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Abstract

Malignant melanoma is an aggressive type of skin cancer. Gene mutations can
make the disease progress faster, but specialised treatment exists. Today, gene
mutations are detected with DNA-analysis which is costly and time-consuming.
The aim of our thesis is to investigate whether deep learning can be used to
differentiate whole-slide images of tumours with different gene mutations. This
was done in two steps, first whole-slide images were segmented based on tissue
types, and then classification of gene mutations was done.

The tissue segmentation was done using the deep convolutional network Inception
v3, modified to a four class output. Image tiles of the size 244 x 244 pixels were
used to train and evaluate the network, with Fl-score 0.84 on tumour tissue.

Two different methods to predict mutation status were tested. First, image features
extracted from the segmentation network were fed into binary classifiers to separate
images of tumours with and without NRAS mutation. Due to unsatisfactory
results, another method was tested. A new Inception v3 network was trained to
distinguish between NRAS and BRAF mutated tumours. Data from the public
database The Cancer Genome Atlas was used for training and evaluation. Further
testing was done on two independent test sets. Only tiles with 90% or higher
probability of being tumour according to the segmentation network were used.
The classification network was tested tilewise (AUC 0.53-0.66) and patientwise
with AUC-values around 0.60 for all datasets.

The results indicate that it is possible to separate tissue images based on gene
mutations. We believe that deep learning networks like these have great potential
of being integrated into diagnostics of malignant melanoma. This could lead to
faster and more accessible gene mutation diagnostics around the world.

Keywords: deep learning, image analysis, malignant melanoma, tissue segmen-
tation, mutation classification, Inception v3
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Svensk sammanfattning

Malignt melanom &r en aggressiv form av hudcancer. Genmutationer kan paskynda
sjukdomsférloppet och spridningen av tumérer, men specialanpassad behandling
finns att tillgh. Idag anvinds DNA-analys for att upptécka genmutationer, vilket
ar kostsamt och tidskrdvande. Syftet med vart examensarbete ar att underscka
om djupinldrning (deep learning) kan anvéindas for att hitta genmutationer fran
vavnadsbilder pa malignt melanom. Detta har vi gjort i tva steg, forst genom
att hitta tumorrik vdvnad i mikroskopbilder, och sedan utféra klassificering av
mutationer pa dessa regioner.

Segmentering av olika vivnadstyper gjordes med hjilp av det djupa neurala nétver-
ket Inception v3. Bildurklipp av storleken 244 x 244 pixlar anvéindes for att trina
och testa natverket med F1-score 0,84 pa tumorviavnad.

For att utfora klassificering av genmutationer testades tva metoder. Forst testade
vi pa att skilja pa vivnadsbilder med och utan NRAS-mutationer med hjélp av s.k.
features, numeriska virden som hamtats ut fran segmenteringsnatverket. Forsoket
gav inte tillfredsstéllande resultat och déarfor trdnades istéllet ett nytt Inception
v3-nétverk till att gora klassificering av tumorbilder med NRAS- och BRAF-
mutationer. Natverket trdnades pa bilder fran databasen The Cancer Genome
Atlas och testades péa ytterligare tva separata dataset. Endast urklipp med mer
an 90% sannolikhet att vara tumorvavnad enligt segmenteringsnétverket anvan-
des. Klassificeringen testades bade urklippsvis (AUC 0,53-0,66) och patientvis
med AUC-vérden runt 0,60 for samtliga dataset.

Resultaten visar pa att det d&r mdojligt att skilja pa bilder pa tumoérvdvnad med
olika genmutationer. Vi tror att liknande djupa neurala nétverk har stor potential
att integreras i diagnostiken av malignt melanom. Det skulle kunna innebéra
snabbare och mer tillgdnglig diagnostik av genmutationer.
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Deep Learning - the Key to Revolutionise
Skin Cancer Diagnosis?

POPULAR SCIENCE SUMMARY. Malignant melanoma is an aggressive
type of skin cancer that develops from moles. Gene mutations can
make the disease progress faster, but if the mutations are detected,
it is possible to specialise the treatment. Using deep learning as a
complement in diagnostics is state of the art in many medical fields.
It is a type of artificial intelligence that can detect patterns that are
invisible for the human eye. In our thesis we have shown that it is
possible to use deep learning to predict the mutation status of melanoma
using microscopy images. With further development, this method could
possible replace advanced, expensive and time consuming lab analyses.
The technique could contribute to more rapid and accessible diagnostics

around the world.

Malignant melanoma is increasing at a
high pace all over the world. With the
exception of lung cancer in women, it
is the cancer type that is increasing the
most in prevalence. Specialised treat-
ment is an important step of defeat-
ing cancer. Gene mutations in malig-
nant melanoma enhance tumour growth
which makes the disease progress faster.
The two most common mutations are
present in 40% and 20% of the cases,
respectively.  Since specialised treat-
ment exists, detection of these muta-
tions is crucial. Today, this is done
with costly and time-consuming DNA
analysis. However, recent studies show
that deep learning can be used to detect
the mutation status from tissue images
alone. For a better chance at saving a
patient’s life, early detection and com-
prehensive patient investigation play vi-
tal roles. It is common to visually in-
spect cancer tissue in a microscope to
mark out the tumour areas. However,
this is a tedious task performed manu-
ally by a specialist.

Deep learning is a subfield of ar-
tificial intelligence and it can be used
to automatically mark the different tis-

sue types, without the need for hu-
man participation. In our thesis, we
have trained a deep learning network
that can identify four tissue types in
melanoma biopsies which can assist in
the segmentation procedure and save a
great amount of time for the specialist.
The segmentation network was trained
and evaluated with a dataset from
Skane University hospital in Lund and
its performance was visually evaluated
on an independent dataset from the
public database The Cancer Genome
Atlas.

The segmentation network was used
to find tumour-rich areas in the tis-
sue and another deep learning network
was trained to classify the mutation sta-
tus. Even though further improvement
is needed, the deep learning models de-
veloped in this thesis show high poten-
tial of being an integrated part of an
automatic diagnostic tool. This tool
would not only increase the speed but
also make the melanoma diagnosis more
accessible across the world since it only
needs microscopy images and a com-
puter.
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Chapter 1

Introduction

1.1 Background

The number of cases of Malignant Melanoma (MM) is increasing at a high pace
all over the world. With the exception of lung cancer in women, MM is the can-
cer type that is increasing in occurrence the most [1]. Mutation of the oncogenes
BRAF and NRAS are common in MM. The mutations are connected to an infe-
rior prognosis but when detected early, targeted treatment can be possible. The
analysis of the mutation status is done with time-consuming DNA-analysis [2].
Several recent research studies have explored the possibility of using deep learning
and histopathological images for mutation status classification.

A common diagnostic procedure in medicine is histopathological evaluation,
when tissue or cells are visually inspected using a microscope. For patients with
suspected or diagnosed cancer, a tissue sample (biopsy) is collected. The frozen
or chemically preserved tissue sample is sliced very thinly, and stained to make
structures and components appear more distinctly. Hematoxylin and Eosin (H&E)
staining is commonly used, where hematoxylin makes the nuclei blue and eosin
stains cytoplasm and stroma pink. Histopathology gives a clear view of the disease
and how it affects the tissue, since the preparation process preserves the tissue
structure. Traditionally, the visual inspection of the slides is done manually by
trained specialists. This is a tedious task, and to reduce the risk of human error it
is common for more than one specialist to inspect each slide. Today the images are
digital, which opens the opportunity to use computers for some of the inspection
and analysis through automatic computer analysis [3]. It might take a while
until a computer is authorised to set a diagnosis, but there are multiple ways
the computers could decrease the workload for the specialists like highlighting
interesting areas and interpreting high-volume data [4].

The concept machine learning refers to the procedure when a computer learns
to recognise patterns and make predictions from data. Deep learning implements
the machine learning concept using advanced deep neural networks that typically
include an input layer, several hidden layers and one or more output values. Af-
ter training, the network becomes an expert at finding features that represent
the training data. It is essential to test a deep learning network on images that
were not used during training and a popular approach is to supplement an institu-
tional dataset with data from a public database such as The Cancer Genome Atlas
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(TCGA) for either training or testing. Deep learning in medicine is a rising area
of interest with a large amount of ongoing research projects. Possible applications
are segmentation, disease staging and mutation status classification from image
data [4].

1.2 Previous work

Several studies have used deep learning on histopathological images before, with
promising results. Using whole-slide images of lung cancer tissue from TCGA,
Coudray et al. [5] trained deep learning networks to predict several pathological
attributes. An Inception v3 network was trained to classify the images into two of
the most prevalent non-small cell lung cancer subtypes LUAD, LUSC or normal
lung tissue. The result was similar to the classification by pathologists on the
TCGA images. Additionally, they tested the classification on an institutional
dataset with maintained performance. Furthermore, Coudray et al. attempted to
predict the ten most common gene mutations in one of the lung cancer subtypes
using Inception v3 and image tiles. Six of the ten gene mutations were shown to
be predictable by the network. The mutation status of a whole-slide image was
predicted by aggregating the probabilities of mutation of the image tiles. This
was done by either calculating the average probability of the mutation, or the
percentage of positively predicted tiles.

Kim et al. [6] used a CNN to classify histopathology images of primary tumours
from 257 melanoma patients. They developed an automated model that first se-
lects tumour-rich areas with high confidence, and second, predicts for the presence
of mutated BRAF or NRAS. The network was tested on a test set from the in-
stitution, grouped into both ulcerated (broken skin membrane) and non-ulcerated
tumours, and different tumour thickness. An additional test set from TCGA was
used. The performance was higher for thinner BRAF and non-ulcerated NRAS
tumours.

Dolezal et al. 7] explores how deep learning can be used to predict BRAF-RAS
gene expressions. Slides of thyroid neoplasm were used to train a neural network
(Xception) to predict the tumour subtype. Their results demonstrate that the
histologic features associated with BRAF-RAS spectrum are detectable by deep
learning, and they pose that the findings can help to give the patient a correct
diagnosis quickly.

Inception v3 was trained to map driver mutations in papillary thyroid car-
cinoma (thyroid cancer) to histopathological subtypes by Tsou et al. [8]. The
whole-slide images were obtained from TCGA and cropped into non-overlapping
tiles of size 512 x 512 pixels. The model was trained on the tiles from the training
set and the model with the highest accuracy on the validation set was chosen as the
final model. Firstly, a tile was classified as mutated if it had over 80% predicted
probability of one of the classes, otherwise it was classified as uncertain. Secondly,
a whole-slide was predicted as mutated if over 80% of the tiles belonged to one
class. The model resulted in an AUC of 0.88 on the validation set and 0.95 on the
test set. The RAS mutation had higher accuracy than prediction of BRAF.

Van Zon et al. [9] successfully created a system that classified whole-slide
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images into the classes melanoma, nevus (harmless mole) and normal tissue. A U-
net architecture was trained to perform semantic segmentation (assigning a class
to each pixel) and the output of the U-net was fed into a Convolutional Neural
Network (CNN). The CNN predicted a class label for the whole-slide image with
a success rate of 173 out of 176 on the melanoma slides and 57 out of 62 on the
nevi slides.

Couture et al. [10] used deep learning to predict breast cancer grade, ER
status (expression of estrogen receptors) and subtypes with high accuracy. As
a pre-processing step, features and properties of the images were captured with
VGG16, which is a CNN. The network was pre-trained on the ImageNet dataset.
The features were extracted by using the output from some convolutional layers
(before max-pooling). A Support Vector Machine (SVM) classifier was trained to
use the features from VGG16 as input.

1.3 Aim

This master’s thesis aims to investigate whether it is possible to extract mutation
status of BRAF and NRAS, solely from whole-slide images of MM tumour tissue.
A segmentation network will be trained to find tumour-rich areas that can be used
in a classifier. A part of the project will be to test the system on different datasets
to investigate the generalisation performance.

1.4 Structure of the thesis

The introduction of the thesis is followed by a theory chapter, where the readers
will gain knowledge about the foundations of MM, artificial neural networks and
evaluation methods. Readers already familiar with these concepts can skip these
parts. A presentation of the data and processing methods are presented in Chapter
3 and the method in Chapter 4. The results are presented in Chapter 5 and a
discussion about the results can be seen in Chapter 6. Chapters 4, 5 and 6 are
divided into the sections Segmentation, Feature extraction and Classification of
BRAF versus NRAS.

The authors have contributed equally throughout the project.
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Chapter 2

Theory

2.1 Malignant melanoma

MM is caused by malignant transformation of melanocytes, the skin cells that are
specialised at producing melanin. Melanin makes the skin darker and serves as
protection against UV radiation. The number of cases of MM is increasing at a
high pace all over the world. The average age at diagnosis is 57 years and 75%
of the patients are younger than 70 years old. The low average age differentiates
MM from most other tumour cancers [1].

MM is divided into stage 0 to IV, where stage 0 is a tumour on the top layer of
the skin. Deeper and/or more spread cancer cells correspond to higher stages and
at stage IV the cancer has spread beyond the regional areas and lymph nodes to
distant sites in the body [11]. A metastasis is when the tumour has spread from its
primary site. MM stands for one third of deaths due to cancer, and the five-years
survival rate decreases drastically from 98.4% to 22.5% if the cancer evolves from
stage I to stage IV [12]. It is therefore of greatest interest to find the MM tumour
as early as possible.

2.1.1 BRAF and NRAS mutations

Mutation of the oncogenes BRAF and NRAS are the most common genetic alter-
ations in MM, detected in approximately 40% and 20% of the cases respectively.
BRAF and NRAS mutations are shown to activate pathways that enhance tumour
growth and, thereby, disease progression. The cancer tumours where no mutation
can be found are called Wild Type (WT) [2]. The most common mutations in
BRAF are located in the position V600 and 90% of the mutated BRAF have the
mutation V600E, where valine is substituted with glutamic acid at position 600.
It is possible to inhibit the activity of the mutated BRAF V600E protein with
pharmaceuticals [13]. It has been shown that targeting the cellular activity of
melanoma cells is effective since it delays tumour progression and prolongs patient
survival [14].

Patients with stage III and IV MM are tested for mutations. Suspicious lesions
are biopsied, embedded and sliced thinly. Every other slice is stained with H&E
and the rest are used for immunohistochemistry or DNA sequencing [15].
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2.2 Artificial neural networks

An Artificial Neural Network (ANN) is a computing system designed to process
information. It consists of neurons (often denoted nodes), which are connected
processors, inspired by biological neurons. The simplest type of an artifical neuron
is a perceptron. The perceptron consists of inputs, an operator and an output.
The neuron calculates a weighted sum of the inputs and has an activation function
to calculate the output, see Equation 2.1. The output is denoted y, ¢ is the
activation function, w = (wsq,...,wy) the weights and z = (x1,...,2x) are the
inputs. Neurons that are connected to each other are called an ANN [16].

N
y = p(wo + anfnn) (2.1)

The trainable parameters in the model are the biases and weights. Each layer
of nodes has a bias and the connection between two nodes has a weight. In feed
forward networks, input values are propagated forward through layers of nodes
to provide the output. A perceptron can have many layers, resulting in a deeper
network and the layers between the input and output layers are called hidden
layers. This kind of perceptron is called a multi-layered perceptron and a general
scheme is presented in Figure 2.1. Each layer uses the output from a previous
layer as input, including the bias term. More hidden layers allow the network to
learn representations of the data with several levels of abstraction and this kind
of model is called a deep learning network [17]. When all nodes in one layer is
connected to all nodes in the next layer, it is called a dense layer. The dense layers
in a model have many weights, and a way to decrease the number of trainable
weights is to use a CNN [16].

Input Hidden layers ~ Output

Figure 2.1: Schematic image of a multi-layered perceptron. The number
of hidden layers and the number of nodes in every layer can be adjusted.
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2.2.1 Convolutional Neural Networks

CNNs are neural networks that have at least one convolutional layer and they are
commonly used for image analysis purposes. The input of the network is usually
a multidimensional array of data and it can be of various sizes. In this project,
2-dimensional images with three colour channels are used as input. The input is
convolved with a kernel. A kernel in a CNN is a matrix which will slide over the
image, from top left to top right, and then all rows until the end of the image,
performing the mathematical operation convolution. The formula for convolution
of an image I with a 2D kernel K giving the output S, is presented in Equation
2.2. The numerical values of the kernel are called weights. The benefits of using
convolution in a neural network are sparse connections and parameter sharing,
since the weights are stored in the kernel that is used several times [16].

S(i,4) = (I K)(i,5) =Y > I(m,n)K(i —m,j—n) (2.2)
m n

The stride describes how much the kernel is moved before next convolution. A
larger stride will reduce the number of pixels in the output. Figure 2.2 shows how
a 3 x 3 kernel will move over an image with stride 2 [16]. If the kernel is smaller
than the input, the weights will be shared and fewer parameters need to be stored.
The kernels will extract elementary features (corners, edges) and these features
are combined in other layers to detect higher level features. When multiple layers
are used in a CNN, features of different detail level will be extracted and CNNs
are therefore useful for image analysis tasks. It is also possible to detect how the
features are positioned with respect to each other. The first convolutional layers
in the network can detect small features such as corners and edges and the later
layers can put these together to detect full objects [18].

Padding is a technique to preserve the image size and the information in the
outer part of the images by adding pixels around the image. Without padding,
the size of the image decreases due to the convolutions with the kernel. Padding
can be done in different ways. Zero padding is when zeros are added around the
image and copy padding is when pixels with the same intensity as the closest pixel
are added [16].

™

.l S

Input Kernel Output

Figure 2.2: Convolution of a 2D matrix. A 3 x 3 kernel moves over an
input image with stride 2. The resulting image is smaller than before
the convolution.
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2.3 Training a neural network

2.3.1 Loss minimisation and supervised learning

A neural network is trained to find patterns in the data by changing the values
of the weights. The values are changed to minimise the difference between the
predicted output and the target, by minimising a loss function [16]. This process
is iterated, which is called training. Training is done with the data divided into
batches, where the weights are updated after each batch (one iteration). When
all batches have been seen by the network once, it has been trained one epoch.
The updates of the weights are calculated using back-propagation, which is a
practical application of the chain rule for derivatives. By starting at the output,
and propagating back towards the input, all gradients are calculated. In supervised
learning, when ground truth (or gold standard) is available, minimising the loss
means finding the weights that make the network’s output as close as possible to
the ground truth. There are different types of loss functions suitable for different
problems [17].

For classification networks with multiple classes, Cross Entropy Error (CEE)
is typically used as the loss function. The equation for categorical CEE with four
classes is presented in Equation 2.3, where d is the target and y is the output for
N examples. For each class k, the target dy is 1 for the correct class and 0 for
the other classes. This is a multidimensional minimisation problem that likely has
many local minima. Converging towards a minimum does not guarantee finding
the optimal solution. Several attempts with different settings and starting points
might be necessary to find the global minimum [17].

1 N 4
CEE =~ E:: i1 (Y (2:3)

n=1 k=1

2.3.2 Activation functions

Biological neurons get activated when the inputs reach a threshold level. Artificial
neurons are designed to work in a similar way, with an activation function that is
increasing with a threshold behaviour. The Rectified Linear Unit (ReLU) activa-
tion function is recommended to use in most feed forward networks. The function
is presented in Equation 2.4 and Figure 2.3. ReLU is piecewise linear and thus
it preserves many of the properties of linear models that make models generalise
well [16].

o(x) = max{0,x} (2.4)

CEE is commonly used together with the softmax output activation function.
The softmax function can be used to represent a probability distribution function
of K different classes. The goal is that the correct class will have the highest
value, and thus the highest probability. The outputs are bounded between 0
and 1 and the sum of all outputs is 1, and therefore they can be interpreted as
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Figure 2.3: The Rectified Linear Unit (ReLU) activation function. This
activation function is commonly used in neural networks.

probabilities. The softmax function is defined in Equation 2.5 for i = 1,..., K,

where z = (21,...,2K) € R¥ is the input vector of K numbers [16].
e~
o(2)i = —f—— (2.5)

Zj:l e

A pooling function can be used after the activation function to further modify
the output of the layer. The function looks at a rectangular neighbourhood (for 2D
data) and replaces the outputs by a single value. In max pooling, the maximum
value of the neighbourhood is chosen, and in average pooling the average value of
the neighbourhood is the output [16].

2.3.3 Optimisation methods

A popular optimisation method to minimise the loss is the Adaptive moment esti-
mator (Adam) optimiser. The algorithm is gradient-based, which means that the
minimisation is done based on the gradient with respect to the weights and biases.
Additionally, it takes into account an adaptive estimation of lower-order moments.
The algorithm uses exponential moving averages of the gradient (first moment) and
the squared gradient (second moment) multiplied with tunable constants (8; and
B2). One of the important features of the Adam optimiser is its adaption of step-
length for the updates. Near an optimum the step length decreases, allowing the
algorithm to come closer to the real minimum [19].

An alternative to Adam is Root Mean Square Propagation (RMSProp), where
the learning rate is adapted by dividing it by a moving average of the root squared
gradient. The hyperparameters used in RMSProp are epsilon (€), momentum
and weight decay. € is a constant added to avoid dividing by zero. Momentum
determines how quickly the contributions of the previous gradients decay. The
weight decay is used to prevent the loss of becoming too large [16].

2.3.4 Batch normalisation

One complication during training of deep neural networks is that the distribution of
the input changes when the weights of the previous layer are updated. This makes
the minimisation more difficult and slows the training down since lower learning
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rates are required. The adaption to changing input distributions can be described
as 'chasing a moving target’. Batch normalisation is a method that is frequently
used in deep networks to counteract the issue of the varying input distributions.
Added in the network architecture, batch normalisation applies normalisation of
each training batch. Batch normalisation allows for higher learning rates and less
careful parameter initialisation which speeds up the training process [20].

2.3.5 Normalisation of data

Training an ANN with real data does in general demand some pre-processing of
the data to improve the training performance. Statistical normalisation of the data
is done by using the mean value and the standard deviation of each input vector.
The equation for statistical normalisation is presented in Equation 2.6 where z}
is the normalised value, x; the former value, u is the mean and o the standard
deviation. Normalisation can improve the training by making the network update
the weights equally fast for all inputs. The risk of training on statistical outliers
is reduced [21].

o =TT H (2.6)

g

2.3.6 Generalisation performance

The goal when training a deep learning network is to get the best performance
possible on data that is new to the network but comes from approximately the same
statistical distribution as the training data. This ability is called generalisation
performance. To choose the network architecture and evaluate the training, a
common approach is to separate the data into three exclusive sets: training data,
validation data and test data. The training data (usually the biggest part) is used
to train the model and the validation data is used to continuously evaluate the
performance and to choose the settings. When all the settings of the model are
decided and the model has been trained to a good performance on the validation
data, the test set is used to check the performance of the model on unseen data.
The main challenge is to train the model on the training set to gain statistical
information and learn features that describe the distribution but not details only
found in the training set [16].

2.3.7 Overfitting

If the model is trained over too many epochs or the training set is too small for
the network size, the model can be overfitted to the training data. The opposite of
overfitting is underfitting, where the model has not learned enough. An overfitted
model will perform extremely well on the training data but poorly on unseen
data, whereas an underfitted model will have poor performance on both training
data and unseen data. A common way to evaluate whether the model is either
overfitted or underfitted is to plot its performance on the validation and training
sets for every epoch of training [22]. In Figure 2.4 the accuracy of the training set
is increasing while the accuracy of the validation set is decreasing after a certain
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point, and the model is overfitted. There are numerous approaches to reduce the
risk of overfitting.

A Accuracy

Training

Validation

Epochs

Figure 2.4: The accuracy of the training and validation data plotted
against the training epochs. For an overfitted model, the validation
accuracy is decreasing while the training accuracy is increasing. The
goal is to stop training before the validation accuracy starts decreasing.

Dropout

In dropout regularisation some nodes are ignored, ’dropped’, during each epoch of
training [22]. Dropout makes the model learn more general features and prevents
a small subset of nodes from becoming dominant. When dropout regularisation is
used, one must choose the probability of dropping a node.

Transfer learning

The training of a deep neural network is computationally demanding and requires
a large amount of training data. Even if a big dataset is available, it is common
to use pre-trained weights instead of starting training with randomly initialised
weights. The weights can thereupon be fine-tuned by continuing training and
this method is called transfer learning [23]. A model developed for one task can
therefore be reused as the starting point for another task [16].

Augmentation

Data augmentation can be used to increase the size of the data set without adding
new images. Augmentation changes the image by e.g. rotation, flipping or chang-
ing other appearances while the label is kept. Data warping is a simple and often
safe way to increase the size of the dataset. For histopathology images, flipping
and rotating an image still makes the information in the image correct and useful
for training, since the images do not have a correct orientation (compared to if you
train a network to separate images with the numbers 6 and 9). In addition to ge-
ometrical warping, the colour of the image can be changed to increase variation of



12 Theory

the training data. This can be useful to make the network’s generalisation perfor-
mance higher on data from different microscopes or staining techniques, especially
if all the training data comes from one or a few hospitals [22].

2.3.8 Training with unbalanced classes

The deep neural network becomes an expert at the task it has been trained to
do. Class imbalance in the training set usually results in the trained model over-
predicting the majority class due to larger prior probability, which could result in
poor performance. The effect of class imbalance during training can be prevented
by alterations in sampling of the classes, by adding weights to the loss function, or
a combination of them. Balancing through weights does not alter the distribution
of the training data, but the learning process is shifted in favour of the minority
classes. Weight functions suppresses class imbalance by giving a large weight to
the minority class in the loss function and a small weight to the majority class.
This leads to a higher penalty for miss-classifying the minority class [24].

2.4 Inception v3

Inception v3 is an architecture of a convolutional neural network. Microarchitech-
ture units, called inception units (see Figure 2.5), increase the network’s robustness
against translations in the input images and its non-linear learning abilities. Each
inception unit consists of several convolutional layers with non-linear activation
functions. These inception units were first introduced by Szegedy et al. [25]. The
inception unit acts as a feature extractor in multiple levels, by performing several
convolutions within the same unit of the network. The outputs are stacked and
then used as input to the next layer in the network [26]. The inception architecture
is suitable for histopathology tasks since it can handle multiple resolutions and it
has been successfully adapted to other tissue type classifications [5].

2.5 Evaluation methods

2.5.1 Accuracy

The accuracy of a model is the number of correctly classified samples divided by
the total number of samples. The accuracy gives a number on how well the model
can predict the classes correctly. Although, with multiple and/or imbalanced
classes accuracy can be a misleading metric. If a large part of the data is from one
class, the model could get high accuracy by only classifying objects of that class
correctly. For these cases, more methods are needed to trust the evaluation and
some examples are stated below [27].

2.5.2 Confusion matrix

To evaluate the network’s ability to predict class labels in binary or multi-class
problems correctly, a confusion matrix can be used. An example matrix for a two
class-problem can be seen in Figure 2.6. Each predicted sample will be placed in
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Figure 2.5: An inception unit. Multiple inception units are used in the
Inception v3 deep learning network. The last operation concatenates
the outputs from the parallel streams.

one of the boxes, with the true label vertically and the predicted label horizontally.
Correct predictions will be in the green diagonal boxes [27].

From the confusion matrix it is possible to see if the model predicts one or
some of the classes more frequently. This kind of information is helpful to im-
prove the network performance. The specificity, precision, recall and F1 score of
the classification can be calculated from the information in the confusion matrix.
Specificity is the fraction of true negatives and all samples that are actual nega-
tives (see Equation 2.7). Precision is the fraction of true positives and all positive
predictions (see Equation 2.8) while recall is the fraction of true positives and all
cases that truly are positives despite their prediction (see Equation 2.9). Recall
is also called sensitivity. The F1 score is a function of precision and recall (see
Equation 2.10), that is used to find a balance where both of them are as high as
possible [28].

o TN
Specificity = TN+ FP (2.7)
TP
Precision = W (28)
. TP
Recall = Sensitivity = TP+ FN (2.9)

Precision x Recall
F1=2 2.10
~ Precision + Recall ( )
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Figure 2.6: A confusion matrix of two classes. A confusion matrix has
the true labels in the vertical direction and predicted label horizontally.
Correct classifications end up in the green diagonal boxes.

2.5.3 Receiver operating characteristic curve and area under the curve

The performance of a classifier can be evaluated using the Receiver Operating
Characteristic (ROC) curve. The curve only works for binary problems, and must
be plotted classwise for multi-class models. For each class the false positive rate
(items incorrectly classified as this class) is plotted on the x-axis against the true
positive rate (correct classifications of this class, also called sensitivity or recall)
on the y-axis. The dashed black diagonal in the plot in Figure 2.7 represents
random guessing whereas a good classifier reaches as far as possible towards the
top left corner. The Area under the ROC-curve (AUC) brings a more comparable,
numerical value from the ROC-curve. The AUC-value is between 0 and 1 and
measures how good a classifier is by calculating the area between the ROC-curve
and the x-axis. A perfect classifier has the AUC-value 1, which happens when
the ROC-curve reaches the top left corner (green in the figure) and the random
guessing has the AUC-value 0.5 [27].

2.5.4 Cross validation

When the dataset is small, the evaluation of the algorithm can be statistically
uncertain since the test set is too small to yield an accurate generalisation estimate.
Cross validation is a method to use all data in the estimation of the mean test
error. Training and validation sets are created repeatedly of random subsets of
the whole dataset. In K-fold cross validation, the dataset is divided into K non-
overlapping subsets. In the first round, the first subset is used as validation data
and the rest is used for training. This process is iterated, and all subsets are used
as validation subset once. In total, K slightly different models will be created and
tested and the final estimate of the generalisation performance is the average of
the K validation results [16].
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Figure 2.7: Receiver operating characteristic curve and area under the
curve for different models. The green model is the best since it reaches
the furthest towards the top left corner and has the largest AUC-value.

2.6 Segmentation

Image segmentation is the process of clustering pixels in an image in different
classes. In semantic segmentation, all pixels belonging to a class are assigned a
certain label, and if there are multiple objects of the same class in the image, they
are assigned the same label. This requires very detailed gold standard annotation.
Another approach of image segmentation is to split the image into small image
tiles and assign each tile a class. Deep learning and convolutional neural networks
can be used to perform the segmentation [23].

2.7 Classification

2.7.1 Image features

Images can be explained by features and these can in turn be used for classification
tasks. The features can be hand crafted to describe certain characteristics of the
image, i.e. intensity or width of an object. The aim is that the features alone
can be used for an application instead of the image. Instead of hand crafting, the
features can also be calculated by a CNN and extracted automatically to gain high
level information about the image. Feature selection is the process of selecting a
relevant subset of features, to reduce dimensionality and simplify the task. The
number of features is reduced by removing irrelevant features or a feature that
strongly correlates to another [29].

2.7.2 Logistic regression

Logistic regression is a regression model used for binary data, where the output
variable is interpreted as a probability, since the value ranges between 0 and 1.
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The logistic model is based on the mathematical logistic function, presented in
Equation 2.11 [30].

(2.11)

2.7.3 Random forest classifier

The random forest classifier consists of multiple decision trees. The functionality
of a decision tree is to use features to separate data into branches in a way that
make the leaves (the two output nodes) of each branch as different as possible
but with homogeneous groups inside the leaves. The tree is built up with the
training data and depending on the decisions, the same training set can result in
many different tree architectures. A random forest classifier uses a large amount
of nearly uncorrelated decision trees that work as an ensemble. Each of the trees
predicts a class for the tested data point and the majority prediction is chosen.
To use the largest vote of many trees gives more robustness than to only use one
classifier [31].

2.7.4 Partial least square discriminant analysis (PLS-DA)

PLS-DA uses dimensionality reduction and discriminant analysis in one combined
algorithm and it is commonly used for classification tasks with few data points
and high dimension (a large number of features). The algorithm is very flexible
since it does not assume the data to fit any specific distribution [32].

2.7.5 Support Vector Machine (SVM)

A supervised (explained in Section 2.3.1) machine learning method used for classi-
fication is the SVM. The algorithm is mapping observations of the training data in
a high dimensional feature space and separates the classes by a multidimensional
decision plane [33]. The advantages of an SVM is that it is still effective for high
dimensional data and it is versatile. A kernel function is a set of mathematical
functions that are used to transform the input data into a desired form. Several
different kernel functions can be used to determine the decision plane, such as
linear, Gaussian and radial basis function kernels [34].
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Data

3.1 Data description

The data in this project is from three sources, a cohort from Lund University
hospital, images from the TCGA database and a cohort from Semmelweis Univer-
sity. The cohorts consist of whole-slide images of flash frozen MM tumours (both
primary tumours and lymph node metastases). The tissue was stained with H&E,
where hematoxylin colours the nuclei purple and the other part of the tissue is
stained in different shades of pink by the eosin [35].

The Lund cohort consists of 144 surgically removed flash frozen MM tumour
tissues, with a majority of lymph node metastases, from the Melanoma biobank
(BioMEL), Region Skine, Sweden. The study was approved by the Regional Eth-
ical Committee at Lund University, Southern Sweden (DNR 191/2007, 101,/2013
and 2015/266, 2015/618). All patients included in the study provided written, in-
formed consent. The whole-slide images were annotated by an expert pathologist
classifying the tissue compartments/regions into four different classes: tumour,
necrosis, immune cells and stroma. An example whole-slide image of a tumour
sample and its corresponding labels can be seen in Figure 3.1. Tiles from each of
the four classes are presented in Figure 3.2. Clinical data, including survival data
and mutation status, were available for the cohort. BRAF V600E mutation status
was available for a majority of the samples and NRAS mutation status was also
examined for samples carrying BRAF WT.

Whole-slide images from the TCGA database [36] were downloaded. 319
samples of flash frozen tumours of mostly metastases were used. Information
about the mutation status of NRAS and BRAF was included. The distribution of
the samples were: 182 BRAF mutated, 106 NRAS mutated and 31 WT.

The Semmelweis historical cohort consists of autopsy samples from multiple
metastatic MM tumour tissue from 19 patients (flash frozen tissue). The study
was approved by the Semmelweis University Regional and Institutional Committee
of Science and Research Ethics (IRB, SE TUKEB 114/ 2012). Patient consent to
participate was waived by the Ethics Committee of the Semmelweis University by
reason that metastatic samples were collected at the time of autopsy. Clinical data
about NRAS and BRAF was available for most samples.

17
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4 Stroma 4 Necrosis ¢ Tumour 4 Immune cells

Figure 3.1: Example image from the Lund cohort with its correspond-
ing mask. Whole-slide H&E stained tissue image to the left and the
corresponding annotated image to the right.

Figure 3.2: Tiles from the four tissue classes of an image in the Lund
cohort. From left to right: stroma, necrosis, tumour, immune cells.

3.2 Data processing

3.2.1 Initial cropping

The images were first cropped in QuPath, which is an open source software for
whole-slide image analysis [37]. QuPath was needed due to the size and format of
the microscopy images. Images of size 10 000 x 10 000 pixels were saved and for the
Lund cohort additional corresponding masks were saved. The images were down-
sampled to half of the original resolution, resulting in 20x magnification. One pixel
in a down-sampled image corresponds to 0.5 pm. The script was provided by the
author of QuPath [38].

3.2.2 Tiling of the cropped images

From the cropped images, multiple tiles were exported. One tile had the size 244
x 244 pixels. Tiles with more than 59% white pixels were removed. A pixel was
classified as white if the grey-level intensity was 237 to 255. The thresholds were
empirically chosen to remove images that were hard to gain any information from.
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3.3 Datasets

3.3.1 LundSeg dataset

For training and evaluation of the segmentation network, samples from the Lund
cohort were used. Whole-slide images from 116 patients were used, resulting in
844 961 tiles. 60% of the tiles belonged to the tumour class, making it the majority
class. To make the classes more balanced in the dataset, the tumour class was
undersampled by only keeping every fourth tile. The number of tiles in each class
before and after undersampling is presented in Table 3.1. The stride used when
tiling the images was 122 pixels, half of the image size 244 pixels. Therefore, the
tiles were overlapping and the undersampling of the tumour class will not cause a
great loss of data. The undersampled dataset will be referred to as the LundSeg
dataset.

Table 3.1: The class distribution of all tiles before and after undersam-
pling of the tumour class. The undersampled set is called LundSeg
dataset. More than 60% of the tiles produced from the whole-slide im-
ages were tumour. The classes are more balanced after undersampling
the tumour class to ; of its former size.

Full set Undersampled set
Class No of tiles Share No of tiles Share
1. Stroma 139 269 16.5% 139 269 31.6%
2. Necrosis 97 486 11.5% 97 486 22.1%
3. Tumour 539 340 63.8% 134 837 30.6%
4. Immune cells 68 866 8.2% 68 866 15.6%
Total 844 961 440 458

The next step was to divide the dataset into three parts, training set (70%),
validation set (15%) and test set (15%). All tiles from a single patient were added
to a set together, to prevent the sets from becoming too similar. The sets and the
number of samples are presented in Table 3.2.

Table 3.2: Division of the LundSeg dataset into three subsets: training,
validation and test. The subsets do not contain tiles from the same
patient. This table presents the number of tiles in each subsets and how
many patient samples the tiles were produced from.

Set Patient samples Number of tiles
Training 85 309 900
Validation 15 64 745

Test 16 64 813



20 Data

3.3.2 LundClass testset for NRAS/BRAF classifier

Samples with BRAF or NRAS mutation were extracted from the LundSeg dataset
to form a new testset for a BRAF/NRAS classifier, which will be called LundClass
dataset. There were 48 samples that were BRAF mutant and 29 NRAS mutant.
The tiles that had a higher predicted probability than 90% of being tumour ac-
cording to the segmentation network were included (Inception v3 trained on tissue
segmentation with the LundSeg dataset, more details are presented in Method and
Results). The tiles were zero padded to the size 299 x 299 pixels.

3.3.3 TCGABIn dataset, NRAS versus WT

Images from 62 patients (31 NRAS mutated and 31 WT) were used in TCGABIn
dataset. The images were cropped and tiled according to Section 3.2.1 and 3.2.2.

3.3.4 TCGAClass dataset, NRAS versus BRAF

The images in TCGABin dataset with confirmed NRAS mutation were supple-
mented with 76 NRAS mutated samples (resulting in 107 NRAS samples) as well
as 182 samples with BRAF mutation. Samples with both BRAF and NRAS muta-
tions were not used in this dataset. The images were cropped and tiled, described
in Section 3.2.1 and 3.2.2. The tiles were separated into the sets training (~ 70%),
validation and test (~ 15% each) without patient overlap. The tiles were run
through the segmentation network (Inception v3 trained on tissue segmentation
with the LundSeg dataset, more details are presented in Method and Results).
Only the tiles with 90% or higher probability of belonging to the tumour class
were used. The sizes of the final three sets are presented in Table 3.3. Zero-
padding changed the tile-size from 244 x 244 pixels to 299 x 299 pixels and the
training set was oversampled to balance the classes and increase the amount of
data, resulting in 500 000 training tiles from each class. Randomised rotation and
mirroring was done to the oversampled tiles.

Table 3.3: The data in TCGACIass dataset was divided into the subsets
training, validation and test without patient overlap. The training
set was oversampled with augmentation.

Training tiles Validation tiles Test tiles
Class | Originally Oversampled
BRAF | 166 347 500 000 38 158 31 815
NRAS | 105 031 500 000 21 401 20 678
Total 271 378 1 000 000 59 559 52 493

3.3.5 Semmelweis dataset

One whole-slide image was used from every patient, and the samples without
NRAS or BRAF mutation were removed. Furthermore, some whole-slide images
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were removed due to artefacts in the images. The final dataset consisted of whole-
slide images from 15 patients (12 BRAF-mutated and 3 NRAS-mutated). The
images were cropped and tiled according to Section 3.2.1 and 3.2.2. The tiles that
had over 90% probability of being tumour according to the segmentation network
were zero-padded to the size 299 x 299 pixels. This resulted in 31519 tiles.

3.3.6 Summary of datasets

All datasets and their corresponding number of patients and tiles are presented in
Table 3.4.

Table 3.4: All datasets used in this project with the number of patient
samples and tiles. The datasets for the classification (TCGACIass,
LundClass and Semmeweis) only contain tumour tiles.

Dataset Number of patients Number of tiles
LundSeg 116 440 458
TCGABiIn 62 87 052
TCGAClass 289 1112 052
LundClass 77 238 822

Semmelweis 15 31 519
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Chapter 4

Method

4.1 Overview

This chapter describes the methods of the project in detail. Firstly, the method
of training and evaluation of the segmentation network is presented. This net-
work was trained on the LundSeg dataset. Secondly, the attempts of using feature
extraction to classify NRAS or WT using the TCGABin dataset are described.
The features were extracted from different layers of the segmentation network and
a subset of features were given as input to different binary classifiers. Thirdly,
another deep learning network was trained to classify tumours based on the mu-
tation status BRAF or NRAS. This method provided promising results and the
whole process is visualised in Figure 4.1. The classification network was trained
and evaluated with TCGAC]Iass dataset and additional testing was done on the
datasets LundClass and Semmelweis.

Segmentation
—_—>

network
Tiling
Heatmap
NRAS/BRAF
classifier -

Figure 4.1: The workflow of prediction of NRAS/BRAF mutation sta-
tus. Whole-slide images from TCGA were cropped and tiled. The tiles
were segmented using the segmentation network and the tiles with over
90% predicted probability of being tumour were zero padded and used
as input to the next deep learning network. The last network produced
probabilities of the mutation statuses BRAF and NRAS.
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472 Setup

The training and evaluation of the networks in this project have been coded using
Python 3 in Jupyter Notebook [39], a web-based interactive computational envi-
ronment. Tensorflow [40] and the Keras [41] library have been used. Other Python
libraries used in this project are scikit-learn [42], Matplotlib [43] and OpenCV [44].
QuPath [37] has been used to look at and crop whole-slide images and annotations.
The training was done using a NVIDIA GeForce RTX Super 2070 (8 GB) using
the CUDA toolkit [45].

4.3 Segmentation

4.3.1 Architecture

The segmentation was done using the deep learning network Inception v3 [46],
pre-trained with ImageNet data [47]. The ImageNet data consists of more than
1.2 million images of 1000 classes, such as balloon, car and volleyball. It has been
shown that CNN:s pre-trained on ImageNet data can transfer well to other classi-
fication problems, including biomedical datasets [48]. The top layers of the model
(where the classification into different classes happens) were replaced with global
average pooling, a fully connected layer of 1024 nodes with ReLLU activation func-
tions and a final fully connected layer with four nodes and the softmax activation
function. A visualisation of the Inception v3 network is presented in Figure 4.2,
where the boxes in different colours represents slightly different inception units,
shown in Figure 2.5. Dropout was used between the base network and the fully
connected dense layer (orange layer in the figure), with the probability to drop
a node set to 0.2. The architecture of the top layers was inspired by previous
projects that use Inception v3 for similar tasks [49-51].

. ) Dense
Inception units layer Softmax
Input layer
tile Layers Layers \
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Figure 4.2: A visualisation of the segmentation network. Tiles are used
as input to the network and the softmax output provides probabilities for
the four classes. For simplification, the many layers and operations in
the Inception network are visualised with boxes, where different colours
represent slightly different internal architecture in the inception units.
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4.3.2 Training

A training set was created using the Keras function ImageDataGenerator. All tiles
were pre-processed using normalisation and by dividing all pixel values by 255.
To compensate for the unbalanced classes, class weights were added to the loss
function in the training. The weight of each class was calculated using Equation
4.1.

total number of samples

weight = (4.1)

number of samples in class

The training was divided into two phases, where the first phase was transfer
learning. In the transfer learning phase, all the weights of the inception layers
were locked. Hence, only the top layers consisting of 1024 nodes fully connected to
4 output nodes were trained, see Figure 4.2. The hyperparameters are presented
in Table 4.1. The second phase of the training was fine tuning, where the last two
inception units closest to the top layers were unlocked and made trainable (yellow
boxes in Figure 4.2). The top layers were still trainable. The learning rate was
decreased to avoid overfitting, see the hyperparameters in Table 4.1.

Table 4.1: The hyperparameters chosen for training of the segmenta-
tion network. The learning rate was lowered in the fine tuning phase
to avoid overfitting.

Phase 1: transfer learning Phase 2: fine tuning

Epochs 35 30
Optimisation method Adam Adam
Learning rate 5% 1073 2% 1076
Batch size 100 100

b1 0.9 0.9

Ba 0.999 0.999

€ 1077 1077

4.3.3 Evaluation of the results

The network performance was tested on the validation data and the unseen test
data of the LundSeg dataset. The classwise precision, recall and F1 score were
calculated and confusion matrices were used to visualise the classification perfor-
mance. The tiles from some image samples from the test set were run through
the segmentation network and segmentation masks were recreated from the pre-
dictions. The recreated segmentation masks were visually inspected, to get a view
of where the incorrect classifications were in the image.
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4.4 Feature extraction and classification of NRAS versus WT

Features were extracted from the segmentation network with the goal to predict
the NRAS mutation status, in the TCGABIn dataset. Features were extracted
from different layers in the segmentation model, both from the dense layer of 1024
nodes and the last convolutional layer in the inception network (6912 features).
The features were extracted before the activation function. To extract features,
all tiles from each patient were segmented by the segmentation model and the 10
tiles with the highest accuracy for tumour were selected. The mean feature values
from these 10 tiles were saved as features for the patient sample.

Different methods of feature selection and binary classifiers were tested. The
tested classifiers were logistic regression, random forest classifier, PLS-DA and
SVM (with linear and radial basis function kernels). Cross validation was used to
test the generalisation performance despite the small amount of data (62 samples).
The 95% confidence interval was investigated to see whether it covered 50% which
is a random binary classifier.

45 C(Classification of BRAF versus NRAS mutation

A new deep learning network was trained to do binary classification of NRAS/BRAF
mutation status and the model was based on a modified Inception v3 architec-
ture [46]. The dataset used was TCGAClass dataset. The code from Coudray
et al. [5] was modified to allow binary output classification (DeepPath,https:
//github.com/ncoudray/DeepPATH). The network was pre-trained on ImageNet
[47] data. The image tiles were converted into TFRecord format, which is a sim-
ple format for storing a sequence of binary records. The default hyperparameters
were used in the training and they are presented in Table 4.2. Other settings were
tested as well without satisfactory results. The batch size was adapted to fit the
GPU capacity.

Table 4.2: The hyperparameters chosen for training of the classification

network.

Hyperparameter Setting
Iterations 500 000
Optimisation method RMSProp
Learning rate 0.1
Weight decay 0.9
Momentum 0.9

€ 1.0

Batch size 36

Checkpoints were saved every 10 000th iteration of training and the network
was evaluated on every 20 000th iteration using the validation data. At the interval
with highest AUC-values on the validation data (70 000 - 150 000 iterations),
the model was evaluated more frequently (every 10 000th iteration). The best
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model was chosen as the checkpoint with highest AUC on the validation data.
The network was further tested on the test data, and the independent datasets
LundClass and Semmelweis. ROC-curves and AUC were presented both tilewise
and patientwise for the different datasets. The patientwise prediction was done by
examining the average of the predicted probabilities of all tiles.

Heatmaps of the predicted probabilities were generated. A tile was given a
colour based on the predicted probability and the darker the colour, the higher
probability for a certain class. Tiles that have high probability of being NRAS are
dark red and tiles that are light red are still predicted as NRAS, but with a lower
probability. Predicted probabilities of BRAF behave the same way but in blue.
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Chapter 5

Results

5.1 Segmentation of tissue types

5.1.1 Gold standard annotation

The images in the LundSeg dataset were annotated in QuPath [37]. The anno-
tations were sometimes overlapping and some parts of the tissue were therefore
belonging to two classes. In Figure 5.1 it is possible to see that the annotation
is inexact. When the annotation of one class were put on top of another class,
the exported mask was only showing one of the annotations. In some cases, this
caused some areas to get the wrong class. An example of this is presented in
Figure 5.2, where one blue immune cell area in the left image is beneath the red
tumour annotation, which lead to the immune cell area getting labelled as tu-
mour. The specialist manually annotating the images chose to classify the tissue
by the dominant class and when there were small parts standing out from their
surroundings this was not taken into account.

| & Necrosis
{ ¢ Tumour

¢ Immune
1 cells

Figure 5.1: The image shows a part of a Lund cohort tissue sample with
inexact annotation of tumour and immune cells. The annotated
areas sometimes overlap in the Lund cohort. In this example, tumour
and immune cells cover the same pixels in multiple locations. The white
part in the middle of the image does not belong to any class. To visualise
the annotation, the colour of the image is distorted.
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Figure 5.2: To the left is an annotated tissue sample from the Lund
cohort with the annotations as transparent colours. The exported
mask is shown to the right. The mask should have two blue areas of
immune cells but since the leftmost immune cell area is placed beneath
the red tumour annotation, the area is not present in the exported mask.
The gold standard of these tiles will be incorrect.

5.1.2  Average network performance

The segmentation network was trained for 65 epochs and the average accuracy is
presented in Figure 5.3 and the plotted categorical cross entropy loss is presented in
Figure 5.4. In epoch 35 the training was changed from transfer learning (training
of top layers only) to fine tuning. This means that the last two inception units
were trained as well. After the 65 training epochs, the network was tested on the
validation and test data. The classwise performance is presented in Table 5.1 and
the confusion matrices are shown in Figure 5.5.

Table 5.1: The performance of the segmentation network on the Lund-
Seg validation and test data. On the validation data, the performance
was higher on the classes stroma and immune cells. The performance
on the test data was better than the validation performance with F1
score 0.84 or higher on all classes.

Validation data Test data
Class Precision Recall F1 | Precision Recall F1
1. Stroma 0.86 0.88  0.87 0.87 0.86 0.86
2. Necrosis 0.85 0.67 0.75 0.88 0.86 0.87

3. Tumour 0.73 0.81  0.77 0.83 0.85 0.84
4. Immune 0.89 0.91  0.90 0.90 091 090
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Accuracy during training of the segmentation network
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Figure 5.3: The accuracy of the LundSeg training and validation data
during the training of the segmentation network. The sharp decline
at epoch 35 is where the training went from transfer learning to fine
tuning.

Categorical cross entropy loss during training of the segmentation network
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Figure 5.4: The categorical cross entropy loss on the LundSeg training
and validation data during the training of the segmentation net-
work. The peak at epoch 35 is where the training went from transfer
learning to fine tuning.
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Figure 5.5: Normalised tilewise confusion matrices of the segmentation
network. The LundSeg validation data is presented to the left and the
test data to the right.

5.1.3 Segmentation of images from the test set

Images of the test set were segmented using the model, see Figures 5.6, 5.7 and
5.9. In Figure 5.6 there are folding artefacts, which are the darker parts in the
whole-slide image to the left, however the prediction does not seem to be affected
by the artefacts. Three of the classes are present: tumour, immune cells and
stroma. The white parts are tiles that were removed prior to segmentation, since
they contained less than 80% of one class or because they were too bright.

@ Stroma € Necrosis ® Tumour € Immune cells

Figure 5.6: The segmentation results on an image from sample
MM1073 in the LundSeg test set. From left to right: whole-slide
image, annotation and prediction. Folding artefacts are visible in the
whole-slide image to the left (two darker lines). The predicted tiles are
not affected by the experimental artefacts.
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Figure 5.7 contains tumour and necrosis. The tumour parts are well classified.
Some necrosis tiles are classified as tumour. A magnification of a part of the tissue
that was differently classified is presented in Figure 5.8. It is visible that there is
some internal variation in the tissue structure, which was not taken into account so
thoroughly during the manual annotation where the dominant class was selected
for the whole area.

@ Stroma @ Necrosis ® Tumour € Immune cells

Figure 5.7: The segmentation results of an image from sample
MM1265 in the LundSeg test set. From left to right: whole-slide
image, annotation and prediction. The tumour tiles were well classified.
Some necrosis tiles were classified as tumour.

4 Stroma
4 Necrosis
4 Tumour

4 Immune
cells

Figure 5.8: Miss-classified parts that stand out from their surrounding.
Magnified parts of the whole-slide image from sample MM1265 in the
LundSeg test set. These parts were incorrectly classified with respect
to the annotation, see Figure 5.7. However it is visible that there are
variations in the tissue structures.
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Figure 5.9 contains immune cells, tumour and stroma. Most of the tiles were
correctly classified. Two parts of the whole-slide that were differently classified
are magnified in Figure 5.10. To the left in the image, it is a part that has been
classified as necrosis, although the gold standard is tumour. The magnified version
to the left shows that the tissue is darker in this part. To the right there is a section
classified as tumour in the blue immune cell area. The magnified image shows that
the part being classified as tumour instead of immune cells is more pink than the
surrounding tissue.

¢ Stroma ¢ Necrosis ¢ Tumour ¢ Immune cells

Figure 5.9: The segmentation results of an image from sample MM710
in the LundSeg test set. From left to right: whole-slide image, anno-
tation and prediction.

¢ Stroma ¢ Necrosis ¢ Tumour € Immune cells

Figure 5.10: Miss-classified parts that stand out from their surrounding.
Magnified parts of the whole-slide image from sample MM710 in the
LundSeg test set. These parts were miss-classified with respect to the
annotation, see Figure 5.9, however it is visible that these parts stand
out from their surroundings.

5.1.4 Segmentation of images from TCGA

Images from TCGA were segmented using the network, see Figures 5.11 and 5.13.
These images were not annotated in the database, and hence no true annotation
is available. By a visual comparison of both the authors and a biologist at the
institution, the results look reasonable. In Figure 5.11 it is a clear border between
a part that looks more pink and a part with more purple. These parts are predicted
as stroma respectively tumour. In the stroma part, there are some tiles that are
predicted as tumour. In Figure 5.12 it is possible to see two magnified versions of
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the tissue classified as tumour. The tiles that have been predicted as tumour are
more purple and they stand out from the surrounding tissue.

4 Stroma
4 Necrosis
4 Tumour

4 Immune
cells

Figure 5.11: Segmentation results of image from TCGA. The whole-
slide image of TCGA-EE-A29C to the left and the predicted classes to
the right. There is no gold standard available from TCGA. It is possible
to see a border between a more pink area to the left and more purple to
the right, and these areas have been predicted as different classes.

¢ Stroma ¢ Necrosis ¢ Tumour 4 Immune cells

Figure 5.12: Magpnified parts of the segmented TCGA-EE-A29C image.
It is possible to see differences between the tiles that were predicted as
tumour and the surroundings of stroma.
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4 Stroma
4 Necrosis
4 Tumour

4 Immune
cells

Figure 5.13: Segmentation results of image from TCGA. The whole-
slide image of TCGA-EE-A3AE to the left and the predicted classes to
the right. There is no gold standard available from TCGA.

5.2 Feature extraction and classification of NRAS versus WT

Features were extracted from two different layers of the segmentation model. The
different methods of feature extraction of a relevant subset of features gave different
results and the features did not seem to generalise. The tested classifiers logistic
regression, random forest, PLS-DA and SVM gave poor results for all tested sub-
sets of features. It was possible to get acceptable results on the training data but
generalisation performance with cross-validation did not get considerably better
than chance (50%). Due to this, no results of the tested classifiers are presented.
The number of features from the different layers in the segmentation model are
presented in Table 5.2 together with the number of samples.

Table 5.2: The layers used for feature extraction, the number of fea-
tures and samples. For both tested layers, the number of features are
substantially larger than the number of samples.

Layer in model = Number of features Number of samples

Last conv. layer 6912 62
Dense layer 1024 62

5.3 Classification of NRAS versus BRAF

The classification network was trained on the TCGAClass dataset for 500 000
iterations which corresponds to about 18 epochs. Checkpoints of the weights were
saved and the AUC-values for the training and validation set were calculated for
each evaluation point, see Figure 5.14. The checkpoint at 70 000 iterations was
chosen as the final model since it had the highest AUC-value on the validation
data.
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AUC over training iterations
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Figure 5.14: The AUC of the TCGACIass training and validation data
with 95% confidence interval during the training of the classi-
fication network. The highest peak for the validation data is at 70
000 iterations (marked with a dashed line) and this model is chosen as
the final model. The confidence intervals for the training data are very
narrow and hence not visible in the figure.

The model was evaluated on the validation and test data, as well as the two
independent test sets LundClass and Semmelweis dataset. The tilewise and the pa-
tientwise ROC-curves are shown in Figure 5.15 and 5.16 for the different datasets.
The model performs better on the test data than on the validation data. The
tilewise AUC for the LundClass dataset is quite low (0.53) but the patientwise
prediction has a higher AUC of 0.59. The AUC-values of the Semmelweis dataset
is close to 0.6 for both the tilewise and patientwise predictions. Although, the
Semmelweis dataset only has 3 NRAS mutated samples and the patientwise AUC
can be misleading.
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Tilewise ROC curves
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Figure 5.15: ROC-curves and AUC-values for the four datasets on
tilewise classification of BRAF versus NRAS mutation status. The
model shows good potential at predicting BRAF vs NRAS with AUC over
0.6 on two datasets. The model performance on the LundClass dataset
is close to 0.5.

Patientwise ROC curves
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Figure 5.16: ROC-curves and AUC-values for the four datasets on
patientwise classification of BRAF versus NRAS mutation status.
The AUC-values for the patientwise predictions are close to 0.6 for all
four datasets.

The results of the predictions are visualised with heatmaps in Figure 5.17 and
5.18. Every tile is given a colour based on the predicted probability. Tiles predicted
as BRAF are blue (the darker blue the higher probability) and tiles predicted as
NRAS are red (the darker red the higher probability of NRAS). Overall, when
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a tumour is BRAF mutated more tiles are correctly classified as BRAF. In the
BRAF examples from the test set and the Semmelweis dataset, some darker areas
are predicted as NRAS (artefacts). For the NRAS mutated tumours, there are
more tiles with low probabilities (light blue and light red). There are also tiles
predicted as BRAF in all NRAS mutated examples. In the whole-slide images
in the LundClass dataset in Figure 5.18, some parts of the tissue is predicted as
stroma (marked yellow in the image) and therefore these tiles are not fed into the
classification network.
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Figure 5.17: Slides and probability heatmaps for BRAF and NRAS
positive samples from the validation and test sets. The heatmaps
of the BRAF samples are overall predicted as BRAF while the NRAS
samples are more ambiguous.

A slide from the validation set with an overlayered heatmap is presented in
Figure 5.19. The gold standard of the tumour is BRAF, although a part of the
whole-slide is predicted as NRAS (the red area in the figure). Two magnified areas
are shown to the right in the image, and it is evident that the two areas differ in
both colour and morphology.
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LundClass

Semmelweis

NRAS

BRAF

Figure 5.18: Slides and probability heatmaps for BRAF and NRAS
positive samples from the LundClass and Semmelweis datasets.
The heatmaps of the BRAF samples are in general predicted as BRAF
except for a dark area (artefact) in the Semmelweis sample. Like for
the validation and test sets, the NRAS samples are more ambiguous.
In both LundClass slides, areas with stroma (marked yellow) have been
removed by the segmentation network.

Ground truth BRAF

Figure 5.19: A slide from the validation set with probability heatmap
over-layered and magnified areas. The magnified parts show differ-
ences in structure and colour between the NRAS and BRAF classified
tiles. Note that the area marked in red is incorrectly classified.
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Discussion

6.1 Segmentation model

6.1.1 Training and overfitting

The Inception v3 network has a very deep architecture with many trainable weights.
The more trainable weights, the larger amount of data is needed to avoid over-
fitting. The choice of dividing the training into phase 1 and 2 (transfer learning
and fine tuning) was made to control the amount of trainable weights. During the
model selection, a span of different learning rates was tested and it was clear that
the model was easily overfitted for larger learning rates during phase 2 (fine tun-
ing). With the chosen settings, the segmentation network does not seem overfitted,
since the validation performance never starts to decrease, see Figure 5.3.

6.1.2 Data and performance

The performance of a neural network is greatly dependent upon the training data.
Some parts of the tissue were assigned two labels or one incorrect label (at the
border between two classes). This will lead to several tiles having the incorrect
class which will make the training process harder. Additionally, the evaluation
results can be misleading. In Figure 5.10, there are some parts that are miss-
classified according to the annotation. However, these parts do stand out from
their surrounding tissue and it is possible that the segmentation network is more
precise than the annotations. The same behaviour can be seen in Figure 5.8, where
it is visible that some parts of the gold standard necrosis can be differentiated from
the rest, and they are predicted as tumour. To summarise, it is hard to tell if the
measured performance of the network is correct or if it is too pessimistic due to
the imprecise annotation. The accuracy is better for the test set than for the
validation set, which suggests that the validation set is harder to segment than
the test set. Another possible explanation is that the test set is more similar to
the training set.

It is possible to be more selective in the process of creating the dataset. One
way of doing this is to remove tiles that are close to the border of two labels,
or close to the border of the tissue sample. Another way of being selective is to
remove whole-slide images that are considered hard to classify. We chose to keep
as many tiles as possible to make the dataset versatile and comprehensive. The
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model should therefore be more general, but this may also lead to lower accuracy
scores.

Whole-slide images from different cohorts may differ due to various equipment
and imaging methods. It is therefore important to test a model on independent
cohorts from other hospitals to evaluate the generalisation performance. The seg-
mentation model in this project was trained and tested on data from the Lund co-
hort and an additional test was made on images from TCGA. The TCGA database
did not include tissue type annotations and it was not possible to numerically eval-
uate the performance. However a visual examination could be done by both the
authors and a biologist at the institution and the performance seems adequate.
Before a segmentation model like this can be used clinically, it is crucial to confirm
the performance on more independent datasets with annotations made by several
experts. Another way to confirm the segmentation result could be to compare the
results with another well-known segmentation system.

To get trustworthy results, it is important that there is no overlap between the
training, validation and test sets. Otherwise, the validation or test performance
could be too optimistic since the data is similar to the training data. We chose to
never have tiles from the same patient in different datasets to avoid this effect.

6.2 Attempt of classification with image features

As presented in the Results, Section 5.2, no satisfactory outcome was obtained for
the classifier with image features. The features were extracted from the segmen-
tation model at two different layers, a dense layer and a convolutional layer. The
dense layer in the top layers is trained to be specialised at separating the tissue
types. Since only tumour tiles were used when extracting features, it is reasonable
that the features are too similar to differentiate NRAS versus WT tumour tiles.
The convolutional layer is further from the top than the dense layer and it was only
trained on tissue segmentation during phase 2. It was therefore thought to be less
specialised on the tissue types. 6912 features were extracted from images from 62
patient samples. This means that one feature could describe patterns connected
to only one sample. The validation performance did never reach adequate levels
which implies that the classifiers were only able to find patterns in the training
data but the classifier were not able to generalise.

Even though the results for the classification with image features were unsuc-
cessful in this project, it might be possible to obtain better results. Future work
could include a larger dataset with more samples since a larger amount of samples
would make it easier to find general features. Another possible approach could be
to extract features from another layer in the network, or from a network that is
trained for another task. The classification network described in this project is
trained to differentiate between NRAS and BRAF and features from this network
might be better to feed to a binary classifer.



Discussion 43

6.3 Classification network

6.3.1 Training and evaluation

The classification network was trained for 500 000 iterations and the final model
was chosen at iteration 70 000 since it had the best performance on the validation
data. The AUC is plotted against iterations in Figure 5.14. The model gets
overfitted to the training data since the AUC-values of the training data increases
while the AUC-values of the validation data decreases. The model is not overfitted
at iteration 70 000. The model performance never converges to a specific AUC-
value for the validation data. The spiky behaviour of the AUC-values for the
validation data can indicate that the learning rate is too high. However, lower
learning rates were tested as well but the model seemed to get stuck in local
minima. The learning rate of 0.1 was tested because it gave good results for
similar tasks [5] [6].

The classification model is general since the patientwise AUC is close to 0.6
for all datasets (see Figure 5.16). This is promising since the model performs
well on data from other sources than the source of the training data. To improve
the model performance, the model needs to be trained on a larger dataset, and
more specifically with images from different sources. Further testing would also be
needed. Another possible method of improvement could be to train a three-way
classifier instead of a binary classifier, which is used in this project. The three-way
classifier could include a WT class. This could improve the model performance
since tiles with low probability of being BRAF not necessarily have to be predicted
as NRAS.

The heatmaps of the predicted probabilities (Figure 5.17 and 5.18) show that
the BRAF mutated example samples are uniformly predicted as BRAF. There are
only artefacts, small darker parts on the edges of the tissue samples that have been
predicted as NRAS. For the NRAS mutated samples, some tiles are predicted as
BRAF and some have very low probabilities. The training data consists of more
BRAF examples which may explain why the network is better at predicting BRAF
correctly.

6.3.2 Alternative approaches

The segmentation model is used to find the tiles that have over 90% predicted
probability of being tumour. Coudray et al. [5] emphasises the importance of
choosing a good region of interest to feed to the classification network both during
training and testing. Coudray et al. used a manually found region of interest
and Kim et al. [6] implement a segmentation network to find a region of interest.
For subsequent improvement of our workflow, the tiles fed into the classification
network could be chosen more carefully, e.g. by making the segmentation network
find an area with connected tumour tiles.

Each patient sample generates multiple tiles which are fed into the classifica-
tion network. While the tilewise performance is straightforward to evaluate, the
patientwise performance can be investigated with various approaches. We chose
to use all tiles belonging to a patient sample and use the mean of the probabilities
as the total probability for that sample. Tsou et al. [8] used more restrictive
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classification demands, only giving the patient sample a class if 80% or more of
the tiles were predicted in one of the classes. Additionally, Tsou et al. classified
tiles with low probabilities in a third class prior to patient classification. It might
have been possible for us to induce a higher patientwise sensitivity if tiles with low
probability of both classes were classified as uncertain.

6.3.3 Clinical aspects

To get a fully working classification system, a probability threshold must be de-
fined. Since we only evaluated our classification results with ROC-curve and AUC,
we did not need to find the optimal threshold for our classification. The colour
scale of the heatmaps was chosen as white with smooth transitions on the border
between the classes, so no definite threshold was defined there either. One of the
biggest challenges when defining a threshold will probably be to make it fit other
datasets than the one it was chosen from. If uncertain tiles were removed, a gen-
eral threshold would likely be easier to find. Likewise if a three-way classifier was
used, the classification would seemingly be less sensitive to a chosen threshold.

When using a classification system clinically, it is important to adapt the set-
tings based on how the results will be used. If all mutant positives are investigated
further, it would be preferable to have some false positives rather than false neg-
atives, i.e. increase the sensitivity of the system. To make such an adjustment
of the system, it would be necessary to predict mutation versus WT for every
mutation.

A binary classifier of NRAS versus BRAF mutation status would not be con-
venient in clinical use. First of all, not all MM tumours carry one of the mutations
and secondly, a low probability of BRAF mutation should not be equivalent to a
high probability of NRAS mutation. Since we did not include WT tumours in any
of the datasets used in the classifier, the binary classification was a simple and
straightforward way to see if it was possible to train a network to discriminate
between the mutations.

The mutation status of MM tumours are currently being examined with DNA-
analysis which requires special laboratory equipment. The classification model, on
the other hand, only requires a whole-slide image and a computer to run the
classification on. A deep learning model could probably increase the availability
of mutation status analysis around the world. However, this would require a more
stable model with higher AUC-values.
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Conclusion

A system for classification of NRAS versus BRAF mutation status has been de-
veloped. Tiles from whole-slide images were first segmented into the tissue types
stroma, necrosis, tumour and immune cells. The segmentation network had an F1-
score of 0.84 for the tumour class on test data. The tiles with over 90% predicted
probability of being tumour were passed to the classification network, where a bi-
nary prediction between NRAS and BRAF were made. The classification network
had the tilewise AUC-values of 0.66 on the test set and 0.53 respectively 0.60 on
independent datasets. The patientwise predictions had AUC-values around 0.60
for all datasets.

Features extracted from the segmentation network could not be used to sep-
arate NRAS and WT tumours with binary classifiers. The attempt was made on
data from 62 patient samples and the classifiers tested were logistic regression,
SVM, PLS-DA and random forest.

Deep learning models, more specifically Inception v3, have potential in being
used in mutation status analysis of MM clinically. The promising results show
that it is possible to predict mutation status from solely whole-slide MM tumour
images. We believe that deep learning models can provide a cheaper and faster
alternative to DNA-analysis for the detection of some cancer mutations in the
future.
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Conclusion
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