Automatic Log Based Anomaly Detection
in Cloud Operations using Machine Learning

Jacob Gummesson Atroshi
Christian Le

LUND

UNIVERSITY
Department of Automatic Control

MSc Thesis
TFRT-6129
ISSN 0280-5316

Department of Automatic Control
Lund University

Box 118

SE-221 00 LUND

Sweden

© 2021 by Jacob Gummesson Atroshi & Christian Le. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2021

Abstract

For modern large scale cloud services a fast and reliable anomaly detection is of
utmost importance. Traditionally developers perform simple keyword search, for
keywords such as "error" or "fail" in the log data, one of the main data sources that
depicts the state of the system. In today’s large-scale systems however several TB of
log messages can be output every day making manual search highly ineffective. To
address the problem there have been many anomaly detection methods based on the
few publicly available log data sets. In this thesis we present a unique data collec-
tion method using a virtualized OpenStack cloud system to collect log data from six
simulated anomaly scenarios. Three different detection methods are presented using
both the dynamic and static parts of the individual log messages. An investigation
of the impact of parameters such as time window size is done by an evaluation of
the various anomaly types. Among the four conventional machine learning models
based on the static parts gave a good performance of a 50% detection rate with a
0.35% false alarm rate. In addition the results show a better LSTM model perfor-
mance when using the dynamic rather than the static parts. For the LSTM using
dynamic parameters the results depended on the anomaly type, and the parameter,
with the best average scores around 55-65% detection rate with a false alarm rate
around 0.5-1%.

Acknowledgements

We would like to thank Johan Eker, Torgny Holmberg and Robert Marklund at
Ericsson for their wonderful help and taking care of us during this period. Even
though we have only met once outside Microsoft Teams, without their time and
contributions this thesis would not have been possible. We would also like to thank
our examiner Karl-Erik Arzén for all his valuable advice regarding the report.

Contents

(1. __Introduction|
1.1 Background|
........................
[T.3™ Automatic anomaly detection]

4. Anomaly Detection|
4 Deeplog|
4.1.1 ~ Log Key anomaly detection|
{4.1.2 Parameter value anomaly detection|

[5. Machine Learning|
5.1 Conventional Machine Learning Algorithms|
[5.1.1 k-Nearest Neighbours|

Contents

5.4 Model Training| . . .
[5.4.1 Feature scaling|

[5.5.1 Hyperparameters|

[5.5.3 Early Stopping|

[5.5.4 Tram, Test and Validation Sets|

6. Method
6.1 Lab environment setup|
6.2 Log collection|

[6.2.1 Decide which logstousef

[6.2.3 Injecting Errors|

6.3 Cleaning and Parsing Datal.

6.7 Online methods| . . .

[6.71 Log key anomaly detection using an LSTM]

[6.7.2 Parameter value anomaly detection using an LST™M]. . . .

(7.1.2 Sliding Window|
7.2 TrpleO datal
(/2.1 Clean and Drain

{7.3.2 Machine learning models|.

[7.3.3 'Training set contamination ratio|

[7.3.5 _Choosing modell

40

42}

48
48
48

50

30

Contents

[7.4_Performance measurement for online methodsl

[7.5 _Log Key anomaly detection using an LSTM| 83
75.1 Varations to the DeepLog method] &4

[7.6 Parameter value anomaly detection using an LSTM| 39
[7.6.1 Evaluationl 94]
[1.7__Ensemble modelsl 04]

8. Conclusion 98
.............................. 0%

8 dings| 99

B3 _DISCUSSIONl . + « « v v e e e e 100
8.4 Contributionslo ot
B3 Futureworkl [101]
Bibliography 102

1

Introduction

1.1 Background

The concept of Cloud Computing, on-demand computing as processing power,
storage, and applications, is not something new and has been a long-held dream for
computing as a utility. The term Cloud Computing includes both the hardware and
system software of the cloud provider’s data center [41, 3||. Utility Computing, the
service sold to the public has given many companies and developers new opportu-
nities, both in terms of economics and reduced processing time.

Today there are several large businesses offering cloud services, such as Amazon
Web Services, Microsoft Azure and Google Cloud [4]. For these cloud providers to
offer a high reliability service, behaviors that are not normal, or anomalies, must
be detected. Specifically a fast and accurate anomaly detection system is required.
If an anomaly is not found it can impact a sizeable amount of concurrent users.
The systems are monitored in various different ways, and constantly output a lot of
data, such as numerical metrics of the servers, or textual software logs. Tradition-
ally, developers manually try to find anomalies in logs using for example a simple
keyword search for error or fail in the log data. However, manual detection is both
error prone, and time consuming even on small-scale systems [37].

Simply the fact that today’s large-scale system services output several GB, or
TB of data each day makes manual searching very ineffective [37]. However, mod-
ern software design makes the problem even more difficult. Due to modular design
many different log files are produced on different physical servers, and anomalies
in one component may affect the whole system in an unpredictable fashion. To
exemplify this difficulty in large scale distributed systems one may look at the dis-
tinction made between faults, errors, and failures. Behrooz Parhami defines these
terms as states that the system may be in and transition between [51]. For instance,
the state of being faulty occurs when a system has a flaw which has the potential to
cause problems, however, the system still functions and problems are not noticed.
He gives the example of a tire with a hole; the driver will not immediately notice

11

Chapter 1. Introduction

the fault, but there is a potential to cause problems.

When a fault is active it is called an error, with the example of a tire with a hole, this
would be when the tire pressure is low. However, due to modern car design it would
still be possible to drive the car. A failure would be when it is no longer possible to
drive the car, or in terms of software, the user of a software system gets incorrect
results. Parhami defines in his model several more states, including ideal, defec-
tive, malfunctioning, and degrading, exhibiting the complex nature of a distributed
software system. The classical keyword search will find all errors, however, can not
distinguish between an error, degradation, malfunction, or a failure, contributing to
a need for more intelligent anomaly detection systems.

1.2 Objective of Project

As stated earlier, there is a need for fast, and effective anomaly detection. At Eric-
sson Research the experience has been that anomalies in the system have not been
detected until customers report issues. This is a large problem with cloud infras-
tructure promising high reliability and very low downtime. The aim of this thesis
is to develop such an anomaly detection system. Furthermore, we wish to generate
data in a controlled environment using virtual machines, VMs, on top of virtual ma-
chines, in order to understand in what scenarios the anomaly detection system can
detect faults. We wish to compare, and improve, different state of the art models in
terms of their efficacy, and how long time it takes to detect the anomalies from the
generated data.

1.3 Automatic anomaly detection

Our approach to create an automatic anomaly detection system can be broken down
into several stages: Log Collection, Log Cleaning, Log Parsing, Feature Extrac-
tion, and Anomaly Detection. Each part is summarized below and will be covered
thoroughly later in the thesis. The pipeline that will be developed for this thesis is
shown in Figure[[.1]

Log Collection

Large cloud systems generate an enormous amount of logs which reflect the state of
the system, for example the Microsoft system presented in [37]] produced over 1 PB
every day. The logs consists of metadata, such as a timestamp and a log message,
and have multiple uses, where one is for anomaly detection. In Figure [I.1] seven
lines of collected log data is shown. In this thesis logs from OpenStack are used.
OpenStack is a distributed cloud platform software where different services handle
separate parts of the system [49] and it is thoroughly explained in Section

12

1.3 Automatic anomaly detection

One of the main difficulties is that each of these services produce individual logs
for each server running the service resulting in an enormous number of log files
updated in parallel.

Log Cleaning

Often collected log data contain log messages which do not conform to the general
structure of the data. These must be removed or dealt with in a cleaning process. In
Figure [T.T] three log lines are shown which do not have the metadata present in the
other log lines. In the cleaning step, these lines may be removed, or in some cases
handled in a more intelligent way by appending to previous lines. This is described
in detail in Chapter[6]

Log collection Log cleaning Log parsing

E1, Took <*» seconds
E2, v stopped (Lifec ent)
E3, Instance destroyed successfully

instance

et Sequence:
E1,82,€3,62,83,82,83

Dynamic parts:
E1[2021-02-11 13:02:39.602, 159.57]
£2[2021-02-11 13:02:52.777]
£3(2021-02- 11 13:06:49.255]

Trainingon GPU cluster

Time series Data

Model tra

Trained mode!

Feature Extraction

Inference

S L .

— ' 2 » .t]

e .8 1 2 s s O emy]
19 10 1 Trained medel 7

Local training

Eventvector Data Mo

Figure 1.1: Pipeline for automatic anomaly detection from log data.

Log Parsing

It is difficult to use the textual data from logs in machine learning models. They are
produced as unstructured text made to be read by humans whereas machine learning
models require numerical data. Therefore parsing is done to form structured data,
from which numerical features can be extracted. A common way to do this is to cre-
ate so called Event templates by splitting a log message into a constant and dynamic
part. Constant parts are shared with many logs, whereas the dynamic part can for
example be IP addresses or file paths. Each unique type of constant part forms a log
template and is assigned an Event ID. It is the sequence of Event IDs that has been

13

Chapter 1. Introduction

used in previous anomaly detection methods. Three Event templates are shown in
Figure [I.T) where they are made into events. A more in-depth description is found
in Chapter[3]

Feature Extraction

Using the Event ID sequence output from the parsing of the logs, a Feature vector
is extracted which then can be used in the next step, anomaly detection. There are
several techniques for this. The two most common are Sliding window and Fixed
window. These algorithms create an event counter during a certain time window
where one coordinate in the vector represents the number of occurrences of a
specific Event ID within the time window. There is also a method which is time
independent, known as Session window, in which events are grouped together by
some method other than time, for example the Block ID in certain logs. All three
methods will be further explained in the thesis in Chapter [3] Feature extraction can
also include extracting the dynamic parts of the log messages to form a time series.

Anomaly Detection

The Event vectors are thereafter used as input to train a machine learning model.
When receiving an incoming log sequence the aim of the model is to determine
whether or not it is an anomaly. In the thesis we also use anomaly detection models
which use the sequence of Event IDs without the feature extraction. These models
are first trained offline, and will then be utilized on streaming logs.

1.4 Outline of thesis

The report is organized as following: Chapter[I]is an introduction to the thesis, and
Chapter [2] explains the basics of Cloud Computing, including the OpenStack tech-
nology from which the data in the thesis is used. Chapter 3| gives the background to
log parsing, and Chapter [d] gives an overview of anomaly detection, defining terms,
and introducing general methods. Chapter[5|goes in-depth into the machine learning
methods utilized in the thesis. Following this, Chapter [6] describes the method used
to collect data and test different anomaly detection methods, and Chapter [/| gives
the results for these experiments. Finally the thesis is concluded with Chapter[§]

1.5 Individual Contributions

Both authors contributed equally to building the execution pipeline and investigat-
ing the historical data. There was also an equal contribution in the design and exe-
cution of experiments on the TripleO infrastructure. The final, and most significant,
part of the thesis was divided such that Christian was responsible for developing
and analysing models using event vectors, whereas Jacob was responsible for the
models using an LSTM and ensemble models.

14

1.6 Related Work

1.6 Related Work

There have been a significant number of previous works investigating various
anomaly detection methods using log data. One instance is log clustering, used by
Microsoft, presented in [37]. In the article the authors utilize a parsed labeled log
sequence with different weights and thereafter employ clustering algorithms on
extracted feature vectors. The resulting clusters are represented by a single value.
When used on new unseen data, each new feature vector is compared to the repre-
sentative cluster values, if none of the values are within a set distance, a new cluster
is formed with the vector as a representative value. With a new cluster the engineers
must manually label it as an anomaly, or a normal value. On the other hand if the
value can be successfully placed in a previously found cluster the system can au-
tomatically classify the vector as normal, or anomalous. The article was the first to
use inverse document frequency (IDF) weighting of the input vectors, a technique
we will employ in this thesis, and is explained further in Chapter [3] Moreover the
clustering method is highly similar to several methods we will use for anomaly
detection, described in Chapters] and Chapter 3]

Following the log cluster method, several other methods have been used for
anomaly detection applying the same initial pipeline of window feature extracting,
and weighting the feature vectors. In [28]], S. He et. al. compare several existing
methods for anomaly detection using log data. In addition to log clustering the
authors tested the unsupervised principal component analysis (PCA) and invariants
mining method. Principal component analysis classifies vectors as anomalous if the
vector is far from its principal component projection using dimensionality reduction
but did not give a good result. On the other hand invariants mining, which attempts
to find linear relationships between the number of occurrences of among the Event
IDs, performed well. Also used were the supervised logistic regression, decision
trees, and support vector machines (SVM).

In addition to comparing methods, the effect of varying parameters in the whole
pipeline are investigated. Examples of said parameters are the window type: slid-
ing, fixed, or session, and the window size and step size. The authors found that in
general, session windows scores exceeded sliding which in turn performed better
than fixed. The order of effect however depended on model used. For unsupervised
models long windows were in general better with window sizes of 9-12 hours
performing optimally, whereas there was not a noticeable difference between the
window sizes for the supervised models. The study was done on two data sets,
from HDFS (Hadoop Distributed File System) logs, and logs recorded by the Blue-
Gene/L supercomputer. The authors found there was a significant difference in
performance between the data sets, and therefore it is necessary to further study the
methods for various collected data. In comparison, this thesis aims to do a similar
study, but with data generated by OpenStack. We also aim to further compare other

15

Chapter 1. Introduction

unsupervised models, and also to test shorter window sizes.

Newer examples include the cloudseer method which works by workflow mon-
itoring [67]]. The authors construct a model not by using event vectors, but by using
the sequence of log events themselves. They build an automaton for the workflow
of management tasks. For example producing logs by booting up a VM which may
interleave in different ways, but still has a pattern to it. When in use, the sequence
of log messages is checked against the known automata and if there is a divergence
in the workflow, such as an expected log message not arriving or the order of log
messages being wrong, an anomaly is classified. This was one of the first examples
where the authors tested their work on OpenStack logs which will be done in our
thesis. We will on the other hand not use the mentioned method, however it serves
as a precursor to the DeepLog method which we will be using.

The state of the art is the DeepLog method, presented by Min Du et. al. [19].
The method is split up into two parts, the first being log key anomaly detection
and the second being parameter value anomaly detection. The first part works with
the same assumptions as cloudseer. However instead of creating an automaton
explicitly, which is difficult due to the many interleaving possibilities and quickly
evolving source code for the cloud infrastructure, the authors propose the use of a
long-short-term-memory network (LSTM) to learn the workflow, taking a window
of previous log messages, and constructing a probability distribution of which log
messages may appear next. For the parameter value anomaly detection, the dynamic
parameters from the logs are extracted when parsing the event templates, and are
used for anomaly detection as a time series. This method will be implemented, and
used in this thesis, and will therefore be described in detail in Section The
article authors additionally compare the method to a PCA method, and invariants
mining on a small lab environment. We wish to extend this comparison to a wider
set of scenarios, and a slightly more complex lab environment.

Ericsson has previously produced several related theses. First, and most similar
to ours, is [20]] published in 2018 by Alexander Emmerich. The thesis explores
the use of automatic anomaly detection in cloud installation logs using frequency
and language models and also DeepLog. The presented result indicated a superior
performance using the previously mentioned DeepLog method, however, the cloud
installation logs was a substantially different data set compared to the OpenStack
logs which will be used in this thesis. Further, Sarah Beschorner in [S]] investigates
the use of an automated hyperparameter tuner when creating anomaly detection
models, and finally Janina Jager [31] presents methods to artificially create labeled
data sets.

16

1.7 Available Data

1.7 Available Data

This thesis extensively explores the implementation of anomaly detection methods
on a data center. Firstly, historical log dumps from Ericsson Research’s external
cloud Xerces are used to investigate the difficulties of creating models with real
data by training models with the data and qualitatively judging the performance of
the models. In addition to this investigation, a unique lab environment is created
with the TripleO architecture [66], described more in detail in Section In this
lab environment the models are tested for several different anomaly scenarios in
order to compare, and improve the methods. This is the main data source that is
used in the thesis.

17

2

Cloud computing

Cloud Computing refers both to the cloud service provided over the internet and
the software and hardware in the data centers and is used mainly for data storage
and computing power [4]]. The main technology enabling cloud computing is virtu-
alization [4]] which lets a single physical computing server to be split into multiple
separate virtual machines. For the user this implementation is completely hidden
and is identical to using a physical device. When the service is available in a pay-
as-you-go format to the general public it is called a public cloud whereas if the
deployment model is exclusive internally to a single organization it is called private
cloud [42]. The authors in [4]] present the new possibilities using cloud computing.
First is the pay-as-you-go model where the consumer only pays for what is used.
For example one hour of 1000 servers is as costly as 1000 hours of one server. Also
the user’s possibility of an instant sizable increase of computing power gives the
user the illusion of infinite cloud resources which especially benefits short but large
batch works. The result is additionally that the need for planning ahead for a com-
puting expansion is no longer necessary. Another aspect new with Cloud computing
is the redundancy of large capital hardware investments. In particular it has led to
more developers being able to offer applications and other internet services.

2.1 Cloud and Datacenter Elements

A complete cloud infrastructure requires hardware supporting various tasks. The
cloud architecture is built upon a control plane, a network, compute servers, and
storage [56]. The control plane manages all aspects of the cloud infrastructure, for
example authentication and scheduling of resources [[15]. The compute servers are
the fundamental part of the cloud, it is on these servers that the virtual machines
exist, which is the real product of the cloud facility [56]. Storage is necessary for
the users of the cloud, to store data for applications in the form of persistent storage,
or ephemeral storage which only exists during the lifetime of a virtual machine.
Storage is also necessary for the cloud infrastructure, for example to store virtual
machine images [59]. Finally a network is necessary. To connect the control plane,

18

2.2 OpenStack

compute servers, and storage, a physical infrastructure consisting of switches is
implemented. Software defined networks are also used to communicate between
servers [44]. Often a layered network is used with for instance TCP, and dedicated
network nodes manage the network configuration [56].

2.2 OpenStack

OpenStack is an open source cloud platform started by NASA and RackSpace
in 2012 [49]]. It aims to provide an [aaS (Infrastructure as a Service), meaning it
provides the virtualized hardware, such as servers, routers, or disks, as a service,
and the developer creates their own applications, including authentication, storage
models, and other run time aspects. OpenStack provides a compute, networking,
and storage platform through a set of services, each of which have APIs that may
be used to integrate them. The infrastructure owners decide which services to use,
and how to use the physical hardware [49].

The main allure of cloud systems was the availability of compute on demand,
and this is satisfied by compute nodes. The OpenStack service that provides the
API to these servers is Nova. It offers access to computing resources in several
forms including bare metal access, virtual machines, or containers [46]]. Nova will
manage the creation and deletion of virtual machines, as well as scheduling of
compute resources. In addition to compute, networking needs to be set up. The
OpenStack service that handles networking is known as Neutron. Neutron manages
everything involving virtual networks and the access layer of physical networks.
This allows infrastructure administrators to control IP addresses, firewalls, and any
communication between servers [43]].

Storage on OpenStack includes the services Swift and Cinder. OpenStack defines
Swift as a highly available, distributed, eventually consistent object/blob store. It is
used for storing unstructured data in applications that can scale quickly, and be used
concurrently [|63]]. Cinder, on the other hand, is used by the cloud service itself as
block storage for the virtual machines, and acts as persistence for virtual machines
in the form of a volume. It is built on principles of high availability, recoverability,
and other similar cloud concepts [[12].

All other services will interface with Keystone, which is the service that manages
authentication. This includes authentication of external users, for example when
creating virtual machines, and between the services themselves [34]. OpenStack
provides many other services, however these will give an overview as to what the
different logs studied in this thesis concern. Further, OpenStack is highly modular,
and each service will consist of several components that are designed much like a
service with an outward facing API, and internal processes.

19

Chapter 2. Cloud computing

To give an idea of the flow between services one can look at the creation of a
VM. The communication between the different services can be seen in Figure 2.1}
and the following steps are a simplification of what happens when a VM is created
[67.35]].

1. To begin with, a user initiates the process by using, for example the command
"Nova boot", or using the horizon GUI.

2. The users credentials are then authenticated by Keystone, and a request is
created and sent to Nova-api. Nova-api must once again use Keystone to au-
thenticate this request, and once done, the request is sent to Nova-scheduler.

3. Nova-scheduler selects an appropriate compute server, and sends the request
to Nova-compute on that server, which in turn sends a request to Nova-
conductor.

4. Nova-conductor extracts the information about the instance, and sends it back
to Nova-compute.

5. Nova-compute then uses the Glance service to obtain a VM image, which
once again needs to be authenticated by Keystone.

6. Nova-compute then requests an IP-address using neutron. Neutron authenti-
cates using Keystone, and provides the address, and network information.

7. Next Nova-compute requests a volume from Cinder, Cinder authenticates us-
ing Keystone, and Nova-compute gets the storage information.

8. Finally, Nova-compute releases the request to the VM hypervisor, which cre-
ates the VM.

Through this example it is clear that this is a very complicated system, with log
messages for a simple request being present in several files, on different servers,
indicating the need for automatic log analysis.

20

2.3 TripleO

Figure 2.1: The sequence of communications between OpenStack services in order
to create a VM. A lower vertical position of the arrow indicates a request is sent at
a later time. The dashed arrows represent a response to a previous request.

2.3 TripleO

OpenStack on OpenStack, or TripleO, is a deployment of an OpenStack cloud on
top of an existing OpenStack cloud. It is an existing project on OpenStack, and is
commonly used as a way to deploy a complex cloud using OpenStack’s API, instead
of deploying it directly on the bare metal hardware [66]]. The concept is based on
creating virtual machines within virtual machines, and will make it possible in this
thesis to inject anomalies into the system, without harming physical hardware. The
lower level of VMs are known as the undercloud, and the upper level of VMs are
known as the overcloud. Injecting errors is done by modifying the virtual machines
in the undercloud, simulating an anomaly on physical hardware while a cloud is
running on top of it. An illustration of the lab environment can be seen in Figure[2.2]

21

Chapter 2. Cloud computing

Overcloud: virtual ™
— machines on virtual <
machmes i h

Undercloud virtual

— - o
machines /
ITI ITI ITI . ',,/‘
N

Figure 2.2: An illustration of the TripleO architecture where a cloud is on top of an
existing cloud.

2.4 Docker

Docker is a platform for developing, shipping, and running applications within con-
tainers. Containers are essentially a virtualization at the OS level, where a single
kernel is split up into separate user spaces for different containers. Due to the fact
that low level hardware does not need to be virtualized, containers have better re-
source usage than virtual machines. Containers running different applications are
isolated, although can communicate through specified channels. There are several
advantages with using containers. One large advantage is not being dependant on
the installed software on the machine the application is running, instead all neces-
sary software, including the OS, is bundled in the container and different containers
can use different versions or configurations. Deploying containers is also a very
quick process, as it is only an image, a template for a container to be built, that
needs to be pushed to remote servers [[16,|17].

22

3

Log parsing

Some data produced from logs are already structured, such as metrics. It is usually
formatted as data specifying what metric is measured: the timestamp, the measure-
ment, and various other metadata. In this case one can proceed straight to the feature
extraction, or anomaly detection. However, as previously mentioned, a key part of
anomaly detection using logs is parsing the log data from unstructured statements
produced from logging statements in the source code, into structured log events
consisting of a template with constant parts, and parameters with dynamic parts,
encoding the current state of the log. Furthermore, the log can be split up into a
known format, including for example the time, and level of the log. An example
of the parsing of an unstructured OpenStack log, from the Nova component Nova-
conductor is seen below:

2020-02-03 10:57:25.718 7 INFO oslo_service.service
[req-30c23595-09cd-41ee-9beb5-daecd4365f6d - - - - -]
Child 37 exited with status O

This log is parsed by Drain, explained in the next section, into the following format:

Date,Time,Pid,Level,Component,RequestId,EventId,
EventTemplate,ParameterList

The log event is, thus, structured as:

2020-02-03,10:57:25.718,7,INF0,0slo_service.service,
[req-30c23595-09cd-41ee-9beb5-daecd4365f6d - - - - -
,A0001,

Child <*> exited with status <*>,"[’37’, °0’]"

The event ID, in this case A0001, would be used in feature extraction to encode
what log event took place. The structuring of the log data could in theory be
done by using regular expressions, however, due to the vast amounts of data, this
quickly becomes difficult to manage and is also computationally inefficient. The
technique is also hindered by the fast development of the source code. A large open

23

Chapter 3. Log parsing

source project such as OpenStack will contain many logging statements, written by
hundreds of developers, and these may be added, removed or altered frequently,
necessitating a change in the regular expression templates. Modern parsing methods
will, however, be robust to small changes in the message, such as spelling changes,
and if the parsing is done online, a new log message will be parsed without any
problems [27, |68]].

Another requirement due to the very large amounts of logs produced by data
centers is that a log parsing method is fast. Furthermore, to be used with production
data it is important that it can handle streaming data, and parse online. This is the
major breakthrough found with the Drain method, which is a performant method
that parses logs online. The previous state of the art methods have often seen the
problem as a classical clustering problem that train on offline data, and attempts to
use streaming data have been slower than the offline versions [[27].

Several log parsing methods are compared in [[68]]. It finds that Drain is both
the most accurate in the tested data sets, and contains the least amount of variance.
However, there are still some data sets where other parsers have better accuracy. In
terms of efficiency, it was found that Drain is the most efficient along with IPLoM
(Iterative Partitioning Log Mining), an offline parsing method [68]].

3.1 Drain

The state of the art fixed-depth tree-based, online log parsing method Drain, was
introduced in [27]]. Drain works in five steps: Preprocess by Domain Knowledge,
Search by Log Message Length, Search by Preceding Tokens, Search by Token
Similarity, and Update the Parse Tree.

The first step "Preprocess by Domain Knowledge" involves manually crafting
regular expressions to match in the logs, such as IP-addresses. Usually very few are
required, but they may improve accuracy [27]. The next step, "Search by Log Mes-
sage Length", is the first branching in the tree. Here log messages are partitioned
based on their lengths, in terms of the number of tokens, or words. The assumption
is that all log events always have the same length, which is most often the case,
and in the few cases that it is not true, the authors propose that post-processing can
solve the problem.

The following step, "Search by Preceding Tokens", involves separating log events
by single tokens, starting from the first word of the message, and going further as
the depth of the tree increases. The assumption here is that most log messages have
constant parts in the beginning of the message. There are cases when this is not
true, therefore, if the token contains digits, Drain does not match on the token, and

24

3.2 Feature extraction

instead inserts the special token * matching with anything. Similarly, if the token
has more than a certain number of children, meaning there are a lot of different log
messages with the same preceding tokens, but differ in this specific one, Drain will
replace the token by the dynamic wildcard *.

"Search by Token Similarity" takes place when the parsing has reached a leaf node,
the depth of which is given as a parameter. A leaf node contains several log groups
each defining an event, and this step finds a suitable log group for the message. The
log message is compared to the template using the following equation:

Y1 equ(seqi (i), seqa(i))

simSeq = ; ,

where seq; represents the log message, and seg; represents the template for the log
group, seq) (i) is the i’th token in the log message, and # is the length of the log
message. The function equ is defined, for two tokens 1, 7, as:

1, ifyy=n
equ(ty, b)) = .
qu(t;12) {0, otherwise
If the simSeq value is larger than a specified similarity threshold parameter, the
compared log group is returned as the one the message belongs to.

In the final step, "Update the Parse Tree", Drain adds the message to a log group
if the previous step deems the log message to belong to a specific group. It then
updates the template, such that if some token is not shared between the log message
and the current template, it is replaced by the * wildcard. If no log group matches,
a new one is created.

There are three parameters necessary to execute Drain. The depth of the leaf
nodes is used to determine when to end the "Search by Preceding Tokens" step. The
max number of children is used in step "Search by Preceding Tokens", in order to
determine if the token is constant or dynamic. Finally, the similarity threshold is
used to determine if a log message belongs to a specific group.

Drain was first developed into an open source program by the LogPai authors
[28]], but was improved by IBM engineers to include state persistence, and to better
handle streaming dateﬂ This is the implementation used in this thesis.

3.2 Feature extraction

Once the logs are parsed, one has a large sequence of log events. The question
then becomes how one may use this data in anomaly detection models. This is the

! Available at https://github.com/IBM/Drain3

25

Chapter 3. Log parsing

process of choosing what features of the data to use, and how to use the sequence
of log events as input to machine learning models.

The simplest methods are the fixed window and the sliding window, whereby
the input vectors to the models are a vector where each component of the vector
corresponds to the number of occurrences an event had during a window of time.
The fixed window has a length, and no overlap, whereas the sliding window has
both a length and a step size, leading to an overlap between windows. For the
sliding windows, the step is often chosen smaller than the length, which means
there is an overlap between the windows. As stated in Section [I.6] the performance
of sliding windows has previously been observed to be better than fixed windows,
possibly due to the fact that the shorter steps produce more data [28]]. The number
of windows is determined mostly from the step size, as the start of each window
is independent of the window length. Figure [3.] illustrates what may happen to a
sequence of log events as it is divided up into sliding windows, where each window
has a specified length, and the next window starts at the first log event which is a
step size away from the start of the previous window, and these sliding windows
are transformed into event vectors using the number of each event in the window.
In the remaining chapters of the thesis, the window length will be known simply as
the window size.

The session window counts the occurrences of each event with a respective iden-
tifier. Previously mentioned in Section [I.6] was that session windows performed
better than sliding windows, which could be due to the fact that all of the log
messages in the window are related, and can therefore produce a higher correla-
tion [28]]. In OpenStack logs, a suitable identifier is the request ID. A problem with
this, however, is that the request ID is local to the specific OpenStack service, and
therefore may not capture the state of the whole system, and is difficult to use for
root cause analysis. Another alternative is the instance ID, however, this identifier
is only present in the log messages pertaining to a specific VM, and therefore one
is imposing a large restriction on the data that can be used, as most of the produced
log messages will not have an instance ID.

Further alterations can be made to the event vectors before they are used in the
model. For instance in [37]], duplicate events are only counted a single time, and
the final event vector is weighted using IDF weighting. IDF weighting stands for
inverse document frequency weighting, and is a scheme that applies larger weights
on terms that are less frequent. The technique is widely used in natural language
processing due to the fact that frequent words, such as "the", do not contain much
information and are seen as unimportant. Assume there are N documents, the IDF
weight for term i is defined as, IDF; = log, (N/n;), where n; is the number of doc-
uments that include term i [36]]. For log analysis the number of documents can be
interpreted as the number of log sequences, or windows, and #;, can be interpreted

26

3.2 Feature extraction

as the number of of log sequences which contain event i. Weighting, or normalizing,
inputs is a common step in anomaly detection, and other techniques for doing this
will be described in Chapter 5.

Abengtn
1
I Rl
E1 E2 E1 E3 E1 E2 E4 E3 E1 E2 E4
L JL J
T m
Atstep ﬁllg—ng]*
Sliding
Window
E1 E2 E1 E3 2 1 1 0
E1 E3 E1 2 0 1 0

Event
count

E2 E4 E3 E1 Lr: 1 1 1 1

E1 E2 E4 1 1 0 1

Figure 3.1: An illustration of log key feature extraction with sliding windows.

27

4

Anomaly Detection

To define the terms outlier or anomaly is difficult, and there is no universal defi-
nition [[7]. In [11]], the authors simply define an anomaly as "patterns in data that
do not conform to a well defined notion of normal”, however this requires a sec-
ond definition of "normal". In Figure .1} one can see two clusters that are much
smaller than two large clusters, intuitively these large clusters would be "normal",
and the smaller ones would be outliers, however it is not a precise definition. In
[7], a definition of "normal" given by the authors as common is “An observation
which deviates so much from other observations as to arouse suspicions that it was
generated by a different mechanism". As described earlier, in the context of large
scale distributed systems, there may be errors in the systems that do not lead to a
failure and may therefore be a part of normal behavior. One example of an anomaly
is if the users of the cloud experience a slower than usual response, which is an
example of a performance anomaly. Other anomalies such as a server being shut
down, may manifest as novel log events, or in an unusual sequence of logs.

' .
02 et
. ,.._.1'-'
o g% Gafleel o
G2 B é’{ o
. %, .
« *°
G1
.
et il
IS L Y
¢« , ™

Figure 4.1: Depiction of the relation between the outliers O1 and O2 and the two
clusters G1 and G2 [50].

Within these definitions, anomalies can be categorized further [|11]]:

28

Chapter 4. Anomaly Detection

Point based anomalies: The simplest kind of anomalies are point-based anoma-
lies. This is when a single data point is an outlier with respect to the rest of the
data. For example an extreme value in a time series, or a data point that is far from
clusters of other data points.

Contextual anomaly: Another subcategory is the contextual anomaly, which is
the case when data points are an outlier in a certain context, but not in other con-
texts, or in a global sense for the whole data. This is common with for example
seasonal time series, where an outlier in a certain time span would not be an outlier
if it was in a different time span.

Collective anomaly: Finally, collective anomalies, is when a collection of data
points are considered an anomaly, however the individual data points may not be
outliers. This is relevant in the context of this thesis, as an anomaly may be present
for a certain time period, leading to a collective anomaly being present in the data,
or that a sequence of log messages is an anomaly, but the log messages themselves
are not anomalies.

The term outlier and anomaly are often used interchangeably, although outlier
is sometimes considered a wider term encompassing noise, and other expected de-
viations in the data set. Another concept related to these terms is novelty detection.
Novelty detection, as the name suggests, attempts to detect data points that have not
previously been seen. Many anomaly detection methods presented in this thesis are
also novelty detection methods, as they are trained using data that does not contain
any anomalies. This raises an important issue involved in anomaly detection, which
is the fact that when the behaviour of the system changes, so does the definition
of outliers, and models which were trained to the old behaviour of the system may
recognize normal data as anomalies. In the data center, the software is occasionally
updated, and care may have to be taken to ensure the efficiency of the models with
the updated software.

Anomaly detection is a very old subject, and, hence, there exist countless methods
with different use cases. A common technique among many methods is to model the
data, and detect anomalies as points that are not well modeled, although exceptions
exist, such as the isolation forest method, described in Chapter@}

If the data is temporal, a distinction is made between estimation methods, and
prediction methods, where prediction methods only use previous data points to
predict the current data point, and estimation methods use past, current, and sub-
sequent data [7]]. As prediction methods can handle streaming data, they are often
necessary. A simple method to define an anomaly with these methods is to take the
predicted value £, the actual value x;, and compute the absolute error |x; — £;|, and

29

Chapter 4. Anomaly Detection

if this value exceeds some threshold, also defined by the model, it is an anomaly.
For time series, to build a model one could use advanced machine learning methods
such as LSTM networks, or classical methods such as ARIMA models [7].

Clustering Methods One example of an anomaly detection method for data that
is not time dependant are clustering methods. There are a few ways to define what
an anomaly is in the context of clusters. The simplest way is to define an anomaly
as a point that does not belong to a cluster, this may be sub-optimal, however, as
algorithms are usually created to find clusters, and not anomalies. A second method
is to define anomalies as the data points which have a distance to their centroid
which exceeds some threshold, where a centroid is some definition for the middle
of the cluster such as the component wise mean of all points in the cluster. Neither
of the previous methods will work, however, if there are enough anomalies in the
training data that they form a cluster themselves. In this case anomalous clusters
can be defined as small and sparse clusters, or due to the reduction in number of
items to manually label after clustering, the clusters can be manually labeled to be
anomalous [|11]].

Density-based methods There are several related methods to clustering, such as
k’th nearest neighbor algorithms, or more general density based methods. Using a
k-nearest neighbor algorithm, outliers are defined as points such that the distance to
its k’th nearest neighbor exceeds some threshold. Similarly, density-based methods
estimate the density, which can be done with a k-nearest neighbor algorithm, and
define anomalies as points with low relative density. Density-based methods may
work poorly for data with naturally varying density. A disadvantage to clustering
methods is that there is not a single centroid to compare to; in order to test the
models, the density would have to be calculated with all test data, or including the
test point in the training data. Furthermore, the computational complexity is often
O(N?) for these algorithms, whereas clustering is typically O(N) [11].

Statistical methods Another method of detecting anomalies is through the use
of statistical modelling. One assumes that the data is generated through some dis-
tribution, and employs statistical tests to check if it is likely that a single data point
was generated by that distribution. These are somewhat simple techniques, that
provide a lot of information, as well as being able to be used in an unsupervised
settings, however the assumption that the data is generated by a simple distribution
is often not the case for real world data sets, and choosing the correct statistical
tests is not always simple [11].

Classification based methods Many machine learning methods such as SVM’s, or

neural networks can function as a classifier, and therefore given labeled data could
classify a point as a normal point, or as an outlier [11].

30

4.1 DeepLog

A common technique used in anomaly detection is dimensionality reduction. In
multivariate time series, dimensionality reduction is used to decrease the number
of variables, in order to utilize univariate methods on uncorrelated variables [7]]. In
non-temporal data dimensionality reduction may be used in itself as an anomaly
detection method, whereby anomalies are points that have a large projection on the
dimensions which are not principal components [28]].

All of these methods operate as point anomaly detection methods, however they
can be adapted to be used for collective anomalies. For time series this consists
of either finding full time series that are anomalous, or finding subsequences that
are anomalous. The easiest way to transform the latter problem into a point based
anomaly detection problem, is by using sliding windows. The length of the window
is often unknown, and part of modelling will include searching for window sizes.
There are methods that automatically detect subsequence length, however they are
not used in this thesis [[11,[7].

4.1 DeeplLog

As described in Section [I.6] one of the methods used for anomaly detection using
logs is DeepLog. It is split into two separate algorithms, a log key anomaly de-
tection model, and a parameter value anomaly detection model. The point outlier
detection method used in the log key anomaly detection system is not described by
the previous methods in this section, as it attempts to use discrete events instead of
a continuous variable in which a value can be compared to a threshold. These mod-
els are connected in such a way that the log key anomaly detection model will first
classify a log message, and if it classifies it as normal, the parameter value anomaly
detection model is used to determine if an anomaly can be detected from the pa-
rameters. Both models use an LSTM network, which is described more in detail in
Chapter 5]

4.1.1 Log Key anomaly detection

In order to detect anomalies in the log execution path, the authors model the proba-
bility for an event to occur, given the previous log messages. The probability distri-
bution is created by training an LSTM network in a multiclass classification setting,
to classify the event of the subsequent log message, given a window of 4 previous
log messages. The threshold used is a parameter g, where the events are ranked by
their respective probabilities, and if an event is not in the top g most probable events,
it is an outlier [19]. This is illustrated in Figure[d.2]in which an LSTM network out-
puts a probability distribution, given a sequence of log events.

31

Chapter 4. Anomaly Detection

Pl r=E1)

Fix+,=E2)

Yeg X5 g iz %] X1 Xy LSTM

P(x4+1=E3)

P(x4s.1=E4)

Figure 4.2: An illustration of anomaly detection using the DeepLog architecture. x;
is a sequence of log messages, each one of four events. A window of six is used to
predict the probability of the subsequent log message being a certain event.

4.1.2 Parameter value anomaly detection

For the parameter value anomaly detection DeepLog creates a separate model for
each log event. Each given log key has a set of dynamic parameters, and these
parameters form a multivariate time series. Consider the message below :

GET status: 200 len: 123 time: 0.0129128

Three parameters can be extracted from this message, the status, length, and time,
giving a parameter vector of [200, 123, 0.129128], and a fourth including the rela-
tive time to the previous log message. As all log messages of this event will have
these four parameters, a time series will be formed with the same parameters, and
anomaly detection can be done on this time series.

DeepLog simply uses the prediction methods described previously, using an LSTM
to predict the next value in this sequence. The authors then model the mean squared
error between the predicted value and the observed value as a Gaussian sequence.
The log message is classified as an anomaly if the error is not within a high confi-
dence interval of the distribution, 98-99.9% was used in the paper [19].

32

D

Machine Learning

Today big data is everywhere. The term big data refers to data sets on such massive
scale and complexity that traditional analysis tools can not be efficiently applied,
such as personalized data collected by current social medias [6]]. The ability to
process big data is where Machine Learning, ML, comes into the picture and has
become increasingly used. It provides a class of methods which can automatically
detect patterns in order to predict, or make decisions as classification, even for large
sets of data [25]]. This comes from one of the main characteristic of ML which is
in its ability to learn by experience. By detecting certain correlations in the data set
it creates a mathematical model of the data which can continuously improve with
more experience, in this case data samples [43].

For problems previously thought to be too complex or time consuming ML can
be used, where image and speech recognition and credit card fraud detection are
some given examples [25]. On the other hand ML is not some kind of magic which
can blindly solve problems. For example, different artifacts in an image data set
can give undesirable patterns in training. In [57] a highly accurate ML neural net-
work was created to classify if the image contained wolves or huskies. In reality
the created model classified the images by looking if there was snow or not in the
background. For the images of the wolves there often existed snow, whereas for
the huskies there was no snow. Furthermore, the complexity of ML models makes
it difficult for humans to discover these undesirable patterns and caution is needed
when using ML. The husky classification is an example of supervised learning
which is one of the four main types of ML.

Supervised Learning: The training data set is of the form {(x,-7 Yi) }i:O‘].... v+ Where
the data samples are characterized by an input feature vector, x;, and an output, y;.
The learning algorithm task is to learn the mapping function between the feature
vectors and its respective target vector to be able to predict the output of previously

unseen inputs [43]]. Basically, the entire training data has been labeled either as a

33

Chapter 5. Machine Learning

normal data point or as an anomaly and the model makes a binary classification
for previously unseen data points. However, this method is rarely used for outlier
detection since manually labeling an entire data set is extremely time consuming
[28]].

Unsupervised Learning: The input data consists only of feature vectors without
any corresponding target classifications or labels. This type of algorithms looks
for structures and patterns in the data set. Clustering is such an example where the
aim is to discover different groups among the input data according to its attribute
similarities. The model is expected to know what data points are normal and what
are outliers in the training data set after the learning process [43]].

Semi-supervised Learning: A combination of supervised and unsupervised learn-
ing where the training data usually consists of a both unlabeled and labeled data.
The training algorithm tries to learn the input-output mapping by exploiting both
information [2]]. In the field of outlier detection, semi-supervised learning refers
to novelty recognition [47]. It is when the training data only consist of normal
behaviour points and the trained model is then used for new observations to find
outliers. If an observations then differs within a given threshold from the normal
points it is classified as an outlier. It can be considered semi-supervised as this
approach only needs the normal data to be classified.

Reinforced learning: Lastly, reinforced learning uses trial and errors to deter-
mine actions to maximize a reward [2]]. Since it is not related to this thesis we will
not go further into it.

Following, various ML techniques related to the objective of the thesis will be
explained. Since the concept of Neural Networks and Deep Learning differs against
conventional ML it has its own section. The conventional ML methods which will
be described are all related to outlier and anomaly detection. Thereafter, there is a
section of the theory about model training for ML algorithms.

5.1 Conventional Machine Learning Algorithms

5.1.1 k-Nearest Neighbours

K-Nearest Neighbours, KNN, is mainly used to classify data points in relation to
samples in its vicinity. The classification of a new data point is made according to
the majority of classes belonging to the k closest neighbors. This method therefore
depends on the choice of k and the distance between samples is calculated using the
Ly-norm [23|).

34

5.1 Conventional Machine Learning Algorithms

Different variants of KNN can be made into basic unsupervised proximity-based
methods used for outlier detection [|32]. Three alternative measurements of the out-
lier score for each data point is the distance to the k:th nearest neighbor, the average
distance to the k nearest neighbors and the median of the distance to the k nearest
neighbors.

5.1.2 Isolation Forest

In [38], the authors describe an unsupervised anomaly detection algorithm which
differs from other anomaly detection models. Called Isolation Forest it does not pro-
file the normal state. Instead it explicitly isolates outliers by separating data points
from the rest. The method is based on the Random Forest algorithm by building
up a tree structure, iTree, similar to decision trees. The overlying methodology is
taking partitioning actions in the dimensional space of the data until the chosen
point is isolated by itself in the final partition. To isolate a chosen data point, the
algorithm selects randomly a feature where it splits the space randomly between
the maximum and minimum value of the selected feature. This action is performed
recursively until the chosen point is isolated. To determine an outlier it takes advan-
tage of the properties that outliers are few and different from the ones belonging to
the normal state. Therefore, the number of partitions required to isolate an outlier
should be less in comparison to the normal ones. A 2D visualization of the idea is
shown in Figure [3;1‘] where in general the outlier, x;, requires less partitioning than
for the normal state point, x;.

e
.
-
.
l
.
L4
o
.
.
'y
.0
-
.
.

(@ (b)

Figure 5.1: Illustration of Isolation Forest where the number of random space parti-
tions required to isolate an outlier, (a), is less than that of normal points, (b) [8][9].

In the example the attribute, either x or y axis, is chosen at random and then is
split randomly into two portions recursively until only the point remains. Splitting
the space recursively can be represented by a tree structure where the depth of the
tree is the number of partitions required for the isolation. Generating multiple trees
randomly, on average, an outlier will have a lower depth than normal instances [30].

35

Chapter 5. Machine Learning

An advantage of the Random Forest algorithm is that it does not utilize any distance
or density-based measures which removes costly computations.

5.1.3 One class SVM

A support vector machine (SVM) is a supervised algorithm, used to classify data.
The classification is done by choosing a hyperplane such that the distance to the
nearest point on each side of it is maximized. Although a hyperplane represents
a linear classifier, non-linear classification can be done by mapping the inputs to
higher dimensions using a so-called kernel [|62].

One class SVM differs from the ordinary SVM in that instead of seperating points
with a hyperplane, a hypersphere is used. The most basic formulation of one class
classification using an SVM is to choose the hypersphere with the smallest radius
that also encompasses all training data. However, this cannot be used if there are
outliers in the training data, therefore the optimization problem is altered slightly,
adding a parameter that controls the fraction of outliers in the training data. The
hypersphere will now contain all data in the training set apart from a certain number
of samples controlled by this parameter [48§]].

5.1.4 LOF

Another algorithm for finding outliers is Local Outlier Factor, LOF, and it is pro-
posed in [[10]. Here the data points are not binary classified as an outlier or non
outlier. Instead the algorithm computes a score, called outlier factor which indicates
its degree of abnormality. The algorithm is density-based, however, the approach is
to examine the density ratio between the sample and its neighboring samples. The
idea is that samples with considerably lower local density than the samples in its
vicinity are more likely to be outliers. More exactly, the outlier factor is equal to
the ratio of the average local density for the k user defined nearest neighbors, and
its own local density. For outliers it is expected to have a much lower local den-
sity than its neighbors while a normal instance should have approximately the same
[13]. The main advantage of this approach is that it takes into consideration both
local and global properties which makes it perform well for data sets were outliers
have different local surroundings [13]]. Figure[5.2]depicts a data set where the outlier
factor is calculated using LOF.

36

5.2 Artificial Neural Networks

Local Outlier Factor (LOF)

e Data points U

204 © Outlier scores ® ®© @
20
@% o ©- ©0 IXCO)
104 %5) O © (SD ®®
o) ©

0 So © @ 00 @@@ &
© 00 o9
10 ®® o & Q% ® 6}5@%@
&
20 1 ©
20 10 0 10 20

Figure 5.2: Plot showing the LOF algorithm. A wider circle indicates a higher value
of the local outlier factor meaning a higher density ratio between the given sample
and its neighbouring samples resulting in a more abnormal instance.

5.2 Artificial Neural Networks

Inspired by the human brain, Neural Networks, NN, consist of a collection of nodes
called artificial neurons in a graph [[1]. Each node can receive and send signals to
other connected nodes which models the synapses in our brain. The strength of the
synapses are modeled by a weight of the connection between nodes, i.e., the edge
weight in the graph [25]. There are three types of artificial neurons [25]. The data
is entered to the network through the input neuron. Following the input neurons are
the hidden neurons where the computation is performed. The term hidden comes
from that the user can not see the output of these nodes. Lastly the result leaves the
network through the output neurons. For NNs the neurons in the graph are usually
placed in layers of different sizes where the nodes in the first and last layer is the
input and output neurons respectively. The layers in between consist of the hidden
nodes and when a NN has multiple layers the learning process is often called deep
learning [1]].

When data is sent through the network, each neuron receives values from its con-
nected neurons in the previous layer. Using the connections weight, the weighted
sum of the received values are computed, added with a constant called bias term and
then sent through a non-linear function called an activation function [24]. The result
of the mathematical operations becomes the given neurons value which are prop-

37

Chapter 5. Machine Learning

agated to the next layer. The process is shown in Figure [5.3] and can be expressed
as

N
S=b+) wixi (5.1
i

where o is the resulting value of the neuron, f is the activation function, w are
the weights and x the input/received value, b is a bias term which is not shown
in the figure, but is almost always used. The importance of the non-linearity of
the activation functions is to make it possible for the network to approximate non-
linear relations [24]]. Different activation functions are often used for different kinds
of neural network layers, where some commonly used are Sigmoid, RELU and tanh

(L]

weights
inputs

X;

activation
functon

net input
net;

f(S)|—

activation

transfer
function

threéhold

Figure 5.3: The mathematical operation which gives the resulting value of each
node in an artificial neural network. The value is the sum of a bias and the weighted
inputs through an activation function [58].

The learning of the network occurs when changing the weight values for the connec-
tions between neurons. A widely used mathematical method to train a NN consisting
of neuron layers is called forward and backward propagation which is explained in
[24]. The training data, x, will be passed through the network and result in an output
value, y, which is the forward propagation part. Using a loss function, the training
data’s true label, §, will be compared to the NN’s classification and result in a loss
value L(y,¥). In the back propagation the resulting loss value is minimized by a
gradient decent variant in terms of the weights of the last layer. This is then re-

38

5.2 Artificial Neural Networks

Unfold TW TW
C- =) .~ 5 -
@ @ @

Figure 5.4: An example of a recurrent neural network, which is initially illustrated
as a connection from a node to itself, but afterwards can be seen to represent a
connection through time [61]].

peated backwards. The number of forward- and backward propagation done during
training is called epochs and it must be set during the training of NN. However for
this training method, forward and backward propagation, reaching a global minima
is not guaranteed since the problems usually are non-convex. Lastly, because of the
need to compare predicted output and the true output in the training phase these
NNs can only be used for supervised learning, which is true for the majority of
NNs, [[1]].

5.2.1 Feedforward NN

The simplest kind of neural networks is the Feedforward Neural Network, FNN,
where the data only moves forward in the network without any cycles or loops
[24]]. Each neuron is connected to all the neurons in the next and previous layer
which gives a fully connected network. The hidden and output neurons do the
mathematical operation previously mentioned using the values of the previous layer
and the connection’s weight. The value of the output node is then the final result
of the data through the FNN [25]]. If the output variables are continuous, the neural
network performs regression, whereas if the output is part of a discrete set of values
it performs classification [1]].

5.2.2 Recurrent Neural Networks

Recurrent neural networks are specially designed neural networks built for handling
time series data. They are able to process much longer sequences of data than classi-
cal neural networks would be able to [25]. This is achieved by creating connections
between the outputs, or hidden units from the previous sample to the current sample.
This can be seen in Figure in which there is a connection between the outputs
of the single hidden layer.

39

Chapter 5. Machine Learning

5.2.2.1 LSTM One problem with the basic RNN presented is that gradients
have a tendency to vanish when performing back propagation through time on long
sequences, and therefore the network can not model dependencies far back in time.
The solution to this is using an LSTM, a more advanced type of recurrent network.
LSTM, which stands for long short-term memory, consists of a cell, an input gate,
an output gate, and a forget gate. The cell remembers information for arbitrary time
lengths, information has the ability flow unchanged between cells, which offers
the advantage for LSTMs, as gradients can also flow unchanged and therefore do
not vanish. In order for the network to learn which time steps have "important"
information, and which do not, the three gates can regulate the information that
flows between the cells [40].

5.2.3 Autoencoder

The idea of an autoencoder is first to encode the input data and then using a decoder
reconstruct the input data as close as possible, hence its name. The encoding often
consists of a dimensionality reduction where as much information as possible is
preserved. The decoder is optimized without any knowledge of the hidden layers in
the encoder, only having information of the input and output data of the encoder.
Since some information is lost in the dimension reduction a perfect reconstruction
is not possible. This type of NN’s loss function uses a sum of squared differences
between the input and the output [25].

In outlier detection autoencoder can be useful because it can be used in unsu-
pervised learning [24]. The idea is that the autoencoder models a normal state
during the training phase and therefore data points belonging to a normal state will
be better reconstructed than an outlier. Using a threshold on the loss function for
the reconstruction for a data point the autoencoder can, hence, be used to classify
outliers.

5.3 Ensemble models

Ensemble learning is the process of using several models to produce a better re-
sult than each of the individual models [21]]. One example of using ensembles is
the previously mentioned Isolation Forest algorithm, where several trees make up a
Forest [30]]. There are several ways to make an ensemble model, the simplest using
the average value for regression, or a voting system for classification. More com-
plex systems include boosting, where each new model is trained to better classify
the instances that were misclassified by the previously trained models. Empirically
models that have different behaviour often achieve better results after forming an
ensemble, compared to forming ensembles with less diversity [21]].

40

5.4 Model Training

5.4 Model Training

There are multiple essential steps and elements of the training phase required to
get a good machine learning model. Firstly, the data set often needs to be processed
before being used for training. Thereafter, during the training phase there are several
important methods to get a good fit and prevent overfitting. Lastly, an appropriate
evaluation method and metric needs to be chosen [24].

5.4.1 Feature scaling

A part of the data preparation is normalization, also called feature scaling. Since the
range of values for the different features can differ significantly scaling is needed
for most machine learning algorithms [53]]. For example, many ML techniques use
Euclidean distances and if a feature has a wide range the distance will be unpro-
portionally affected by this feature. One of the normalization methods specifically
developed for log parsing analysis is inverse document frequency weighting, IDF,
explained in Section[3.2} There are multiple other widely used feature scaling meth-
ods used for ML.

Min-max normalization is one of the simplest methods and scales every fea-
ture individually such that the values are in the range [0,1]. The general formula
is
, _ x—min(x)
~ max(x) —min(x)

where x’ is normalized value and x is original value. Using minimum and maximum
values in the formula makes the method sensitive to the presence of outliers and
can in many cases make outliers not present after the transformation [|S3|].

Z-score normalization, also called Standardization, scales the data so that each
feature has zero mean and unit variance.

(o}

where U is the mean of the data, and ¢ is the standard deviation. Because the range
of each feature is of different magnitude the scaled distribution will differ from the
original. Moreover since the outliers affect the calculation of the mean and standard
deviation the Z-score normalization is sensitive to outliers. However, in many cases
the few large marginal outliers will still be present in the transformed data set [S3]].

Robust scaling bases its centering and scaling around percentiles and median
unlike the previous methods. For example using the /QR, which is the difference
between the value at the 75th percentile, and 25th percentile, one can scale as:
,xX—m
~ IQR’

41

Chapter 5. Machine Learning

where m is the median of the data. As a result the method is much more robust
to a few number of large outliers. The outliers will hence still be present after the
transformation and the distribution will be approximately similar [53]].

5.5 Overfitting

One of the main characteristics of machine learning is that it is supposed to perform
well on new unseen data which is called generalization. If the entire data set is
used for training then minimizing the training error will simply be an optimization
problem. Therefore, in machine learning the goal is generally to minimize the gen-
eralization error, also called test error. This value is the expected value of the error
for a new data point. To accomplish this the available data set is usually split into a
training set and a testing set which is explained in Section[5.5.4] When training, for
many ML algorithms there comes a point where further optimization of the training
error comes at the cost of the test error. Overfitting then occurs when the difference
between the training error and test error is too large which is depicted in Figure[5.3]
which means that the model is optimized to give a low loss for the training set, but
will give a larger loss for unseen data.

Error Underfitting Overfitting
<
(0
es®
Tfa/'n,-n
I‘ro,_

Model complexity

Figure 5.5: Example of how the relation between training and test error may look
when training machine learning models, as the complexity of the model increases.

5.5.1 Hyperparameters

In many machine learning algorithms, hyperparameters are parameters that need to
be set prior to the training phase. By contrast other model parameters are optimized
during the fitting of the training set. One type is the algorithm hyperparameter which
controls the learning process, e.g., learning rate and batch size. There are also those

42

5.5 Overfitting

who are a part of the model selection. A bad choice of hyperparameters can result
in an overfitted model, for example with a large number of hidden units in a neural
network, or in polynomial regression choosing a high degree. Poor choice of hyper-
parameters may also lead to bad model performance, for instance choosing a neural
network model which is too small, and does not have the capacity to learn the fea-
tures of the complicated data set. Hyperparameters for neural networks includes the
number of layers and the number of nodes in each layer.

5.5.2 Dropout

A simple and effective way to reduce overfitting in neural networks is to use a
technique called dropout. Randomly dropping the weights going into the next layer
will reduce the number of parameters of the network. Therefore during the training
phase the networks ability to match the training set is decreased which means less
probability of overfitting [24].

5.5.3 Early Stopping

Another method to prevent overfitting is early stopping. Many neural networks are
based on iterative optimization methods, where training takes place over several
epochs. For each epoch the model is improved in terms of the loss on the training
set. However, there comes a point where the reduction of the training loss comes at
the cost of the test loss, early stopping is to stop training at the point where the loss
in a validation set starts to increase [1]].

5.5.4 Train, Test and Validation Sets

To get an unbiased evaluation of the final model the data set can be split into three
subsets. The training set is used for the model learning, that is to fit the classifiers
"internal" parameters. Then the validation set is used for an unbiased tuning of the
hyper parameters, for example choosing the number of layers in a neural network.
Lastly, because the validation set was used in tuning of the hyperparameters it is not
a good measure of the generalization of the model. Therefore the test set is used for
measuring the performance of the final model [1f]. The pseudo-code below shows
an example of the usage of the different data sets.

#Splitting data set
training, validation, test = split(data)

#Tuning classifier hyperparameters
for parameter in hyperparameters:
model = fit(parameter, training)

performance = evaluate(model, validation)

#Testing the final model

43

Chapter 5. Machine Learning

model = fit(train)
final_performance = evaluate(model, test)

5.5.5 Performance Metric

There are several commonly used performance metrics for a binary prediction with
classification models [25]]. Assuming:

Positive class, p is the set of outliers.
Negative class, n is the set of normal points.

Then four prediction sets can be defined as:

True positives, TP. Number of correctly predicted outliers.

True negatives, TN. Number of correctly predicted normal points.

False positives, FP. Number of false alarms, i.e., normal points predicted as out-
liers.

False negatives, FN. Number of missed outliers, i.e., outliers predicted as normal
points.

which also is illustrated in Figure[5.6]

Actual

Positive | Negative

Predicted
Positive

Negative

Figure 5.6: Confusion matrix

From the given definitions of positives and negatives, the following benchmark
metrics are defined as [23]):

TP
Positi dicti lue, R S S
ositive predictive value, precision TP+ FP
TP
True positive rate, recall = ————
TP +FN

44

5.5 Overfitting

FP

Fal iti te, fall-out = ————
alse positive rate, fall-ou P TN

recision X recall
2 X p—

F-score = .
precision + recall
A TP+TN
ccuracy =
¥~ TP+ TN+FP+FN

The true positive rate, recall, represents the ratio between predicted and the to-
tal number of outliers i.e. the prediction accuracy of the outlier data set. A small
value of recall means bad accuracy and there are a large number of outliers missed
by the model. The false positive rate, fall-out, on the other hand is the ratio of clas-
sified outliers to the number of samples in the negative class, i.e. the complement
of the accuracy for the negative class. A large value therefore means bad accuracy
which leads to many false alarms. Receiver operating characteristic, ROC, analysis
studies the trade off between the true and false positive rate and can be visualised
by a ROC curve where they are plotted against each other [52]. A visualization of
the characteristics of ROC curves for classification models is shown in Figure
For outlier detection the desired value is a large true positive rate in proportion to
false positive since it means a high accuracy for finding outliers and low ratio of
false alarms. However, there is always a tradeoff when choosing a model of getting
a larger true positive rate, or a lower false positive rate.

Another performance metric is the precision which also measures a false alarm
value but it includes prediction rate in both outlier data set and the baseline [52].
Furthermore the F-score, which is the harmonic mean value of recall and precision
combines the two metrics into one. It is approximately the mean value when the
value of recall and precision is close to each other. Lastly the benchmark value is
the accuracy which gives an indication of the correct hit rate of the predictions[25].
However, accuracy can give a misleading value when using unbalanced data sets
[52]. For example, having an disproportional number of positives the highest accu-
racy is achieved by predicting every data point as a positive.

45

Chapter 5. Machine Learning

ROC _CURVE

10 ® ~——PERFECT CLASSIFIER »

TRUE POSITIVE RATE

v 1 1 T 0 1
0.0 02 oy 0.6 08 0
FALSE POSITINE RATE

Figure 5.7: A ROC curve which shows the trade off between the detection rate, TP,
and the false alarm rate, FP, for better and worse classifiers .

46

6

Method

The methodology chapter will be divided into several parts, detailing both the ex-
periments done on the OpenStack on OpenStack environment, the pipeline used for
anomaly detection, and the methodology used to analyze different models and pa-
rameters used in anomaly detection. Firstly, in Section [6.T} the lab environment is
introduced. Following this in Section the specific anomaly scenarios and log
collection are described. Subsequently, the first step of the pipeline, the cleaning
and parsing of the data is described in Section [6.3] The application of historical
data, and on data collected from the experiments is outlined in Sections 6.4} and[6.5]
respectively. The last step of the pipeline, inference is outlined in Section[6.9]

6.1 Lab environment setup

To get labeled logs, a lab environment was built using OpenStack on OpenStack,
i.e., TripleO, which is described in Section @ It is a cloud environment where
the OpenStack services are run on VMs pretending to be physical servers. The
lab environment gave us better control over the cloud infrastructure than we could
get with the production cloud. It is easier to produce logs representing a normal
state with TripleO, since the servers were not physical machines but controllable
VMs. Further, as a result of the servers being virtual we could inject errors into
the system and produce labeled data sets. Examples of errors that may be injected
into the virtual servers are: shutdown of a server, full disks and network delays. By
using the lab environment, we also avoided affecting the production cloud and the
physical servers themselves when carrying out the experiments.

The TripleO system consisted of 12 VMs, each with 4 cores, 40GB disk mem-
ory and 16GB of RAM. Further, the higher level OpenStack services, for instance
Nova-api, were deployed as individual containers on each VM using Docker. Some
of the specific services on the VMs are shown in Table although many more
containers were used in the deployment. Finally the VM known as the HA-node

47

Chapter 6. Method

runs a proxy service called HAProxy. The server functions as a load balancer, and
all the requests between the different VMs are passed through the HA-node.

Table 6.1: Shows the setup of the created TripleO environment and the OpenStack
services running on the servers.

Control Compute Storage | Network | Ha node
#servers | 2 3 2 2 1
Nova
-api
-conductor
Services | -scheduler | Nova Compute | Swift Neutron | HA-proxy

Keystone
Neutron

6.2 Log collection

6.2.1 Decide which logs to use

Although the eventual goal with the anomaly detection systems will be to deploy
the anomaly detection models for all OpenStack services, some were prioritized
in this thesis due to time constraints. Because Nova is the primary service used in
managing the life cycle of virtual machines, it was decided that Nova logs should be
used. We also decided to build models by merging logs from separate components,
and servers, due to this producing a larger training set and is simpler to deal with,
rather than having different models for each Nova component. Merging logs from
different servers may give worse performance as some of the anomalies will only
be present in one server at a time, however, we decided that this was not a major
concern, and that it is a realistic scenario for the models to learn the behaviour of
several servers. The exact logs used were Nova-scheduler, Nova-api, and Nova-
compute. In contrast to the DeepLog experiments which only used INFO level logs
[19], all logs were used in our models.

6.2.2 Baseline

In order to detect errors and benchmark the models, a baseline needs to be es-
tablished. When there are no incoming requests from the user, very few logs are
produced unless there is a large problem in the system. Therefore we created a
script that would continuously send requests to the lab, leading to the production of

48

6.2 Log collection

enough logs for the models to be reliably trained.

The script consisted of a cycle of creating one virtual machine, waiting for a
specified time, thereafter deleting the machine and finally waiting another specified
time before once again creating a new virtual machine. There is a certain trade
off when choosing the length of these cycles, if the time between starting virtual
machines is too large, it will take a very long time to collect enough data, and when
using unsupervised methods, there is a risk of the requests from the script such as
creating a virtual machine will be classified as an anomaly. On the other hand if
the time in between creating virtual machines is too small, errors that would only
give minor symptoms with realistic usage may be amplified, for example a small
delay causing the delete request for a virtual machine to be sent before the creation
process is finished. This may lead to unrealistic scenarios, where the performance
of the models in the lab is not reflected in production. In general the usage of the
cloud can vary, so creating a realistic scenario can be difficult.

Figure [6.1] shows the frequency of the logs collected from the lab environment
for a baseline cycle of creating and deleting a VM instance. What can be seen is
that in between creating and deleting, when there are no user commands, there are
almost no logs produced, which differs from the historical data. The cause is proba-
bly that our lab environment can be described as an ideal system, meaning without
any user commands the cloud system is static and gives no logs. Since there are
no log messages in between VM creations and deletions the only thing that can be
analysed is said processes. Importantly, this results in that the time spans chosen in
between creation and deletion, if large enough, will not influence the end result due
to the fact that the models only see logs from these processes, and adding waiting
time does not influence the input to the models. To have enough time to create a
VM before deletion, both for baseline and during anomalies, a three minute wait
time in between creating and deleting and one minute before creating a new one
was decided upon. Figure[6.1]is from this configuration of cycle times.

The reason for choosing a simple cycle of create and delete commands is that
it creates a lot of interaction between the different components of the system, as
described previously in the flow of virtual machine creation. Other tasks that are
possible include stopping and starting a virtual machine, which would produce
fewer logs, and mostly involve Nova. Scenarios using start and stop, or other simi-
lar tasks could be useful for testing the models in different environments, however,
the general performance of anomaly detection should be captured by the simple
loop of creation and deletion.

49

Chapter 6. Method

Number of events
o B N W & U O N ©

| I

100 200 300 400 500
time/[s]

o

Figure 6.1: Number of events, i.e. the number of log messages, collected
during a one second time window for the OpenStack on OpenStack system.

6.2.3 Injecting Errors

Using the OpenStack on OpenStack lab environment, several experiments were
carried out. The experiments lasted for about one day each, and all except the Rab-
bitMQ network delay were carried out on a single control node.

Control node shutdown A node shutting down is a simple anomaly, and was
therefore chosen as an initial experiment. As services were deployed as Docker
containers, in order to shutdown a service the docker stop command was used
[[18]. For instance to stop Nova-scheduler, the following command was issued:

docker stop nova_scheduler

Similarly, to simulate the shutdown of an entire server, all services were stopped.

Full disk A server may fail when the disk is filled, and may also experience
performance degradation as it becomes close to being full. To simulate a disk being
filled, a very large file was allocated. This was done on both the disk partitioned for
the user and additionally for the disk partitioned for the Docker containers where
the OpenStack services ran. The experiments will henceforth be known as Full
Docker disk, and Full user disk. The fallocate command was used to fill the
disks, for instance [22]:

fallocate -1 50GB

Maximum CPU Load A strained server may have a very high CPU usage, and
while it is acceptable for a server to run at a high load for short amounts of time in
production, a prolonged period of high load should be considered an anomaly also
in the production cloud. Furthermore, while not always a symptom of a failure to
the system, it is interesting to investigate whether the models detect the change in

50

6.3 Cleaning and Parsing Data

the system. To simulate a very high CPU load, the stress-ng program was used,
using the following command.

stress-ng --cpu 4 --timeout 24h

This command specifies that the stress-ng program should spawn processes on 4
CPUs, which is the number of CPUs the virtual servers have, and maximize the
load for 24 hours [|60].

Network delay A throttled network is a clear source of performance degrada-
tion in the cloud, and may even be a sign of an external attack [[19]].

To simulate a network anomaly the Linux tc-netem command was used [64].
This command has many options, such as packet loss or data corruption. However
due to the TCP layer using retransmission if data is lost or corrupted, most of the
alternatives will manifest as a delay, thus we only tested a delay. The configurations
attempted were a simple constant 100ms delay due to time constraints. The length
was chosen as a realistic delay that would cause problems, and small enough that it
should be subtle enough that the models are needed. The exact command used was:

sudo tc qdisc add dev ethO root netem delay 100ms

In addition to this, an anomaly which has often been encountered on the production
cloud at the Ericsson Research cloud are problems with the messaging system Rab-
bitMQ. Therefore an experiment with a delay on the server running this container
was also carried out, to simulate the message queues filling up. The delay experi-
ments carried out were a Control node network delay, and RabbitMQ network delay.

In total, six kinds of experiments were carried out.

6.3 Cleaning and Parsing Data

The raw logs could not be parsed directly, but rather needed to be cleaned

first. In order to parse the logs they need to have a consistent format,

which could be used to identify the timestamp, or request ID, needed for

feature extraction. Although there were deviations for a few of the com-

ponents, the OpenStack logs used in this thesis had the following format:

<Date> <Time> <Pid> <Level> <Component> <RequestId>] <Content>,
where Content is the actual log message being analyzed, Pid is an ID for the pro-

cess that sent the log, and component specifies which component of the OpenStack

service that sent the log message.

There were several ways in which a single line of the log file did not conform
to this format. For instance, there are log messages that are interrupted, and a new

51

Chapter 6. Method

log message is started on the same line. In some cases a line break in a log message
is started on a completely new line without the time, or other metadata, and may be
cut off on the new line as well. In this thesis lines that do not conform to the general
structure of the logs are removed.

Two methods were used to clean lines where a single log had been split up into
multiple logs, i.e. a line break in the log message in the case that the time and other
metadata was included in the following line. This often happened for example when
a traceback had occurred, which is when something went wrong with the python
code causing an exception, and a report of which functions were called to get to
the point where the exception occurred is logged. The first method was simply to
remove lines that did not include a request ID, which is useful for session windows,
as logs that did not include a request ID could not be placed in a session window,
so removing them already at this stage made the training process faster. The second
method developed is to look at the metadata of the log, and if they are all equal to
the previous log message, the message content is appended to the previous line. Due
to the asynchronous nature of logs this could potentially cause problems, however
this is checked by inspecting the parsed templates.

To parse the logs into templates, the drain method is used. For the his-
torical data, the parameters chosen were simply the default: maxdepth=4,
similarity threshold=0.4, max number of children=100. The reason
they were not tuned was because it is difficult to automatically evaluate the content
of several different log files. An option to search for parameters automatically is to
include these parameters in the tuning of the full anomaly detection system. How-
ever, as there was no quantitative analysis done on the performance of anomaly
detection on historical data, this could not be done. For the TripleO environment, a
few different values of the similarity threshold were tested.

6.4 Historical Data

To begin with, historical log dumps were used. In order to analyze them, a pipeline
was built merging all necessary steps. First the logs were cleaned, and parsed. Fol-
lowing that, feature extraction was implemented, and the output was used to train
several models. Finally, the models were used for inference on previously unseen
data.

First, the logs from the Nova-conductor component of a control node were clustered

in order to study different types of normalization, and the qualitative attributes of
the data. The data set is unlabeled and therefore we implemented various unsuper-

52

6.5 TripleO

vised algorithms, including Isolation Forest and Autoencoder [38| 24].

The following experiments in this qualitative investigation were done on a set
of logs containing the services Nova-scheduler, Nova-conductor, and Nova-proxy,
as these logs had several months of overlap. Due to the logs only storing a fixed
amount of lines before overwriting previous logs, many of the logs from the his-
torical dumps did not overlap. Some of the logs spanning several years, and others
spanning only a few days. This made it difficult to model using several of them, and
compare results.

As previously stated, the data set does not contain any labeled data and manual
labeling is too time consuming. Without a labeled testing data set, a parameter tun-
ing of the unsupervised models is not possible and therefore we cannot create any
optimized models. Instead, we test the model on the training data and investigate
if the results are reasonable. This is not the final result, but more a preparation for
later stages and therefore an optimized model is not necessary at this stage.

The models are tested both for sliding windows, and session windows using re-
quest IDs, and the results are compared, both with different window sizes, and the
differences between session window and sliding window.

6.5 TripleO
6.5.1 Data set

Our log data set comes from the two OpenStack on OpenStack lab environments.
The logs are collected from the OpenStack services Nova-api, Nova-scheduler and
Nova-compute from the combined five control and compute nodes, see Table [6.1}
In total the data sets have 496,346 log messages where we collected logs from each
experiment, see Section 6.2.3, once per lab environment. The data set is completely
labeled since we manually inject the errors into the system and thus it can be used
for evaluating the trained model. Table [6.2] shows the number of log messages col-
lected for the baseline and outlier set for each lab, since these were collected sepa-
rately. Furthermore, the number of parsed log keys per set is shown in the table. The
log set for labl does not include the Full Docker disk or RabbitMQ network delay
experiments. The reason is that the system almost broke down completely when ex-
ecuting these experiments. Moreover, the problem led to that the baseline data set
for lab1 is significantly smaller than for the other lab2, see Table[6.2] In addition to
that, the lab environments are not perfectly identical, hence it was decided to only
use the data sets collected from lab2.

53

Chapter 6. Method

Table 6.2: The data sets collected from
the two TripleO systems.

Lab | Logset | #Logs | #Log keys
1 Baseline | 237853 | 79
Outlier 109200 | 89
2 Baseline | 68796 70
Outlier 80188 | 75

- Training - Validaton |7 Test

Baseline set

Outlier sets

Figure 6.2: The split ratio of the data sets where x is the percentage of the outlier set
needed for the contamination of the training set.

6.5.2 Data set split

To get an unbiased evaluation of the model, the data sets are split into three parts. We
decided upon an 80% training, 10% validation and 10% testing split for the baseline
data. How to divide the outlier data when using event vectors is more complicated.
For a real cloud system, the logs collected will in most cases mainly consist of
normal points with a small amount of outliers. To simulate this for the models using
event vectors, we inject some of the outlier data into the training set which consists
of the baseline data. This ratio of injected outliers is a parameter used in the grid
search later on. The number of injected points needed in the training set will be
distributed equally for all the experiment data sets. We hold 20% of each experiment
data for testing and the rest 80% for training and validation. The outlier training
data varies in the grid search and therefore the training and validation ratio. The
two data splits are shown in Figure[6.2} For the models using an LSTM we did not
contaminate the data set. This is because it is difficult to contaminate the training
set in a realistic way, as this would involve inserting data points into a time series.
This is in contrast to the models using event vectors, where one can simply insert
an anomalous event vector into the training set.

6.5.3 Performance evaluation

Evaluating a classification model for finding outliers is not trivial. It is a balance
between the hit rate of finding anomalies and the frequency of false alarms, i.e.
miss classification of normal data. Commonly used measures are a combination
of the metrics recall, precision and F-score, see Section [5.5.5] However these per-

54

6.5 TripleO

formance metrics are not optimally suited for our data. Once again using TP (true
positive), and FP (false positive), the precision score is defined as TP/(TP+FP).
Since TP is the number of correctly classified points in the outlier set, the TP value
is completely independent of the baseline data. Respectively only the baseline data
set affects the value of FP. Since our data set is split by baseline and outliers the
precision score will be greatly dependant on our choice of validation set ratio of
outliers to baseline. For instance by using a baseline data set unproportionally small
in regards to the outliers, even if all baseline points are misclassified as outliers,
TP+FP is dominated by the TP term, and TP/(TP+FP) will be close to 1, which is
the optimal value for precision.

Instead we decided to use a ROC graph where the True positive rate is plotted
against the False positive rate, an example previously shown in Figure and
explained in Section [5.5.5] It illustrates the balance between finding outliers and
reducing the number of false alarms. Additionally, the result is independent of the
size ratio of the baseline set and the outlier set, since both axes values are only
dependant of their respective data set. One drawback is that there is not just a
single value to compare the models with. However, one method of determining an
optimal model is to set an upper limit of the percentage of false alarms. Thereafter
the optimal model is the one which gives the maximum true positives. The upper
limit is mostly dependant on the use case of the classification. For example, for
detecting anomalies in critical systems determining when a failure occurs is of
more importance than the false alarm rate.

6.5.4 Defining anomalies

Deciding how to measure the performance of the methods is not a simple task in the
sense that a decision has to be made on how to label the collected data. Even though
faults were present in the whole data set, not every log message is necessarily an
anomaly, and if using sufficiently short sliding windows, not every window will be
an anomaly either. Because the cycle used to send requests in the experiments is
three minutes long, it is reasonable that windows with similar sizes or larger can
be labeled as anomalous. Since the event vector methods do not use much shorter
windows than this, we decided that all windows in the outlier sets are labeled as
outliers, and all windows in the baseline data set are labeled as a normal point.

There is a further difficulty for the models that classify each log message as an
anomaly or not. In this case one has to decide how to measure the performance of
the model. Once again windows must be used due to the previously stated fact that
each log message in the outlier sets will not be an anomaly. Further, it is difficult to
manually go through the logs and label which are anomalous. In [[19], the authors
compare models with a resolution of a session defined by an instance ID. They
classified a session as anomalous if the model classifies at least one log message

55

Chapter 6. Method

within the window as an anomaly.

We decided to use the simpler method of sliding windows, as many of the logs
we used were not part of a session defined by an instance ID. The alternative is
to use session windows defined by the request ID which is used for the historical
data, however, it is not certain that a whole session defined by a request ID is an
anomaly if it belongs to an outlier set. We used the same metric of a window being
anomalous if there is at least one log message classified as an anomaly within it.
Once again, because of the length of the cycles, we decided to use windows with a
size of three minutes and a step size of one minute. However, an initial investigation
into the effects of window size and window step size using the LSTM parameter
anomaly detection model was performed. By making this investigation we wish to
ensure that the differences between the measurements with different window pa-
rameters were not very large, and conclusions could be made using the performance
calculated with these windows.

6.6 Anomaly detection using Event Vectors

After having parsed the log messages into a sequence of log events one feature
extraction method was to create event vectors, see Section [32} Using the obtained
event vectors, a number of different conventional unsupervised machine learning
algorithms were trained to find anomalies. To be able to use our models on real
cloud systems, only unsupervised models were chosen since most collected log sets
from industrial cloud environments are too large to label entirely.

Of the three types of event vectors, explained in Section [3.2] only sliding win-
dow was tested. To begin with it was not realistically possible to use fixed window
on our collected data because of its collection duration. For instance a fixed window
of 30 minutes results in only 48 event vectors per experiment since the data sets are
collected over 24 hours. As for session window, which tracks individual requests
through the OpenStack work flow, the way OpenStack handles request ID made
it problematic. The issue occurs when a request crosses between two OpenStack
services. At the receiver service a new request ID is generated, hence tracking a
request between services becomes exceedingly difficult [|39]]. Therefore we decided
not to continue with the session window.

6.6.1 Grid search

A grid search was performed for the hyperparameter optimization of the machine
learning models. The hyperparameter values are set before the training phase and
have a large impact on the model learning and thereby the result. A model has sev-
eral types of hyperparameters that can be set, for example for KNN the number of
neighbors and the distance metric. By testing multiple hyperparameter configura-

56

6.6 Anomaly detection using Event Vectors

tions the aim is to find the optimal model. The result of a specific hyperparameter
combination was then plotted in the ROC graph whereafter the resulting ROC graph
was analysed. In addition to the machine learning model hyperparameters, parame-
ter values which determined the input event vector were included in the grid search.

6.6.1.1 Input There are several parameter types which impact the input event
vector. First it is the ones which effect the feature extraction from the log sequence,
e.g., the window size. Secondly it is the types determining the additional opera-
tions on the extracted event vectors before being used as input to the normalization
method.

Window size and step size

As mentioned before, only sliding windows with window size = 0.5, 4, 10, 30, 60
and 120 minutes were tested. Exclusive to window size = 0.5min is the problem
where all the data sets consists of a considerable number of event vectors which are
zero vectors, since between creation and deletion of VM the system mostly does
not generate any logs. As a result, the outlier data sets contain a sizable ratio of
baseline data which would worsen the performance when validating the model. As
such every zero vector in all data sets were removed beforehand. Then the step size
was set to one minute for every window except for the 0.5 where a 50% overlap
was used instead. For the baseline data set one minute step size resulted in approx-
imately 16 000 event vectors and for each outlier set around 1300. The number is
not exact since depending on the size of a window there will be between 10 and
100 additional vectors. The overlap of the vectors using one minute steps is high
for most of the window sizes but required because of the small number of event
vectors. For instance the result of a step size of two minutes is 750 event vectors and
three minutes gives 430. These numbers, we think, are too few to get an unbiased
result.

Number of log keys

Parsing the baseline data set gave a total of 79 log keys, i.e. 79 number of log type
templates while further parsing of the outlier set gave a total of 89 log keys. This
means 10 new types of log messages were found outside the baseline logs. Intu-
itively we can classify every log message belonging to the new log keys as outliers
since they are previously unseen. This in turn keeps the event vector dimension
to 79. An alternative that also was tested is to use all the 89 log keys, expanding
the event vectors to 89 dimensions and letting the model find these outliers and
possibly more. However, this option will not be possible using streamed data since
expanding the dimension requires a retrained model. A third method used was to
reduce by half, the number of log keys to the 40 most common log types in the
baseline set and treat every other log key as anomalies. The false positive rate will
as a result increase, but on our data set only approximately 0.1% of the baseline log
messages were outside the 40 most common log keys. Additionally, an advantage

57

Chapter 6. Method

is the large dimension reduction, which not only can give better result but will also
shorten the time required to train and run the model.

Feature scaling

Four different normalization methods, in addition to not normalizing, were tested
in the grid search: IDF, see Section @], Min-max normalization, Z-score normal-
ization and Robust scaling. They are all defined in Section[5.4.1]

Training set contamination

To resemble a real cloud system’s log data, which inherently will contain anomalies,
outliers were injected into our training set consisting of baseline data. An additional
reason is that some algorithms need to have outliers during the learning phase, for
example the Isolation Forest algorithm works by isolating outliers in the training
set. Interestingly, unique to the project, is the said possibility to vary the ratio of
anomalies in the used data set. In a log dump from a real cloud system the ratio is
already determined. For example, in the BGL data set used in [28]] approximately
7.3% of all log messages were anomalies. Therefore the performance dependency
of the training set anomaly rate is of interest. The ratio of injected outliers was used
as a parameter in the grid search. 0, 1, 5, 10 and 20% outliers of the training set
were the values used.

6.6.1.2 Model hyperparameters

All models were implemented in Python using PyOD [54], an outlier detection
toolkit built on top of Scikit-learn. Except for the varied hyperparameters, all values
were set to their respective default values as in the PyOD documentation [[54]. The
chosen machine learning algorithms were Isolation Forest, KNN, LOF and One
Class SVM. The four algorithms cover three types of detection algorithms. KNN
and LOF are proximity based, Isolation Forest uses outlier ensembles, and, finally,
OCSVM is a linear model. The two tested OCSVM kernels were rbf, which is the
default, and the linear kernel, since it performed well in [28]]. In addition to the eu-
clidean, the Manhattan distance was set as the metric for KNN and LOF. The POP
algorithm in [26] used the Manhattan distance when comparing two event vectors
to be able to weigh every log key equally. That is, when adding events to one of
the event vectors, the distance will change equally independently of which log key
the event has. Overall, the model hyperparameters for event vectors were not the
main focus in the thesis. The result of the input parameters, such as window size
and number of log keys used are more interesting in the context of the automatic
outlier detection pipeline. Finally, the total parameter search space in the grid search
is presented in Table[6.3]

58

6.7 Online methods

6.7 Online methods

The online anomaly detection models tested were log key anomaly detection with an
LSTM, and Parameter value anomaly detection using an LSTM. These were tested
and analyzed separately, unlike what the authors of DeepLog did. In that work the
Log key anomaly detection method first classifies a log, and if it classifies it as
normal the Parameter value anomaly detection method is used [[19]].

59

Chapter 6. Method

Table 6.3: The parameter space in the grid search when using event vectors.

Window step 1 min

Window size 0.5, 4, 10, 30, 60, 120 min

Norm types None, IDF, Min-Max, Z-norm, Robust
#Log keys 40, 79, 80

Training set 0, 0.005, 0.01, 0.08, 0.1, 0.12, 0.2
contamination

Model hyperparameter , s o1 .08, 0.1,0.12, 0.2
contamination

Isolation Forest

Max features =1, 2, 3,
#Estimators = 90, 100, 110, 150, 200

OCSVM Kernal = linear, rbf
KNN #Neighbors =3, 5,7, 20

Distance metric = Euclidean, Manhattan
LOF #Neighbors = 10, 17, 20, 25, 40

Distance metric = Euclidean, Manhattan

For both methods, a grid search was performed, varying neural network structure,
and model parameters. This was done on a GPU cluster of several GeForce GTX
1080 Ti GPUs. The hopsworks program was used to submit training jobs as note-
books [29]. To create the neural network, Keras and Tensorflow were used [[33} |65]].
The values used in the grid search were chosen close to the parameters used in
DeepLog.

6.7.1 Log key anomaly detection using an LSTM

6.7.1.1 Input After cleaning and parsing the logs, they are separated into win-
dows of & logs. This is equivalent to a sliding window, however, instead of time,
it is the number of logs that determines the width, and the step size is a single log
message.

6.7.1.2 Grid search The default neural network structure was two LSTM
layers with 64 memory units each, and finally a dense layer with a softmax ac-
tivation function outputting the probability distribution. The default window size
was h = 50 logs. A grid search was carried out varying the structure of the neural
network. Both one and two LSTM layers were tested, each with 64, 128, or 264,
units. The input window was also tested with values 5, 15, 50, and 150 in the grid
search. Finally the g parameter was varied in the grid search between 2 and 15. The
number of epochs was not included in the grid search, but was chosen by observing
the loss, and categorical accuracy for a few different arbitrary parameters. Training
was stopped when the validation loss was decreasing at a low rate, or the validation

60

6.7 Online methods

accuracy stopped increasing.

The LSTM is trained to classify what message follows the input window of A
logs. In order to train the model, an output vector is created, which is the time series
of log events shifted & steps. Furthermore, in order to use the neural network in
a classification setting, each output is represented using one-hot encoding. This is
where event k is represented by a vector which has the value 0 in all components,
except k, where it has the value 1. To detect anomalies, the deep log strategy was
used, defining a message to be anomalous if it is not in the g most probable events.

6.7.1.3 Variations to the method A few variations to the methods used in
DeepLog were attempted in the training of the model in order to investigate pos-
sible improvements to the technique. First of all, one possible drawback of using
an LSTM is overfitting, as described in the machine learning chapter. Therefore
dropout was tested, dropping the inputs to the second LSTM layer, at rates 0.25, 0.5,
0.75. Furthermore, the data is very unbalanced, which could again lead to overfit-
ting, where the result of the neural network does not represent the actual probability
distribution, but tends to be overconfident in a single event. To attempt to alleviate
this, a weighting of the loss was introduced using Keras class weights feature. An
IDF style weighting was attempted giving each class a weight mlog(N/n;) + 1, for
different factors of m, where N is the max number of logs for any class in the train-
ing data, and #; is the number of logs with class i. The reason different factors are
tested is that if the weights are too large, the resulting function will no longer be
representative of the actual probability distribution. However, if they are too small
it will not make a difference compared to the unweighted model.

6.7.2 Parameter value anomaly detection using an LSTM

6.7.2.1 Input After the cleaning and parsing step, we added a post-processing
step, which searches for numerical values in the dynamic parts of the logs and
extracts them to be used for anomaly detection. Other types of dynamic parts, such
as IP addresses could be used for anomaly detection, although due to the difficulty
of predicting the values of these parameters we have restricted the use to only
numerical values. Each event gets a set of metrics, and each one can be used in
univariate time series anomaly detection, or together, as multivariate time series
anomaly detection. All log events could be used for this purpose if the time is
treated as a dynamic parameter, which would likely have a good performance in
scenarios with delays. However, this was not done in this investigation due to the
fact that training a single model takes a long time, thus a grid search would not be
possible using all of the log keys. The time is used as a dynamic parameter for all
of the log keys that were used.

Firstly, the data had to be filtered further. Many of the log events happened very
rarely, which made it difficult to train models using the parameters. Therefore, any

61

Chapter 6. Method

log key which appeared fewer than 250 times was filtered out, and a model was not
built for it. However, as LSTM networks often need a lot of data to be able to pre-
dict more complex behavior, the limit may be too small. The next step was to form
windows from the parameter time series in the same way as for the Log key anomaly
detection using an LSTM. However, in this case an additional step of normalizing
the data with Z-score normalization was done. The data was normalized as some of
the dynamic parameters were of very different sizes, and the training would diverge
if the data was not normalized. Z-score normalization was chosen because it was
simple to implement, and the normalization had to be implemented from scratch
due to the GPU servers not having packages installed. The robust norm as described
in Section[5.4.T|could also have been used, but was not attempted in this experiment.

The models used here differed from the ones in DeepLog in the sense that we
used separate models for each specific parameter in the log sequence. For example
a log message having the parameter vector [p1, p2] has one model which predicts
pl, and one model that predicts p2, using past values of both p1 and p2 as inputs.
Each model has a separate classification threshold for each parameter, whereas
DeepLog has the same input, but just a single model that predicts both and detects
an anomaly using the mean squared error of the components. This offers more flex-
ibility in tuning the models, and the possibility to decide for which parameters one
should ensemble or remove the models. The drawback is that there are more mod-
els, taking longer to train, and that the performance may be worse. The performance
effect of using these separate models is investigated by training and validating the
models on the collected data from OpenStack on OpenStack. In this case a unique
LSTM was used for each parameter, however the same classification method can be
carried out with a single LSTM, by simply not taking the mean squared error, and
instead classifying each parameter separately.

6.7.2.2 Grid search The default neural network structure was two LSTM lay-
ers with 128 memory units each, a dense layer with 64 neurons with a relu activation
function, and finally an output neuron. The default window was a window of & = 50
logs. A grid search was carried out varying the structure of the neural network. Both
one and two LSTM layers were tested, each with 128, or 264, units. The input win-
dow, h, was also tested with values 5, 15, 50, and 150 in the grid search, and the
dense layer was tested with values 4, 20, 64 neurons. The classification threshold
was tested with values 2.5, 3.0, 3.5, 3.7, 3.9, 4.3 where this value is a multiple of
the calculated standard deviation of the prediction error.

6.8 Ensemble models

In previous literature the aim has been on improving state of the art methods by
inventing new algorithms to detect anomalies. One possible improvement is instead
to create a system where several different models are used together to determine

62

6.9 Inference

if an anomaly has occurred. To investigate if this is possible, ensemble models are
tested by implementing a voting system where a window is classified as an outlier
only if several models classify it as an outlier.

To study if there is a possibility that ensemble models improve performance,
several models are chosen from the investigation into event vector models. Two
models each from LOF, KNN, OCSVM, and Isolation Forest were used in the in-
vestigation. As the number of combinations is 2", with n models, only a few can be
tested at a time, which is why only 8 models were tested. The two models chosen
from each category were the highest performing models, given a maximum false
positive rate. The investigation was first done using models with a maximum of 25
% false positive rate, and subsequently using models with a 10 % maximum. If the
two top performing models had the exact same true positive and false positive rate,
one lesser performing model was chosen, due to the high probability that they have
the same rates by classifying in a very similar way, and therefore will not be effec-
tive in an ensemble. For the 8 chosen models, every subset of two or more models
is tested. For a given ensemble of models, every voting threshold is tested, from a
window being classified as an outlier if two models vote that it is an outlier, to all
models needing to vote that it is an outlier. The previously detailed investigation
was done on both 60 minute windows and 10 minute windows. The outlier set used
to evaluate the combinations was the Maximum CPU load set, due to its relatively
good, but not perfect, performance. The online methods are not used, and only
event vector models with the same window size and step are used at the same time,
due to the difficulty of designing a system for the models with different windows to
vote.

6.9 Inference

When the previously described pipeline is used in practice, the data will be stream-
ing, and not performed in batches on logs that have previously been collected as is
done in the training stage. Therefore a separate step was added to the pipeline, in
which data is simulated to be streaming and the models may detect anomalies in an
online fashion. In this thesis, this step of the pipeline is used to test the previously
trained models on unseen data. The simulation of streaming data is done by looping
over log files, and in each step of the pipeline using python generators to create
streams of log messages and feature vectors.

The first step is to clean incoming lines. Since part of the cleaning process was
appending lines to previous lines, it is first when a line appears that should not be
appended to a previous message, or removed completely, that the previous message
is parsed by Drain. The state of the Drain tree from training has been saved to
a file. The parsed log message is then streamed to the feature extraction part of

63

Chapter 6. Method

the pipeline. During the clean and Drain process, the log files are also merged by
comparing times from the messages in all files, and streaming the latest line to the
feature extraction.

For sliding windows, extracting features with streaming data works exactly as
it would for offline data. Log messages are collected, and added to the feature
vector when a log message is received in which the time stamp has passed the end
of the window. The feature vector is then streamed to the models, in order to infer
if the window was an anomaly or not.

However, when the data is streaming, one has to decide how to define the session
windows. Since it is difficult to know what event corresponds to a request ending,
it is difficult to know when to return a feature vector to use for inference as there
might be additional messages belonging to the window in the future. Therefore,
a variable cutoff time was added, such that when the time since the first message
in the window arrived has exceeded the cutoff time, the feature vector is used by
the models. In order to determine the cutoff time, the distribution of time spans for
session windows was studied, and a suitable cutoff was chosen, such that false pos-
itives are not detected due to evaluating a session window too early, and feedback
on whether or not a request is anomalous is produced as quickly as possible.

Another issue when testing the anomaly detection models is what to do when
an unknown log message appears. If the Drain algorithm creates a new log group
for this message, the anomaly detection models can not use it, as they are trained
using a fixed number of dimensions. Due to the large amounts of data collected for
training, if a new log message is detected it will be marked as an outlier.

Finally, the feature vector is scaled using the previously saved weights, and used as
input into the previously trained anomaly detection models.

64

7

Results

In this chapter the results of the thesis will be presented, and discussed. The chapter
is divided into several parts detailing the various investigations that were carried out.
The results from the historical log dump are presented in Section Afterwards
all the results will be from the data collected from the TripleO lab environment. In
Section|/.2| general results regarding the data from the TripleO experiments are pre-
sented, before the results from the different anomaly detection methods are shown.
These results are divided into five sections, with the models using event vectors pre-
sented first in Section The investigation into the performance measurement of
online methods using sliding windows is exhibited in Section [7.4] before the two
methods from DeepLog are presented in Sections and Finally, the investi-
gation into ensemble models is presented in Section[7.7]

7.1 Historical data

To illustrate the qualitative aspects of the data, an initial clustering was done. The
chosen window was a sliding window with a size of 1 hour and a 20 minute step
size. The resulting event count matrix had the dimensions 12568x104 which means
12568 feature vectors with 104 unique event IDs. To get a rough overview of the
feature matrix, we reduced its dimensions to 2 using PCA and then scattered them
as illustrated in Figure Firstly, there is clearly structure in the data, suggest-
ing that it is well suited for clustering and anomaly detection. Secondly, the figure
shows the effect of weighting the input data. The unweighted data shows two main
clusters. Using the min-max norm, shown in Figure these clusters remain, but
appear to be somewhat less dense, which might not be good for anomaly detection
as it is less clear if a point does not belong to a cluster. Z-score normalization is
often used because the outliers remain separated, which can be seen in Figure
with a few of the points very far from a main cluster. Finally, IDF weighting can
be seen to produce more variation in the data, with several clusters, as unimportant
features that dominate using other normalization methods are removed. These ob-

65

Chapter 7. Results

e P S &g
' YT S
(a) No normalization (b) min-max normalization
. ;i °
g .
L)
0 o . o o
v, %
Z- lizati
(c) Z-normalization (d) IDF weighting

Figure 7.1: Log event vectors from a sliding window after PCA for different nor-
malization methods.

servations indicate that Z-norm, and IDF weighting likely are advantageous to use
when detecting anomalies.

7.1.1 Session Window

Before evaluation the session windows, a suitable cutoff time, described in Sec-
tion[6.9] has to be determined. In Figure[7.2] a histogram is shown of the time from
the first to the last log message with a given request ID for the log data set used
for training in this experiment. It can clearly be seen that most of the requests are
less than one second in length. 90% of requests are executed within one minute,
and 98% within one hour. Therefore, for the following investigations, a cutoff time
of one hour was used. In production this would likely be lower, as it is likely one
would want the results faster.

Several of the requests that took a significant amount of time were also the ones
identified by the models as being anomalous. A very simple anomaly detection

66

7.1 Historical data

model could therefore be simply to label a request as anomalous if it takes longer
than a specified time.

The results on the test data using Isolation Forest are seen in Figure [7.4] This
is almost identical to the result for the training data, namely that it finds one
anomaly when a messaging database server is unavailable. The requests that are
labeled as outliers remain in the system for a very long time, and contain several
log statements similar to the following:

AMQP server on 10.129.8.18:5672 is unreachable: timed out.
Trying again in 1 seconds.: timeout: timed out

Figure shows the results with the same test data using the autoencoder, with
ReLu activation, and hidden layers with the following architecture: 500-300-2-300-
500. The figure shows that the reconstructed points are very close to the original
points, in other words it can encode the data well. The two requests with highest
reconstruction error correspond to an anomaly where there were unknown hosts in
the system. Messages such as the following can be seen in these requests:

Received an update from an unknown host
’eseldalluOlsl12.xerces.lan’. Re-created its InstancelList.

A request with the unresponsive AMQP server, found by the Isolation Forest model,
is also seen as the third largest reconstruction error. The finding that Isolation Forest
and the autoencoder both detect anomalies, but produce slightly different results
indicates that using the models in an ensemble could lead to improved performance.

These anomalies could also be found simply by looking at the number of log
messages over time in the training data. Figure shows the number of events
during a one hour period. There are clearly three large spikes in the rate of log mes-
sages being produced. The final spike contains the anomaly with the unreachable
AMAQP server, and the other two contain the unknown host anomaly. The fact that
the anomalies are characterized by such a large increase in request time and number
of log messages suggests that the models may be better trained using data without
these anomalies. This could result in better detection of subtler anomalies, such as
a performance degradation, and indicates that the TripleO data will be needed to
compare the different models.

67

Chapter 7. Results

8000 4

7000 +

Occurences

0-1 1-10 10-100 100-500 500-2000 =2000
Request Time (s)

Figure 7.2: A histogram of the time a single request ID was active within a subset
of OpenStack Nova logs.

Autoencoder
L
15 4
' -
10 4
L]
s
¥ .
Y
04
X
B }*
-10 0 10 20

Figure 7.3: Event vectors from test log data after reducing to two dimensions with
PCA, and weighting with IDF. Red points are reconstructions, and blue points are
original data.

68

7.1 Historical data

Isolation forest

15 4

10 4

T
-10 0 10 20

Figure 7.4: Isolation Forest labels after classifying test data. Data has been reduced
to two dimensions with PCA, and weighted with IDF. Red points are outliers, and
blue points are inliers.

5000 A

4000 +

3000 A

2000 +

Number of total events

1000 4

Figure 7.5: Total number of OpenStack log events during a window of one hour.

69

Chapter 7. Results

7.1.2 Sliding Window

A sliding window was also tested on the same data. Using a window of 6 hours
with a step of 1 hour the first difference to the session window is that there are a lot
more logs used by the models. This is because of the fact that the session window
does not use any logs without a request ID. A further consequence of this fact is
that all log events found in the test data using session windows were also present
in the training data. Using a sliding window, however, there were 3 messages that
were not present in the training data, and directly classified as outliers. These three
messages consisted of two different Python Tracebacks, and it is unknown if they
caused actual failures in the system, however it is possible that they are false pos-
itives, and that the exceptions were handled properly. It may also be an error in
cleaning the data that caused the messages to be different than in the training data,
with the assumption of the metadata from a log message staying constant after a
line break failing. In addition to the unseen messages, the Isolation Forest model
finds anomalies on the final peak in Figure With a 1 hour long window, with
a 12 minute step, anomalies from all three peaks are found by the Isolation Forest
model, meaning that it is the best result compared to the longer sliding window,
and session window. This indicates that the results found in [28]], such as the longer
windows giving better results, may not be applicable to this data set.

An observation that can be made from Figure is that the outliers are not
easily identified from the two-dimensional plot, which is consistent with results
from previous work stating that PCA did not work very well for finding anomalies.

A difficulty with using the historical data is the fact that the logs do not com-
pletely overlap in time. The log files have a maximum number of messages that can
be stored, after which old log messages are deleted and replaced by new messages.
This means that some logs span over the course of several years, whereas some
only span across several days. To get optimal models, more time may have to be
spent in order to train on data that spans a longer period of time for all logs.

7.2 TripleO data

7.2.1 Clean and Drain

After the first cleaning and parsing of the data collected from the OpenStack on
OpenStack the first observation was that the parsing was not perfect, producing
several different templates from what should have been the same event, for example
several messages where the instance ID was not detected as a variable part:

[instance: a71004ce-425b-46af-b36e-b6957b7cbbeal
To remedy this, preprocessing was added to mask IDs, hashes, and IP addresses,

with the regular expression patterns shown in Table The next observation made

70

7.2 TripleO data

Table 7.1: The regular expression patterns used to preprocess OpenStack logs before
parsing using the Drain algorithm.

Mask Regular expression

Id [\\da-f]{8 }\\-[\\da-f]{4 }\\-[\\da-f]{4 }\\-[\\da-f]{4 }\\-[\da-f]{ 12}
Hash \V[\\da-f]{40}

IP address | \d{1,3}\W\\d{1,3}\\\d{1,3}\\.\d{1,3}

was that changing the parameters for the Drain algorithm drastically changed the
templates mined. For instance, with the similarity threshold=0.4, the top
message was:

"<k> <k> <x> <> HTTP/1.1"" status: <*> len: <*> time: <*>"
whereas for 0.6, the message was split into two,

"<k> <k> ""GET <*> HTTP/1.1"" status: <*> len: <*> time: <*>"
and

"<k> <*> ""POST <*> HTTP/1.1"" status: <*> len: <*> time: <*>"

However, when testing a simple anomaly detection using the Log key anomaly de-
tection from the DeepLog architecture, the difference, illustrated by the F-score in
Table was not large. The parameters for the model were not optimized here,
however it is unlikely the effect will change for different parameters, therefore the
similarity threshold likely does not have a large impact on the final anomaly
detection. On the other hand when using the templates for parameter anomaly detec-
tion it is better to split up the messages. This is exemplified by the case above as the
dynamic parameters len, and time, represent different time series when produced
from a POST request and a GET request, and one therefore might get more accurate
results by splitting them up. Thus, we chose to use 0.6 in all following results.

Table 7.2: The F-score for Log key anomaly detection using an LSTM when parsing
with drain using different values of the parameter similarity threshold.

similarity threshold | F-score
0.4 0.880
0.5 0.881
0.6 0.881
0.7 0.877

71

Chapter 7. Results

7.2.2 Log frequency

Figure shows the total number of log messages generated in the OpenStack on
OpenStack environment during 10 and 30 minute windows for the baseline and the
different outlier data sets. On average the number of logs produced each minute
are between 10 and 15, which can be considered a low rate considering that the
parsing gave 79 event IDs. This may imply that a significantly longer window than
one minute is required to collect enough information to distinguish outliers from
normal points. Three data sets stand out in Figure With a collection duration
of 30 minutes the experiments consisting of a Control node network delay, a Full
Docker disk, and a RabbitMQ network delay stand out by having a much lower
number of total logs generated than the rest. The difference is enough to almost
perfectly separate the above mentioned experiments with the baseline by setting
a given boundary around 400 logs. This in turn suggests more complex models
are not required to find the three anomalies when using windows larger than 30
minutes, but can be a good performance reference. The lower frequency is most
likely the request queue build-up when having a network delay which slows down
the entire workflow and gives fewer logs. Furthermore, when filling the Docker
disk, the OpenStack services running in the given container do not have much
space to write and save log messages and therefore the logging frequency will be
reduced. Decreasing the length of the window to 10 minutes, in Figure the
same method as before can still be used for detecting the experiment with a Full
Docker disk, however the two network delay anomalies can no longer be separated
using an upper limit, which is the same as for the rest of the anomalies for tested
window sizes.

Finding 1. A fixed boundary of the total number of logs generated during 30
minutes or more is enough to detect the two different network delays and the
Full Docker disk anomaly.

7.3 Event vectors

Looking further than the log frequency, the grid search using event vectors resulted
in roughly 150 000 runs per anomaly type, where each iteration had a specific
parameter configuration, for example a window size = 30 minutes using KNN.
Isolation Forest was much faster than the other algorithms, around four times faster
than KNN and LOF and as much as 30 times faster than OCSVM on the local
computer. The result of each run is given as a true and false positive score, i.e.,
the accuracy in the outlier set and the inaccuracy in the baseline set respectively.
These were plotted in the ROC graph as points for each outlier validation set, seen
in Figure [7.74 for the Maximum CPU load experiment. To find correlations the
points were colored according to desired parameters, for instance, in Figure
the points are differentiated by their window size.

72

7.3 Event vectors

500
101 AN WA\
400 /\/*’\/\/\/VV\-/\/\./\’\/V\,\/\N\/\/V\/\/v
£ 4 c
£ 125 £
= 100 R 300 LA A ANAMAAANMAA
@ %
3 75 g
g —— Baseline o 2001 ___ paseline
ﬁ 50 1 Network delay i—: Network delay
o5 | — RabbitMQ network delay 100 1 —— RabbitMQ network delay
—— Full docker disk —— Full docker disk
0 T T T 0 T T T
5 10 15 20 5 10 15 20
time/[hours] time/[hours]
(a) Window size = 10 minutes (b) Window size = 30 minutes

Figure 7.6: Number of log messages generated in the OpenStack on OpenStack
system during 10 and 30 minute windows over 20 hours.

The ROC graph was also represented by a ROC curve, Figure for easier
viewing by only plotting increasing true positive score points for each window size,
i.e., only the best runs are shown for different false positive rates. In addition to the
curve, a grey line was added where the true and false positive rates are equal, which
shows the result of a randomized classifier. In several figures including Figure [7.8]
the figures only include values for small false positive rates, in this case from O to
10, as for a real system one is not interested in models that have a very large false
positive rate.

73

Chapter 7. Results

60

40

True positive rate
True positive rate

20

0 20 40 60 80 100 0 20 40 60 80 100
False positive rate False positive rate

(a) ROC graph (b) ROC curve in ROC graph

100

80 — J—r/rrf 120 min

60 min
30 min

60
40 —— 10 min

True positive rate

4 min
0.5 min

20

0 20 40 60 80 100
False positive rate

(c) ROC curve

Figure 7.7: The transformation of the ROC graph results to a ROC curve with the
different window sizes colored. The figures shows the true and false positive rate
scored from the grid search tested on the Maximum CPU load anomaly data set.
The plots are color mapped according to the window size used to create the event
vectors and shows an increase in performance with larger windows. The gray line
represents the score of a 50/50 randomized classifier.

7.3.1 Window size

The performance of the event vector models is highly dependant on the window
size, which is in accordance to the previous finding with log frequency. The de-
pendency is shown in the respective ROC curves for every anomaly plotted with
the window size as the color parameter in Figure [7.8] The overall observation is
that longer windows give better results. The only exception were the anomaly sets
where no model performed well, but in the average over all test sets, shown in
Figure[7.8g|the performance correlates with the window size. The better model per-
formance could be a result of the fact that more information is collected when using
longer time window, for instance with a window size = 0.5min, each event vector
will not be able to cover both a VM creation and deletion when using our script.

74

7.3 Event vectors

Moreover, also seen in Figure is the large variation in performance depending
on the anomaly type.

Finding 2. Larger window size achieves better results when using event vec-
tors.

The Full Docker disk, Control node network delay and RabbitMQ network de-
lay experiments, shown in figures were the anomalies the models
performed best on. As the event vectors include information about the frequency of
log events, this is expected from Finding 1. For the Full Docker disk and RabbitMQ
network delay, a window size = 120 min, 60 min and 30 min gave almost a perfect
score, which is on par with the Finding 1 result, but additionally performed well
even with a window size = 10 min. An example of one of the best model scores on
the RabbitMQ network delay outlier set is a model using a window size = 30 min,
scoring a true positive rate = 99.9% and false positive rate = 0.05%.

The results for the Maximum CPU load experiment, shown in Figure [7.8d] gave the
greatest difference in performance with regards to the window size. In accordance
to the previous finding, the performance increased with a longer time window and
as an example, two well performing models using window size = 120 min and 60
min gave true positive/false positive rates at approximately 80%/0.1% and 84%/4 %,
respectively. The score not being perfect and its large dependence on window size
makes this anomaly one of the more interesting anomaly types to analyse.

The Control node shutdown and Full user disk anomalies shown in Fig-
ures gave noticeably worse results. Two scores using a window size
= 60 min and 30 min are a true positive/false positive rate at around 30%/5% and
10%/0.02% respectively, which is considerably higher than a random classifier
which guesses 50/50 if a point is an anomaly or not. However, the smaller window
sizes mostly followed the random classifier line where the true positive is equal to
the false. Remarkably, unique for these anomalies, the window size = 120 min gave
a worse result than when 60 min and 30 min. There are some possible reasons why
the models gave lower performance in comparison to the other anomalies. Firstly,
the OpenStack services were running in a Docker container which had a separate
memory partition. Filling the user disk could thus have a low impact of the work-
flow of the VM creation and deletion. Secondly, the worse scores may be due to
the fact that there are two control nodes, and the TripleO system has a redundancy
implemented such that the redundant node takes over.

75

Chapter 7. Results

g 100 & 100 g 100 4 —]
e ‘J e o
o [v
2 2 =
% 50 % 50 F 50
[=] o o
(=N (=8 (=8
v o v
2 I I
oo : oo : = ool ;
0 5 10 o 5 10 0 5 10
False positive rate False positive rate False positive rate

(a) Full Docker disk (b) RabbitMQ network delay (c) Control node network de-

lay
g 100] o 100 o 100 {
4 S i
o o v
2 = 2
7 50 Z 50 2 50
=] o o
a a a —
g 2 2 ﬁ
2 2 2
Food : oo = ool ‘
0 5 10 o 5 10 0 5 10
False positive rate False positive rate False positive rate

(d) Maximum CPU load (e) Full user disk (f) Control node shutdown
£ 1001 —— 120 min
p 60 min
‘% 50 - — 30 m!n
2 — 10 mln
5 —— 4 min
= old . —— 0.5 min

0 5 10

False positive rate

(g) Average

Figure 7.8: The true and false positive scores for each anomaly log set where the
color is mapped according to the window size used. In figures (a), (b) and (c) the
window size = 120 min and 60 min overlap and are not visible along the axis border.
A difference in performance can be seen between the anomaly types where (a), (b)
and (c) performed substantially better than (e) and (f) which for the low window
size almost follows the random classifier’s diagonal grey line.

Finding 3. The detection score for a Full user disk and the Control node shut-
down were substantially lower than the rest, independent of window size.

7.3.2 Machine learning models

The average score when using the same model on all the outlier sets is plotted in
Figure [7.8gl However, by using different models depending on the anomaly type,
a higher average performance can be achieved. Additional benefits is the flexibility
of deciding exactly the upper limit of the false positive rate for every different type
of anomaly. A scenario might be if a large CPU load is more crucial to detect than

76

7.3 Event vectors

a network delay, meaning a greater average false positive rate needs to be accepted.
In this case, as seen in Figure @ an Isolation Forest model might be used, as the
Maximum CPU load anomaly using a window size = 30 min has a true/false positive
rate of 50%/5%. On the other hand to reduce false alarms a KNN model could be
used with a performance of 90%/0.6% on the Control node network delay even
though approximately 100%/1.7% is possible.

=

o

o
1

=

o

o
1

True positive rate
wu
o

True positive rate
wu
o

o
o

0 5 10 5 10
False positive rate False positive rate

o

(a) Maximum CPU load (b) Control node network delay

—— Isolation Forest
KNN
— LOF
—— OCSVM
—— KNN manhattan distance
—— LOF manhattan distance

Figure 7.9: The relative performance among the tested machine learning algorithms
for the Maximum CPU load experiment, (a) and a Control node network delay,
(b) using a window size = 30 min. There was no algorithm which consistently per-
formed best for all the anomaly types. The highest score for most false positive rates
were Isolation Forest in (a) and KNN using the Manhattan distance in (b).

Even though the relative performance of the different machine learning methods
depends on the anomaly type, there was an overall correlation. The models which
performed well on one of the outlier data sets in most cases also scored high on the
rest of them. Therefore the average performance using the same model on all types
of anomalies can somewhat be representative of using different models depending
on anomaly type. On the other hand the window size largely affected the relative
performance of the machine learning models when compared to each other. The ma-
chine learning models performance on the Maximum CPU load experiment using
window size = 120 min, 60 min and 30 min are plotted in Figures[7.10al [7.106} [7.94]
respectively. For a window size = 60 min, LOF and LOF with Manhattan metric
distance could be considered the best, especially with false positive rates between
0% and 3%. However, increasing to window size = 120 minutes, then KNN and
Isolation Forest perform considerably better than the rest. Consequently, for best

77

Chapter 7. Results

result the final model will depend on the window size chosen.

Finding 4. The relative performance between the machine learning algorithms
varied across the different window sizes but did not to a large extent depend
on the anomaly types.

[y

(=]

o
1

%

True positive rate
wu
o

True positive rate
wu
o

o
o

False positive rate False positive rate

(a) Window size = 60 min (b) Window size = 120 min

—— lsolation Forest
KNN
—— LOF
— OCSVM
—— KNN manhattan distance
—— LOF manhattan distance

Figure 7.10: The performance for each machine learning algorithm on the Maximum
CPU load anomaly for window size = 120 min and 60 min. A difference in relative
scores can be seen between the window sizes. With window size = 60min the two
LOF performed well whereas Isolation forest was best when increasing the window
to 120min.

7.3.3 Training set contamination ratio

One of the more interesting parameters in the grid search is the ratio of outliers
injected into the training set consisting of baseline data. Unique to our Thesis is the
possibility to vary the contamination ratio since we use the OpenStack on Open-
Stack system. On the other hand, in available log data sets from real systems the
number of anomalies is already set. For instance in [28]] they used two data sets:
BGL and HDFS with a 6.5% and 0.15% contamination ratio respectively and 2.2%
combined.

The outlier ratio used was varied between 20% and 0% and made a significant
difference in the performance of the models. For instance in Figure[7.TTa]the lowest
false positive rate achieved with a true positive score of 100% ranged between 0%
to 4.8% depending on the contamination ratio trained on. The average over the

78

7.3 Event vectors

contamination ratio with a window size = 30 min is shown in Figure and
represents overall the scores for the different widths and anomaly sets. The con-
sistently best score was achieved when the ratio was 0, meaning no outliers in the
training set.

g 100 2 100
b e
g 2
=) i B i
g 50 g 50
Q. (=1
) @
2 2
F oo . F oo :
0 5 10 0 5 10
False positive rate False positive rate
(a) Full Docker disk (b) Average
— 0.2
0.1
— 0.05
— 0.01

— 0

Figure 7.11: The model performance when varying the training set contamination
which is colored in the plot, with window size = 30 min. Visible is a great change in
model score whereas a lower contamination increases the performance, especially
for the Full Docker disk anomaly in (a).

Furthermore, excluding the 0.2 ratio, the score and ratio had an inverse relationship
as the performance increased when the ratio decreased. The score of the consider-
ably high ratio of 0.2 varied greatly. For a few cases it performed as well as the 0,
0.01 pair but also occasionally was among the worst. However, for the majority of
anomalies and widths, 0.2 gave a result in between the pairs of 0, 0.01 and 0.05,
0.1 ratio. As mentioned before, the zero ratio gave the best results but it is not very
realistic to not have any anomalies in a data dump from a real system. Likewise in
comparison to the BGL and HDFS data sets, the training set with a 0.2 ratio was
much more contaminated. The disproportional high number of outliers in the train-
ing set could explain the variance of the the performance using the unsupervised
learning algorithms with a contamination ratio of 0.2.

Finding 5. The model performance increased when the outlier ratio in the
training set decreased as the optimal performance was reached with no con-
tamination.

79

Chapter 7. Results

7.3.4 Log keys

Changing the number of log keys, i.e., the number of parsed templates did not con-
sistently impact the score as much as the previous parameters. Using the 79 log
keys parsed from the baseline set resulted mostly in the highest score by a small
margin where with 89 keys, the combined templates parsed from both the outlier
and baseline sets, performed the worst. In between came the score with 40 keys,
half of the baseline templates. The significantly greatest difference was when using
Isolation Forest, the average with window size = 60 min is in Figure[7.12b] whereas
a false positive rate = 3% gave a true positive = 65%/55%/40% for the log keys
79/40/89 respectively. However, overall the average using all the models, plotted in
Figure[7.124| for window size = 60 min only gave a maximum difference of approx-
imately 2%-points.

=

o

o
1

=

o

o
1

T]

True positive rate
u
o
!

True positive rate
u
o
!

— 40
79 79
— 89 — 89
0 T 0 T
0 5 10 0 5 10
False positive rate False positive rate
(a) Total average (b) Average using Isolation Forest

Figure 7.12: The relative model scores when using 40, 79 and 89 log keys when
window size = 60 min. It is observed that the number of log keys has a lower impact
in comparison to window size and contamination ratio. 79 templates over performed
the rest for the majority of cases. The larges variance were when using Isolation
Forest in (b).

The low impact is probably because of the small number of log messages that be-
long to the templates outside the 40 most frequent templates. These infrequent log
templates correspond approximately to only 0.1% and 1% of the log messages for
the baseline and outlier sets, respectively. Remarkably, only one log message is
outside the 40 for the Control node shutdown experiment, indicating all of the ab-
normal templates are generated from the control node that was shut down. Finally,
an interesting result which was not measured is the model run time of the train-
ing and testing phase, since the number of log keys corresponds to the number of
dimensions of the event vectors.

80

7.3 Event vectors

100

80

60

40

True positive rate

0 2 4 6 8 10
False positive rate

Figure 7.13: The average over all anomalies when window size = 60 min and a
contamination ratio of 0.5%. The chosen presented scores in Table are circled
and represents the highest scores with various set upper boundaries.

7.3.5 Choosing model

As shown, the optimal detection model varies highly depending on both the window
size and the contamination ratio. The window size represents the longest time du-
ration until an anomaly is detected and can therefore not be too long. An additional
trade off to the true positive rate is the false positive rate since it indicates the rate
of false alarms, which cannot be too high. To get a final performance measure of a
model we decided upon a window size = 60 min and contamination ratio of 0.5%.
The test and validation score of the total average using the same model on all the
anomaly types is shown in Table [7.3]and also circled in Figure[7.13]

We present multiple possible performance scores by different upper boundaries to
the false positive rate, in this case 0.1, 0.5, 1, 2 and 5%. The false positive score on
the baseline test set are for most of them zero, which is unusually low. In addition,
the false positive rate is smaller than on the validation set, which is uncommon
since the models are chosen according to the validation score. The cause of the
relation might be how the data is split for training, validation and testing. The split
is made in chronological order of log collection dates where the test set is the last
10%. This represents the last day of logging and the validation set is the second last
day. The date order could therefore cause a high variance between the sets which is
undesirable and could have been prevented by a randomised data split. Furthermore,
the low number of event vectors in the test and validation set could give a biased
score. With approximately 1600 event vectors in the validation set, a false positive
rate = 0.35% is equal to only around 6 outliers.

Otherwise, the table shows a true positive validation score around the 50% mark.
To choose a specific model to use, we think the model performing a false positive
rate = 0.35% and true positive rate = 50.27% is the optimal. The chosen model is
a KNN with 20 neighbors using the robust norm and 40 log keys. As previously

81

Chapter 7. Results

set the window size = 60 min and a contamination ratio of 0.05%. A false positive
rate = 0.35% gives one false alarm per 285 vectors and with a 33% window overlap
each day will create 36 event vectors, hence one false alarm per approximately 8
days. However, since the VM creation and deletion frequency is manually set by us
the number of days is not a good representation of the false positive rate.

Table 7.3: The highest validation scores when setting different upper boundaries on
the false positive rate and their respective test scores.

Validation score % | Test score %
Max FP % | FP TP FP TP
0.1 0 43.06 0 36.44
0.5 0.35 | 50.27 0 47.63
1 0.89 | 51.81 0 50.07
2 1.8 55.07 0 56.46
4 3.27 | 63.92 4.87 | 69.47
5 4.87 | 67.67 1.65 | 72.64

7.4 Performance measurement for online methods

Figure[7.14]shows the performance of Parameter value anomaly detection using an
LSTM model. The different points correspond to different classification thresholds,
and different window parameters using a single log event as an example, although
other log events show similar results. It is clear from the image that a different
length will affect the true positive rate and false positive rate. As expected, larger
windows will have a larger chance of having a log message classified as an anomaly
present in them, and therefore both the true positive rate, and the false positive
rate increase. On the other hand, changing the window step size did not produce a
different performance measurement.

However, one must also consider that longer window step sizes imply that there are
fewer windows in total, and therefore the absolute number of false positives will be
lower. In reality this is the metric that matters as it is the time spent on investigating
false positives one wishes to minimize. As we wish to have fast feedback when the
models are in use, and easily label the data, henceforth a window size = 3 min, and
a step size of one minute will be used for the performance measurements. However,
as these results show, this is not a perfect performance measure and care should be
taken when comparing positive rates with models with different window parame-
ters. To optimally evaluate the performance of the online methods each individual
log needs to be labelled.

82

7.5 Log Key anomaly detection using an LSTM

100 A ‘ﬁ Tang *e I
! L]
s
80 e,
H
2. °
g ‘e
] .
- -
o 60 .
2 -
= o
o
o .
L 40 .
£
20 A 30s
® 180s
® 600s
o e 1200s
T T T T T T T
0 10 20 30 40 50 60 70

False positive rate

Figure 7.14: Performance of Parameter value anomaly detection using an LSTM
for a single log event and the Maximum CPU load outlier set, with varying window
sizes. The figure shows that increasing the window size increases the measured
value of both the true positive and false positive rates.

7.5 Log Key anomaly detection using an LSTM

Figure shows the results for the Log key anomaly detection using an LSTM,
with different number of memory units in the first LSTM layer. For many of the data
sets, the model does not significantly exceed the performance of a random classifier.
For three of the data sets the model gets decent performance. In Figure the
results for the Full Docker disk are shown, illustrating a near perfect classifier with
a true positive rate near 100%, and a false positive rate near 0%.

Similarly for the delay data sets in Figures the model manages to
classify a large portion of the windows in the anomaly sets as anomalies for a rel-
atively smaller false positive rate. However, considering the results in the previous
sections, showing far better performance, overall this anomaly detection system is
not very useful for these data sets. One reason it does not perform well could be that
the experiments in question manifest mostly as delays in the system, whereas the
model builds on the assumption that it is the order of logs, or which log messages

83

Chapter 7. Results

that appear, that will change in the system. One possible improvement in the future
could be to add a feature to the model including the relative times of the log mes-
sages. However, more research may be needed to investigate in what scenarios the
DeepLog method of modelling a probability distribution for the next log message
works well.

Finding 6. The Log key anomaly detection using an LSTM performs worse on
our data sets than the event vector models.

Figure[7.13]also shows the impact of a different number of memory units in the first
LSTM layer, suggesting that increasing the capacity of the neural network does not
have a significant effect on anomaly detection. Similarly changing the number of
LSTM units in the second layer, or removing the second layer completely, does not
have an effect on the performance. These results are very similar to that of the orig-
inal DeepLog paper, in which the authors also find that changing the structure of
the neural network does not highly effect the classification performance [[19]. This
is a positive result, as it means the model can likely be implemented for different
systems without a lot of parameter tuning.

In Figure one can see the effect of changing the number of logs in the in-
put window for the model. Although there is not a large difference between the
different window sizes in general, in Figure it appears the model is not able
to capture the full behavior of the system using only the last 5 logs, and hence
the classification performance is much worse for the Full Docker disk experiment.
Although there is some improvement in using a window of 50 instead of 15, it is not
possible to make the conclusion that it is better in general. Finally, it can be noted
that the g parameter tunes the rate of outliers, increasing g leads to points closer to
the lower left corner in the ROC curves, whereas decreasing g leads to points closer
to the top right corner.

Finding 7. Log key anomaly detection using an LSTM is not sensitive to hyper-
parameter changes.

7.5.1 Variations to the DeepLog method

Two variations to the method were attempted in order to improve the result. The
results shown below are for the Maximum CPU load data set, but the results were
similarly negative for the rest of the data sets.

In Figure the results for the dropout rate for the input to the second layer.
There is no significant difference between using dropout, and not using dropout,
the results for high dropout are slightly worse. It is still possible that the model
is overfitting, as it achieves a very high classification accuracy, in other words the
log message with the highest calculated probability by the model is the one that
appears, however due to the concurrency of the system, it is likely that this should

84

True positive rate

True positive rate

True positive rate

100 4

100 4

100 4

7.5 Log Key anomaly detection using an LSTM

1001
80+
I
e
@ 604
2
2
Q. 40
Q
S
=
204
o]
0 20 40 60 80 100 0 20 40 60 80 100
False positive rate False positive rate
(a) Control node network delay (b) RabbitMQ network delay
100 4
80+
Q
e
@ 604
2
2
Q 40
)
S
=
204
o]
0 20 40 60 80 100 0 20 40 60 80 100
False positive rate False positive rate
(¢c) Maximum CPU load (d) Full user disk
100 4
r 80
Q
e
@ 604
2
'§
Q 404
Q
3
=
204
o]
o 20 40 60 80 100 o 20 40 60 80 100
False positive rate False positive rate
(e) Full Docker disk (f) Control node shutdown

Figure The performance of Log key
anomaly detection using an LSTM, for

64 different number of memory units in the
— 128 first LSTM layer. It illustrates the small
— 256 difference when changing hyperparame-

ters, and the poor classification perfor-
mance for most test sets, as the perfor-
mance is close to the random classifier il-
lustrated by the gray line.

85

Chapter 7. Results

100 A -
80 - =
] "'_r,
B —4
= 60
= [
S 40
I~
'_
— 00
207 0.25
— 05
ol — 0.75
0 20 40 60 80 100

False positive rate

Figure 7.16: The performance of Log key anomaly detection using an LSTM on a
Maximum CPU load data set, for varying dropout rates. The figure shows that there
is little effect in adding dropout.

not be possible. One possible future attempt could be to add a recurrent dropout,
which drops the recurrent connections, however, this was not possible due to the
GPU implementation of the LSTM layer, so it was not tested.

The use of weighting the output was tested, and this can be seen in Figure
Once again, this attempt at improving the results did not show any significant dif-
ference, and using weights with a larger factor m did not improve performance to
that of the original network, which can be seen in the figure as m = 0. Here, the
performance data is collected only from the default neural network, and with fewer
g values, which is why there are fewer data points than in the previous figures.

One final investigation was taken into the probability values for a given log event.
Figure [7.19] shows a moving average for 500 log messages of the probability in
the Maximum CPU load experiment, and the baseline validation set. The figure
shows that the probabilities for log messages in the outlier set is on average slightly
lower than that for log messages in the set of normal points. Therefore a possible
improvement to the DeepLog architecture would be to create a model using the
probability values output by the LSTM as inputs, instead of simply looking at the
most probable events. However, more research would be needed to determine if this
will improve performance.

86

True positive rate

True positive rate

True positive rate

7.5 Log Key anomaly detection using an LSTM

100 4

80 +

60 -

40 4

20 4

100 4
80 4

60 -

l 40 -

20 4

True positive rate

o

T
40 60

T
40 60 80

o4
[
=}

T
80 100

20 100
False positive rate False positive rate
(a) Control node network delay (b) RabbitMQ network delay
100 100 1
80 ﬂ 80
]
60 1 E 60
2
40 + § 40
E
g
20 A 20 A
04 0
(IJ 26 4‘0 ﬁb Eb 160 (IJ Z‘D 4‘0 ﬁlﬂ Eb 160
False positive rate False positive rate
(¢) Maximum CPU load (d) Full user disk
100 1 r, 100 1
80 80
u
2
40 + g 40 i
@
E
g
20 A 20 1
04 01
(I) Zb 4‘0 ﬁb Eb 160 (I) Zb 4‘0 6‘0 Eb 160
False positive rate False positive rate
(e) Full Docker disk (f) Control node shutdown
— 5
—_— 15 Figure The performance of Log key
50 anomaly detection using an LSTM, for
150 different number of logs in the input win-

dow. Illustrated is the fact that a window
of 5 logs performed significantly worse in
the Full Docker disk experiment (e).

87

Chapter 7. Results

100 1
80 1

60

40 4

True positive rate

20 1

— 100

(I) 2‘0 4‘0 Bb 8‘0 160
False positive rate
Figure 7.18: The performance of Log key anomaly detection using an LSTM on a
Maximum CPU load data set, where less frequent log events are weighted higher,
for varying weight factors. The figure shows that there is little effect in weighting
less frequent log events.

Wq‘ AT, S W‘\r"«\‘ W

0.4

0.2

Average probability past 500 log messages

—— baseline
Maxed CPU

0.0 -— T T T T T T T
[2000 4000 6000 8000 10000 12000 14000

Index

Figure 7.19: A 500 log message moving average of the probability that the received
log message is the next log message given the previous log messages as calculated
by an LSTM. The figure shows that on average the log events from the Maximum
CPU load experiment were calculated to happen at a lower probability.

88

7.6 Parameter value anomaly detection using an LSTM

7.6 Parameter value anomaly detection using an LSTM

Of the 79 log templates in the training set, only 8 met the conditions to be used for
Parameter value anomaly detection using an LSTM. The conditions, as described
in Chapter [6] include that there were more than 250 occurrences of the log event
in the training set, and that the dynamic parts of the log template consisted of a
numerical value. These log events can be seen in Table[7.4} which shows that most
of the log message parameters include some kind of time parameter, such as the
time a request took, or how long operations on an instance took. This is likely a
good thing, as performance degradation is often experienced as a slower system,
and the fact that OpenStack has several messages logging the time, implies that it
should be possible to detect slowdowns in the system.

Figure shows the results for each test set, comparing the best result from
each log event. In general Figure shows that many of the log events can be
used to accurately detect anomalies within three minutes for the delay experiments,
the Full Docker disk, and the Maximum CPU load experiment. However, none of
the models are able to get a better than random performance in the Full user disk
and Control node shutdown, as opposed to the event vector models, which managed
to get significantly better performance even for windows as short as 10 minutes.

Finding 8. Parameter value anomaly detection using an LSTM has nearly opti-
mal performance for the Control node network delay, RabbitMQ network delay,
Full Docker disk, and Maximum CPU load experiments, but does not outper-
form a random classifier in the Control node shutdown, and Full user disk ex-
periments.

Figure shows the different log events with the Control node network de-
lay test set. This test set was one of the easiest to find for most of the models, yet
the performance here is very poor for two of the log events having event IDs A0011
and A0012. For these two events it was the case that the loss for the LSTM did not
significantly decrease which gave poor performance in all of the experiment sets.
This could be for two reasons. Firstly, it is possible that the threshold of 250 events
was too few for the LSTM to learn the behaviour of the parameters.

A second possibility is that the parameters are more stochastic in nature, and
therefore will never be able to be predicted well. In this case these models should
be removed from the anomaly detection system as they do not offer anything. This
will also improve the training time of the models, as fewer models have to be
trained and tuned. The figure further shows that some events are more sensitive to
the classification threshold than others. For example in Figure the log event
A0006 spans a larger portion of the graph, whereas AO018 only has a small curve,
as all the classification thresholds tested ended up within that area. This shows that

89

Chapter 7. Results

it is likely different events will have to use different classification thresholds. As
some of the events have a quite large false positive rate as their lowest value in this
search, in the future one should experiment with even larger thresholds.

Finding 9. Not all log events are suited for Parameter value anomaly detection
using an LSTM.

Table 7.4: The log events used in Parameter value anomaly detection using an
LSTM.

Event ID | Log template

A0001 <#>,<*>""GET <*>HTTP/1.1"" status: <*>len: <*>time: <*>

A0003 "DELETE /v2.1/servers/<*>HTTP/1.1" status: 204 len: <*>time: <*>

A0006 <*> <ES"POST <*>HTTP/1.1"" status: <*>len: <*>time: <*>

A0011 Running instance usage audit for host <*>from <*><*>to <*><*><*>instances.

A0012 Function ’nova.servicegroup.drivers.db.DbDriver._report_state’ run outlasted interval by <*>sec
A0018 [instance: <*>] Took <*>seconds to <*>the instance on the hypervisor.

A0019 [instance: <*>] Took <*>seconds to deallocate network for instance.

A0025 [instance: <*>] Took <*>seconds to build instance.

Another interesting observation that can be made when comparing the different
experiments in Figure[7.20]is that a parameter has different performance for the dif-
ferent test sets. For instance the log key A0025 which has a dynamic parameter that
performs well on the RabbitMQ network delay experiment, but does not perform
well on the Maximum CPU load experiment. This is reasonable as A0025 is a log
message specifying the time it took to build an instance from Nova-compute. The
Maximum CPU load anomaly on a control node might not affect the performance
on the compute node, whereas the RabbitMQ network delay will affect all of the
servers, and specifically the compute nodes that run Nova-compute. This illustrates
an advantage with the Parameter value anomaly detection using an LSTM, namely
that one can get information on what is wrong, rather than a whole window being
anomalous.

Figure [7.21] shows the performance of our LSTM with a unique models for each
dynamic parameter, and the performance of the LSTM proposed by the DeepLog
article taking the mean squared error from a single LSTM for each log event. The
ROC curve is created by taking the best model for each false positive, including
taking the log event with the best performance. It is clear that the performance is
very similar, in fact for all experiments except the Full user disk, and the Maximum
CPU load, the curves overlap almost entirely. Looking at the Maximum CPU load
specifically, however, in Figure[7.21c|one can see that there is a large improvement
by using separate models. Not only does the single LSTM fail to reach the near
perfect true positive rate, but it only reaches its maximum value at around 3% false
positive rate, as opposed to the single LSTM reaching the maximum value at around
a 1% false positive rate.

90

True positive rate

True positive rate

True positive rate

7.6 Parameter value anomaly detection using an LSTM

100 + f 100 +
80 4 80 4 _l_'_'_
o
60 E 60
2
40 4 ?‘, 40 4
E
201 201
01 0{——
o 2 2 6 B 10 0 2 2 6 8 10
False positive rate False positive rate
(a) Control node network delay (b) RabbitMQ network delay
100 + 100 4
80 1 I’I 80 1
]
60 4 E 60 1
_—] £
40 :‘, 40 -
3
4 =
201 201
01 '_I 04 e —— _
0 2 2 5 8 10 0 2 2 6 8 10
False positive rate False positive rate
(¢) Maximum CPU load (d) Full user disk
100 o 100 +
80 4 80 4
2
60 S 60
2
40 ?‘, 40 A
3
2
20 + 201
04 o e
0 2 a 6 B 10 0 2 a 6 8 10
False positive rate False positive rate
(e) Full Docker disk (f) Control node shutdown
—— A0001 Figure The performance of Param-
A0003 eter value anomaly detection using an
iggg? LSTM for different log events. The best
ADOL2 performing dynamic parameter is plotted
—— A0O18 for each event ID used. The figure shows
—— A0019 that many different dynamic parameters
—— A0025

can be used for anomaly detection using
an LSTM. 91

Chapter 7. Results

True positive rate

True positive rate

True positive rate

92

10

100 + 100 +
80 1 80 1
2
60 s 60
il z
40 4 § 40 4
3
2
201 201
07 0
o 2 2 6 B 10 0 2 2 6 8
False positive rate False positive rate
(a) Control node network delay (b) RabbitMQ network delay
100 + 100 4
80 1 80 1
]
sl
60 4 o 60
2
40 § 40 -
2
a =
201 201
ol I Y —T— Lkt
0 2 2 5 8 10 0 2 2 6 8
False positive rate False positive rate
(¢c) Maximum CPU load (d) Full user disk
100 o 100 +
80 4 80 4
2
&
60 o 604
2
40 4 § 40
2
2
20 + 201
-
01 — 01
0 2 a 6 B 10 0 2 a 6 8
False positive rate False positive rate
(e) Full Docker disk (f) Control node shutdown
Figure The performance of Log key
anomaly detection using an LSTM, with
one unique LSTM per dynamic param-
eter (single output), compared with one
LSTM per log event taking the mean
squared error of the result (multiple out-
— single output puts). The figure shows that the perfor-
Multiple outputs mance is mostly the same, however for

the Maximum CPU load experiment (c)
there was a significant difference.

10

7.6 Parameter value anomaly detection using an LSTM

True positive rate

False positive rate
Figure 7.22: The performance for a single dynamic parameter of a log event on the
Control node shutdown data set. The figure illustrates the strange behavior for this
parameter, with a jump from almost 0 % to 100 % in positive accuracy.

The reason for the better performance could be that some of the features are
impossible for the LSTM to learn, and therefore simply add noise to the output,
reducing the precision of the prediction error, and thus reducing the accuracy of
the classification. There were, however, individual log events where the DeepLog
approach taking the mean squared error of the prediction error was significantly
better. This is likely due to the ensemble effect, where all parameters were possible
to predict, and therefore taking an average of the prediction error over all of them
gave better performance. In order to get optimal performance, it is probably neces-
sary to test different configurations, of which parameters one should take average,
or have separate. It would also be possible to have a voting system between the
different parameters, as another method to ensemble the models.

Finding 10. One can achieve a performance increase over DeepLog by having a
unique LSTM for each dynamic parameter and a unique threshold for the pre-
diction error, rather than taking a mean squared error over several dynamic
parameters.

An interesting case is given by the Control node shutdown experiment using
the log key A0O0O1 and the second dynamic parameter, shown in Figure It
shows a classifier that achieves a high false positive rate, with a very low true
positive rate, exemplifying a very poor classifier. However, the values imply that
one can construct a good classifier by doing the opposite of what this classifier
does. The classifier then jumps to a very high true positive rate. The reason for
these strange results is in part due to the nature of the parameter, as looking at
Table[7.4]it is seen that this particular parameter is the status code of a request. This
parameter is therefore not a continuous variable, but has a few fixed values it can
take, causing jumps in the classification when the threshold reaches these values.
Furthermore, all of the data sets contain error codes, however the reason for the

93

Chapter 7. Results

high false positive rate when comparing to the low true positive rate could be that
there is actually an anomaly in the validation set for the baseline data. A possibility
is that it contains fewer success codes or behaves differently than the training set,
and that the problem, therefore, is in the labelling of the data.

This example shows that perhaps the models should be treated differently for
non continuous variables, such as using classification instead of regression. It also
exemplifies a need for each parameter to be treated separately. Firstly, due to the
fact that one parameter may be more difficult for the model to predict, such as the
status of a request, therefore adding noise when taking the mean squared error and
reducing the performance. Secondly, due to the fact that one parameter may be
anomalous, such as the status of a request, while another, such as the request time,
may be normal. It should be noted in this second case, however, that if all parame-
ters are used as inputs to the models other parameters that are not anomalous may
still be classified as anomalies due to the fact that the model was trained for normal
behaviour of all the input variables, rather than them being anomalies. Finally, it
should be noted that the results from the grid search were the same as for the Log
key anomaly detection using an LSTM, that is to say the model hyperparameters
had very little effect on the performance of the models.

Finding 11. Parameter value anomaly detection using an LSTM is not sensitive
to hyperparameter changes.

7.6.1 Evaluation

A final evaluation was done on the test set as the threshold parameter is chosen by
using the standard deviation of the prediction error in the validation set. The con-
clusion is that the results hold, as the performance was very similar on the test set.
Specifically one of the parameters for the event with event ID A0006 can be seen
in Table [7.5] This was chosen as it performed fairly well on the Control node net-
work delay set, although not optimally. What can be seen is that the results are very
similar, with slightly worse performance for the Maximum CPU load experiment
and a much better performance for the Control node shutdown experiment. Another
parameter from log key A00O3 can be seen in Table in which the mean true
positive rate is seen for different classification thresholds. Once again the test set
performance is slightly better than the validation set, however, overall the result is
good.

7.7 Ensemble models

Figure[7.23|shows the performance of various ensemble models with a window size
= 60 min. In the case when using models with a larger maximum false positive rate,
shown in Figure [7.23a] there is a large performance increase by using ensemble

94

7.7 Ensemble models

Table 7.5: Comparison of the performance in the test set and validation set for Pa-
rameter value anomaly detection using an LSTM, for a specific log event and dy-
namic parameter in the event.

Test set Validation FP % | Validation TP % | Test FP % | Test TP %
Control node network delay | 3.0 95.9 1.0 95.7
RabbitMQ network delay 3.0 97.1 1.0 98.0
Maximum CPU load 3.0 42.8 1.0 30.2

Full user disk 3.0 1.9 1.0 0.0

Full Docker disk 3.0 100.0 1.0 100.0
Control node shutdown 3.0 2.7 1.0 21.2

Mean 3.0 56.3 1.0 57.5

Table 7.6: The mean performance over different anomaly types for Parameter value
anomaly detection using an LSTM. The table shows the best performance for a
specific log event and dynamic parameter in the event for different false positive
rates.

Validation FP % | Validation TP % | Test FP % | Test TP %
1.0 57.5 0.76 63.5
0.76 40.7 0.51 60.0
0.51 37.9 0.51 53.5

models, resulting in more than 10% decrease in false positive rate, with the same
true positive rate as the best single model. When using models with a lower false
positive rate, the improvement is not as large, however, there is still a distinct im-
provement when comparing to the results seen in Figure[7.8] Here one can trade-off
a higher false positive rate for a higher true positive rate, or a lower true positive rate
for a lower false positive rate, when compared to the best two individual models.
The effect is similar in Figure which shows the result for ten minute windows.

In Figure no ensemble model is able to get the same true positive rate at
the same false positive rate as the best model. However, once again it is possible
to achieve better performance at different false positive levels. The ensemble mod-
els achieve a true positive rate of approximately 47%, at 18% false positive rate,
whereas the individual models from the previous grid search only achieve approx-
imately 40% for the same false positive rate. With small differences, however, it
is possible that the results do not generalize, and it may be difficult to draw con-
clusions. For the final case with low false positive rate and a 10 minute window,
the ensemble models are in practice worse than the individual models, as seen in

Figure

The trend clearly shows that using ensemble models can improve the performance,

95

Chapter 7. Results

100 s 100
8O 80
z &z
& &
v B0 w B0
B B
o 40 o 40
S IS
20 0
—— Ensemble models —— Ensemble models
o = Original models 0 = Original models
0 5 10 15 o 5 0 0 2 1 6 B 10
False positive rate False positive rate
(a) Models with a maximum false (b) Models with a maximum false
positive rate of 25. positive rate of 5.

Figure 7.23: The performance of 8 individual models and the performance of dif-
ferent ensembles of the models on an OpenStack on OpenStack environment with
Maximum CPU load. A 60 minute window was used.

100 100
80 80
B &z
= = —— Ensemble models
_g 60 _g 60 Original models
W 40 w 40
& =
20 20
—— Ensemble models ..
o = Original models 0 —_— .
0 s W 15 W 5 W B 0 2 3 & B 10
False positive rate False positive rate
(a) Models with a maximum false (b) Models with a maximum false
positive rate of 25%. positive rate of 5%.

Figure 7.24: The performance of 8 individual models and the performance of dif-
ferent ensembles of the models on an OpenStack on OpenStack environment with
Maximum CPU load. A 10 minute window was used.

96

7.7 Ensemble models

with the effect being larger when the true positive rates of the individual models
are larger. This is likely because as the true positive rate is large, there is a large
overlap between the models classification in the outlier set, and therefore having a
high voting threshold will not change the number of true positives drastically. On
the other hand, the results show that even though the models are misclassifying
many vectors in the baseline set, it is not the same vectors that are being misclas-
sified by the different models, and therefore by using a voting system, a lot of the
misclassifications can be removed. In contrast, when the true positive rate is lower,
it appears that the vectors classified as true positives also differ between the models,
and therefore some of the vectors will no longer be classified as true positives using
ensemble models. Finally, using ensemble models can also give more flexibility
in tuning the false positive rate and true positive rate as more models with similar
performance are produced.

Finding 12. Using an ensemble of models can improve performance, and the
effect is larger when the models have a higher true positive rate.

97

3

Conclusion

8.1 Summary

We started off by using the historical data set given by the Ericsson’s data cen-
ter to build the anomaly detection pipeline. The created pipeline consisted of the
stages: Log Collection, Log Cleaning, Log Parsing, Feature Extraction, and finally
Anomaly Detection. Since the log data was not labeled we did not create any op-
timized anomaly detection models from said data. Instead to produce labeled data
a controlled cloud environment, TripleO, was utilized on top of an existing cloud
managed by the OpenStack service. Six types of anomalies were in turn injected
into the system whereas the logs produced was collected. The six were: Full user
disk, RabbitMQ network delay, Maximum CPU load, Control node shutdown,
Full Docker disk and Control node network delay. The unstructured log messages
were afterwards parsed with the help of Drain resulting in an Event ID sequence.
Thereafter multiple kinds of feature extraction and anomaly detection models were
applied on the parsed data. Among the majority of the optimized model created was
an almost perfect detection rate for the the two network delay and filling the Docker
disk anomalies. On the other hand the Control node network delay and Full user
disk anomalies were noticeably harder to detect.

First, four different conventional machine learning algorithms were used in the
anomaly detection stage. The input data consisted of Event vectors extracted using
sliding windows from the parsed Event ID sequence. To find optimal models a
grid search was performed using parameters in the feature extraction. The results
showed the window size and the ratio of outliers in the training set had the greatest
impact on the performance and the resulting average detection rate over all experi-
ments was in the 50-60% range.

The LSTM neural network was also used. The feature extraction was done both on
the dynamic and the constant part of the log message. The extraction resulted in
time series vector of Event IDs, used for Log key anomaly detection using an LSTM.
The result was that it worked very well only for the Full Docker Disk experiment.

98

8.2 Findings

For the Parameter value anomaly detection using an LSTM the extraction resulted
in several time series of dynamic parameters. In general an average detection rate
over all experiments of 50-60% was found. It was also found that there may be
improvements by discarding certain parameters, and by classifying dynamic pa-
rameters separately, rather than taking a mean squared error of the prediction error
for all dynamic parameters in an event ID.

8.2 Findings

All of the findings are listed below.

A fixed boundary of the total number of logs generated during 30
minutes or more is enough to detect the two different network delays and the Full
Docker disk anomaly.

Larger window size achieves better results when using event vectors.

The detection score for a Full user disk and the Control node shut-
down were substantially lower than the rest, independent of window size

The relative performance between the machine learning algorithms
varied across the different window sizes but did not to a large extent depend on the
anomaly types.

The model performance increased when the outlier ratio in the train-
ing set decreased as the optimal performance was reached with no contamination.

The Log key anomaly detection using an LSTM performs worse on
our data sets than the event vector models.

Log key anomaly detection using an LSTM is not sensitive to hy-
perparameter changes.

Parameter value anomaly detection using an LSTM has nearly opti-
mal performance for the Control node network delay, RabbitMQ network delay,
Full Docker disk, and Maximum CPU load experiments, but does not outperform a
random classifier in the Control node shutdown, and Full user disk experiments.

Not all log events are suited for Parameter value anomaly detection
using an LSTM.

One can achieve a performance increase over DeepLog by having

99

Chapter 8. Conclusion

a unique LSTM for each dynamic parameter and a unique threshold for the predic-
tion error, rather than taking a mean squared error over several dynamic parameters.

Parameter value anomaly detection using an LSTM is not sensitive
to hyperparameter changes.

Using an ensemble of models can improve performance, and the effect
is larger when the models have a higher true positive rate.

8.3 Discussion

For the two delay scenarios and the Full Docker disk scenario our pipeline manages
to get an almost perfect classification of anomalies, and in fact only using the fre-
quency of log messages is enough to do so. For the scenario with a Maximum CPU
load, the frequency of log events is not enough to detect the anomaly. However,
many of the models we tested were able to achieve a very high true positive rate
while having a low false positive rate. For the Full user disk, and Control node
shutdown experiment our models have fairly poor performance.

We investigated several models in the thesis which can be divided into the cat-
egories of event vector models, Log key anomaly detection using an LSTM, and
Parameter value anomaly detection using an LSTM. The Log key anomaly detec-
tion using an LSTM did not work very well on the data we generated, and will
need more investigation in the future as to why that is. The other two methods both
worked well, and have advantages and disadvantages to using them. The Parameter
value anomaly detection using an LSTM model has the benefit that it is an online
method, and therefore can detect anomalies as soon as they happen. It is possible
that in practice the event vector models with large windows are also as effective, if
they are able to detect anomalies before they reach the stage where there is a fault,
or failure, in the system.

Another advantage of the Parameter value anomaly detection using an LSTM
is that it was not very sensitive to parameters, and it is likely that one can use the
parameters proposed in this work on many other cloud infrastructures. On the other
hand, the event vectors had several parameters that were dependant on the test set,
for instance the window size needs to be tuned to the specific data, especially con-
sidering the result in the Logpai paper where longer windows were advantageous
[28]. An advantage to the event vector models is that they are very fast to train,
and to utilize on streaming data, as opposed to deep neural networks which take
a significantly longer time, even when using GPUs. They also had slightly better
performance for some of the experiments, for instance the Full user disk and Con-
trol node shutdown which were difficult to detect. Finally, as these different models

100

8.4 Contributions

look at different aspects of the data, the Parameter value anomaly detection using
an LSTM only taking into account the dynamic parameters, and the event vector
models only taking into account the relation between the number of log events in a
window, and as they have different advantages and drawbacks, for a full anomaly
detection both of the model types should be used.

8.4 Contributions

We present and review multiple complete automatic anomaly defection systems.
With a controlled cloud environment we are able to generate log data with spe-
cific anomalies. Using said data the thesis evaluates the performance of multiple
machine learning models for specific anomalies. This includes both conventional
machine learning algorithms and neural networks. Additionally the paper shows the
comparison of the use of the dynamic and the constant part of the log messages. Our
evaluation further includes the impact in performance for numerous parameters all
through the entire pipeline.

8.5 Future work

The results from this thesis are derived from a very controlled environment. The
next step in the evaluation of the performance of the anomaly detection models
would be to add a more complex baseline to the system; instead of using the simple
starting and stopping of a VM, a higher and less regular load should be placed on
the system. As mentioned earlier, a maximum CPU load is acceptable on servers for
shorter periods of time, however the models should be able to distinguish from nor-
mal usage of the servers, and a problematic usage. Similarly, the same experiments
could be done, but using different configurations, for example to investigate how the
models perform when the delay is smaller, or not a constant delay. Furthermore, the
pipeline needs to be tested on a production environment, where the implementation
aspects such as the speed of forming windows, or using the models for inference
may need to be considered further. Another aspect to be considered in future work
would be to use other data sources from the data center in conjunction with the log
models in order to improve performance, and investigate how the models may aid
in root cause analysis, and solving the actual causes of the anomalies.

101

Bibliography

[4]

102

C. C. Aggarwal. Neural Networks and Deep Learning A Textbook. Springer
International Publishing, 2018. Chap. 2.

S. Alla and S. K. Adari. Beginning Anomaly Detection Using Python-Based
Deep Learning With Keras and PyTorch. Apress, 2019, pp. 19-20.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. “A view of cloud
computing”. Commun. ACM 53:4 (2010), pp. 50-58. 1SSN: 0001-0782. DOTI:
10 . 1145 /1721654 . 1721672, URL: https ://doi . org/10. 1145/
1721654.1721672.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the
Clouds: A Berkeley View of Cloud Computing. Tech. rep. UCB/EECS-2009-
28. EECS Department, University of California, Berkeley, 2009. URL: http:
/ /wwu2 . eecs . berkeley . edu/Pubs/TechRpts /2009 /EECS - 2009 -
28 .htmll

S. Beschorner. Automated Hyperparameter Tuning of Language Based
Anomaly Detection for Log Files. University of Applied Sciences Aachen
Campus liilich, 2020.

Big data. URL: https://en.wikipedia.org/wiki/Big_data (visited on
2021-02-08).

A. Bldzquez-Garcia, A. Conde, U. Mori, and J. A. Lozano. A review on
outlier/anomaly detection in time series data. 2020. eprint: arXiv : 2002 .
04236.

S. Borrelli. Example of isolating a non-anomalous point in a gaussian 2d
distribution. URL: https : / /upload . wikimedia . org / wikipedia /
commons /c/ce/Isolating _a_Non- Anomalous _Point . png (visited
on 2021-04-12).

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://en.wikipedia.org/wiki/Big_data
arXiv:2002.04236
arXiv:2002.04236
https://upload.wikimedia.org/wikipedia/commons/c/ce/Isolating_a_Non-Anomalous_Point.png
https://upload.wikimedia.org/wikipedia/commons/c/ce/Isolating_a_Non-Anomalous_Point.png

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

Bibliography

S. Borrelli. Example of isolating an anomalous point in a gaussian 2d distri-
bution. URL: https://upload.wikimedia.org/wikipedia/commons/
f/ff/Isolating_an_Anomalous_Point.png|(visited on 2021-04-12).

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. “Lof: identifying
density-based local outliers”. ACM SIGMOD Record 29:2 (2000), pp. 93—
104. pO1:/10.1145/335191.335388. URL: https://doi.org/10.1145/
335191.335388.

V. Chandola, A. Banerjee, and V. Kumar. “Anomaly detection: a sur-
vey”. ACM Comput. Surv. 41:3 (2009). 1SSN: 0360-0300. DOI: 10 . 1145/
1541880 . 15641882, URL: https ://doi . org/10.1145/1541880 .
1541882,

Cinder. URL: https://docs.openstack.org/swift/latest/7_ga=2.
60306157.1952184417.1609507891-1861056004 . 1606907653 (visited
on 2021-01-01).

Clustering. URL: https : //scikit - learn . org/ stable /modules /
clustering.html (visited on 2021-02-08).

Confusion matrix. URL: https : / / commons . wikimedia . org /wiki /
File:ConfusionMatrixRedBlue.png|(visited on 2021-03-10).

Control plane architecture. URL: https://docs.openstack.org/arch-
design/design-control-plane.html (visited on 2021-02-17).

Docker (software). URL: https://en.wikipedia.org/wiki/Docker_
(software) (visited on 2021-03-26).

Docker overview. URL: https : //docs . docker . com/get - started/
overview/|(visited on 2021-03-26).

Docker stop. URL: https://docs . docker . com/engine/reference/
commandline/stop/|(visited on 2021-04-07).

M. Du, F. Li, G. Zheng, and V. Srikumar. “Deeplog: anomaly detection and
diagnosis from system logs through deep learning”. In: CCS ’17. Association
for Computing Machinery, Dallas, Texas, USA, 2017, pp. 1285-1298. ISBN:
9781450349468. DOI:10.1145/3133956.3134015, URL: https://doi.
org/10.1145/3133956.3134015/,

A. Emmerich. Automated Anomaly Detection in Software-Defined Telco
Cloud Platforms. University of Applied Sciences Aachen Campus liilich,
2018.

Ensemble learning. URL: https : / / en . wikipedia . org / wiki /
Ensemble_learning (visited on 2021-03-28).

Fallocate(1) — linux manual page. URL: https://man7.org/linux/man-
pages/manl/fallocate.1.html (visited on 2021-04-07).

A. C. Faul. A concise introduction to machine learning. CRC Press, Taylor
Francis Group, 2020, p. 123.

103

https://upload.wikimedia.org/wikipedia/commons/f/ff/Isolating_an_Anomalous_Point.png
https://upload.wikimedia.org/wikipedia/commons/f/ff/Isolating_an_Anomalous_Point.png
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://docs.openstack.org/swift/latest/?_ga=2.60306157.1952184417.1609507891-1861056004.1606907653
https://docs.openstack.org/swift/latest/?_ga=2.60306157.1952184417.1609507891-1861056004.1606907653
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://commons.wikimedia.org/wiki/File:ConfusionMatrixRedBlue.png
https://commons.wikimedia.org/wiki/File:ConfusionMatrixRedBlue.png
https://docs.openstack.org/arch-design/design-control-plane.html
https://docs.openstack.org/arch-design/design-control-plane.html
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Docker_(software)
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/stop/
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Ensemble_learning
https://man7.org/linux/man-pages/man1/fallocate.1.html
https://man7.org/linux/man-pages/man1/fallocate.1.html

Bibliography

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]
[34]

[35]

(36]

[37]

[38]

104

A. Gibson and J. Patterson. Deep Learning: a practitioners approach. OR-
eilly, 2017, pp. 33-35, 67-69, 237.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

P.He, J. Zhu, S. He, J. Li, and M. R. Lyu. “Towards automated log parsing for
large-scale log data analysis”. IEEE Transactions on Dependable and Secure
Computing 15:6 (2018), pp. 931-944. DOI:/10.1109/TDSC. 2017 . 2762673,

P. He, J. Zhu, Z. Zheng, and M. R. Lyu. “Drain: an online log parsing ap-
proach with fixed depth tree”. In: 2017 IEEE International Conference on
Web Services (ICWS). 2017, pp. 33—40. DOI:|110.1109/ICWS.2017.13.

S. He, J. Zhu, P. He, and M. R. Lyu. “Experience report: system log anal-
ysis for anomaly detection”. In: 2016 IEEE 27th International Symposium
on Software Reliability Engineering (ISSRE). 2016, pp. 207-218. DOI: 10.
1109/ISSRE.2016.21.

Hops-util-py. URL: https://hops-py.logicalclocks.com/ (visited on
2021-04-12).

Isolation forest. URL: https://en.wikipedia.org/wiki/Isolation_
forest|(visited on 2021-02-09).

J. Jager. Methods and Techniques to Artificially Create Labeled Data Sets
to Evaluate Language-Based Anomaly Detection Systems. University of Ap-
plied Sciences Aachen Campus liilich, 2020.

K-nearest neighbors algorithm. URL: https : //en . wikipedia . org/
wiki/K-nearest_neighbors_algorithm (visited on 2021-02-08).

Keras. URL: https://keras.io/ (visited on 2021-04-11).

Keystone. URL: https://docs . openstack . org/keystone/latest/
(visited on 2021-01-01).

P. Kumar. Step by step instance creation flow in openstack. 22, 2018. URL:
https : / / www . linuxtechi . com / step - by - step - instance -
creation-flow-in-openstack/|(visited on 2021-01-18).

J. Leskovec, A. Rajaraman, and J. D. Ullman. In: Mining of Massive
Datasets. 2014, pp. 8-9.

Q. Lin, H. Zhang, J. Lou, Y. Zhang, and X. Chen. “Log clustering based
problem identification for online service systems”. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C).
2016, pp. 102—-111.

F. T. Liu, K. M. Ting, and Z.-H. Zhou. “Isolation forest”. In: 2008 Eighth
IEEE International Conference on Data Mining. 1IEEE, 2008. DOI: |10 .
1109/icdm.2008.17, URL: https://doi.org/10.1109/icdm.2008.
17.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/TDSC.2017.2762673
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
https://hops-py.logicalclocks.com/
https://en.wikipedia.org/wiki/Isolation_forest
https://en.wikipedia.org/wiki/Isolation_forest
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://keras.io/
https://docs.openstack.org/keystone/latest/
https://www.linuxtechi.com/step-by-step-instance-creation-flow-in-openstack/
https://www.linuxtechi.com/step-by-step-instance-creation-flow-in-openstack/
https://doi.org/10.1109/icdm.2008.17
https://doi.org/10.1109/icdm.2008.17
https://doi.org/10.1109/icdm.2008.17
https://doi.org/10.1109/icdm.2008.17

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

Bibliography

Log request id mappings. URL: https : / / specs . openstack . org /
openstack/nova-specs/specs/juno/approved/log-request-id-
mappings.html (visited on 2021-03-25).

Long short-term memory. URL: https://en . wikipedia. org/wiki/
Long_short-term_memory (visited on 2021-02-23).

P. M. Mell and T. Grance. The NIST definition of cloud computing. Tech. rep.
2011. por: 10.6028/nist.sp.800- 145, URL: https://doi.org/10.
6028/nist.sp.800-145.

P. M. Mell and T. Grance. SP 800-145. The NIST Definition of Cloud Com-
puting. Tech. rep. Gaithersburg, MD, USA, 2011.

K. P. MURPHY. MACHINE LEARNING: a probabilistic perspective. MIT
Press, 2020, pp. 2-3.

Networking concepts. URL: https : //docs . openstack . org/arch -
design/design-networking/design-networking- concepts.html
(visited on 2021-02-17).

Neutron. URL: https : //docs . openstack . org /neutron/ latest /
install/concepts.html (visited on 2021-01-01).

Nova. URL: https : //www . openstack . org/ software /releases/
victoria/components/noval (visited on 2021-01-01).

Novelty and outlier detection. URL: https : / / scikit - learn . org /
stable/modules/outlier_detection (visited on 2021-02-09).
One-class classification. URL: https://en.wikipedia.org/wiki/One-
class_classification(visited on 2021-04-12).

OpenStack contributors. Install guide. 2020. (Visited on 2021-01-01).
osrecki. Two-dimensional outliers. URL: https://commons .wikimedia.
org/wiki/File:Two-dimensional_Outliers.png (visited on 2021-04-
05).

B. Parhami. “Defect, fault, error,..., or failure?” IEEE Transactions on Relia-
bility 46:4 (1997), pp. 450-451. DO1:/10.1109/TR. 1997 .693776,
Precision and recall. URL: https : / / en . wikipedia . org / wiki /
Precision_and_recall (visited on 2021-02-11).

Preprocessing data. URL: https : / / scikit - learn . org / stable /
modules/preprocessing.html (visited on 2021-02-08).

Pyod documentation. URL: https://pyod.readthedocs. io/ (visited on
2021-03-26).

Receiver operating characteristic. URL: https://en.wikipedia.org/
wiki/File:Roc-draft-xkcd-style.svg(visited on 2021-03-11).

Reference architecture. URL: https : / / docs . openstack . org /
networking - odl /latest /admin/reference_architecture . html
(visited on 2021-02-17).

105

https://specs.openstack.org/openstack/nova-specs/specs/juno/approved/log-request-id-mappings.html
https://specs.openstack.org/openstack/nova-specs/specs/juno/approved/log-request-id-mappings.html
https://specs.openstack.org/openstack/nova-specs/specs/juno/approved/log-request-id-mappings.html
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://doi.org/10.6028/nist.sp.800-145
https://doi.org/10.6028/nist.sp.800-145
https://doi.org/10.6028/nist.sp.800-145
https://docs.openstack.org/arch-design/design-networking/design-networking-concepts.html
https://docs.openstack.org/arch-design/design-networking/design-networking-concepts.html
https://docs.openstack.org/neutron/latest/install/concepts.html
https://docs.openstack.org/neutron/latest/install/concepts.html
https://www.openstack.org/software/releases/victoria/components/nova
https://www.openstack.org/software/releases/victoria/components/nova
https://scikit-learn.org/stable/modules/outlier_detection
https://scikit-learn.org/stable/modules/outlier_detection
https://en.wikipedia.org/wiki/One-class_classification
https://en.wikipedia.org/wiki/One-class_classification
https://commons.wikimedia.org/wiki/File:Two-dimensional_Outliers.png
https://commons.wikimedia.org/wiki/File:Two-dimensional_Outliers.png
https://doi.org/10.1109/TR.1997.693776
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://pyod.readthedocs.io/
https://en.wikipedia.org/wiki/File:Roc-draft-xkcd-style.svg
https://en.wikipedia.org/wiki/File:Roc-draft-xkcd-style.svg
https://docs.openstack.org/networking-odl/latest/admin/reference_architecture.html
https://docs.openstack.org/networking-odl/latest/admin/reference_architecture.html

Bibliography

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

106

M. Ribeiro, S. Singh, and C. Guestrin.

why should i trust you?”: explaining the predictions of any classifier”. In:
Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Demonstrations. Association for
Computational Linguistics, 2016. DOI: 10 . 18653 /v1 /n16 - 3020. URL:
https://doi.org/10.18653/v1/n16-3020.

G. saini. Artificial neuron consisting of dendrites,axon and threshold func-
tion. URL: https : / / commons . wikimedia . org / wiki / File :
Artificial_neural_network.png (visited on 2021-04-12).

Storage concepts. URL: https://docs.openstack.org/arch-design/
design-storage/design-storage-concepts.html (visited on 2021-
02-17).

Stress-ng. URL: https : //wiki . ubuntu . com/Kernel /Reference /
stress-ng|(visited on 2021-04-07).

Structure of a simple recurrent neural network. URL: https://commons .
wikimedia.org/wiki/File:Recurrent_neural _network_unfold.
svg.

Support-vector machine. URL: https : / /en . wikipedia . org/wiki /
Support-vector_machine|(visited on 2021-04-12).

Swift. URL: https://docs.openstack.org/swift/latest/7_ga=2.
60306157.1952184417.1609507891-1861056004 . 1606907653 (visited
on 2021-01-01).

Tc-netem (8) - linux man pages. URL: https://www.systutorials.com/
docs/linux/man/8-tc-netem/| (visited on 2021-04-07).

Tensorflow. URL: https://www. tensorflow. org/|(visited on 2021-04-
11).

Tripleo. URL: https://docs.openstack.org/tripleo-docs/latest/
install/introduction/architecture.html|(visited on 2021-01-02).

X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang. “Cloudseer: workflow
monitoring of cloud infrastructures via interleaved logs”. SIGPLAN Not. 51:4
(2016), pp. 489-502. 1SSN: 0362-1340. DOI: |10.1145/2954679 . 2872407,
URL: https://doi.org/10.1145/2954679.2872407.

J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu. “Tools
and benchmarks for automated log parsing”. CoRR abs/1811.03509 (2018).
arXiv:|1811.03509. URL: http://arxiv.org/abs/1811.03509.

https://doi.org/10.18653/v1/n16-3020
https://doi.org/10.18653/v1/n16-3020
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.png
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.png
https://docs.openstack.org/arch-design/design-storage/design-storage-concepts.html
https://docs.openstack.org/arch-design/design-storage/design-storage-concepts.html
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine
https://docs.openstack.org/swift/latest/?_ga=2.60306157.1952184417.1609507891-1861056004.1606907653
https://docs.openstack.org/swift/latest/?_ga=2.60306157.1952184417.1609507891-1861056004.1606907653
https://www.systutorials.com/docs/linux/man/8-tc-netem/
https://www.systutorials.com/docs/linux/man/8-tc-netem/
https://www.tensorflow.org/
https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html
https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html
https://doi.org/10.1145/2954679.2872407
https://doi.org/10.1145/2954679.2872407
https://arxiv.org/abs/1811.03509
http://arxiv.org/abs/1811.03509

Lund University Document name

Department of Automatic Control ngj;iiR S THESIS
Box 118 May 2021
SE-221 00 Llll'ld Sweden Document Number
TFRT-6129
Author(s) Supervisor
Jacob Gummesson Atroshi Torgny Holmberg, Ericsson, Sweden
Christian Le Robert Marklund, Ericsson, Sweden

Johan Eker, Dept. of Automatic Control, Lund
University, Sweden

Karl-Erik Arzén, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle
Automatic Log Based Anomaly Detection in Cloud Operations using Machine
Learning

Abstract

For modern large scale cloud services a fast and reliable anomaly detection is of utmost importance.
Traditionally developers perform simple keyword search, for keywords such as "error" or "fail" in the
log data, one of the main data sources that depicts the state of the system. In today’s large-scale
systems however several TB of log messages can be output every day making manual search highly
ineffective. To address the problem there have been many anomaly detection methods based on the
few publicly available log data sets. In this thesis we present a unique data collection method using a
virtualized OpenStack cloud system to collect log data from six simulated anomaly scenarios. Three
different detection methods are presented using both the dynamic and static parts of the individual log
messages. An investigation of the impact of parameters such as time window size is done by an
evaluation of the various anomaly types. Among the four conventional machine learning models
based on the static parts gave a good performance of a 50% detection rate with a 0.35% false alarm
rate. In addition the results show a better LSTM model performance when using the dynamic rather
than the static parts. For the LSTM using dynamic parameters the results depended on the anomaly
type, and the parameter, with the best average scores around 55-65% detection rate with a false alarm
rate around 0.5-1%.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 1-106

Security classification

http://www.control.lth.se/publications/

	Introduction
	Background
	Objective of Project
	Automatic anomaly detection
	Outline of thesis
	Individual Contributions
	Related Work
	Available Data

	Cloud computing
	Cloud and Datacenter Elements
	OpenStack
	TripleO
	Docker

	Log parsing
	Drain
	Feature extraction

	Anomaly Detection
	DeepLog
	Log Key anomaly detection
	Parameter value anomaly detection

	Machine Learning
	Conventional Machine Learning Algorithms
	k-Nearest Neighbours
	Isolation Forest
	One class SVM
	LOF

	Artificial Neural Networks
	Feedforward NN
	Recurrent Neural Networks
	Autoencoder

	Ensemble models
	Model Training
	Feature scaling

	Overfitting
	Hyperparameters
	Dropout
	Early Stopping
	Train, Test and Validation Sets
	Performance Metric

	Method
	Lab environment setup
	Log collection
	Decide which logs to use
	Baseline
	Injecting Errors

	Cleaning and Parsing Data
	Historical Data
	TripleO
	Data set
	Data set split
	Performance evaluation
	Defining anomalies

	Anomaly detection using Event Vectors
	Grid search

	Online methods
	Log key anomaly detection using an LSTM
	Parameter value anomaly detection using an LSTM

	Ensemble models
	Inference

	Results
	Historical data
	Session Window
	Sliding Window

	TripleO data
	Clean and Drain
	Log frequency

	Event vectors
	Window size
	Machine learning models
	Training set contamination ratio
	Log keys
	Choosing model

	Performance measurement for online methods
	Log Key anomaly detection using an LSTM
	Variations to the DeepLog method

	Parameter value anomaly detection using an LSTM
	Evaluation

	Ensemble models

	Conclusion
	Summary
	Findings
	Discussion
	Contributions
	Future work

	Bibliography

