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Abstract 

The essence of market efficiency has been an interesting area for inspection by investors and 

scholars. In this study, we investigate the efficiency of a relatively new asset: Bitcoin. This paper 

examines the efficiency of Bitcoin by studying the impact of Bitcoin’s so-called halving dates. To 

test for weak-form market efficiency, we check for the random walk, in addition to employing 

statistical tests of the martingale difference hypothesis in returns. Based on our results, we find 

evidence of the time-varying efficiency degree of the Bitcoin market. The return predictability is 

discovered to be driven by changes in market conditions, as implied by the adaptive market 

hypothesis. The results also show a decreasing trend in the inefficiency given the sequential 

halving dates. This means that Bitcoin is becoming more efficient over time, even though the 

evidence is relatively weak. 
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1. Introduction 

Since the elapse of the 2008 financial crisis, international economies exposed substantial problems 

related to financial services operations. Financial innovation was highly demanded to sustain the 

continuity of global markets. On 3 January 2009, the first decentralized digital currency network 

came into existence, with Satoshi Nakamoto mining the genesis block of Bitcoin (Block 0). Bitcoin 

was found to address the need of an electronic payment system that utilizes cryptographic proof, 

for enabling any two willing parties to transact directly without the need for a trusted third 

intermediary (Nakamoto, 2009). Upon its launch, the economic values Bitcoin has grasped have 

compromised billions of dollars in terms of alternative financial services transactions. At an 

accelerated pace, Bitcoin forwarded a USD 1 trillion market cap in only twelve years. Most 

recently in 2021, the cryptocurrency market gained a modest market cap of USD 500 billion. Such 

growth contributed to extremely bullish sentiments, including CEOs of large firms’ interest in 

cryptocurrency transactions, financial institutions easing access to cryptocurrency purchases for 

their customers, and the launch of approved regulatory ETFs on major exchanges such as the 

Toronto Stock Exchange TSX (Ali, 2021). 

The distinction between Bitcoin and fiat currencies is that simply nobody controls Bitcoin. The 

concept of decentralization is what defines Bitcoin to be completely advanced and unique. In his 

white paper “Bitcoin”, Nakamoto outlines that the goal behind mining Bitcoin turns to be a piece 

of a tremendous decentralized system. Unlike ordinary banking transactions that take few days, 

Bitcoin organizes instalments forms quickly for parties to receive cash within a couple of minutes. 

In addition, Bitcoin is an exceptionally inventive approach that guarantees for a sender the cash 

collection by the receiver party through transparent Blockchain technology (Encrybit, 2018). To 

ensure the monetary policy Bitcoin undertakes, approximately; every four years, the halving event 

occurs, where the number of generated Bitcoin rewards per block will be halved (divided by 2). 

This monetary system aims to provide gradual distribution of the 21 million Bitcoins over time. 

The halving event ensures that the Bitcoin cryptocurrency becomes scarcer with time. As Bitcoin’s 

halving date approach, traders and miners will be more aware of Bitcoin’s decreasing supply. 

Traders may enter the market to speculate on market prices, introducing higher volatility during 

this time frame. Given the appealing attributes and deflationary effect of Bitcoin, interest in 

investing or mining Bitcoin has been continuously growing. 

Recent studies considered the efficiency of Bitcoin investigation in the sense of Fama (1970), to 

be essential for evaluating Bitcoin’s price mechanism and momentum of growth. Several studies 

were prominent to study Bitcoin in terms of efficiency, yet this focus has a been a subject of dispute 

between proponents and opponents of the efficient market hypothesis. For instance, Nadarajah and 

Chu (2017), Khuntia and Pattanayak (2018), Kristoufek (2018), and Dimitrova et al. (2019) found 
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that Bitcoin is almost efficient. In contrast, Yonghong et al. (2018), Cheah et al. (2018), Al-

Yahyaee et al. (2018), and Vidal-Tomás et al. (2019) provide observed outcomes that do not back 

up the efficient market hypothesis for Bitcoin. Considering this controversy, an evolutionary 

alternative to efficient market hypothesis, the adaptive market hypothesis was proposed by Lo 

(2004), whereby he supported the view that the market develops over time, as does market 

efficiency. An important connotation of adaptive market hypothesis is that market efficiency can 

arise from time to time due to changing market conditions such as behavioral bias, structural 

change, and external events (Lo, 2004). 

This study contributes to previous research that focused on studying the efficiency of Bitcoin from 

a whole market perspective through adding an assessment to establish the impact of halving events 

on Bitcoin efficiency. Since inception, Bitcoin has completed three halving dates, and our purpose 

is to understand how these events impact the pre and post halving efficiency behavior of Bitcoin. 

Such evaluation is particularly new and interesting for further examination, as the results from this 

study could help in devising opportunities for traders and investors. An inefficient form of Bitcoin 

signifies prospects to investors over informational efficiency and predictable patterns of Bitcoin 

price through helping them devise effective trading strategies. If investors understand the 

efficiency mechanism behind Bitcoin, they will be able to implement this knowledge and adjust 

portfolios or create new investment as well as hedging strategies. 

Our research questions will try to answer: “Does Bitcoin returns follow a random walk or a 

martingale process?”, “Can Bitcoin be a weak form efficient asset?” and “Is there any impact of 

halving events on the efficiency level of Bitcoin?”. We expect that Bitcoin does not follow a a 

random process or a martingale and will not satisfy the weak form of market efficiency. 

This study will investigate Bitcoin efficiency through implementing weak-form market efficiency 

tests on different dataset windows. The analysis will be conducted based on statistical tests to 

capture linear and non-linear dependance in the returns data frames. The data set windows will 

represent the logarithmic returns of Bitcoin in between three halving periods divided into six 

subsamples of pre and post halving dates. 

Notably, the most recent period - subsample 6 - post the third halving event, has the lowest number 

of observations in our data set. Statistical inference on concluding about Bitcoin efficiency in this 

period may be a limitation to our overall study conclusion. Moreover, this study does not assess 

the Bitcoin efficiency relative to the whole cryptocurrency market; it only assesses efficiency 

based on Bitcoin daily returns. We may need to include and add a representative index for the 

cryptocurrency market and measure Bitcoin efficiency in relevance to it in future work. 
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The remainder of this paper is structured as follows: Section 2 reviews some previous literature on 

Bitcoin and its halving events. This section also includes the market efficiency theory and 

theoretical background in two aspects, the efficient market hypothesis, and the adaptive market 

hypothesis. Moreover, the random walk hypothesis and the martingale difference hypothesis are 

presented. The last part of the literature review gives the view of prior research of market efficiency 

using the time-varying autoregressive model. Section 3 covers the detailed framework of the 

market efficiency tests methodologies. The data sets of interest and the descriptive data are 

discussed in Section 4. The empirical results and the subsequent discussion are presented in 

Sections 5 and 6, respectively. Finally, the thesis ends with some concluding remarks in Section 

7. 
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2. Literature and Theoretical Review 

This section illustrates the literature and the main theories we refer to the Bitcoin market efficiency 

tests. The section starts with the presentation of Bitcoin and its scheduled halving event 

information. Then two views of the market efficiency hypothesis: efficient market hypothesis and 

adaptive hypothesis, are discussed. After that, stochastic processes employed to test the market 

efficiency of return series called random walk and martingale are explained. Lastly, time-varying 

autoregressive model literature used to test market efficiency in prior research is demonstrated.  

 

2.1 Bitcoin and Halving Events 

Bitcoin is a virtual medium of exchange that operates like a currency but with no underlying assets 

backing up. An anonymous inventor referred to be called Satoshi Nakamoto founded Bitcoin in 

2009, intending to decentralize the world of finance. His goal is to free the financial infrastructure 

and be independent for both intermediaries and centralized institutions. Such decentralization 

enables peer-to-peer instant payment system on the internet, allowing users to engage in operations 

and transactions directly without requiring any third parties involved.  

Each user has an own wallet with a specific address that contains digital keys (public keys and 

private keys). Antonopoulos (2017) explains that the public key is used to ensure that the user is 

the owner of the address and has the authority to receive the funds, while the private key is used 

to sign transactions for spending funds privately.  

When a new transaction is requested, the transaction is disseminated to the Bitcoin network. The 

software starts a verification, and a valid transaction will be sent to the memory pool, waiting to 

be recorded in chronological order in the block. Nakamoto (2008) describes that the timestamp 

server is implemented to prove the existence of data at the time to get into the hash and form a 

chain of hash-based proof-of-work. Consequently, the block and chain are not able to change 

without redoing the proof-of-work. Each block has a limit size of 1 megabyte; thus, a new block 

is generated approximately every 10 minutes and is appended to the previous block. This 

application can be viewed as a shared public ledger, called “Blockchain”. 

However, how are new blocks generated? The blocks cannot be generated themselves but are 

mined by Bitcoin miners. Fund (2016) defines mining as the process based on distributed 

consensus system agreeing on how many units of the currency each member always holds to 

prevent double spending. Miners are rewarded the transaction fee for the record that they checked 

and confirmed. Also, they receive the incentive on the numbers of blocks they calculated 

successfully.  
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Yago (2021 cited in Divine & Reeth, 2021) said, “Satoshi Nakamoto had anticipated that as the 

transactions fees generated by the network increase over time, the need for the miner subsidy 

would decrease - and built the pre-determined, diminishing rate of newly minted BTC with this in 

mind”.   

 

Source: https://charts.coinmetrics.io/network-data/ 

Figure 1 Number of Bitcoin Active Addresses (Green) and Transactions (Red) 

Trefis (2018) identifies two main factors behind the demand for Bitcoin: the number of active users 

and the number of transactions. As shown in Figure 1, there are upward patterns in both drivers. 

Because of the increasing demand for Bitcoin, the transaction fees also increased as expected. 

Thus, Bitcoin halving reduces half of the reward from mining Bitcoin every 210,000 blocks; this 

takes four years. The event impacts a decrease in the supply of new Bitcoins in the market, whilst 

the demand remains at the same level.  

The literature on the effect of Bitcoin halving is limited in academic research. Meynkhard (2019) 

conducted a study to observe the effect of halving on Bitcoin’s fair market value and found that 

reducing remuneration by half every four years leads to an increased market value of Bitcoin. 

Another research on the halving effect on the price regarding the halving in 2020 was conducted 

by Masters (2019). The results exhibit the possible decline in price in the short-term following the 

event and will increase afterwards.  

 

2.2 Efficient Market Hypothesis 

The efficient market hypothesis is a theory that explains the financial market movements presented 

by Eugene Fama’s research. It states that a market is efficient at any given time since all available 

and relevant information to the asset's pricing is incorporated in its price. 
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According to Fama (1970), the paper categorized the efficient markets into three forms: weak, 

semi-strong, and strong form, by the level of available information reflected publicly.  

▪ The weak form states that the asset price (or return) incorporates all know information on 

historical values. There is no relationship between past information and current market prices. 

Thus, it is impossible to attain superior profits by analyzing past returns consistently.  

▪ The semi-strong form focuses on the speed of price adjustment to other publicly known 

information about the market or the particular asset, for instance, announcements of stock splits, 

annual reports, new security issues, etc. The prices will adjust immediately upon the release of 

public announcements, and it is impossible to attain superior profits by analyzing public 

information consistently. 

▪ The strong form suggests that any investor has access to any information relevant to the 

formation of asset prices that have recently appeared. Therefore, no one or even company 

insiders can consistently attain superior profits. 

In reality, it is difficult to achieve a strong version of market efficiency because of the legal barriers 

restricting the disclosure of private information to the public. However, weaker versions of the 

hypothesis are widely accepted. In addition, the weak-form market efficiency is the most tested 

comparing to other forms. 

The weak-form efficient market hypothesis implies that the trend analysis or technical analysis is 

worthless. The return forecast is unpredictable or random; an investor cannot beat the market to 

retrieve the abnormal returns (Malkiel, 2003). Nevertheless, there are some counterarguments that 

patterns are presented, and many researchers have worked on testing the weak-form efficiency. 

Besides, return predictability studies are conducted on many financial markets, and so does the 

cryptocurrency market. The weak form efficiency of Bitcoin was initially observed by Urquhart 

(2016); the conclusion is that the Bitcoin returns between August 2010 and July 2016 are in an 

inefficient market under tests for randomness. Later, Nadarajah and Chu (2016) conducted follow-

up research applying the odd integer power transformation to input data, but with the same 

methodology. The result is not consistent with the previous study: most tests exhibited support to 

the efficient market hypothesis by following the random walk process, except for the tests of 

independence. By applying the unit root tests to observe weak form efficiency in Bitcoin, the 

analysis showed that the Bitcoin model of GARCH (1,1) with structural break has predictable 

power. The market between April 2015 to April 2016 is inefficient (Alam, 2017). 

As the popularity of the efficient market hypothesis study arises, it has been attacked by many 

papers since the 1980s. There are some pieces of evidence presenting market anomalies and 

irrational trait of investors against the hypothesis that the market is efficient at any given time. De 



12 

 

Bondt and Thaler (1985) discovered that stock prices overreact, evidencing substantial weak-form 

market inefficiencies. Jegadeesh and Titman (1993) found the momentum effect from the trading 

strategies leading to significant abnormal returns. Moreover, Barber and Odean (2001) emphasized 

the predictable investor behavior of overconfidence. Accordingly, these behavioral biases in 

human decision-making contradict the economic intuition and the efficient market hypothesis.  

 

2.3 Adaptive Market Hypothesis 

Unlike the old theory of market efficiency, behavioral economists have believed that the market is 

not statically efficient. Market participants are not perfectly rational; also, assets are not always 

traded at fair value. Lo (2004) proposed a new framework, namely the adaptive market hypothesis, 

to test market efficiency that varies over time. The study reconciled between the efficient market 

hypothesis and its behavioral critics and explained the time-varying market efficiency. Lo (2004) 

clarified that the economic systems involve human interaction, which is complex because human 

behavior is heuristic and adaptive. Although individuals can perform the predictability of returns 

occasionally due to market conditions, it cannot be claimed that the decision in an investment of 

market participants is entirely predictable, particularly in the changing environment. 

The growing attention to the adaptive market hypothesis has motivated the emergence of several 

studies in a time-varying degree of market efficiency. In addition to the previous result that the 

Bitcoin market is inefficient from August 2010 to July 2016, Urquhart (2016) examined market 

efficiency in an adaptive manner by splitting this time into two periods to determine whether the 

efficiency level has changed differently over time. The result shows that the process moves 

towards an efficient market in the latter period. In the following year, Bariviera (2017) applied 

Hurst exponent to the study of Bitcoin market efficiency to detect the long-term memory in the 

Bitcoin return time series. The outcome of Bariviera's study is consistent with Urquhart's (2016). 

The first half of the studying period, from 2011 to 2014, shows persistent behaviors but the second 

period, from 2015 and 2017, shows the opposite, which means the data series is compatible with 

the efficient market hypothesis in the latter period of data only. Furthermore, Bariviera (2017) 

considered the price volatility in the study and found the long memory in the result. However, the 

long memory had decreased since 2014, implying that the informational efficiency level increased 

in the Bitcoin market after 2014.  After that, a handful of studies for persistence in Bitcoin have 

been carried out to observe the market efficiency that varies from time to time due to changing 

market condition. According to Caporale, Gil-Alana and Plastun (2018), the Bitcoin returns series 

in the period between April 2013 and October 2017 did not follow the random walk and the degree 

of persistence decreased over time, which is consistent to Urquhart (2016) and Bariviera (2017). 

Bouri et al. (2019) investigated persistence in the level and volatility of Bitcoin prices. The data 
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was broken into subsamples, and the evidence of long memory was found in almost all subsamples 

(Bouri et al. 2019). 

 

2.4 Random Walk Hypothesis and Martingale Difference Sequence  

Weak-form market efficiency can be evaluated by considering different types of dependence 

between an asset’s prices or returns at two different times. The tests and models for examining 

weak-form market efficiency are based on two theories: random walk hypothesis and martingale 

difference sequence.  

Firstly, the random walk hypothesis describes that the prices or returns move in an unpredictable 

way and cannot be distinguished from a random walk process (Fama, 1965). Samuelson (1965) 

and Fama (1970) both found the random character in share prices in their studies as the 

consequences of the concept of rational expectations, meaning that the current asset price 

contributes to the best-predicted price in the future. The hypothesis deduces that past asset 

movements cannot be used to forecast its movement in the future. The theory is closely related to 

the efficient market hypothesis as they agree that it is not possible to outperform the market without 

taking on additional risks (Samuelson, 1965; Fama, 1965; Malkiel, 1973). According to Campbell, 

Lo and Mackinlay (1997), the random walk process can be written as  

 𝑝𝑡 =  𝜇 + 𝑝𝑡−1 + 𝜀𝑡 (1) 

𝑝𝑡 is equal to the price at time t (today). 𝜇 represents an expected change in the price, or we can 

call it a drift term. 𝜀𝑡 can be interpreted as new information at time t of asset value, which is the 

random part. 

There are three versions of the random walk hypothesis based on the dependence of the random 

shock (𝜀𝑡): 

▪ Random Walk 1 defines that the random shock is independently and identically distributed 

(IID) with mean zero and variance 𝜎2 or 𝜀𝑡~𝐼𝐼𝐷(0, 𝜎2). 

▪ Random Walk 2 defines that the random shock is independently but not identically distributed 

considering the long-time spans. This can be viewed as the relaxed assumption of random walk 

1; also, the variance can be time varying. 

▪ Random Walk 3 defines that the random shock is uncorrelated to past values, but the squared 

increments are correlated.  

  



14 

 

 𝐶𝑜𝑣[𝜀𝑡, 𝜀𝑡−𝑘] = 0     for all 𝑘 ≠ 0 (2) 

 

 𝐶𝑜𝑣[𝜀𝑡
2, 𝜀𝑡−𝑘

2 ] ≠ 0      for some 𝑘 ≠ 0 
(3) 

 Random walk 3 is the weakest case of the random walk hypothesis. 

Many empirical researches test the weak-form efficiency in a variety of financial markets, 

including Bitcoin and cryptocurrency markets, based on the random walk hypothesis. For example, 

Urquhart (2016), Nadarajah and Chu (2016) and Wei (2018) conducted Wald-Wolfwitz runs test, 

Ljung-Box test and Brock-Dechert-Scheinkman test to observe the random walk process for 

Bitcoin returns.  

Secondly, the martingale process describes that the best forecast of tomorrow’s price is today’s 

price. Danthine (1977) offered to replace the random walk models with the martingale model in 

testing the weak-form market efficiency. Referring to the definition of a weak-form efficient 

market, Fama (1970) explained how the prices “fully reflect” available information with 

martingale price sequence. The price sequence (𝑝𝑡) follows a martingale when the expected value 

of the next period’s price sequence (𝑝𝑡+1) is equal to the current price, given the information 

sequence of past prices Φ𝑡 = {𝑝𝑡, 𝑝𝑡−1,…}. 

 𝐸(𝑝𝑡+1|Φ𝑡) = 𝑝𝑡    or equivalently,   (4) 

 𝐸(𝑟𝑡+1|Φ𝑡) = 0      where 𝑟𝑡+1 = 𝑝𝑡+1 − 𝑝𝑡 (5) 

This also implies a fair game meaning that the trading rules based on Φ𝑡 cannot generate greater 

expected profits than a buy and hold strategy during the future period.  

Equation (5) implies that non-overlapping price changes are uncorrelated at all leads and lags when 

𝑝𝑡 is a martingale. 

 𝑐𝑜𝑣(𝑟𝑡+1, 𝑟𝑡) = 0 (6) 

For the sake of testing weak-form market efficiency in a dynamic situation, the martingale 

difference sequence tests are usually applied. The automatic variance ratio test is one of the 

martingale processes tests that has received attention in measuring weak-form efficiency for 

Bitcoin in many studies (Urquhart, 2016; Nadarajah and Chu, 2016; Wei, 2018). Besides that, 

automatic portmanteau test and generalized spectral test are adopted. These tests utilize spectral 

density function allowing the discovery of underlying periodicities in returns. Both are used for 

weak-form efficiency test in many financial markets. However, there are not many pieces of 

research focused solely on Bitcoin.  
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According to two theories supporting the weak-form market efficiency test, Campbell, Lo and 

Mackinlay (1997) summarized different kinds of dependence that can exist between asset’s returns 

𝑟𝑡  and 𝑟𝑡+𝑘 at time t and t+k in the below table. Suppose 𝑓(𝑟𝑡) and 𝑔(𝑟𝑡+𝑘) are the random 

variables, where 𝑓(∙) and 𝑔(∙) are two arbitrary functions, and consider the covariance: 

 𝑐𝑜𝑣( 𝑓(𝑟𝑡), 𝑔(𝑟𝑡+𝑘)) = 0     for all t and 𝑘 ≠ 0 (7) 

Table 1 Classification of Random Walk and Martingale Hypotheses 

𝑐𝑜𝑣( 𝑓(𝑟𝑡), 𝑔(𝑟𝑡+𝑘) 𝑔(𝑟𝑡+𝑘), ∀𝑔(∙) Linear 𝑔(𝑟𝑡+𝑘), ∀𝑔(∙) 

𝑓(𝑟𝑡), ∀𝑓(∙) Linear 
Random Walk 3 

𝑃𝑟𝑜𝑗[𝑟𝑡+𝑘|𝑟𝑡] = 𝜇 
- 

𝑓(𝑟𝑡), ∀𝑓(∙) 
Martingale  

𝐸[𝑟𝑡+𝑘|𝑟𝑡] = 𝜇 

Random Walks 1 and 2 

𝑝𝑑𝑓(𝑟𝑡+𝑘|𝑟𝑡) = 𝑝𝑑𝑓(𝑟𝑡+𝑘) 

Note: Linear means f(∙ ) or g(∙ ) is restricted to arbitrary linear functions. 

         Proj[y|x] denotes the linear projection of y onto x. 

         pdf(∙ ) denotes the probability density function of its argument. 

 

2.5 Time-Varying Autoregressive Model 

Statistical tests for the random walk hypothesis and martingale difference sequence are adopted to 

investigate the market efficiency. We can examine the adaptive market hypothesis by applying 

these tests under the sub-windows of data divided by time. Another approach is using the time-

varying model. It is one of the dynamic econometric models that allow the parameters to vary over 

time. In this part, we present the literature on the time-varying model method to measure market 

efficiency. 

The previous studies of the time-varying model relied on the Bayesian estimation technique 

(Primiceri, 2005) with the Kalman filtering and smoothing to find a likelihood value or 

unobservable state vector. Ito and Noda (2012) thereafter proposed a new method of the 

regression-based time-varying model without Bayesian estimation to research the market 

efficiency in the U.S. stock market from the S&P 500 stock price index. The study utilizes the 

time-varying autoregressive (TV-AR) model, together with the time-varying moving average (TV-

MA) model. It is based on the impulse response theory for the propagation of shock in the model. 

They focused on the utility maximization problem and its corresponding Euler equation: 

 𝑝𝑡 = 𝐸𝑡[𝑚𝑡+1(𝑝𝑡+1 + 𝜅𝑡+1)] (8) 
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𝑝𝑡 is the stock price at t, 𝑚𝑡+1 is a stochastic discount factor defined as 𝛿
𝑢′(𝐶𝑡+1)

𝑢′(𝐶𝑡)
, and 𝜅𝑡+1 is the 

dividend. 𝐸[. ] represents the conditional expectation given the information available at t. Since 

𝑚𝑡+1 is close to 1 and 𝐸𝑡[𝜅𝑡+1] = 0, the price will follow a random walk process or a martingale 

(Ito, Noda & Wada, 2016). Then the equation can be simplified as follow: 

 𝐸[𝑥𝑡|𝐼𝑡−1] = 0 (9) 

where 𝑥𝑡 is a log difference return, and 𝐼𝑡−1 is the information set available at t-1. 

Assuming the time series 𝑥𝑡 is stationary, by Wold’s decomposition, 

 𝑥𝑡 = 𝛷(𝐿)𝑢𝑡     where 𝛷(𝐿) = ∑ 𝛷𝑖
2 < ∞∞

𝑖=0     with 𝛷0 = 1 (10) 

𝐿 is the lag operator, and {𝑢𝑡} is an IID process with a mean of zero and variance of 𝜎2. Ito, Noda, 

and Wada (2016) summarized that efficient market hypothesis is equivalent to 𝑥𝑡 = 𝑢𝑡 and the 

long-run multiplier of a shock is the summation of the coefficients, i.e.  

 𝛷∞ ≡  𝛷(1) = 𝛷0 + 𝛷1 + 𝛷2 + ⋯ (11) 

To derive the measure of market efficiency from the time-varying long-run multiplier, they 

employed the spectral density concept (Ito & Noda, 2012). Subsequently, they pointed out the 

superiority of their model, the non-Bayesian TV-AR model from the traditional Bayesian method:  

1. The model is more straightforward as it does not need iteration in Kalman filtering and 

smoothing. 

2. The model is more flexible than the model that contains random parameter variation because 

the state equation can handle these stochastic constraints. 

3. Asymptotic assumptions of estimates are preserved due to the regression method.  

At another time, Ito, Noda, and Wada (2017) researched the time-varying parameter model and 

referred to the equivalence of Kalman filtering and smoothing procedure and generalized least 

squares (GLS) regression approach. They proved that the GLS estimator of the TV-AR model 

yields the exact estimate as the Kalman-smooth estimates and its mean squared error. 

The approach had been adopted by Noda (2020) to test the adaptive market hypothesis for 

Bitcoin’s efficiency analysis. The author employed a GLS-based TV-AR model and proved that 

the degrees of Bitcoin efficiency changed at different times from April 2013 to September 2019. 

The level of efficiency becomes higher after 2013, which is consistent with the research from 

Urquhart (2016), who utilized the statistical tests for subsamples of data. 
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3. Methodology 

This section outlines the methodology used in the study. We test the market efficiency by 

employing some statistical tests of the martingale difference hypothesis in returns. In addition, we 

check whether Bitcoin returns time series follow the random walk process or not. Finally, the GLS 

based TV-AR and its measure of market efficiency are adopted in the last subsection.  

 

3.1 Prerequisite Tests 

This subsection briefly describes diagnostic tests for univariate time series data, including 

normality and unit root tests. 

3.1.1 Kolmogorov-Smirnov Goodness of Fit Test 

Kolmogorov-Smirnov Goodness of Fit test (or one sample KS test) is a goodness of fit test 

determining how well the data fit the hypothesized distribution (uniform or normal) (Poshakwale, 

1996). The test compares the cumulative distribution function (CDF) of a data series with a 

reference distribution from theoretical expectations. In this case, we used the normal distribution. 

Suppose the data contains N ordered data observations: 𝑦1, 𝑦2, … , 𝑦𝑁, the empirical distribution 

function (ECDF) is  

 
𝐸𝑁 =

𝑛(𝑖)

𝑁
 (12) 

where 𝑛(𝑖) is the number of observations less than the sample value 𝑦𝑖 (NIST/SEMATECH, n.d.). 

The hypothesis of the test is defined as: 

H0: The cumulative distribution function of samples equals  

       the normal distribution function 

H1: The cumulative distribution function of samples does not equal  

       the normal distribution function 

The test statistic (D) is the least upper bound of all differences in the sample’s cumulative 

distribution from the normal distribution function. It can be written as: 

 𝐷 = sup|Φ − 𝐸𝑁| (13) 

When D value is greater than or less than the critical value at a significance level of 𝛼 2⁄ , the test 

rejects the null hypothesis at the α level of significance. 
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3.1.2 Jarque-Bera Test 

Jarque-Bera (JB) test will be implemented to evaluate the normality of the time series returns. The 

test matches the skewness and kurtosis of data to see if it matches a normal distribution. A normal 

distribution has a skewness of zero and kurtosis of three. The JB test follows a chi-square (𝜒2) 

distribution with two degrees of freedom, is calculated as: 

 JB =
𝑇

6
 (𝑏1

2 +
1

4
 (𝑏2 − 3)2 ) ~(𝜒2) (14) 

where T is the sample size, 𝑏1 the coefficient of skewness and 𝑏2 − 3 the excess kurtosis.  

The hypothesis of the test is defined as: 

H0: 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

H1: 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

In general, a large JB value indicates that returns are not normally distributed. 

3.1.3 Unit Root Test 

A unit root is a stochastic trend in time series. The test is designed to reveal whether the return 

series 𝑌𝑡 is difference-stationary (null hypothesis) or trend-stationary (alternative hypothesis). The 

presence of a unit root exhibits a systematic pattern that is unpredictable such as the random walk 

model (Glen, n.d.). The random walk is a difference-stationary series because the first difference 

of 𝑦 is stationary. For example, we consider the series as a simple autoregressive (AR) model: 

 𝑦𝑡 =  𝜇 + 𝑦𝑡−1 + 𝜀𝑡 (15) 

 𝑦𝑡 − 𝑦𝑡−1 = 𝜇 + 𝜀𝑡  (16) 

 (1 − 𝐿)𝑦𝑡 =  𝜇 + 𝜀𝑡 (17) 

 ∆𝑦𝑡 =  𝜇 + 𝜀𝑡 (18) 

where 𝜀𝑡 is a white noise disturbance. 

The hypothesis of the test can also be written as: 

H0: 𝑦𝑡 =  𝜇 + 𝑦𝑡−1 + 𝜀𝑡 

H1: 𝑦𝑡 =  𝜇 + Φ𝑦𝑡−1 + 𝜀𝑡     where Φ ∈ (−1,1) 
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The study adopted a well-known unit root test – the Augmented Dicker-Fuller (ADF) test. After 

all, it is criticised for low statistical power when a root Φ closes to one, and the sample size is 

small. The solution to the downside of the test is the complementary use of a stationarity test, the 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. 

3.1.3.1 Augmented Dicker-Fuller Test 

Brooks (2019) illustrates the ADF model as: 

 ∆𝑦𝑡 =  𝜓𝑦𝑡−1 + ∑ 𝑎𝑖

𝑝

𝑖=1

∆𝑦𝑡−𝑖 + 𝑢𝑡  (19) 

where 𝑢𝑡 is a white noise disturbance and is assumed not to be autocorrelated. 

The hypothesis of the test is defined as: 

H0: 𝜓 = 0 

H1: 𝜓 < 0   

The test statistic (𝑡𝜓)  follows the student’s t-distribution and can be calculated from: 

 
𝑡𝜓 =  

𝜓̂

𝑆𝐸(𝜓̂)
 (20) 

where 𝜓̂ is the estimate of 𝜓, and 𝑆𝐸(𝜓̂) is the standard error of the coefficient. 

When 𝑡𝜓 value is less than or equal to the critical value at a significance level of 𝛼, the test rejects 

the null hypothesis at the 𝛼 level of significance. 

3.1.3.2 Kwiatkowski-Phillips-Schmidt-Shin Test 

KPSS test is a stationarity test applicable for both trend stationarity and level stationarity. It also 

can detect the existence of a random walk embedded in the series. If the random walk is presented, 

the series contains a unit root, which can be concluded that it is not stationary.  

Because of the low power of ADF, when the process is stationary but with a root close to the non-

stationary boundary, the failure to reject the null hypothesis might occur. Therefore, the 

confirmatory data analysis is applied using the KPSS test.  
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The hypotheses of KPSS are the reversing of ADF’s hypotheses, which can be written in the form 

of I(d) as: 

H0: 𝑦𝑡 ~ 𝐼(0) 

H1: 𝑦𝑡 ~ 𝐼(1)  

The rejection outcomes of KPSS should be in the opposite way to the ADF rejection results. One 

is to reject the null hypothesis, but another one is not. If both ADF and KPSS give the same result 

to reject the null hypothesis or to not reject the null hypothesis, they imply conflicting results 

(Brooks, 2019). 

 

3.2 Random Walk Hypothesis Tests 

In the following subsection, the relevant independence tests of random walk and statistical 

contributions to tests will be performed. This study tests random walk hypothesis focusing on the 

Random Walk 1 (Wald-Wolfowitz runs test and Brock-Dechert-Scheinkman test) and Random 

Walk 3 (Ljung-Box Test) aspects only. 

3.2.1 Wald-Wolfowitz Runs Test 

Wald-Wolfowitz runs test (runs test) presents the test for linear independence of the returns under 

the hypothesis of randomness (Bradley, 1968). The method uses median or mean as the reference 

point to split data, then assign “+” to the values larger than the reference and “-” to the smaller 

than or equal to the reference. We assume 𝑛1 be the number of observations of “+” and 𝑛2 be the 

number of observations of “-”. The total number is  𝑁 = 𝑛1 + 𝑛2. 

A run represents a sequence of repeating signs, for instance, ++ or --, forming a binomial 

distribution. The number of runs (R) is the number of different subsets of the consecutively same 

sign in the sequence. The test measures how fast or slow the oscillation between positives and 

negatives (Tokić, Bolfek, & Peša, 2018). This can be viewed in terms of R: the faster oscillation, 

the higher value of R and vice versa. The hypothesis of the test is defined as: 

H0: Two samples are identically distributed 

H1: Two samples are NOT identically distributed 
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If R deviates from the expectation, there are some differences in either the shift or the distribution 

spread. Therefore, the null hypothesis is rejected. Moffitt (2017) explains that when the 

distribution characteristics in all permutations of two series observations are equal, the observed 

series is random.  

The test statistic (Z) is approximated with a normal distribution when each sample size 𝑛1 and 𝑛2 

is larger than 10. The expected number of runs is 
2𝑛1𝑛2

𝑛1+𝑛2
+ 1 and the variance is 

2𝑛1𝑛2(2𝑛1𝑛2−𝑛1−𝑛2)

(𝑛1+𝑛2)2(𝑛1+𝑛2−1)
. 

 
𝑍 =  

𝑅 − (
2𝑛1𝑛2

𝑛1 + 𝑛2
+ 1)

√
2𝑛1𝑛2(2𝑛1𝑛2 − 𝑛1 − 𝑛2)
(𝑛1 + 𝑛2)2(𝑛1 + 𝑛2 − 1)

 
(21) 

When the Z value is either greater or less than the critical value at a significance level of 𝛼 2⁄ , the 

test rejects the null hypothesis at the 𝛼 level of significance. 

3.2.2 Brock-Dechert-Scheinkman Test 

Brock-Dechert-Scheinkman (BDS) test is a test of independence used for time series, which can 

be transformed to test the IID errors of the models (Brock et al. 1996), which means it tests whether 

the data series is IID or not. It has a feature to detect linear dependence, non-linear dependence, 

and chaos in the data series.  

Assume the return series 𝑥1, 𝑥2, … , 𝑥𝑁, we construct a set of pairs of data 

{(𝑥𝑠, 𝑥𝑡), (𝑥𝑠+1, 𝑥𝑡+1), … , (𝑥𝑠+𝑚−1, 𝑥𝑡+𝑚−1)} where s, t are an observation of the series and m is 

the continuing point used in the data called embedded dimension. The test suggests that:  

 

 
𝑃[|𝑥𝑡 − 𝑥𝑠| <  𝜀]2 =  𝑃[|𝑥𝑡 − 𝑥𝑠| <  𝜀] ×  𝑃[|𝑥𝑡−1 − 𝑥𝑠−1| <  𝜀] (22) 

for all s, t. The metric bound 𝜀 > 0 and the lagged pairs (𝑥𝑡, 𝑥𝑡−1) must satisfy the above condition 

(Moffitt, 2017).  

Moreover, Campbell, Lo and Mackinlay (1997) explain the test from another perspective: 

correlation integrals for dimension m (𝑐𝑚,𝑛). The property of the test is the ratio of correlation 

integrals which means it is the probability that two data observations conditional on the previous 

n data observations are close and within a certain length of 𝜀 apart.  

When the data are IID, the conditional probability is simply the multiplication of probabilities.  
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The hypothesis of the test is defined as: 

H0: The data series are IID from a continuous distribution 

H1: The data series are from a continuous distribution, but not IID 

The test statistic of independence (𝑏𝑚,𝑛(𝜀)) can be calculated based on Eviews (2020): 

 
𝑏𝑚,𝑛(𝜀) =  𝑐𝑚,𝑛(𝜀) −  𝑐1,𝑛−𝑚+1(𝜀)𝑚 (23) 

The 𝑏𝑚,𝑛(𝜀) × √𝑛 − 𝑚 + 1 is normally distributed with a mean of zero. Then, the BDS test 

statistic denoted by 𝑊 or 𝑊𝑚,𝑛(𝜀) is given: 

 𝑊𝑚,𝑛(𝜀) =  
𝑏𝑚,𝑛(𝜀) × √𝑛 − 𝑚 + 1

𝜎𝑚,𝑛(𝜀)
 (24) 

When 𝑊𝑚,𝑛(𝜀) value is either greater than or equal to or less than or equal to the critical value at 

a significance level of 𝛼 2⁄ , the test rejects the null hypothesis at the 𝛼 level of significance. 

3.2.3 Ljung-Box Test 

It is crucial to assess autocorrelation in the time series data, which is a type of serial dependence. 

In this case, random errors are mostly positively correlated over time. Each random error is more 

likely to be like the previous random error than it would be if the random errors were independent 

of one another. 

The Ljung-Box test will be used to detect the presence of autocorrelation being zero of return 

series, t. The test can detect autocorrelation up to any predesignated order 𝑘. In the case of IID 

returns, the Q statistic is considered asymptotically distributed as a 𝜒2 variable. 

The autocorrelation coefficient at lag 𝑘 is defined as the following: 

 𝜌(𝑘) =
𝑐𝑜𝑣(𝑟𝑡 , 𝑟𝑡+𝑘)

√𝑉𝑎𝑟(𝑟𝑡) √𝑉𝑎𝑟(𝑟𝑡+𝑘)
 (25) 

For perfectly uncorrelated returns, the autocorrelation function {𝜌(𝑘)} should be equal to 0 for 

every k > 0. 
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The Ljung-Box test follows a chi-square (𝜒2) distribution with the degrees of freedom of k. It tests 

for all autocorrelations up to lag 𝑚 are different from zero and is computed as: 

 𝑄𝑚 ≡ 𝑇(𝑇 + 2) ∑
𝜌2(𝑘)

𝑇 − 𝑘

𝑚

𝑘=1

 (26) 

where T is the sample size. 

The null hypothesis of the test is no serial autocorrelation presence. Rejecting the null hypothesis 

would mean rejecting the random walk assumption. 

The hypothesis of the test is defined as: 

H0: 𝜌1 = 𝜌2 = ⋯ 𝜌𝑚 = 0  Returns do not exhibit serial autocorrelation. 

H1: 𝜌1 ≠  𝜌2 ≠ ⋯ 𝜌𝑚 ≠ 0 Returns exhibit serial correlation. 

If the 𝑄𝑚 exceeds the critical value from the chi-squared statistical tables, reject the null hypothesis 

of no autocorrelation. 

 

3.3 Martingale Difference Sequence Tests 

In this subsection, we present the tests of predictability of Bitcoin returns based on past price 

changes through the martingale difference sequences.  

3.3.1 Automatic Variance Ratio Test  

Lo and Mackinlay (1988) variance ratio test can determine whether an asset follows a random 

walk by detecting whether an asset price exhibits autocorrelation. If the asset prices exhibit 

correlation, past prices can help predict future prices, which would violate the weak form of the 

efficient market hypothesis. 

The central idea of the variance ratio test is based on the observation that when returns are 

uncorrelated over time, we must have: 

 𝑉𝑎𝑟(𝑥𝑡(𝑘)) = 𝑉𝑎𝑟(𝑥𝑡 + ⋯ +  𝑥𝑡−𝑘+1) = 𝑘𝑉𝑎𝑟(𝑥𝑡) (27) 

where 𝑥𝑡 is the daily return of Bitcoin and 𝑘 is the period difference number. 
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The test can be estimated as 

 

𝑉(𝑘) =
𝑉𝑎𝑟(𝑥𝑡(𝑘))

𝑘𝑉𝑎𝑟(𝑥𝑡)
= 1 + 2 ∑ (1 −

𝑗

𝑘
)

𝑘−1

𝑗=1

 𝜌̂𝑗 (28) 

where 𝜌̂𝑗 is the estimator for 𝜌𝑗. When 𝜌𝑗 = 0 for all 𝑗, it means the series is a random walk and  

𝑉(𝑘) = 1. 

The choice of the holding period 𝑘 is completely arbitrarily and made without any statistical 

justification. To modify this weakness, Choi (1999) proposed a fully data-dependent method based 

on spectral density to estimate the optimal 𝑘̂ called the Automatic Variance Ratio (AVR) test. 

Under the assumption that returns are IID, the test would be: 

 

𝐴𝑉𝑅(𝑘̂) =  √
𝑇

𝑘̂
 
𝑉(𝑘) − 1

√2
 

𝑑
→ 𝑁(0,1) (29) 

Assuming that  𝑇 → ∞, 𝑘 → ∞, 𝑎𝑛𝑑 
𝑇

𝑘
→ ∞, AVR converges in distribution to a normally 

distributed random variable under the null hypothesis of a martingale difference sequence.  

A positive (negative) value of the AVR indicates overall positive (negative) autocorrelation in the 

asset return. However, its absolute value is often used as a more efficient price exhibits fewer 

autocorrelations in both directions.  

The statistical significance of return predictability can be evaluated using the (1-α)% confidence 

interval based on the wild bootstrap for the AVR statistic. Also, the use of the wild bootstrapped 

AVR is robust to unconditional heteroskedasticity. If the AVR statistic lies outside its (1-α)% 

confidence interval, it is statistically different from zero at the α% level of significance. In this 

case, it indicates the presence of statistically significant return predictability. 

3.3.2 Automatic Portmanteau Test 

The automatic portmanteau test is one of the time series tests for autocorrelation developed by 

Escanciano and Lobato (2009b). The test is data-driven in selecting the order of the considered 

sample autocorrelations. It is robust to conditional heteroskedasticity, which is typically presented 

in the financial time series. The hypothesis of the test is defined as: 

H0: 𝜌𝑗 = 0   for all  𝑗 ≥ 1 

H1
K: 𝜌1 = ⋯ =  𝜌𝐾−1 = 0 ,  𝜌𝐾 ≠ 0    for some 𝐾 ≥ 1 
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The initial research of autocorrelation contains the underlying assumptions regarding 

heteroskedasticity. Although the tests had been continuously developed to improve the finite 

sample performance (Ljung & Box, 1978; Li & McLeod, 1981), the independence assumption is 

needed. Also, another limitation is about the selection the autocorrelations number which is 

arbitrary. 

Escanciano and Lobato (2009b) overcame the dependence conditions and proposed the automatic 

test statistic (𝐴𝑄) to examine the optimal lag order as follows: 

 

𝐴𝑄 = 𝑄𝑝
∗ = 𝑇 ∑ 𝜌̃𝑖

2

𝑝

𝑖=1

 (30) 

where 𝑝̃ is the optimal value of lag order which is data dependent. 

The 𝐴𝑄 statistic asymptotically follows a chi-square distribution with one degree of freedom. 

When 𝐴𝑄 value is greater than the critical value at a significance level of α, the test rejects the null 

hypothesis at the α level of significance. 

3.3.3 Generalized Spectral Test 

Escanciano and Velasco (2006) proposed the dependence test to capture linear and non-linear 

dependency in returns series and allow conditional heteroskedasticity. The test was developed 

from a spectral test to investigate the martingale difference hypothesis from Durlauf (1991). The 

hypothesis of the test is defined as: 

H0: 𝑚𝑗(𝑦) = 0 for all  𝑗 ≥ 1 where 𝑚𝑗(𝑦) are the pairwise regression functions 

H1: 𝑃(𝑚𝑗(𝑌𝑡−𝑗) ≠ 0) > 0 for  𝑗 ≥ 1 

To simulate the critical values for the test statistic (𝐷𝑛
2), the Cramer–von Mises norm for minimum 

distance parameter calculation is adopted.  

 

𝐷𝑛
2 = ∑(𝑛 − 𝑗)

1

(𝑗𝜋)2 ∑ ∑ (𝑌𝑡 − 𝑌̅𝑛−𝑗)

𝑛

𝑠=𝑗+1

𝑛

𝑡=𝑗+1

𝑛−1

𝑗=1

× (𝑌𝑠 − 𝑌̅𝑛−𝑗)exp(−0.5(𝑌𝑡−𝑗 − 𝑌𝑠−𝑗)
2
) 

(31) 

The null hypothesis of no return autocorrelation is rejected when 𝐷𝑛
2 is larger than the empirical 

(1-α)th sample quantile of test statistic or p value from the bootstrap is less than α at the α level of 

significance. 
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3.4 Generalized Least-Squares Time-Varying Autoregressive Model 

The GLS regression extends the ordinary least square (OLS)’s estimation of the standard linear 

model by providing for possibly unequal error variances and correlations between different errors. 

This study will utilize a GLS TV-AR model of Ito, Noda, and Wada (2016, 2017) to analyze time-

varying market efficiency in the Bitcoin return series. The model was developed based on the non-

Bayesian TV-AR model that we explained in Section 2.5. The standard AR model that has been 

mainly used to analyze the time series of assets returns is as follow: 

 𝑥𝑡 = 𝛼0 + 𝛼1𝑥𝑡−1 + ⋯ + 𝛼𝑞𝑥𝑡−𝑞 + 𝑢𝑡  (32) 

where {𝑢𝑡} satisfies 𝐸[𝑢𝑡] = 0, 𝐸[𝑢𝑡
2] = 0, and 𝐸[𝑢𝑡𝑢𝑡−𝑚] = 0 for all 𝑚.  

Normally, 𝛼ℓ′𝑠 are assumed to be constant in time series analysis, but we assume that the 

coefficients of the TV-AR model change over time. Therefore, the GLS-based TV-AR model will 

be applied to analyze the Bitcoin time series returns. The GLS-based TV-AR is expressed as 

follows: 

 𝑥𝑡 = 𝛼0,𝑡 + 𝛼1,𝑡𝑥𝑡−1 + ⋯ + 𝛼𝑞,𝑡𝑥𝑡−𝑞 + 𝑢𝑡 (33) 

where {𝑢𝑡} satisfies 𝐸[𝑢𝑡] = 0, 𝐸[𝑢𝑡
2] = 0, and 𝐸[𝑢𝑡𝑢𝑡−𝑚] = 0 for all 𝑚. As we estimate the 

GLS-based TV-AR model, we assume that the parameter dynamics are fixed whereby: 

 𝛼ℓ,𝑡 =  𝛼ℓ,𝑡−1 + 𝜐ℓ,𝑡  , (ℓ = 1, 2, … , 𝑞) (34) 

where {𝜐ℓ,𝑡} satisfies 𝐸[𝜐ℓ,𝑡] = 0, 𝐸[𝜐ℓ,𝑡
2 ] = 0, and 𝐸[𝜐ℓ,𝑡𝜐ℓ,𝑡−𝑚] = 0 for all 𝑚 and ℓ.  

Ito, Noda, and Wada (2017) described the TV-AR model in the form of a basic state-space model: 

 𝑦𝑇 = 𝑍𝑡𝛽𝑡 + 𝜀𝑡 (35) 

 𝛽𝑡 = 𝛽𝑡−1 + 𝜂𝑡 (36) 

𝑦𝑇 is a k × 1 vector of observable variables, 𝑍𝑡 is a k × m matrix of observable variables, 𝛽𝑡 is a 

m × 1 vector of time-varying coefficients, and 𝜀𝑡 and 𝜂𝑡 are k × 1 and m × 1 vectors of normally 

distributed error terms with zero mean and covariance matrix 𝐻𝑡 and 𝑄𝑡 respectively. 

The model then is formulated into the matrix form of equations for t = 1, …, T as per Durbin and 

Koopman (2012): 

 𝑌𝑇 = 𝑍𝛽 + 𝜀          where 𝜀 ~ 𝑁(0, 𝐻) (37) 
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 𝛽 = 𝐶(𝑏0
∗ + 𝜂)   where 𝜂 ~ 𝑁(0, 𝑄) and 𝛽0 ~ 𝑁(𝑏0, 𝑃0) (38) 

where the model set 𝑍𝑡 = (𝑦𝑡−1
′ ⊗ 𝐼𝑘) and 𝛽𝑡 = 𝑣𝑒𝑐(𝛼𝑡). 

𝑌𝑇 =  [

𝑦1

𝑦2

⋮
𝑦𝑡

]  ,  𝑍 =  [

𝑍1   0
 𝑍2

  
 
0

 
 

⋱  
 𝑍𝑡

]  ,  𝛽 =  [

𝛽1

𝛽2

⋮
𝛽𝑡

]  ,  𝜀 =  [

𝜀1

𝜀2

⋮
𝜀𝑡

]  , 

𝐻 =  [

𝐻1   0
  ⋱   
0   𝐻𝑡

]  ,  𝐶 =  [

𝐼 0 … 0
𝐼 𝐼    ⋮
⋮
𝐼

⋮
𝐼

⋱
…

0
𝐼

]  ,  𝑏0
∗ =  [

𝑏0

0
⋮
0

]  , 

 𝑃0
∗ =  [

𝑃0 0
0 0

 0
  

⋮  
0 0

⋱  
⋯ 0

]  ,  𝜂 =  [

𝜂1

𝜂2

⋮
𝜂𝑡

]  ,  𝑄 =  [

𝑄1  
 𝑄2

 0
  

  
0  

⋱  
⋯ 𝑄𝑡

]   

The regression analysis is used based on below equation to generate the estimates under the 

assumption that the estimated TV-AR(q) model is a locally stationary by combining Equations 

(33) and (34) (Maddala & Kim, 1998): 

 [
𝑌𝑇

−𝑏0
∗] =  [

𝑍
−𝐶−1] 𝛽 + [

𝜀
𝜂] (39) 

The resulting coefficients are then applied, together with the time-varying moving average model 

(TV-MA(∞)), to calculate the time-varying degree of market efficiency according to the Ito, Noda, 

and Wada (2014, 2016). 

The underlying TV-MA(∞) model is given by 

 
𝑦𝑡 = 𝜇𝑡 + 𝛷0,𝑡𝑢𝑡 + 𝛷1,𝑡𝑢𝑡−1 + ⋯ where 𝛷0,𝑡 = 𝐼 for all t (40) 

Suppose a cumulative sum of the TV-MA coefficient matrices is denoted by 𝛷𝑡(1). 

 𝛷𝑡(1) =  ∑ 𝛷̂𝑗,𝑡

∞

𝑗=1

 (41) 

                             = (𝐼 −  ∑ 𝛼̂𝑗,𝑡

𝑞

𝑗=1

)−1 (42) 
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This matrix is called a “long-run multiplier” since it can measure the long-run effect of shocks on 

the returns 𝑦𝑡 (Ito, Noda & Wada, 2014). When 𝛷𝑡(1) = 𝐼, it suggests the efficiency of the market. 

Therefore, the degree of market efficiency (ζ𝑡) is measured by the distance between 𝛷𝑡(1) and 𝐼 

or in the sense that how near or far between the actual market and the efficient market based on 

the spectral norm. 

 ζ𝑡 = √max 𝜆[(𝛷𝑡(1) − 𝐼)′(𝛷𝑡(1) − 𝐼)]   (43) 

 
                         = |

∑ 𝛼̂𝑗,𝑡
𝑞
𝑗=1

1 − (∑ 𝛼̂𝑗,𝑡
𝑞
𝑗=1 )

| (44) 

where 𝜆[(𝛷𝑡(1) − 𝐼)′(𝛷𝑡(1) − 𝐼)] is the eigenvalue of matrix (𝛷𝑡(1) − 𝐼)′ × (𝛷𝑡(1) − 𝐼) for 

each t (Noda, 2016). From Equations (43) and (44), the deviation of ζ𝑡 from zero indicates the 

market deviation from the efficient condition. 
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4. Data and Descriptive Statistics 

The daily closing prices listed in USD have been extracted from Coinmetrics.io, one of the biggest 

transparent and accessible online cryptocurrencies data platforms. Coinmetrics tracks over 7000 

coins with live price movements and reliable historical data collected from over 30 world’s leading 

spot and derivatives crypto exchange platforms. 

The daily returns of Bitcoin have been computed as logarithmic returns. 

 𝑅𝑡 = ln (𝑃𝑡 𝑃𝑡−1⁄ ) (45) 

𝑃𝑡  is the Bitcoin closing price on day t, and 𝑃𝑡−1 is the closing price of Bitcoin on day t-1. 

In this study, the data set covers the logarithmic returns of Bitcoin spans from 18 July 2010 to 18 

April 2021, for a total of 3,927 observations.  

 

Figure 2 Daily Log Returns of Bitcoin 

To observe the halving effect on the market efficiency, we first separated the data into four 

subsamples based on three halving dates. We split the period between the first halving (28 

November 2012) and the second halving (9 July 2016) and the second halving (9 July 2016) and 

the third halving (18 May 2020) again, giving six subsamples in total. 
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Figure 3 A Comparison of Daily Log Returns of Bitcoin in 6 Subsample Periods 
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Figure 3 illustrates the movement of Bitcoin returns. In the left column, line graphs display the 

returns before halving events. On the other hand, the returns after the halving events occurred are 

shown in the right column. 

Table 2 Descriptive Statistics of Bitcoin Returns in Six Subsample Periods 

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

 Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

 Ending Date 28-Nov-12* 19-Sep-14 9-Jul-16* 14-Jun-18 18-May-20* 18-Apr-21 

Mean 0.5749% 0.5248% 0.0765% 0.3290% 0.0544% 0.5246% 

Standard Error 0.2522% 0.2475% 0.1345% 0.1673% 0.1546% 0.1875% 

Median 0.1074% 0.3846% 0.1191% 0.3502% 0.0581% 0.5057% 

Standard Deviation 7.4118% 6.3572% 3.4537% 4.4413% 4.1018% 3.4311% 

Sample Variance 0.5493% 0.4041% 0.1193% 0.1972% 0.1682% 0.1177% 

Excess Kurtosis 8.9055 23.5495 8.5264 3.2593 26.1197 2.9535 

Skewness -0.1957 -1.7971 -0.7707 -0.1206 -2.0014 0.1769 

Minimum -48.8884% -66.4948% -24.3706% -18.6095% -47.0563% -13.5241% 

Maximum 43.6655% 30.7474% 18.9771% 22.4053% 16.9680% 16.7650% 

Count 864 660 659 705 704 335 

 Note: * indicates the exact halving dates occurred. 

Table 2 presents a summary of descriptive statistics of the daily returns for Bitcoin. Average 

returns are found to be positive in all periods, ranging from 0.05% to 0.57%. The first period has 

registered the highest mean return (0.57%), followed by the second period (0.52%). The volatility 

measured by standard deviation varies between 3.43% and 7.41%. The data is especially volatile 

in the beginning parts, and then the volatility demonstrates a decreasing trend. Bitcoin returns are 

leptokurtic and negative-skewed in most subsamples, except for the most recent period that the 

returns have the least positive excess kurtosis and positive skewness. The positively skewed 

returns can be implied that the positive returns are more observed than negative returns.  
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5. Results 

This section displays the findings from the various tests we have performed on the Bitcoin returns. 

The first subsection presents the normality and stationary test results. Subsequently, the random 

walk test outcomes are given, followed by the results from martingale difference sequence tests. 

Lastly, the empirical analysis of the GLS-based TV-AR model and its measure of market 

efficiency degree are presented. 

 

5.1 Prerequisite Tests 

From the previous section, we conducted the KS goodness of fit test and JB test to confirm the 

non-normality of data we observed from the excess kurtosis and skewness values in Table 2. As 

indicated in Figure 4, the normal probability plots for each data period are shown. If the sample 

data is normally distributed, the empirical cumulative distribution plot (blue mark) will appear 

linear. 
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Figure 4 Normal Probability Plots of Bitcoin Returns for 6 Data Periods 

Table 3 Kolmogorov-Smirnov and Jarque-Bera Test Results 

  Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

Ending Date 28-Nov-12 19-Sep-14 9-Jul-16 14-Jun-18 18-May-20 18-Apr-21 

KS stat 0.4211 0.4296 0.4534 0.4446 0.4485 0.4562 

KS p value 2.3168e-134 5.2539e-107 5.8703e-119 2.4343e-122 2.4736e-124 1.722e-61 

JB stat 2823.2813 15363.1278 2026.7941 307.7390 20184.6940 118.4542 

JB p value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Table 3 summarizes the test statistics and corresponding p values of 6 subsamples. Both tests reject 

the null hypothesis that the data comes from the normal distribution in every subsample. 

Furthermore, we tested the stationarity of the data series by ADF test and KPSS test. The optimal 

number of lags based on the minimum value of Akaike Information Criteria (AIC) is 1. The results 

are shown in the table below. 

Table 4 Augmented Dicker-Fuller and Kwiatkowski-Phillips-Schmidt-Shin Test Results 

  Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

Ending Date 28-Nov-12 19-Sep-14 9-Jul-16 14-Jun-18 18-May-20 18-Apr-21 

ADF stat -20.8979* -18.5426* -20.3978* -18.1923* -18.2860* -12.5665* 

ADF p value 0.0001* 0.0001* 0.0001* 0.0001* 0.0001* 0.0001* 

KPSS stat 0.1226 0.0749 0.0236 0.1859* 0.0903 0.1106 

KPSS p value 0.0933 0.1000 0.1000 0.0213* 0.1000 0.1000 

Note: * indicates the rejection of the null hypothesis of ADF or KPSS test at a 5% significance level  
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The results of the ADF test of unit root for all periods are to reject the null hypothesis that the data 

series contains a unit root. This signifies the stationarity of Bitcoin returns in all periods. 

Consequently, we expect the results from KPSS test not to reject the null hypothesis.  

Indeed, the results of the KPSS turned out to not reject the null hypothesis that the data does not 

contain a unit root, at the significance level of 5% with the exception for period 4 (after the second 

halving event). The KPSS p value for period 4 data is approximately 0.0213, which means there 

is around a 2.13% chance the series contains a unit root, and this is inconsistent with the results 

from the ADF test. However, period 4 data is stationary at a significance level of 1%.  

From the above results, we can also imply that the Bitcoin returns market is inefficient based on 

the random walk hypothesis. All random walk processes are non-stationary; however, note that 

not all non-stationary series are random walks.  

In the following subsections, the results from weak-form market efficiency tests based on the 

random walk hypothesis and martingale difference sequences are presented. 

 

5.2 Random Walk Hypothesis Tests 

5.2.1 Wald-Wolfwitz Runs Test 

Because of the non-normal distribution of data, the non-parametric runs test is applied to the 

indices to observe the randomness to examine the efficiency of Bitcoin returns. Elango and 

Hussein (2008) mentioned that the use of mean as a reference in runs test is compatible and 

effective if the data distribution is symmetrical. However, it is weak when there is a presence of 

outliers. Thus, the median is more suitable in our case. 

Table 5 Wald-Wolfowitz Runs Test Using the Sample Median Reference Results 

  Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

Ending Date 28-Nov-12 19-Sep-14 9-Jul-16 14-Jun-18 18-May-20 18-Apr-21 

E[nruns] 424 330 331 354 353 169 

nruns 424 312 362 336 378 193 

n1 432 330 329 352 353 167 

n0 432 330 329 352 351 168 

Z statistic -0.5787 -1.4413 2.4579* -1.2446 1.8483 2.6266* 

p value 0.5629 0.1495 0.0139* 0.2133 0.0645 0.0085* 

Note: * indicates the rejection of the null hypothesis of runs test at a 5% significance level 
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The results are depicted in the above table. nruns represents the actual number of runs, n1 and n0 

represent the number of values above and below the median, respectively. The estimated Z-values 

for periods 3 and 6 are significant at the 5% level. Also, the Z-statistic for period 6 rejects the null 

hypothesis at a 1% significance level. The negative Z value marks that the expected number of 

runs is greater than or equal to the actual observed number and implies that there is a positive serial 

correlation in the data series. Also, the positive Z value indicates that the expected number of runs 

is less than the actual observed number and implies a negative serial correlation in the data series. 

Squalli (2006) explained that a sample with a high number of runs suggests cyclical or seasonal 

fluctuations. Therefore, we can conclude that Bitcoin returns in periods 3 and 6 do not follow 

random walks, and then they are weak-form inefficient. However, other remaining periods results 

fail to reject the null hypothesis of the randomness. By comparing the corresponding p values 

between before and after halving event, there is no observable pattern of efficiency degree from 

the runs test. 

5.2.2 Brock-Dechert-Scheinkman Test 

BDS test is another non-parametric test to check the dependence in a non-linear fashion in data 

series. We performed the test of whether the Bitcoin returns in 6 periods are IID.  

We employed the 𝜀 of 0.7 according to Belaire-Franch and Contreras (2002), as it was 

recommended to be the optimal value in the calculation for non-normal distribution series. 

Table 6 Brock-Dechert-Scheinkman Test Results 

  Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

Ending Date 28-Nov-12 19-Sep-14 9-Jul-16 14-Jun-18 18-May-20 18-Apr-21 

dimension (2) 
11.1275 

(0.0000) 

10.6253 

(0.0000) 

5.1545 

(2.543e-07) 

5.3541 

(8.597e-08) 

4.3767 

(1.205e-05) 

2.2191 

(0.0265) 

dimension (3) 
13.5758 

(0.0000) 

12.2759 

(0.0000) 

5.5188 

(3.414e-08) 

7.2745 

(3.477e-13) 

4.8327 

(1.347e-06) 

2.6972 

(0.0070) 

dimension (4) 
14.9412 

(0.0000) 

13.5833 

(0.0000) 

6.3950 

(1.605e-10) 

8.9737 

(0.0000) 

5.1133 

(3.166e-07) 

3.0933 

(0.0020) 

dimension (5) 
16.3940 

(0.0000) 

14.6573 

(0.0000) 

7.5523 

(4.286e-14) 

10.3948 

(0.0000) 

5.6766 

(1.374e-08) 

3.5196 

(4.321e-04) 

dimension (6) 
17.6342 

(0.0000) 

16.2607 

(0.0000) 

8.4923 

(0.0000) 

11.8857 

(0.0000) 

5.9722 

(2.341e-09) 

3.8523 

(1.170e-04) 

Note: The table shows the W test statistic with resulting p values displayed in parentheses 
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The results in the above table reported the rejection of the null hypothesis for all periods using 

dimensions up to 6 at a 5% significance level. There are signs of non-linear dependence found in 

the Bitcoin returns series in every period, indicating significant inefficiency in Bitcoin. 

Furthermore, it is worth mentioning that the test statistics are decreasing over time, and p values 

are rising. This can imply that Bitcoin becomes more efficient over time. 

5.2.3 Ljung-Box Test 

In detecting the presence of autocorrelation, the Ljung-Box test was performed with lags of k 

varying from 1 to 6. The number of lags selected is selected arbitrarily, as there is no optimal 

criterion for its detection. 

Table 7 Ljung-Box Test Results 

  Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

Ending Date 28-Nov-12 19-Sep-14 9-Jul-16 14-Jun-18 18-May-20 18-Apr-21 

Q1 statistic 

p value 

4.5263* 

0.0334* 

0.4115 

0.5212 

0.0097 

0.9215 

0.0060 

0.9382 

7.8365* 

0.0051* 

0.2068 

0.6493 

Q2 statistic 

p value 

6.6480* 

0.0360* 

1.6241 

0.4440 

9.8719* 

0.0072* 

0.2580 

0.8790 

12.7013* 

0.0017* 

0.2188 

0.8964 

Q3 statistic 

p value 

6.6568 

0.0837 

1.9752 

0.5776 

13.4103* 

0.0038* 

0.5335 

0.9115 

13.6359* 

0.0034* 

0.6593 

0.8827 

Q4 statistic 

p value 

7.9046 

0.0951 

3.3771 

0.4968 

13.4315* 

0.0093* 

3.9304 

0.4155 

17.9614* 

0.0013* 

0.7615 

0.9435 

Q5 statistic 

p value 

10.2554 

0.0683 

28.1354* 

3.425e-05* 

16.4971* 

0.0056* 

6.0092 

0.3053 

18.2476* 

0.0027* 

1.1871 

0.9461 

Q6 statistic 

p value 

20.7140* 

0.0021* 

28.5122* 

7.523e-05* 

24.6618* 

0.0004* 

7.3969 

0.2857 

19.4529* 

0.0035* 

1.8480 

0.9331 

Note: * indicates the rejection of the null hypothesis of the Ljung-Box test at a 5% significance level 

Based on the results presented in Table 7, we can only see that in period 5, the null hypothesis has 

been rejected at the 95% confidence level, based on the low p values. This indicated that in period 

5, Bitcoin returns exhibited serial correlation, thus rejecting the random walk assumption. 

Similarly, period 1 for lags 1 – 2, 6 and period 3, starting from lag 2, present rejection of the 

random walk assumption and the null hypothesis of serial correlation presence. Thus, period 1, 3 

and 5 could be considered as weak-form inefficient. 

Periods 4 and 6 fail to reject the null hypothesis, indicating that Bitcoin returns in those time frames 

were not serially correlated, which utilizes the random walk assumption. 
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Regarding period 2, at lag 5 and 6, Bitcoin returns reject the null hypothesis of no serial correlation 

and the random walk assumption. 

 

5.3 Martingale Difference Sequence Test 

5.3.1 Automatic Variance Ratio Test 

AVR is used to assess the exhibition of autocorrelation in Bitcoin returns to determine whether 

past prices could predict future prices. 

Under the assumption that returns are IID, AVR statistical values were computed simultaneously 

with a bootstrap of 500 iterations. 

 Table 8 Automatic Variance Ratio AVR Test Results 

  Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

Ending Date 28-Nov-12 19-Sep-14 9-Jul-16 14-Jun-18 18-May-20 18-Apr-21 

AVR 1.3287 0.4893 -0.1680 -0.0214 -1.4188 -0.0029 

p value 0.2360 0.7940 0.7960 0.9260 0.2040 0.9780 

With optimal holding period value chosen by data-dependent procedure, periods 1 and 2 data 

exhibited positive AVR, which indicates an overall positive autocorrelation in the asset returns. 

However, from period 3 until period 6, AVRs exhibited negative values. All p values computed 

are greater than 5%, which signify non-rejection of the null hypothesis of the martingale difference 

hypothesis. 

5.3.2 Automatic Portmanteau Test 

By allowing the returns data to select the number of orders for autocorrelations automatically, the 

automatic portmanteau test maximizes the value of the robustified portmanteau statistic corrected 

by a penalty term increasing function of the included number of autocorrelations. 

Using the vrtest package in RStudio, the function Auto.Q returns a robustified portmanteau test 

with automatic lag selection. 
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Table 9 Automatic Portmanteau Test 

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

Ending Date 28-Nov-12 19-Sep-14 9-Jul-16 14-Jun-18 18-May-20 18-Apr-21 

AQ statistic 1.3625 0.0340 0.0017 0.0029 2.7738 0.1595 

p value 0.2431 0.8537 0.9670 0.9574 0.0958 0.6896 

The data-driven results provided in Table 9 show a conclusion of failing to reject the null 

hypothesis in all periods at the 95% confidence level. Thus, all periods exhibit independence in 

returns. 

5.3.3 Generalized Spectral Test 

The GS test for the martingale difference hypothesis is based on the generalized spectral 

distribution function. The test depends on the generating data process under dependence on the 

asymptotic null distribution. Hence, the bootstrap is implemented. The number of replications (B) 

is 300 as per the original experiment from Escanciano and Velasco (2006). 

Table 10 Generalized Spectral Test Results 

  Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

Ending Date 28-Nov-12 19-Sep-14 9-Jul-16 14-Jun-18 18-May-20 18-Apr-21 

GS p value 0.2667 0.4667 0.6000 0.3700 0.2367 0.2600 

Table 10 presents the resulting p values for the GS test. The p values for all subsample periods are 

higher than 5%. Thus, there is no evidence against the martingale difference hypothesis. 

 

5.4 Generalized Least-Squares Time-Varying Autoregressive Model 

According to Equation (33), we calculated the optimal number of lags of the x variable by an 

information criterion based on the number of lags that minimizes the value of AIC. In our 

estimation, we employed the AR(6) model.  

 𝑥𝑡 = 𝛼0,𝑡 + 𝛼1,𝑡𝑥𝑡−1 + ⋯ + 𝛼6,𝑡𝑥𝑡−6 + 𝑢𝑡 (46) 

Under the GLS TV-AR, the data is used for all six periods as one full sample. The GLS TV 

regression is applied to obtain the coefficients {𝛼0,𝑡, 𝛼1,𝑡, …,𝛼6,𝑡} at each t = 1, …, 3,920.  
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Figure 5 Time-Varying Degree of Bitcoin Market Efficiency 

Figure 5 illustrates the degree of market efficiency (ζ𝑡) calculated from Bitcoin returns GLS TV-

AR model. The more ζ𝑡 deviates from zero; the less efficiency is at t. The line graph shows that ζ𝑡 

varies over time, and the inefficiency is detectable when a financial crisis or issue related to Bitcoin 

prices grows. The GLS TV-AR result is discussed in greater depth in Section 6. 

Regarding the halving effect on the market efficiency degree, we summed up the average figures 

of ζ𝑡 in three different durations before and after halving events, such as 30 days, 90 days, and 180 

days. 
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Table 11 Degree of Market Efficiency (ζ𝑡) Observed Before and After Halving Events 

Average  ζ𝑡 
Observable Duration 

30 Days 90 Days 180 Days 

Halving 1 (28-Nov-2012) 

Before 0.2058 0.2602 0.2035 

After 0.5221 1.3355 1.0626 

Halving 2 (09-Jul-2016) 

Before 0.1038 0.1085 0.1014 

After 0.0411 0.0398 0.0560 

Halving 3 (18-May-2020) 

Before 0.0295 0.0611 0.0844 

After 0.0227 0.0305 0.0321 

From Table 11, one can see that the average ζ𝑡s before the second halving are greater than the 

average figures after the event in all three observable durations. This is also true for the third 

halving. On the other hand, it is the other way round for the first halving. The after-halving 1 

average degree is relatively high, especially for 90 days (1.3355) and 180 days (1.0626).  

Moreover, it is noticeable from each column in Table 11 that the degree of efficiency increases 

over time as the measure ζ𝑡 value decreases. The finding that the market efficiency of Bitcoin has 

evolved corroborates Noda’s (2020), which used the same GLS TV-AR model. Furthermore, this 

finding resembles Urquhart’s (2016) and Bariviera’s (2017) that examine weak-form efficiency 

using time series subsample estimation. 
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6. Discussion 

In this section, we discuss the results from the random walk hypothesis and martingale difference 

sequence statistical tests. Moreover, the GLS TV-AR model outcomes and the measure of the 

market efficiency are explained accordingly. 

We categorized the statistical test results into two areas based on the hypothesis. The p values from 

six statistical tests are arranged into the below table: 

Table 12 p values from Statistical Tests 

  Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Starting Date 18-Jul-10 29-Nov-12 20-Sep-14 10-Jul-16 15-Jun-18 19-May-20 

Ending Date 28-Nov-12 19-Sep-14 9-Jul-16 14-Jun-18 18-May-20 18-Apr-21 

Random Walk Hypothesis 

Runs Test 0.5629 0.1495 0.0139* 0.2133 0.0645 0.0085* 

Ljung-Box Test 0.0021* 7.523e-05* 0.0004* 0.2857 0.0035* 0.9331 

BDS Test 0.0000* 0.0000* 0.0000* 0.0000* 2.341e-09* 1.170e-04* 

Martingale Difference Hypothesis 

AVR Test 0.2360 0.7940 0.7960 0.9260 0.2040 0.9780 

Automatic 

Portmanteau Test 
0.2431 0.8537 0.9670 0.9574 0.0958 0.6896 

GS Test 0.2667 0.4667 0.6000 0.3700 0.2367 0.2600 

 Note: * indicates the rejection of null hypothesis at a 5% significance level 

              Ljung-Box test p values are based on lag (𝑚) = 6 

              BDS test p values are based on dimension (𝑚) = 6 

Under the random walk hypothesis test findings, we can draw three conclusions. First, periods 1-

3 and 5 results show the rejection of Random Walks 1 and 3. Note that the runs test is based on 

linear dependence only; however, the BDS test additionally incorporates non-linear dependence. 

Second, Bitcoin returns in period 4 follow Random Walk 1 if we consider only linear dependency, 

whereas they do not if non-linear dependence is considered. Finally, in the last period, the Bitcoin 

returns satisfy the condition of Random Walk 3 only.  

Furthermore, comparing period 1 with period 2, period 3 with period 4, and period 5 with period 

6, no pattern is observed in the Bitcoin market efficiency as an effect of halving events from the 

resulting p values. However, we recognise that the Bitcoin market efficiency as per the random 

walk hypothesis follows the adaptive market hypothesis since the market switches between 

efficiency and inefficiency at different times.  
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For the martingale difference hypothesis, the AVR, the automatic portmanteau test and GS test 

show that the Bitcoin market is efficient according to the martingale difference hypothesis. It 

satisfies the condition that the return is a fair game. Bitcoin returns follow a martingale, and future 

return variations are entirely unpredictable given the current information set.  

Overall, Bitcoin returns accept the martingale difference hypothesis; however, it does not follow 

Random Walks 1 and 3 in some periods. The random walk hypothesis is more restrictive than the 

martingale process, as outlined in Section 2.4. Thus, all information in past Bitcoin returns is useful 

for forecasting the next period’s expected return however it is not able to forecast the probability 

distribution of the next period’s return. 

Concerning the GLS TV-AR model, we can see the movement of market efficiency degree 

evolving with time from Figure 5. The graph illustrates several peaks of the inefficiency of returns 

corresponding to the occurrences of Bitcoin-related events. The following events ascribe the period 

of inefficiency from the model. 

During 2011, Bitcoin price significantly fluctuated. The price skyrocketed from USD 1 in April 

2011 to USD 30 in June 2011, giving approximately 3000% gain in three months. Unfortunately, 

this was followed by a sharp drop in November 2011, reaching a semi-annual low at USD 2. In 

the year 2013, Bitcoin again underwent two price bubbles. In March, the Blockchain network 

encountered a technical glitch causing a temporary fall, and then the price rebounded to near 

previous highs. However, in the following month, a Bitcoin exchange called Mt. Gox grappled 

with a security breach and database leaked problems, leading to a  market crash all over. The 

inefficiency measure ζ𝑡 peaked at 4.8 in late 2013. The escalation corresponds to the shutdown of 

Silk Road, an illegal online market that exploited a loophole of Bitcoin technology to conduct 

transactions. In the following year, the theft of Bitcoins from Mt. Gox accounts continued, the 

company halted all withdrawal requests from clients and filed for bankruptcy in the end. Between 

2017 and 2018, the price bubble occurred once more. The price was hovering around USD 1,000 

at the beginning of 2017 but shot up to almost USD 20,000 in December 2017. Then, it was 

continuously tumbled until the end of the year 2018. 

Correspondingly, we put up the measure of market efficiency from the GLS TV-AR model along 

the timeline to display the development of market efficiency degree over time in Table 13. 
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Table 13 Degree of Market Efficiency (𝜁𝑡) from GLS Time-Varying Autoregressive Model 

  Halving 1 Halving 2 Halving 3 

Duration Before After Before After Before After 

30 Days 0.2058 0.5221 0.1038 0.0411 0.0295 0.0227 

90 Days 0.2602 1.3355 0.1085 0.0398 0.0611 0.0305 

180 Days 0.2035 1.0626 0.1014 0.0560 0.0844 0.0321 

The measures reveal a decreasing trend in the inefficiency degree values, except for the term after 

the first halving. The inefficiency in the post-halving 1 timeframe could be ascribed to a range of 

Bitcoin's financial issues in the year 2013, as mentioned earlier. In general, the Bitcoin market 

becomes more efficient period over period. The model suggests that the Bitcoin market is less 

efficient before the halving and becomes more efficient after the event, yet this is not a strong 

evidence to conclude that the efficiency increase is due to the halving event.  

In short, based on the GLS TV-AR model, we notice that the Bitcoin market appears to be efficient 

without the extreme crash of Bitcoin prices. Price bubble events, or crashes are exogenous news 

that have not been incorporated in the prices; hence, the market displays the inefficiency pattern. 

This finding is in line with the adaptive market hypothesis. 

Because Bitcoin has no means for intrinsic valuation, its price is purely driven by supply and 

demand. The transaction management and money issuance operate through the mathematical 

process without a central authority. Therefore, only market participants are the ones who control 

the prices on a completely transparent trading system. Although halving is a reason causing a drop 

in the Bitcoin’s supply because the award given to miners is cut down, all investors are already 

aware about it. This means that halving information is already priced in the Bitcoin value, and the 

event does not constitute new information.  
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7. Conclusion 

The efficiency in Bitcoin returns explains how Bitcoin prices reflect available information in the 

cryptocurrency market. Thus, one can carry out fundamental analysis to chart out a guaranteed 

return trading strategy. The main objective of this study was to investigate the efficiency of Bitcoin 

through implementing weak-form market efficiency tests on different dataset windows 

representing pre and post halving events. We assessed whether Bitcoin followed a random walk 

or a martingale process through these tests besides studying how Bitcoin’s market efficiency varies 

over time. The characteristics of Bitcoin and the concept of halving dates are perceived to impact 

the performance of Bitcoin price, momentum, and trading volume. Thus, it turns to be appealing 

to investigate Bitcoin’s efficiency through a halving scope. 

In particular, we tested Bitcoin market efficiency by checking for the random walk process, 

employing statistical tests of the martingale difference hypothesis in returns, and employing a 

GLS-based TV-AR model. The statistical tests suggest that Bitcoin returns in all sub-periods 

follow the martingale difference hypothesis; however, the returns in periods 4 and 6 only that 

follow the Random Walk 3. We concluded that there was an unspecific pattern observed in the 

Bitcoin market efficiency as an impact from halving events. Nevertheless, we acknowledge that 

the Bitcoin market efficiency follows the adaptive market hypothesis since the market shifts 

between weak-form efficiency and inefficiency at different periods. Distinctly, the GLS TV-AR 

model supported the prior research findings in terms of the increasing degree of weak-form 

efficiency over time.  

Over time, we expect Bitcoin to be more efficient as the market capitalization of Bitcoin is in 

continuous growth, which is driving more investors and traders to join the market. We propose 

further work to improve the dynamic market efficiency examination from splitting data into 

subsamples to utilizing the rolling window of data. Also, the further studies can empirically 

investigate the changing degree of market efficiency whilst comparing Bitcoin to alternative 

investments asset classes as a mean for hedging portfolios. In addition, we ought to expand this 

research and study Bitcoin efficiency in relevance to a constructed cryptocurrency index that 

represents the top-weighted market capitalization coins. 
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