndicesCounter = energyIndicesCounter + 1;
275 end
276 end
277
278 % Alter for the p o s s i b i l i t y that the desired energy might not be found
279 % at all , due to the laser i n t e n s i t y on the edges being too weak
280
281 i f isempty (energyIndices) == 1 | energyIndices == 0 %#ok<OR2>
282 continue
283 end

43

284
285 % At th i s point , we have a l l o f the points which " c o l l i d e " with the
286 % energy of i n t e r e s t . Now we need i n t e n s i t y and phase . In t ens i t y i s the
287 % same for each value of E0, but the phase i s d i f f e r e n t for a l l . This
288 % i s solved by ge t t ing the recombination times from the third column of
289 % EValuePonderoTable and dividing by the cy c l e time , to get the phase .
290 % We then put th i s into a table .
291
292 i f GroupOrPhaseDelay == "Phase " || GroupOrPhaseDelay == " phase "
293 phaseChoice = 7;
294 else
295 phaseChoice = 6;
296 end
297
298 for index = 1 : 1 : length (energyIndices)
299 indexOfInterest = energyIndices (index) ;
300 outputMatrix (outputRowCounter , 7) = EValuePonderoTable (indexOfInterest ,

phaseChoice) ;
301 outputMatrix (outputRowCounter , 6) = EValuePonderoTable (indexOfInterest , 2) ; %

Photon energy
302 outputMatrix (outputRowCounter , 5) = EValuePonderoTable (indexOfInterest , 4) ; %

TrajectoryNumber
303 outputMatrix (outputRowCounter , 4) = EValue ; %E0 Value
304 outputMatrix (outputRowCounter , 3) = EValuePonderoTable (indexOfInterest , 1) ; %

Excursion Time
305 outputMatrix (outputRowCounter , 2) = EValuePonderoTable (indexOfInterest , 3) ; %

Recombination time
306 outputMatrix (outputRowCounter , 1) = Intensity ; % Laser In t ens i t y
307 outputRowCounter = outputRowCounter + 1;
308 end
309 end
310
311 % Now, get rid of any rows that take into account t r a j e c t o r i e s further than
312 % the ones we ’ re in t e r e s t ed in (allow user to choose maximum excursion
313 % time)
314
315 timePeriod = 1 / (w_0 / (2 * pi)) ;
316
317 i f IncludeFurtherTrajectoriesYN == "n" || IncludeFurtherTrajectoriesYN == "N"
318 rebuiltMatrix = 0*outputMatrix ;
319 rMatrixRowCounter = 1;
320
321 for row = 1 : 1 : length (outputMatrix (: , 1))
322 i f outputMatrix (row , 3) < timePeriod
323 rebuiltMatrix (rMatrixRowCounter , :) = outputMatrix (row , :) ;
324 rMatrixRowCounter = rMatrixRowCounter + 1;
325 end
326 end
327 else
328 rebuiltMatrix = outputMatrix ;
329 end
330
331 sortedRebuiltMatrix = sortrows (rebuiltMatrix , 2) ;
332 nonZeroIndex = find (sortedRebuiltMatrix (: , 2) > 0) ;
333 sortedRebuiltMatrix = sortedRebuiltMatrix (nonZeroIndex (1) : nonZeroIndex (end) , :) ;
334 %sortedRebuiltMatrix = sortrows (sortedRebuiltMatrix , 4) ;
335
336 PhotonInformation = sortedRebuiltMatrix ;
337 end
338

44

339 function BasicEnergyTable = BasicEnergyTableMaker (DisplacementMatrix ,
lastEjectionTime , q , E0, m_e , w_0)

340 % This function outputs three columns .
341 % (1) Excursion Time
342 % (2) Energy
343 % (3) Recombination Time
344 % (4) Trajectory number
345
346 % U_p = ((q^2) * (E0^2)) /(4*(m_e) * (w_0^2)) ; % ponderomotive energy
347 timeColumn = DisplacementMatrix (: , 1) ;
348 co l l i s ionMatr ix = RecombinationFinder (DisplacementMatrix) ;
349 coll isionColumnTotal = length (co l l i s ionMatr ix (1 , :)) ;
350
351 %continue with trying to make the f i r s t column i n i t i a l times
352
353 % Find the maximum number of c o l l i s i o n s , so that we can create our table .
354 % I f th i s code i s ever used to ca lcu la te a very high number of values , th i s
355 % b i t could be improved speed−wise by jus t approximating cyc l e count
356 % instead of manually finding th i s out .
357
358 columnSums = zeros ([1 , collisionColumnTotal −1]) ;
359 for column = 2 : 1 : coll isionColumnTotal
360 columnSums(1 , column−1) = sum(co l l i s ionMatr ix (: , column)) ;
361 end
362
363 ponderoColumnCount = max(columnSums) ;
364 ponderoRowCount = length (timeColumn) ;
365 BasicEnergyTable = zeros ([ponderoRowCount , ponderoColumnCount]) ;
366
367 % Plot energy vs excursion time . To do this , we need to get the times
368 % corresponding to re l ease and recapture . This i s arguably a l l we need ,
369 % because v e l o c i t y only needs times , and constants to get v e l o c i t y .
370
371 BasicEnergyTable (: , 1) = timeColumn ;
372
373 for column = 2 : 1 : coll isionColumnTotal
374 % Find the indices o f cross ings within the displacement matrix
375 c o l l i s i o n I n d i c e s = find (co l l i s ionMatr ix (: , column) ==1) ;
376 % Find the index of the row where the t r a j e c t o r y begins
377 initialTimeRow = find (timeColumn==timeColumn (c o l l i s i o n I n d i c e s (1))) ;
378
379 % Go through c o l l i s i o n I n d i c e s and
380
381 for col l is ion_column = 2 : 1 : length (c o l l i s i o n I n d i c e s)
382 BasicEnergyTable (initialTimeRow , col l is ion_column) = timeColumn (

c o l l i s i o n I n d i c e s (col l is ion_column)) ; %#ok<FNDSB>
383 end
384 end
385
386 findLastEject ion = find (BasicEnergyTable (: , 1)>=lastEjectionTime , 1) ;
387 BasicEnergyTable = BasicEnergyTable (1 : f indLastEjection , :) ;
388 newRowCount = length (BasicEnergyTable (: , 1)) ;
389
390 % Calculate a l l energy values
391
392 EnergyTable = BasicEnergyTable ;
393 for column = 2 : 1 : ponderoColumnCount
394 for row = 1 : 1 :newRowCount
395 velValue = Veloc i tyCalculator (q , E0, m_e , w_0 , EnergyTable (row , column) ,

EnergyTable (row , 1)) ;

45

396 Energy = 0.5*m_e*velValue ^2;
397 EnergyTable (row , column) = Energy ;
398 end
399 end
400 EnergyTable = EnergyTable (: , 2 : ponderoColumnCount) ;
401 SizeEn = size (EnergyTable) ;
402 EnergyRowTable = zeros ([SizeEn (1) *SizeEn (2) , 1]) ;
403 EnRIndex = 1;
404
405 % Calculate a l l excursion times
406
407 ExcursionTable = BasicEnergyTable ;
408
409 recombinationTable = 0*BasicEnergyTable ;
410
411 for column = 2 : 1 : ponderoColumnCount
412 for row = 1 : 1 :newRowCount
413 excursionValue = ExcursionTable (row , column) − ExcursionTable (row , 1) ;
414 ExcursionTable (row , column) = excursionValue ;
415 recombinationTable (row , column) = BasicEnergyTable (row , column) ;
416 end
417 end
418 ExcursionTable = ExcursionTable (: , 2 : ponderoColumnCount) ;
419 recombinationTable = recombinationTable (: , 2 : ponderoColumnCount) ;
420 SizeEx = size (EnergyTable) ;
421 ExRowTable = zeros ([SizeEx (1) *SizeEx (2) , 1]) ;
422
423 ExcursionTable (ExcursionTable <=0) = 0;
424 BooleanTable = ExcursionTable ==0;
425 EnergyTable (BooleanTable) = 0 ;
426 recombinationRowTable = ExRowTable ;
427
428 for column = 1 : 1 : length (EnergyTable (1 , :))
429 for row = 1 : 1 :newRowCount
430 i f EnergyTable (row , column) ~= 0
431 EnergyRowTable (EnRIndex) = EnergyTable (row , column) ;
432 ExRowTable (EnRIndex) = ExcursionTable (row , column) ;
433 recombinationRowTable (EnRIndex) = recombinationTable (row , column) ;
434 EnRIndex = EnRIndex + 1;
435 else
436 EnergyRowTable (EnRIndex) = [] ;
437 ExRowTable (EnRIndex) = [] ;
438 recombinationRowTable (EnRIndex) = [] ;
439 end
440 end
441 end
442
443 CombinedTable = zeros ([length (EnergyRowTable) , 4]) ;
444 CombinedTable (: , 1) = ExRowTable ;
445 CombinedTable (: , 2) = EnergyRowTable ;
446 CombinedTable (: , 3) = recombinationRowTable ;
447
448 CombinedTable = sortrows (CombinedTable , 1) ;
449
450 % With th i s now sorted by excursion time , the idea i s now that we can go on
451 % and add a f ina l column , which wil l be the number of the t r a j e c t o r y . This
452 % wil l be useful when only cer ta in t r a j e c t o r i e s are desired .
453
454 % The f i r s t two t r a j e c t o r i e s are predic table . A maximum can be found
455 % between the beginning , and the end of the f i r s t time period .

46

456
457 TimePeriod = 1 / (w_0 / (2 * pi)) ;
458 beginningThirdTrajRow = find (CombinedTable (: , 1) > TimePeriod , 1) ;
459
460 firstAndSecondSnippet = CombinedTable (1 : beginningThirdTrajRow , :) ;
461 maxEnergyIndex = find (CombinedTable (: , 2) == max(firstAndSecondSnippet (: , 2))) ;
462
463 CombinedTable (1 : maxEnergyIndex−1, 4) = 1 ;
464 CombinedTable (maxEnergyIndex : beginningThirdTrajRow , 4) = 2 ;
465
466 TrajectoryNumber = 3;
467
468 for row = beginningThirdTrajRow +2:1 : length (CombinedTable (: , 1))
469 lates tDi f f erence = CombinedTable (row , 2) − CombinedTable (row−1, 2) ;
470 previousDif ference = CombinedTable (row−1, 2) − CombinedTable (row−2, 2) ;
471
472 % Scenario 1 , function increasing
473 i f l a tes tDi f f erence > 0 && previousDifference * la tes tDi f f erence > 0
474 CombinedTable (row−2, 4) = TrajectoryNumber ;
475 end
476 % Scenario 2 , an energy peak
477 i f l a tes tDi f f erence < 0 && previousDifference * la tes tDi f f erence < 0
478 CombinedTable (row−2, 4) = TrajectoryNumber ;
479 TrajectoryNumber = TrajectoryNumber + 1;
480 end
481 % Scenario 3 , function decreasing
482 i f l a tes tDi f f erence < 0 && previousDifference * la tes tDi f f erence > 0
483 CombinedTable (row−2, 4) = TrajectoryNumber ;
484 end
485 % Scenario 4 , energy approaching 0
486 i f l a tes tDi f f erence > 0 && previousDifference * la tes tDi f f erence < 0
487 CombinedTable (row−2, 4) = TrajectoryNumber ;
488 TrajectoryNumber = TrajectoryNumber + 1;
489 end
490 % Scenario 5 , end of table . Assume same t r a j e c t o r y number .
491 i f row == length (CombinedTable (: , 1))
492 CombinedTable (row , 4) = CombinedTable (row−2, 4) ;
493 CombinedTable (row−1, 4) = CombinedTable (row−2, 4) ;
494 end
495 end
496
497
498 BasicEnergyTable = CombinedTable ;
499 end
500
501 function TrajectoryPlotter (DisplacementMatrix , CMap, q , E0, m_e , w_0)
502 % This function takes an input Matrix , and outputs a plo t based upon that
503 % matrix .
504
505 % Choose a mult ip l i er (10^9) wi l l change the y axis from " meters " to
506 % " nanometers " , e t c . By default , "1" i s meters .
507
508 DistanceMultiplier = 1;
509
510 timeColumn = DisplacementMatrix (: , 1) ;
511
512 co l l i s ionMatr ix = RecombinationFinder (DisplacementMatrix) ;
513
514 hold on
515

47

516 % Plot the returning t r a j e c t o r i e s −− in order to use co l l i s ionMatr ix
517 % function , must add time row back on
518
519 rowTotal = length (DisplacementMatrix (: , 1)) ;
520 U_p = ((q^2) * (E0^2)) / (4 * (m_e) * (w_0^2)) ; % ponderomotive energy
521 maxEnergy = 3.18*U_p ;
522 firstReturningTrajectoryColumn = 0;
523
524 for column = 2 : 1 : (length (co l l i s ionMatr ix (1 , :))) %Incase something messes up , there

was a "−1" next to the length ?
525 c o l l i s i o n I n d i c e s = find (co l l i s ionMatr ix (: , column) ==1) ;
526 % First , p lo t a l l t r a j e c t o r i e s that diverge immediately
527 i f length (c o l l i s i o n I n d i c e s) == 1
528 f i rs t Index = c o l l i s i o n I n d i c e s (1) ;
529 lastIndex = rowTotal ;
530 DisplaceCut = DisplacementMatrix (f i r s t Index : lastIndex , column) ;
531 TimeCut = DisplacementMatrix (f i r s t Index : lastIndex , 1) ;
532 plot (TimeCut , DisplaceCut* DistanceMultiplier , ’ Color ’ , ’ [. 8 .8 . 8] ’) ;
533 end
534
535 % Next , p lo t a l l the reteurning t r a j e c t o r i e s
536 i f length (c o l l i s i o n I n d i c e s) > 1
537
538 % Take a note o f the f i r s t time th i s i f statement i s true , so that
539 % we can scale E0 based o f f o f the maximum displacement l a t e r on
540
541 i f firstReturningTrajectoryColumn == 0
542 firstReturningTrajectoryColumn = column ;
543 end
544
545 % And now continue
546
547 t _ i = timeColumn (c o l l i s i o n I n d i c e s (1)) ;
548
549 for co l l i s i onIndex = 2 : 1 : length (c o l l i s i o n I n d i c e s)
550 f i rs t Index = c o l l i s i o n I n d i c e s (co l l i s ionIndex −1) ;
551 lastIndex = c o l l i s i o n I n d i c e s (co l l i s i onIndex) ;
552 DisplaceCut = DisplacementMatrix (f i r s t Index : lastIndex , column) ;
553 TimeCut = timeColumn (f i rs t Index : lastIndex , 1) ;
554 t_r = timeColumn (lastIndex) ;
555 TrajVeloc i ty = abs (Veloc i tyCalculator (q , E0, m_e , w_0 , t_r , t _ i)) ;
556 TrajEnergy = 0.5*m_e* TrajVeloc i ty ^2;
557 TrajColour = ColourMapUser (CMap, TrajEnergy , 0 , maxEnergy) ;
558 plot (TimeCut , DisplaceCut* DistanceMultiplier , ’ Color ’ , TrajColour) ;
559
560 i f co l l i s i onIndex == length (c o l l i s i o n I n d i c e s)
561 f i rs t Index = c o l l i s i o n I n d i c e s (end) ;
562 lastIndex = rowTotal ;
563 DisplaceCut = DisplacementMatrix (f i r s t Index : lastIndex , column) ;
564 TimeCut = timeColumn (f i rs t Index : lastIndex , 1) ;
565 plot (TimeCut , DisplaceCut* DistanceMultiplier , ’ Color ’ , ’ [. 7 .7 . 7] ’) ;
566 end
567
568 end
569 end
570 end
571
572 % First , we want to sca le the e l e c t r i c f i e l d amplitude i f i t i s to go on
573 % the same graph − scale i t to half o f the maximum displacement value , jus t
574 % so that i t i s more v isual ly pleasing .

48

575
576 % You have to do "max of max" here because the max of an array returns the
577 % maximum of each column
578
579 maxDisplacement = max(max(DisplacementMatrix (: , firstReturningTrajectoryColumn : length

(DisplacementMatrix (1 , :))))) ;
580
581 yyaxis l e f t
582
583 ylim ([−1.2*maxDisplacement , 1.2* maxDisplacement]* DistanceMultiplier)
584 ylabel (’ Electron Displacement From Atom (m) ’ , " Color " , "k ")
585
586 % Plot the e l e c t r i c f i e l d wave
587
588 % We choose the y axis bounds in a c l ev e r way so that the graph i s forced
589 % to scale the e l e c t r i c f i e l d down to f i t in the same graph , but re tain i t s
590 % magnitude .
591
592 yyaxis r ight
593 set (gca , ’ YColor ’ , [0 0 0]) ;
594 ylim ([−1.2*2*E0, 1.2*2*E0])
595 ylabel (’ E l e c t r i c Field Strength , E0 (V/m) ’ , " Color " , "k ")
596 Electr icFie ldLineColor = [34 139 34] /255 ;
597 plot (timeColumn , E0*sin (w_0 . * timeColumn) , ’ LineWidth ’ , 2 .5 , ’ Color ’ ,

Electr icFie ldLineColor)
598 hold o f f
599
600 xlabel (" Time (seconds) ")
601
602 % Now jus t need to ensure that the rights ide−y−axis i s s e t up in such a way
603 % where th i s adjustment of the E0 amplitude makes sense .
604
605 grid on
606 end
607
608 function ElectricFieldValue_VoltsPerMetre = Intensi tyToElectr icFie ldCalculator (

I_in_WattsperSquaredMetre , vacuumPermitivity_inFaradsperMetre ,
speedOfLight_inMetresPerSecond)

609 VoltsPerMetreE = sqrt ((2* I_in_WattsperSquaredMetre) / (
vacuumPermitivity_inFaradsperMetre*speedOfLight_inMetresPerSecond)) ;

610 ElectricFieldValue_VoltsPerMetre = VoltsPerMetreE ;
611 end
612
613 function RecombinationMatrix = RecombinationFinder (matrixTimeFirstCol)
614 % This function takes a displacement matrix and makes a l l values in the
615 % matrix 0 , except the recombination points
616
617 M = matrixTimeFirstCol . / abs (matrixTimeFirstCol) ;
618 trackerMatrix = 0*M;
619 trackerMatrix (: , 1) = matrixTimeFirstCol (: , 1) ;
620
621 trackerMatrix (isnan (trackerMatrix)) = 0 ;
622 ColumnNo = length (matrixTimeFirstCol (1 , :)) ;
623 RowNo = length (matrixTimeFirstCol (: , 1)) ;
624 for column = 2 : 1 :ColumnNo
625 for row = 2 : 1 :RowNo
626 i f isnan (M(row , column))
627 trackerMatrix (row , column) = 0;
628 elseif M(row , column) ~= M(row−1, column)
629 trackerMatrix (row , column) = 1;

49

630
631 elseif M(row , column) == M(row−1, column)
632 trackerMatrix (row , column) = 0;
633 end
634 end
635 end
636 RecombinationMatrix = trackerMatrix ;
637 end
638
639 function ColourMap = ColourTableCreator (IncrementCount , RGBLow, RGBHigh)
640 colourShades = IncrementCount ;
641 lowestValueColour = RGBLow/256 ;
642 highestValueColour = RGBHigh/256 ;
643 colourRed = lowestValueColour (1) − highestValueColour (1) ;
644 colourGreen = lowestValueColour (2) − highestValueColour (2) ;
645 colourBlue = lowestValueColour (3) − highestValueColour (3) ;
646 co lor Interva l = [colourRed colourGreen colourBlue] / colourShades ;
647 CreatedColourMap = zeros ([colourShades length (lowestValueColour)]) ;
648 for row = 1 : 1 : colourShades
649 CreatedColourMap (row , :) = lowestValueColour − row* co lor Interva l ;
650 end
651 ColourMap = CreatedColourMap ;
652 end
653
654 function ColourChoice = ColourMapUser (ColourMap , Value , MinValue , MaxValue)
655 Percentage = ((MinValue+Value) / (MinValue+MaxValue)) ;
656 i f Percentage > 1
657 Percentage = 1;
658 end
659 rowNumber = floor (Percentage*length (ColourMap (: , 1))) ;
660
661 i f rowNumber < 1
662 rowNumber = 1;
663 end
664 ColourChoice = ColourMap (rowNumber , :) ;
665 end
666
667 function EnergyTableExtension = EnergyTableExtended (PonderoTable , h , w_0)
668 % This function takes an input PonderoTable and adds three columns to i t
669 % −− approximated return time , quantum phase and c l a s s i c a l phase . (5 , 6 and 7)
670
671 % The input PonderoTable comes with four columns (1) Excursion Time ,
672 % (2) Energy , (3) Recombination Time , (4) TrajectoryNumber
673
674 % First , make a small table o f the frequency and t_r values , at the
675 % beginning of each new t r a j e c t o r y .
676
677 HighestTrajectoryNumber = max(PonderoTable (: , 4)) ;
678 GroupDelayVsFreqTable = zeros ([HighestTrajectoryNumber , 5]) ;
679
680 % This table wi l l have the fol lowing columns (1) TrajectoryNumber (2)
681 % Frequency (3) t_r value (4) gradient value (5) i n t e r c e p t value
682
683 % Cycle through the PonderoTable and acquire information based upon
684 % t r a j e c t o r y .
685
686 for TrajectoryNumber = 1 : 1 : HighestTrajectoryNumber
687 firstInstanceNewTrajectory = find (PonderoTable (: , 4)==TrajectoryNumber , 1) ;
688 % With the index now found , f i l l in the empty table
689 GroupDelayVsFreqTable (TrajectoryNumber , 1) = TrajectoryNumber ;

50

690 GroupDelayVsFreqTable (TrajectoryNumber , 2) = PonderoTable (
firstInstanceNewTrajectory , 2) / h ;

691 GroupDelayVsFreqTable (TrajectoryNumber , 3) = PonderoTable (
firstInstanceNewTrajectory , 3) ;

692 end
693
694 % Now, use these values to find the gradients o f the t r a j e c t o r i e s i f
695 % they are approximated by t r iang l e s
696
697 for Trajectory = 1 : 1 : HighestTrajectoryNumber−1
698 GroupDelayVsFreqTable (Trajectory , 4) = (GroupDelayVsFreqTable (Trajectory +1 ,

3)−GroupDelayVsFreqTable (Trajectory , 3)) / (GroupDelayVsFreqTable (
Trajectory +1 , 2)−GroupDelayVsFreqTable (Trajectory , 2)) ;

699 end
700
701 % Now, add the frequency = 0 intercep ts , which should simply be a case
702 % of " s t i t ch ing " the t r iang l e s toge ther .
703
704 for Trajectory = 1 : 1 : HighestTrajectoryNumber−1
705 GroupDelayVsFreqTable (Trajectory , 5) = GroupDelayVsFreqTable (Trajectory , 3) −

GroupDelayVsFreqTable (Trajectory , 4) *GroupDelayVsFreqTable (Trajectory ,
2) ;

706 end
707
708 % We now have the required table , so now we want to re−shape the
709 % add another column onto the PonderoTable , which i s " GroupDelayFit " , a
710 % 5th column −− th i s wi l l be the " group delay " according to the f i t we
711 % jus t found .
712
713 % I also add another column here for the phase of the frequency , which
714 % wil l be found with an integra l .
715
716 % First , i n i t i a l i s e the new table we ’ re going to use
717 PondRows = length (PonderoTable (: , 1)) ;
718 PondColumns = length (PonderoTable (1 , :)) ;
719 modifiedPondTable = zeros (PondRows , PondColumns+3) ;
720 modifiedPondTable (1 : PondRows , 1 :PondColumns) = PonderoTable ;
721
722 % F i l l in the " f i t " column
723
724 for row = 1 : 1 : PondRows
725 modifiedPondTable (row , PondColumns+1) = (modifiedPondTable (row , 2) / h) *

GroupDelayVsFreqTable (modifiedPondTable (row , 4) , 4) +
GroupDelayVsFreqTable (modifiedPondTable (row , 4) , 5) ;

726 end
727
728 % Do a check to see i f the f ina l t r a j e c t o r y was complete −− I f i t
729 % wasn ’ t , remove i t .
730
731 i f modifiedPondTable (end , PondColumns+1) == 0
732 f irstInstanceOfLastTrajectory = find (modifiedPondTable (: , 4)==

HighestTrajectoryNumber , 1) ;
733 modifiedPondTable (f irstInstanceOfLastTrajectory :end , :) = [] ;
734 end
735
736 % Want to convert the Energy column into a frequency column for the
737 % next step .
738
739 modifiedPondTable (: , 2) = modifiedPondTable (: , 2) / h ;
740

51

741 % Now, want to ca lcu la te the phase by taking the in tegra l under the
742 % recombination time/frequency graph . Recalculate what the highest
743 % t r a j e c t o r y i s −− i t might now be d i f f e r e n t because of the de l e t i on
744 % above .
745
746 Phi = 0;
747 for row = 2 : 1 : length (modifiedPondTable (: , 1))
748 Phi = Phi + modifiedPondTable (row , 5) * (modifiedPondTable (row , 2)−

modifiedPondTable (row−1, 2)) ;
749 modifiedPondTable (row , 6) = Phi*2*pi ;
750 end
751
752 % With the phase values now found , the second column i s converted back
753 % to energy .
754
755 modifiedPondTable (: , 2) = modifiedPondTable (: , 2) *h ;
756
757 % Add in c l a s s i c a l phase
758
759 modifiedPondTable (: , 7) = (modifiedPondTable (: , 3) . * (w_0)) . / (2 * pi) ;
760
761 EnergyTableExtension = modifiedPondTable ;
762 end
763
764 function DisplacementMatrix = DisplacementMatrixMaker (Time , EjectionTimes , q , E0, m_e

, w_0)
765 % Create the raw matrix containing a l l values
766 % Ensure that we only use the required number of e j e c t i o n times .
767
768 RowQty = length (Time) +1;
769 ColumnQty = length (EjectionTimes) +1;
770 Matrix = zeros ([RowQty , ColumnQty]) ;
771 Matrix (1 , 2 :ColumnQty) = EjectionTimes ;
772 Matrix (2 : RowQty , 1) = Time ;
773 for columnCounter = 2 : 1 : ColumnQty
774 Matrix (2 : RowQty , columnCounter) = DisplacementCalculator ((Matrix (1 ,

columnCounter)) , Matrix (2 : RowQty , 1) , q , E0, m_e , w_0) ;
775 end
776
777 % Cleanse the data
778 % First , data be fore the f i r s t zero displacement should be wiped . (As
779 % this i s the i n i t i a l ionisat ion)
780
781 for columnCounter = 2 : 1 : ColumnQty
782
783 % We scan across the columns , one column at a time . We cut out the
784 % column of in t e r e s t , taking a cut that ignores the i n i t i a l time .
785
786 columnOfInterest = Matrix (2 : RowQty , columnCounter) ;
787
788 for row = 2 : 1 :RowQty
789 errorRow = −1;
790 i f abs (row − columnCounter) >= 10
791 % This extra i f statement arose from an i n t e r e s t i n g bug
792 % that seems to happen . In some instances , the value
793 % calculated by MATLAB i s outright incor r e c t −− I t does not
794 % i n t e r c e p t when i t should . This i s to prevent i t
795 % " skipping " the intercept , so that th i s can be f ixed
796 % " manually " l a t e r on
797 errorRow = row ;

52

798 continue
799 end
800 i f columnOfInterest (row , :) * columnOfInterest (row−1, :) <= 0
801 % I f there i s a sign change , note i t and break out o f
802 % the row loop
803 zeroIndex = row+1;
804 break
805 else
806 % I f there i s not a sign change , continue to next row
807 continue
808 end
809 end
810
811 i f errorRow == row
812 Matrix (2 : zeroIndex +1 , columnCounter) = 0 ;
813 else
814 Matrix (2 : zeroIndex , columnCounter) = 0 ;
815 end
816
817
818 end
819
820 % Removing the f i r s t row , because i n i t i a l time now doesn ’ t need i t s own
821 % row , but can be seen as the f i r s t "0" time from the f i r s t column .
822
823 Matrix = Matrix (2 : RowQty , :) ;
824
825 % Output matrix
826 DisplacementMatrix = Matrix ;
827 end
828
829 function DisplacementValue = DisplacementCalculator (t_ i , Time , q , E0, m_e , w_0)
830 DisplacementValue = ((q*E0) / (m_e*w_0^2)) * (sin (w_0 . * Time) − sin (w_0* t _ i) − w_0*(

Time − t _ i) *cos (w_0* t _ i)) ;
831 end
832
833 function VelocityValue = Veloc i tyCalculator (q , E0, m_e , w_0 , returnTime , init ia lTime)
834 VelocityValue = abs (((q*E0) / (m_e*w_0)) * ((cos (w_0*returnTime)) − cos (w_0*

init ia lTime))) ;
835 end

53

References
[1] S. Ghimire and D. A. Reis, “High-harmonic generation from solids,” Nature physics,

vol. 15, no. 1, pp. 10–16, 2019.

[2] T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,”
Rev. Mod. Phys., vol. 72, pp. 545–591, Apr 2000.

[3] N. Ibrakovic, Control of Coherent Extreme Ultraviolet Light and Light Sources. PhD
thesis, Lund University, 2019.

[4] I. Hendriks, “Phase control with spatial-light modulators towards application for opto-
optical modulation,” 2020.

[5] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’huillier, and P. B. Corkum, “Theory of high-
harmonic generation by low-frequency laser fields,” Physical Review A, vol. 49, no. 3,
p. 2117, 1994.

[6] K. L. Ishikawa, “High-harmonic generation,” Advances in Solid State Lasers Develop-
ment and Applications, pp. 439–465, 2010.

[7] J. M. Dahlström, Strong Field Approximation for High Order Harmonic Generation with
ω/2ω Laser Fields. PhD thesis, Lund University, 2007.

[8] S. Ek, “Evaluation of the wavefronts and spatial structures of ultrashort pulses passing
through a micro-channel plate,” 2019.

[9] K. Varjú‖, Y. Mairesse, B. Carré, M. B. Gaarde, P. Johnsson, S. Kazamias, R. López-
Martens, J. Mauritsson, K. Schafer, P. Balcou, et al., “Frequency chirp of harmonic and
attosecond pulses,” Journal of Modern Optics, vol. 52, no. 2-3, pp. 379–394, 2005.

[10] C. Guo, A high repetition rate attosecond light source based on optical parametric ampli-
fication. Lund University, 2018.

[11] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE,
vol. 37, no. 1, pp. 10–21, 1949.

[12] H. Nyquist, “Certain topics in telegraph transmission theory,” Transactions of the Amer-
ican Institute of Electrical Engineers, vol. 47, no. 2, pp. 617–644, 1928.

[13] M. Jonathan and T. Martin, “Digital signal processing: Mathematical and computa-
tional methods, software development and applications,” 2006.

[14] G. Fan, K. Legare, V. Cardin, X. Xie, E. Kaksis, G. Andriukaitis, A. Pugzlys, B. Schmidt,
J. Wolf, M. Hehn, et al., “Time-resolving magnetic scattering on rare-earth ferrimagnets
with a bright soft-x-ray high-harmonic source,” arXiv preprint arXiv:1910.14263, 2019.

54

