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Abstract

The quality of a flour can vary greatly depending on the wheat variety and on the conditions
while growing the wheat. Currently, the quality is mainly assessed by test baking the flour to
observe the volume of the final product. The aim of this study was to investigate if three
instruments (Alveolab, Mixolab and Rheo F4) analyzing rheological behaviours connected to
dough preparation and baking properties, can provide additional valuable information to current
flour quality controls. To achieve this, Mixolab and Rheo F4 analyses were conducted on a large
set of flour samples, and the results were processed with the multivariate analysis methods PCA
and PLS. Ultimately, predictive models for baking volume were created and evaluated.
Furthermore, different preparation methods of doughs were tested in Mixolab and Alveolab to
investigate how well these methods translate to the industrial bakery process. The results from
the study indicate that the examined instruments alone are not able to give an accurate prediction
of the baking volume. However, they seemed to provide a minor positive impact when creating a
model where other quality control parameters and parameters connected to the chemical
composition were included. This model obtained a predictive power, Q2, of 0.834, suggesting
that additional information is needed in order to create a predictive model that is valid for
industrial use. It was further seen that the standard protocols in Mixolab and Alveolab provide
results vastly different from those obtained when preparing the analyzed doughs according to
industry standards. To conclude, the methods do not seem to give enough additional valuable
insights on the final quality to justify the extra cost and time it would take to include it in quality
controls.
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Popular Science Abstract
The continuous search of the perfect quality control for wheat flours

Flour, water and yeast - how complex can it be? Although bread is one of the oldest and most
basic staple foods in the world, we have actually not yet been able to fully understand the
underlying mysteries of bread making. The main components of all wheat flour are protein,
carbohydrates and water but also small amounts of fat and minerals. What makes the flours
different from each other is the ratios between these components, which in turn is strongly
dependent on how the conditions were while the wheat was grown. These factors all contribute
to the complexity of wheat flours.

For a company working with a large scale production of flour, such as Lantmännen Cerealia, it is
of utmost importance to know how well a flour will bake. Consequently, several quality controls
are conducted on the flour to give indications of how it will behave, and ultimately the flour is
test baked and the final bread volume is examined. Many of these control methods can be quite
time demanding and may not always give an accurate prediction of the final bread volume. This
leaves room for improvement of current quality controls and an optimal solution would be to
find a way to predict the baking volume. Therefore, this project aimed to evaluate the
contribution of the three instruments Mixolab, Rheo F4 and Alveolab from Chopin Technologies
could have in predicting baking volume. These equipment are designed to provide information
regarding dough behaviour during mixing and proofing, starch and protein quality as well as
rheological parameters such as tenacity, extensibility and elasticity.

Similar studies have been conducted in other countries, but what makes this one special is that it
contains a large sample set and a large number of different analyses conducted on the flours.
Mixolab and Rheo F4 were run with a set of samples and the results were analyzed by
multivariate analysis. It turned out that Rheo F4 and Mixolab had a minor positive effect on
prediction of final bread volume. Alveolab and Mixolab were further used to examine how well
the methods correlate to the reality in industrial bakeries. The results imply that there are some
differences that could be interesting to further investigate. Overall, the investigated methods
show potential of providing valuable information on dough behaviour. Although they may not
add enough new insights in order to be incorporated into routine quality controls.
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1. Introduction
A short background and the aim of the report is provided to get a better understanding of the
project.

1.1 Project background
Lantmännen has its base in an agriculture cooperative and is one of the leading actors in northern
Europe within several areas, such as agriculture and foods. The operations of the company
mainly include growing and refining cereals. Further, the company has two different divisions
within the food sector, namely Lantmännen Cerealia and Lantmännen Unibake. In both these
divisions, flour is of great importance. Industrial bakeries rely on knowledge about flour
behaviour in order to ensure products of consistent quality. However, the mills receive grains of
varying quality depending on factors such as when the wheat was harvested and on the wheat
variety. The main current method for assessing the flour quality is by test baking followed by
measuring the bread volume. This method is however both time consuming and costly which
leaves a demand for a new and better quality control method to be developed. As a complement
to test baking, various analyses of the composition and behaviour are currently a part of the
quality control, giving an indication of specific properties related to flour quality.

This master's thesis is a part of a PhD project, a collaboration between Lantmännen and Swedish
University of Agricultural Science (SLU), that aims to create a predictive method based on
correlations between flour composition and baking properties.

1.2 Aim
This project aims to investigate if the three instruments Alveolab, Mixolab and Rheo F4 from
Chopin Technologies (Villeneuve-la-Garenne, France) can provide additional valuable
information to current flour quality controls. This includes finding correlations between the
chemical composition of wheat flour samples, baking properties and rheological parameters
provided by the Chopin instruments.

To achieve this goal, the first part of the project was dedicated to doing rheological experiments.
Thereafter, the results were analysed with multivariate analysis against previously obtained data
on the chemical composition and important quality control parameters. The obtained results were
further studied to find which components influence the flour quality, and ultimately see if it was
possible to create a valid predictive model for baking volume. The results from the analyses were
combined with a literature study into the following master’s thesis report.
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2. Background
To understand the complexity of baking with wheat flours, it is important to have some
knowledge regarding its chemical and rheological behaviour.

2.1 Wheat flour
Wheat is the most cultivated cereal both in Sweden and worldwide. With a great variety of end
uses it has become a staple ingredient in many cuisines. Winter- and spring wheat are two classes
of the cereal that are, as the names imply, sown during different seasons, resulting in differences
in composition. Winter wheat is the most commonly grown variety in Sweden and it accounted
for 89% of the acreage used for wheat production in 2020 (Swedish Board of Agriculture, 2020).
Spring wheat has a higher protein content than winter wheat, making it suitable for bread
making, which requires strong gluten networks. The lower protein content in winter wheat makes
it more suitable for products with a crumbly texture, such as cookies and cakes. Commercial
wheat flour generally consists of 63-72% starch (with an approximate amylose to amylopectin
ratio of 25:75), 7-15% protein,  14% moisture and 2-3% lipids (Finnie et al, 2016, 31).

2.2 Dough development and baking
During the bread making process, several crucial phenomena take place. When flour and water
are mixed, a gluten network starts to form by sulfhydryl groups establishing intramolecular
disulfide bonds and cross-links the peptides (Sahi, 2014). While mixing, air bubbles are folded
into the dough and get trapped within the gluten network resulting in a foam structure. Further, a
starch-protein matrix is formed where the starch granules are embedded into the gluten network.
Added yeast ferments sugars in the flour to carbon dioxide, which inflates the previously formed
bubbles and causes an expansion of the dough. Ultimately, when the bubbles expand further, they
eventually ruptures and forms an interconnecting network, giving rise to a sponge-like structure.
During the baking stage, there is a net movement of water from the hydrated gluten to the starch
which gelatinizes and settles the structure. (Rosentrater & Evers, 2018) (Mills et al., 2003)

2.2.1 Starch

There are several important quality parameters for wheat flour that are linked to starch. These
parameters quantify and describe the amount of damaged starch, alpha-amylase activity and
starch gelatinization and retrogradation properties. The functionality of starch in food systems
mainly derives from its ability to bind large amounts of water upon gelatinization. The
temperature at which gelatinization occurs can be affected by the presence of solutes, such as
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salts. Dilute salt solutions have been found to raise the gelatinization temperature (Nicol et al.,
2019).

Starch granules that have been physically damaged and altered from their native form, for
example due to shear forces and pressure during milling, are referred to as damaged starch.
Damaged starch is more susceptible to enzymatic hydrolysis by amylase and absorbs more water
than native starch granules. Therefore, the amount of damaged starch will strongly influence the
final product and rheological properties of the dough, which demonstrates the importance of
having it as a quality parameter for flour (Arya et al., 2015).

Amylases are hydrolytic enzymes found in flour that target the bonds between glucose units in
starch. The hydrolysis results in smaller fragments in the form of dextrins, and fermentable
sugars such as maltose, which can act as an additional substrate source for yeast that ferments it
into leavening gases. Excessive activity may however result in sticky and dense breads. Due to
aforementioned consequences, amylase activity in flour heavily influences the baking properties
and often needs to be regulated by addition of malt. Native starch granules are hydrolyzed
slowly, while damaged starch and gelatinized starch are more available for the enzyme, resulting
in a greater extent of hydrolysis. Two common methods for obtaining information regarding
amylase and starch behaviour is to conduct falling number and amylograph analyses. (Finnie et
al, 2016, 42-43, 71-72)

2.2.2 Formation of a gluten network

Monomeric gliadins and polymeric glutenins pose a majority of the flour proteins, making up
80-85% of the total amount. As the wheat flour is combined with water, the proteins within the
flour get hydrated and start to form a gluten network. Generally, the glutenin proteins are
considered to build the network and affect the elasticity and cohesiveness of the dough. Further,
the function of the gliadins is to lubricate the network and contribute to the extensibility and
viscosity of the dough. (Ooms, N. & Delcour, J. A. 2019) The ratio of glutenin versus gliadin has
been suggested to have additional effect on the viscoelastic properties where a higher ratio of
glutenin results in a stronger dough (Shewry et al., 2003). A common improver added to form
strong doughs is ascorbic acid, a vitamin widely used in the baking industry. The compound
facilitates the formation of SS-bonds between the proteins and consequently give rise to a more
stable network (Sahi, 2014).

There are several useful methods used in flour quality controls that provide parameters related to
the quantity and functional properties of gluten in doughs. Some examples of these are gluten
index, wet gluten and various farinograph parameters.
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2.2.3 Fermentation and gas retention

One of the most contributing factors to a bread’s volume and texture, and thereby the overall
quality, is the size and number of gas cells. Air is incorporated into the dough upon mixing in the
form of gas cell nuclei, leaving a foam structure where gas cells are dispersed in the
starch-protein matrix. Energy used during mixing and added pressure, together with the viscosity
of the dough will determine the number and size of the bubbles. Generally, many and small
bubbles are desirable (Mills et al., 2003). As the yeast ferments, carbon dioxide is produced in
the dough’s aqueous phase and diffuses to the formed gas cell nuclei. The carbon dioxide then
causes an expansion of the cells, and ultimately of the dough. In the early stages of the process,
the loss of gas is usually slow since the continuing production of carbon dioxide by the yeast
saturates the aqueous phase, preventing it from disappearing from the gas cells. Nevertheless,
there is some gas loss which is thought to be attributed to the diffusion of gas to the external
surface of the dough where it evaporates into the surroundings (Gan et al., 1995).

As in most foams, the gas bubbles experience coalescence, and potentially disproportionation,
while expanding. These phenomena impact the stability of the foam, but it is not yet fully
understood to what extent. The stability is influenced by the composition and surface properties
of the lamella, connecting two bubbles, including proteins, lipids and other compounds soluble in
dilute salt solutions. Proteins of small size diffuse to the surface where they create a network of
low molecular weight surfactants (Gan et al., 1995).

Arabinoxylan (AX), a non-starch polysaccharide found in the cell wall in cereals, has also been
shown to affect the stability of the foam. It has mainly been found that AX stabilizes the protein
films in the foam due to an increased viscosity of the dough’s aqueous phase, but also by
mediating interactions between the proteins in the adsorbed layer. Arabinoxylans may be
categorized into WE-AX (water extractable) and WU-AX (water unextractable), which have
different impacts on the dough. WE-AX is thought to stabilize the foam by increasing the
viscosity of the dough’s aqueous phase and may thus result in higher bread volumes. On the
other hand, WU-AX has been shown to have a negative effect on loaf volumes. This could
potentially be attributed to its disturbing effect on the gluten network formation caused by the
steric hindrance of the large WU-AX molecules and its ability to bind large amounts of water,
leading to less water available for gluten formation. Moreover, WU-AX is thought to reduce the
gas retention capacity of the dough by perforating the gas cells which promotes coalescence
(Courtin & Delcour, 2002).
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2.3 Theory behind the analysis methods
During the past century, several methods have been developed and refined to measure different
rheological properties in doughs. The three main instruments investigated in this project are
Rheo F4, Mixolab and Alveolab.

2.3.1 Mixolab

Mixolab from Chopin Technologies was developed based on the combined principles of the
farinograph and viscoamylograph. It is used to analyze the quality of starch and proteins in flours
and provides measurements of dough behavior during mixing. This is done by characterizing the
rheological behaviour of dough subjected to a heating and cooling cycle alongside kneading by
dual mixing blades. The dough’s resistance to the mixing action of the blades gives rise to a
torque, which is measured in real time and plotted together with the temperature versus time. A
typical curve from a Mixolab test is shown in Figure 1. The obtained curve is divided into five
sections where each of the different sections provides information on the measured parameters.

Figure 1. Example of a Mixolab curve with interpretive values illustrated. The left Y-axis displays the measured
torque and the right Y-axis shows temperature. The red line represents the target temperature profile and the purple

line visualizes the actual temperature during the measurement. Figure taken from Mixolab manual. (Chopin
Technologies, 2016a).

The first section evaluates the dough behavior during mixing at constant temperature. This stage
determines the water absorption capacity of the flour by measuring the amount of water that
needs to be added in order to achieve a target consistency of 1.1 Nm+-0.05. Additionally, the
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parameter C1 (torque at the target consistency), the dough development time and dough stability
are obtained. The dough development time is the time it takes for the dough to reach the target
consistency, while the dough stability is the time this torque is kept before decreasing. When the
temperature program starts, the torque decreases and the curve enters the second section. This
section is related to the quality of the gluten protein network and its ability to withstand heat and
mechanical work.

As the temperature of the dough continues to rise further according to the temperature program,
it eventually reaches the point where the starch starts to gelatinize. The swelling of the starch
granules during gelatinization gives rise to a viscosity increase and thereby an increase in torque.
This behaviour is shown in the third section of the curve and gives an indication of the starch
quality and quantity. The fourth section is constituted by the degradation of starch, dependent on
the amylase activity in the flour. Depending on the amount of amylase, the torque and viscosity
will decrease with different intensities from the peak seen in the third section. In the fifth and last
part of the curve, the dough cools down and increases in consistency again as a result of the
re-association and crystallization of the starch, i.e. retrogradation (Chopin Technologies, 2016a).

2.3.2 Rheo F4

Rheo F4 from Chopin Technologies analyzes the proofing properties of doughs under set
conditions. The instrument measures the volume of a dough during dough development and
CO2-production and release. It also gives an indication of the porosity of the dough and proofing
tolerance over time. The results from the Rheo F4 analysis are shown as three curves in two
graphs (Figure 2a and Figure 2b), with the first graph showing the dough development and the
second showing both the amount of gas produced and released. From these curves, several key
values are extracted and used to interpret the results. An explanation of the different parameters
gathered from the analysis can be seen in Table 1.

Figure 2a. Example of a dough development curve with associated parameters illustrated. Figure taken from Rheo
F4 manual (Chopin Technologies, 2013).
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Figure 2b. Example of a gas production/gas release curve with associated parameters illustrated.The red line
demonstrates the amount of produced CO2 while the blue line shows the release of CO2. Figure taken from Rheo F4

manual (Chopin Technologies, 2013).

Table 1. Explanation of parameters connected to Rheo F4 measurements.

Parameter Explanation

Hm Maximum height during the dough development

h The dough development height at the end of the test

(Hm-h)/Hm Describes the drop in development height from its maximum (Hm) to the
height after 3 hours (h) in percentage.

T1 The time where the dough height is at its maximum

Hm’ Maximum height of the gas production curve

T’ The time when the gas production curve reaches its maximum

Tx The time it takes until the dough starts releasing CO2 (dough porosity time)

A1 The volume of gas retained in the dough

A2 The amount of gas released during fermentation

A1 will further be referred to as Retention volume (RetVol) and A2 as released amount of CO2

(VolCO2). By adding these two together, a total volume of produced gas (TotVol) is obtained.
Furthermore, by dividing the volume of gas retained within the dough with the total volume, the
retention coefficient (RetCoeff) can be determined. A high retention coefficient is desirable and
indicates that the flour has its origin in healthy grains. Higher retention coefficients can usually
be obtained if Tx appears later (Chopin Technologies, 2013).
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2.3.3 Alveolab

Alveolab is an alveograph from Chopin Technologies used to investigate rheological
characteristics such as tenacity, elasticity, baking strength and extensibility of the dough. The
instrument creates a dough, based on a constant or adapted water addition protocol, and measures
the deformation of a dough bubble while inflating gas.

The results are recorded in an alveogram where the pressure is plotted versus length of the
bubble. A few parameters of interest gathered are P, L, G, Ie, P/L and W. P represents the
pressure the dough resists before it is inflated and can be interpreted as the tenacity of the dough
and its ability to resist deformation. L is the abscissa obtained when the dough ruptures and gives
an indication of the dough extensibility and the maximum volume of air the bubble can contain.
Further, G and Ie are the extensibility and elasticity index, respectively. W represents the dough
baking strength and is obtained by calculating the area under the curve (Chopin Technologies,
2016b)

2.4 Multivariate analysis
Multivariate analysis is a hypernym for techniques used to analyze data containing more than
one variable. The methods are designed to explore interrelationships between several variables
and elucidate features of the dataset.

Principal Component Analysis, PCA, is a method used for reducing the dimensionality of large
datasets while minimizing the loss of information. This makes it possible to further analyze and
visualize the data, allowing for easier detection of patterns and correlations between variables.
The drawbacks of dimensionality reduction by PCA is that it comes at the expense of accuracy
(some information always gets lost) and that the new variables, the PCs, can be harder to
interpret.

The results from a PCA are often visualized in the form of score plots, loading plots and biplots.
The score plot shows how the samples are distributed in relation to each other and their new
dimensions. Clustering of samples in this kind of plot can be an important key to trace back what
it is that influences the differences among clusters. A loading plot shows the relative positions of
the initial variables in the new setup. This demonstrates how much, and in what way, the
principal components are influenced by each variable. Variables placed close to the PC axes are
less influential than those further out on the axes. Samples are considered to be positively
correlated with each other if they are placed close together in the plot, while samples forming
large angles around 180० to each other are negatively correlated. Biplots gather the information
from both the score and loading plot by superimposing them onto one another. Since these are
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displayed at the same time, it provides further insight into the relationship between observations
and variables. (Jaadi, 2021)(Jolliffe, 2002)

The PCA may be combined with a Partial Least Square (PLS) regression, a method widely used
to examine the relationship between two different data matrices. PLS regression can be used to
create models where explanatory variables from the X-matrix are used to predict response
variables in the Y-matrix. The method creates a linear multivariate model that projects both X
and Y data in a new space. Consequently, it can analyze large and noisy X- and Y matrices
(Wold et al., 2001). PLS modelling usually includes randomly dividing the data into a larger
training set and a smaller sample set. The training set is then used to create the predictive model
which is tested on the remaining data in the sample set, providing an unbiased evaluation of the
model. The performance of the model can be described by parameters such as R2 and Q2 which
often are termed “goodness of fit” and “goodness of prediction”, respectively (Eriksson et al.,
2013).
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3. Materials and Methods
All of the materials and equipment used during this project were provided by Lantmännen
Cerealia and Chopin Technologies. Several parameters connected to the flour samples had been
determined previously to the project. These are presented in Table A in Appendix 1. The table
further states by whom the data have been gathered, the range of values and how they will be
referred to later in the report.

3.1 Flours
The subjects investigated were 207 samples of wheat flour. The wheat was harvested during
2018-2019 and refined between August 2018 - August 2020 in Lantmännen’s mills in Malmö
and Strängnäs. Furthermore, the flour samples are categorized within five different groups;
Spring 1, Spring 2, Winter 1, Winter 2 and Blend.

3.2 Rheological analysis
Three different analysis methods were used to evaluate the given set of flours. The methods
required a predetermined moisture content of the flour samples, which was measured with Near
Infrared Transmittance (NIT) technology.

All 207 samples were examined with Mixolab and later six of these were further analyzed as
adjusted flour and optimally worked dough. Due to initial problems with the Rheo F4 instrument,
data could only be obtained for 165 samples. Alveolab data was collected on six samples of
adjusted flour and optimally worked dough.

3.2.1 Method reproducibility

Before starting the experiments, a duplicate study on the three instruments was conducted to
ensure the reproducibility of the methods. For this study, five flour samples were analyzed in
duplicates by two different operators on each of the instruments. The Rheo F4 and Mixolab
results were then compared to limit of reproducibility values provided by Chopin Technologies.

3.2.2 Mixolab

The Mixolab analyses were conducted according to the predefined Chopin+ protocol. For the
analyses, 75 g dough was prepared with a given flour to water ratio dependent on the moisture
content and water absorption capacity of the specific flour. In order for the test to be deemed
acceptable, a target consistency of 1.1 +/- 0.05 Nm had to be reached within the first 8 minutes.
If the dough did not reach the target, the test was restarted with another water absorption value as
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suggested by the software. The resulting curves were visually inspected to see if the torque
maximums and minimums were placed accurately. If not, the markers were manually corrected.

3.2.3 Rheo F4

Preparation of the dough was done according to the Chopin protocol. Initially, an adjusted
amount of water with dissolved fresh yeast (7g) was added to a constant amount of flour (250g).
The amount of water to add was calculated based on moisture content and a previously measured
P-value (from Alveolab CH). To knead the dough, the mixing chamber in Alveolab was used.
Further, the equipment was run with the standard protocol for 3 hours at 28.5℃.

3.2.4 Analyses with adjusted flour: Alveolab and Mixolab

Six flour samples were adjusted with ascorbic acid, salt and malt to mimic the flour mixes used
when creating doughs in industrial bakeries. Some of the adjusted flour was used to conduct
Alveolab and Mixolab analyses directly. The Alveolab analyses for these samples were done
according to the Alveolab Constant Hydration protocol with adjusted flour and water amounts.
The quantity of flour was always 250 g and the amount of water was calculated according to
previously determined farinograph water absorption values. Distilled water was used for the
analysis. The rest of the adjusted flour was further used to create an optimally kneaded dough,
using a spiral mixer from Kemper, for additional Mixolab and Alveolab analyses. After mixing,
the optimally kneaded dough was examined with the Alveolab bubble blowing procedure and
with the Mixolab Chopin+ protocol.

3.3 Data presentation and multivariate analysis
To analyze the datasets, Matlab and Simca were used. All data was gathered in several X and Y
matrices, where the composition was dependent on what parameters that were of interest while
assessing the results.

3.3.1 Matlab

All data used in the multivariate analysis was pre-processed in Matlab. Pre-processing was done
by first using the ismissing function, where the script could detect if there was any data missing
in the matrices. If a value was detected as missing, it was replaced with an average value for that
specific parameter. If several values were missing for the same sample, it was removed from the
dataset. This was followed by a Grubbs test to detect outliers within the different columns. If all
parameters in a sample were detected as outliers, it was removed from the dataset. If only single
parameters were pointed out as outliers, these were replaced with an average for that specific
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parameter. Matlab was further used as a confirmation method to ensure that the results given in
Simca were somewhat close to the results that Matlab yielded.

3.3.2 Simca: PCA, PLS-regression and plots

Simca was used to produce PCA plots and PLS models. All PLS models were made with baking
volume as a single Y-variable to be predicted. The PLS models were made by randomly selecting
75% of the samples as a training set for the model, while the remaining 25% was used as a
sample set. The randomization was made by organizing the samples according to values
generated by Excel. Further, the number of principal components used in the model was chosen
based on where the highest predictive power, Q2, was achieved. These models were then
improved by removing variables that did not significantly influence baking volume in the
original PLS model. Additionally, the program was used to produce plots to see if there seemed
to be any correlations between interesting variables.
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4. Results and Discussion
All data gathered during this project, and the previously obtained data, is shown in Table A,
Appendix 1. The table shows the range of data and the abbreviations used further throughout the
statistical analysis and modelling.

4.1 Method reproducibility
The duplicate study for the Mixolab and Rheo F4 analyses showed that the results were
reproducible to 100% for all parameters except Temp C3, which gave 80% reproducibility. All
parameters assessed can be found in Table B, Appendix 2.

4.2 Mixolab
The Mixolab data was further analyzed in order to investigate the relationship between the
obtained parameters and previously gathered quality data that was deemed to be relevant.

Figure 3 illustrates a PCA biplot of the Mixolab dataset. The first two principal components
explain 48% of the dataset. Further, the samples are mainly spread along the PC 1 axis which is
connected to the parameters C3, DiffC23, Doughdev and Stability. PC 1 seems to separate the
samples with Spring 1 to the right side and the rest of the flours further left. As mentioned
earlier, Spring 1 is theoretically classified as a flour of higher quality. It is therefore possible that
high values of Doughdev, Stability and Cs might be indicators of better wheat quality, while high
C3, DiffC23 or DiffC45 values might indicate lower quality.

Figure 3. Biplot for a PCA model constituted by all gathered Mixolab data. Mixolab parameters are denoted as X in
the figure legend and colored green.
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Figure 4 depicts a PCA loading plot for the Mixolab dataset and selected relevant quality control
parameters. The first two principal components only make up for 45% of the total variance in the
dataset, which means that a considerable amount of information gets lost when reducing the
dimensionality to two new variables. Most of the parameters related to protein quality and
protein content are somewhat clustered with BakingVol. The placement of these parameters along
the positive end of PC 1 indicates that PC 1 is mainly described by various protein properties. On
the other side, PC 2 seems to be more related to the incorporation of water and starch properties.

An interesting topic to examine is how the various Mixolab parameters are placed in relation to
other quality parameters that are supposed to measure similar properties. For example, as seen in
Figure 4, the water absorption parameter obtained from Mixolab (Absorption) is very closely
correlated with the farinograph (FWaterAbs14), suggesting that they may be interchangeable.
Furthermore, FStability from the farinograph, and Cs and Stability from Mixolab seem to be
quite well correlated and the same goes for FDevTime and Doughdev. The retrogradation
parameters C5 and RVAFinVisc also correlate closely with each other. These connections indicate
that there might be a possibility of substituting some of the current quality control analyses with
Mixolab and getting equivalent results. However, since the PCA plot only captures 45% of the
variance, it is very hard to draw any definitive conclusions. It would perhaps be possible to
explore this more using a correlations matrix in further studies. Mixolab parameters that seem to
correlate the most with BakingVol are Cs, Stability, Doughdev, (positive correlations) and Diff
C34 and Diff C23 (negative correlations).

Figure 4. PCA loading plot for all Mixolab parameters and selected quality control parameters.
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4.3 Rheo F4
During the pre-processing step it was observed that some samples missed fiber content data and
these were removed from the dataset. After pre-processing, 151 samples remained.

A PCA was performed with all of the gathered Rheo F4 parameters and the resulting biplot is
presented in Figure 5. Together, PC1 and PC2 make up for 61,7% of the variance in the dataset.
Some observations made are that the height of the gas release curve (Hm’) and total volume
(TotVol) cluster closely together to the far right on PC 1. Retention volume (RetVol) and volume
of released carbon dioxide (VolCO2) also places quite close to these two parameters with regards
to PC 1. The figure thus implies that these parameters are positively correlated. On the other
hand, the retention coefficient places far to the left which contradicts the theory. The dough
development parameters, Hm and h, cluster close to each other in the first quadrant. An
explanation to this appearance could be that many of the tests had their peak close to the end of
the test and it therefore falls naturally that the two indicators are close to each other.

The various flour types separate some along the PC 1 axis, with Winter 1 and Blend mostly in
the middle and to the left. All Spring 1 samples are placed on the right side of the axis while
Spring 2 is quite spread between the different groups. As expected, the plot shows that Spring 1
seems to be more positively correlated with parameters Hm, h, RetVol, Hm’ and TotVol than
Winter 1 samples. A potential trend that may be noted is that Spring 1 tends to place further up
on the PC 2 while the larger mass of Winter 1 samples places further down the axis. It is however
not possible to draw any similar conclusions for Blend and Spring 2.

Figure 5. PCA biplot for all Rheo F4 data. Rheo F4 parameters are denoted X in the legend and are colored green.
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Figure 6 shows a PCA loading plot of all gathered Rheo F4 parameters, together with previously
collected data that could be of interest. The figure shows that the Rheo F4 parameters h, Hm and
RetVol, are primarily correlated positively to Protein, L, W, Ie and water extractable arabinoxylan
(WEAX). Furthermore, the same Rheo F4 parameters are placed close to BakingVol, which was
expected since a greater dough development would give rise to larger bread volumes.

Figure 6. PCA loading plot for all Rheo F4 parameters and selected quality control parameters.

The relationship between baking volume and maximum fermentation height (Hm) was further
investigated with a scatter plot, shown in Figure 7, where the flours are colored according to
product type. The plot shows no indication of a strong correlation between the two variables.
Although, it displays two clusters, where Winter 1 forms a cluster of lower Hm values and
baking volumes in the left corner. The three remaining groups of flour, Blend, Spring 1 and
Spring 2, are more spread along the axes. Therefore, Hm seems to have a different impact on the
various types of flour.

21



Figure 7. Maximum height during fermentation (Hm) plotted versus baking volume where the samples are colored
according to product type.

The placement of damaged starch (AACC) in the loading plot could indicate a negative
correlation with the fermentation parameter indicating the total volume of gas produced (TotVol).
According to the theoretical background, it is implied that higher amounts of damaged starch
would make more substrate available for the yeast to ferment, and therefore result in a positive
correlation. The plot in Figure 8 investigates the relationship between the two variables further
and does not indicate any correlation between the parameters. A possible explanation for the lack
of correlation could be that all of the samples contained a substantial amount of damaged starch.
The sample with the lowest amount still had 4.8 g/100g (see Appendix 1) which potentially
could provide more additional substrate than the yeast can ferment during the three hours of
analysis.

Figure 8. Scatter plot of Damaged starch versus Total volume.
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The two types of arabinoxylan, WE-AX and WU-AX, should in theory be positively, respectively
negatively, correlated with higher retention volumes due to their impacts on foam stability. The
loading plot in Figure 6 seems to somewhat confirm this hypothesis since WE-AX places close to
retention volume and other parameters indicative of good baking quality, while WU-AX is placed
on the opposite side of the plot. However, when plotting WE-AX and WU-AX against retention
volume, as shown in Figure 9, no clear correlations can be observed.

Figure 9. Scatter plots of retention volume versus water extractable arabinoxylan respectively water unextractable
arabinoxylan.

4.4 Predicting baking volume with PLS regression modelling
In order to investigate the possibility of either replacing or complementing test baking with a
predictive model based on other test methods, several PLS regression models were made. First,
models were made using only Mixolab parameters and then with only Rheo F4 parameters. The
last models were based on Mixolab, Rheo F4 and various quality control parameters. A summary
of all PLS models can be found in Table 2.

Table 2. Summary of PLS regression models for predicting baking volume. TS stands for training set and SS for
sample set. RMSEP is the Root Mean Square Error of Prediction.

Model X variables Y
variables

PLS
components

Included
samples

R2Y Q2 R2YPredicted RMSEP

Mixolab Absorption, C1, Cs
Doughdev, C2, C3
DiffC12, C4, C5

Baking
volume

2 nTS=154
nSS=51

0.565 0.495 0.566 211
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DiffC23, DiffC34,
DiffC45, Stability

Mixolab
Improved

Doughdev, Cs, C4,
DiffC34, Stability

Baking
volume

2 nTS=154
nSS=51

0.541 0.518 0.436 238

Rheo F4 Hm, h, (Hm-h)/Hm,
T1, Hm’, T’, Tx,
TotVol, VolCO2,
RetVol, RetCoeff

Baking
volume

1 nTS=113
nSS=38

0.541 0.499 0.502 213

Rheo
Improved

Hm, h, Hm-h/Hm,
Hm’, TotVol, VolCO2,

RetVol, RetCoeff

Baking
volume

2 nTS=113
nSS=38

0.568 0.514 0.556 201

All
combined

All parameters (see
Table A, Appendix 1)

Baking
volume

2 nTS=113
nSS=38

0.845 0.777 0.825 126

All
combined
Improved

AACC, Protein,
WetGlutenasis,

WEAX, Insolaraxyl,
Solaraxyl, L,G,Dmin,
FDevTime, Amymax,
RVABreakdown,Hm,h

RVAPeaktime, Cs,
Absorption,Doughdev

Baking
volume

1 nTS=113
nSS=38

0.842 0.834 0.811 130

Reference
1: All

parameters
except

Mixolab
and Rheo

F4

AACC, Protein,
WetGlutenasis,

WEAX, Insolaraxyl,
Solaraxyl,RVAPeak1,

RVABreakdown,
RVAPeaktime, L, G,

P/L,Dmin,FDevTime,

Baking
volume

3 nTS=113
nSS=38

0.857 0.828 0.775 142

Reference
2: All

parameters
except

Mixolab

AACC, Protein,
WetGlutenasis,

WEAX, Insolaraxyl,
Solaraxyl, h, L, G,

P/L, Dmin,FDevTime,
RVAPeak1,RVAPeakti
me, RVABreakdown

Baking
volume

2 nTS=113
nSS=38

0.859 0.834 0.785 138

Reference AACC, Protein, Baking 3 nTS=113 0.862 0.827 0.762 146
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3: All
parameters

except
Rheo F4

WetGlutenasis,
WEAX, Insolaraxyl,

Solaraxyl, FQN,
FWaterAbs14,

FDevTime, L, G, W,
P/L, Ie, K, Dmin,
RVABreakdown,
RVAPeaktime,

RVAPastemp, Cs,
Absorption,Doughdev

volume nSS=38

4.4.1 Mixolab parameters

A PLS model with all Mixolab parameters as X-variables and baking volume as the Y-variable,
named Mixolab, can be seen as a biplot in Figure 10. This model had a Q2 value of 0.495. As
seen in the figure, some of the parameters seem to be more correlated with baking volume than
others. For example, Stability, Cs and Doughdev seems to be quite closely positively correlated
with BakingVol and DiffC34 seems to correlate quite strongly negatively. On the other hand,
parameters such as C1, C2, DiffC12, Absorption, C3, DiffC23, DiffC45 and C5 seem to be less
correlated, placing either quite close to the middle or perpendicular to baking volume.

Figure 10. Biplot for a PLS model with Mixolab parameters as X and baking volume as Y.

When further investigating the influence of the different parameters on baking volume, it was
confirmed that the above mentioned parameters did not have a significant influence. This is
illustrated in Figure 11 with effects plots from both Simca and Matlab. The effects plot from
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Simca is based on the training set while the one from Matlab includes the complete set of
samples. When comparing the two plots, it can be seen that the parameters with significant
influence in the training set also are significant for the complete set. The training set can thus be
interpreted to be representative for the full set, from that perspective.

Further, a decision was made to create a new model, named Mixolab Improved, containing only
the significant variables from Simca and thus C1, C2, DiffC12, Absorption, C3, DiffC23, DiffC45
and C5 were removed. As a result, the predictive power (Q2) improved to 0.518. However, it
should be said that none of the models possess a good predictive power.

Figure 11. Effects plot for the model Mixolab, showing if the variables have a significant impact on baking volume.
Left: An effects plot from Simca on the training set. Right: An effects plot from Matlab on the whole dataset.

The improved model was tested by predicting the baking volume of the sample set. As presented
in Figure 12, the prediction resulted in a R2YPredicted value of 0.436 and a RMSEP (root mean
squared error of prediction) value of 238 ml. These results indicate a poor fit of the model, which
can be observed quite clearly in the figure. Furthermore, the fit worsened in comparison with the
Mixolab model, where the R2YPredicted value was 0.566 and the RMSEP value was 211 ml.
However, it must be noted that these results only indicate that the first model, Mixolab, fits this
certain sample set better. The increased Q2 value still suggests that the latter model should be
more accurate in general.
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Figure 12. Predicted baking volume for the sample set using the Mixolab Improved model with the correlated linear
equation, R2YPredicted and root mean squared error of prediction (RMSEP).

4.4.2 Rheo F4 parameters

A PLS regression model, Rheo, was constructed where all Rheo F4 variables were used as
predictors for baking volume. A biplot for this model is presented in Figure 13. From the figure
it can be observed that T1, T’, Tx and (Hm-h)/h seem to place fairly uncorrelated to baking
volume since they all are quite centered in the plot. Furthermore, the product types display a
similar relationship with baking volume as they do in the PLS biplot for the Mixolab model
(Figure 10).The predictive power of the model was 0.499, R2YPredicted was 0.504 and a root mean
squared error of prediction (RMSEP) of 213 ml was obtained.

Figure 13. Biplot for a PLS model with Rheo F4 parameters as X and baking volume as Y.
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Moreover, an effects plot of the initial model can be seen in Figure 14, where it demonstrates
how the different parameters affect the baking volume. As a consequence of removing variables
without significant influence, T1, T’ and Tx were excluded for the improved model, Rheo
Improved.

Figure 14. Effects plot for the model, Rheo, showing if the variables have a significant impact on baking volume.

Figure 15 shows the result of Rheo Improved predicting the baking volume of the sample set.
The predictive power of the improved model only improved slightly to a Q2-value 0.514, while
the R2YPredicted increased to 0.556 and the RMSEP decreased to 201 ml.

Figure 15. Predicted baking volume for the sample set using the Rheo Improved model with the correlated linear
equation, R2YPredicted and root mean squared error of prediction (RMSEP).
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4.4.3 Combined models

All of the available parameters were gathered in a model called All Combined and the resulting
PLS biplot is presented in Figure 16. The model displays a cumulative R2X value of 0.33 where
the first component makes up 0.27 of the value and the second component 0.06. Consequently,
the first component seems to have the most impact on the results and is also contributing to a
separation of baking volume to the right side of the plot. Furthermore, it can be observed that the
flour types are placed in similar clusters as previous PLS models shown above. As seen in Figure
16 and throughout the report, the protein parameters consistently cluster close to baking volume.
These findings confirm the great importance protein content in flour has for final bread quality.
However, no data regarding the glutenin and gliadin ratios was available during the project and
could thus not be examined. It is possible that this information could provide further insights and
perhaps be a key to creating a better prediction of the baking volume.

Figure 16. Biplot for a PLS model with all parameters combined as X and baking volume as Y.

The model was improved by removal of insignificant parameters and the new composition of
variables are shown in Table 2. It can be noted that there still are a few Rheo F4 and Mixolab
parameters remaining after the improvement. The following parameters had a significant impact
on the first model containing all parameters; Hm, h, Absorption, Doughdev and Cs.

The formed model All combined improved had a Q-value of 0.834, which is the highest value
obtained in this report. When the model was tested to predict the baking volume of the sample
set as seen in Figure 17, it can be observed that the model indeed fits the data quite well.
However, even though the Q-value is quite high and indicates a fairly good predicting power, it
is probably still insufficient from an industrial perspective. The RMSEP value means that the
model on average will predict the baking volume roughly 130 ml off from the measured value.
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However, it is important to keep in mind that there is an initial error deriving from the test baking
method that the prediction model is built on. Thus the accumulated error will be somewhat larger
than RMSEP values presented throughout the report. Considering this amount of uncertainty, and
the fact that the industries need consistently reliable results, it would be hard to put this model
into practical use.

Figure 17. Predicted baking volume for the sample set using the All Combined Improved model with the correlated
linear equation, R2YPredicted and root mean squared error of prediction (RMSEP).

Apart from the previously mentioned models, three reference models were created based on
different combinations of datasets in order to get a clearer understanding of their individual
contribution to the baking volume prediction. These models were constructed using the same
methodology as previously, but only the improved models are presented in Table 2. When
comparing the performance of the models, All combined improved was found to be the best.
This could indicate that parameters from Mixolab and Rheo F4 possibly could add some value
to a predictive model. However, it should be noted that Reference model 2, where Mixolab
parameters were excluded, received the exact same Q-value, but fitted the sample set a bit worse.
Overall it can be seen that the differences in predictive power of the reference models and All
combined improved are very small. Reference model 3 excluded Rheo F4 parameters and got the
lowest Q-value, although it only differed by 0.007. So, after comparing the performances it
seems evident that the time and effort it takes to perform Mixolab and Rheo F4 analyses is hard
to justify with this minimal increase in predictive power of the model.
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4.5 Optimally worked dough and adjusted flour
The results from the investigation of the influence of flour additives, regulators and optimal
kneading are presented in the following two segments. By adding these elements, the results will
give a more representative perspective on the bread making process in the industry. It is
important to keep in mind throughout these results that the number of flour samples tested were
significantly less than in the previously described experiments.

4.5.1 Mixolab

Two representative Mixolab curves obtained with unregulated flour, adjusted flour and optimally
worked dough are shown in Figure 18 and 19, while the rest of the results are presented in
Appendix 3. These curves show that, in general, the adjusted flour and optimally worked dough
provided very similar curves. An exception, however, is that the optimally worked dough tends
to lie a bit below the adjusted flour during the dough development part of the curve (up to C2).
The biggest differences in all the analyses between unregulated flour and the adjusted flour and
optimally worked dough, is that the C3 peak appears at lower temperatures and that the C2
minimums are higher. Additional differences can be seen in the analyses with the Blend and
Winter 1 samples, where the unregulated flour curves showed significantly higher C3 peaks
along with greater drops from C3 to C4.

Figure 18. A comparison of curves from the unadjusted flour (green line), adjusted flour (blue line) and the
optimally worked dough (yellow line) for a Spring 1 flour.
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Figure 19. A comparison of curves from the unadjusted flour (green line), adjusted flour (blue line) and the
optimally worked dough (yellow line) for a Blend flour.

The similarities between the adjusted flour and optimally worked dough curves indicates that the
main factor affecting the Mixolab analysis is the flour composition and not how the dough is
worked. However, since the optimally worked dough already has been through the dough
development phase before entering the Mixolab equipment, parameters obtained from this stage
are not comparable.

The large difference in observed gelatinization temperature between the unadjusted and adjusted
flour could be attributed to the addition of salt in the latter. Since the thermal breakdown of the
gluten network and starch gelatinization are two processes that may overlap and occur
simultaneously, the observed higher C2 minimums could perhaps be an effect of the lower
gelatinization temperature. This would mean that the decrease in torque due to protein
denaturation is masked by the increase associated with swelling of the starch granules.
Consequently, it may be suggested that the C2 parameter might be less correlated with protein
quality than intended and instead more related to starch properties. Interestingly enough, it can
be seen in Figure 4 that C2 indeed clusters more with starch property parameters than the protein
quality ones. Unfortunately, data regarding the onset temperature of gelatinization for the
different flours has not been obtained and it is therefore not possible to confirm that C2
correlates with earlier gelatinization. It is however something that might be interesting to
investigate further.

Furthermore, the difference in gelatinization peak heights (C3) is presumably related to the
addition of malt, which increases the amylolytic activity and thus enhances the degradation of
starch. Consequently, less starch is gelatinized, resulting in lower peaks. The lower content of
starch could also explain why the C3 peak height difference can not be seen for the spring wheat
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since it usually contains lower amounts of starch. It is hard to explain why there is no clear drop
from C3 to C4 in the case of the regulated flours and Spring 1. Another consequence of adding
malt in the adjusted flours should theoretically result in larger decreases, which is the opposite of
what can be seen in the figures. The reason for this behaviour could be worth investigating
further.

To summarize, Mixolab analyses of unadjusted flour seem to provide results in the first and last
part of the curve that reflects the reality in the baking industry. Meanwhile, parameters obtained
from the middle part of the curve, such as C2 and C3, change drastically upon flour regulation
and are therefore not directly transferable to reality.

4.5.2 Alveolab

The position of Alveolab parameters in relation to baking volume in Figure 6 and 16 motivated
further studies of the method. This was done in a similar manner as with Mixolab in section
4.5.1. Correlations between the different Alveolab experiments were compiled in Table 3. The
table shows the strength of the interrelationships between the different ways of conducting the
analysis. High correlation values were obtained between the adjusted flour and the optimally
worked dough (column 2) and show that these two adjustments yield comparable results. Further,
it would indicate that the mixing in the Alveolab is equivalent to the mixing conducted in the
industry. Column 3 and 4 show poor correlations between the standard protocol and the two
methods examined for the adjusted flour. Consequently, the results obtained using the standard
protocol does not seem to give an accurate indication of the rheological behaviours of doughs in
the industry.

Table 3. The correlations coefficients between an optimally worked dough, an adjusted flour, and an unadjusted
flour with standard protocol in regards to P, L, W and P/L.

Parameter Corr. coeff (adjusted flour
and optimally worked

dough)

Corr. coeff (optimally worked
dough and standard protocol)

Corr. coeff (adjusted
flour and standard

protocol)

P 0.94 -0.41 -0.30

L 0.65 0.32 0.35

W 0.89 0.53 0.79

P/L 0.81 -0.4 -0.23

The obtained results were further compared with the baking volume, where the correlations can
be seen in Table 4. All parameters are positively correlated with baking volume for the analysis
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with the modified flours (adjusted flour and optimized worked dough). Only two parameters
were positively correlated to baking volume while using unregulated flour and the standard
protocol. Generally, the results from the constant hydration protocol had stronger correlations to
baking volume.

Table 4. The correlations between baking volume and Alveolab values for an adjusted flour, an optimally worked
dough, and an unadjusted flour with standard protocol.

Correlations with baking volume

P_adj.flour 0.435 P_opti.dough 0.660 P_SP -0.551

L_adj.flour 0.382 L_opti.dough 0.032 L_SP 0.825

W_adj.flour 0.811 W_opti.dough 0.712 W_SP 0.844

P/L_adj.flour 0.122 P/L_opti.dough 0.584 P/L_SP -0.743

With the result in Table 3, it is inferred that there are more similarities between the adjusted flour
and optimally worked dough analyses than with standard protocol. Although, Table 4 shows that
the results using the standard protocol might be interesting to investigate in order to predict the
baking volume. Therefore, analysis of a larger amount of samples is recommended to give a
more certain prediction.
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5. Conclusions
To summarize the findings of this report, it can be said that the Chopin instruments Mixolab and
Rheo F4 had a minor positive impact in the creation of a PLS regression model for predicting
baking volume. The best performing model included the Mixolab parameters Absorption, Dough
development time and Cs and Rheo F4 parameters maximum dough height and dough height
after three hours (Hm and h), together with 13 previously determined quality control parameters,
since all of these were found to have significant influence on baking volume. However, since the
predictive power of this model was only negligibly better than models where the Chopin
instruments were excluded, there does not seem to be sufficient reasons for adding these into
routine quality controls.

PCA plots revealed some correlations between parameters obtained from Mixolab and
corresponding parameters from other currently used methods. These correlations may be
interesting to further investigate in order to explore the possibility of using Mixolab as an
alternative to some of the current quality control methods.

Furthermore, it was found that results obtained with unadjusted flours in Mixolab and Alveolab,
are not directly translatable to the flour mixtures and dough preparations used in industrial
bakeries. However, the mixing performed in the two equipment seem to be roughly equivalent to
how doughs are kneaded in the industry. It should be noted that the measurements were only
conducted on six flour samples and one should therefore be careful to draw any definite
conclusions.

With this observation in mind, it would be interesting to further investigate how the predefined
protocols of the equipment relates to industrial processes. It would be especially intriguing since
it is somewhat problematic to base baking volume predictions on data obtained with unadjusted
flour. Moreover, it could be a good idea to include other quality parameters than baking volume,
such as texture analysis of the final bread, to get a broader quality perspective.
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Appendix 1: Overview of data
Table A displays the data used in the study using only unadjusted flour (not optimal worked
dough). It visualises by whom the analysis was performed, the parameters measured, how these
parameters were used in the multivariate analysis, within what range the data was and the unit.

Table A. All data used in this project gathered before and during the project.

Analysis
method

Performed
by

Parameters Referred to
in report as

Min Mean Max Unit

Mixolab Report
authors

Absorption Absorption 55.3 59.0 63.1 %

Dough
development

Doughdev 1.4 2.9 6.5 Min

Torque at C1 C1 1.05 1.1 1.15 Nm

Torque during
stability time

Cs 0.89 1.00 1.11 Nm

Torque at C2 C2 0.48 0.57 0.65 Nm

Torque at C3 C3 1.52 1.76 1.99 Nm

Torque at C4 C4 1.19 1.40 1.83 Nm

Torque at C5 C5 2.14 2.78 3.42 Nm

Stability Stability 5.5 8.7 10 Min

Difference
between C1 and
C2

DiffC12 0.44 0.53 0.66 Nm

Difference
between C2 and
C3

DiffC23 0.94 1.19 1.48 Nm

Difference
between C3 and
C4

DiffC34 0.05 0.36 0.57 Nm

Difference
between C4 and

DiffC45 0.76 1.37 2.11 Nm
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C5

Rheo F4 Report
authors

Maximum height
- dough
development

Hm 41.5 49.8 65.2 mm

Dough height
after 3h

h 32.2 47.5 59.6 mm

Drop in dough
height

Hm-h/Hm 0 3.9 15.8 %

Time to reach
maximum dough
height

T1 87 156.3 180 min

Maximum height
- gas release

Hm’ 58.4 67.5 76.3 ml

Time to reach
Hm’

T’ 48 68.3 97.5 min

Dough porosity
time

Tx 43.5 66.8 97.5 min

Total Volume TotVol 1377 1535 1685 ml

Volume of CO2

released
VolCO2 155 301 414 ml

Retention
Volume

RetVol 1138 1234 1333 ml

Retention
Coefficient

RetCoeff 75.3 80.5 87.5 %

Alveolab Previous
Master’s
student

Tenacity P 56 83.7 114 mm
H2O

Extensibility L 50 90.9 146 mm

Extensibility
index

G 15.7 21 26.8 -

Dough baking
strength

W 135 232.3 346 10-4 J
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Curve
configuration
ratio

P/L 0.4 1.0 2.28 -

Elasticity index Ie 37.9 50.4 60.5 %

Strength
coefficient

K 28147 42003 55003 -

Strain hardening SH 1.51 1.7 1.86 -

Maximum
derivative

Dmin -3.74 -2.5 -1.61 -

Minimum
derivative

Dmax 4.76 6.4 7.8 -

Rapid
Visco
Analyzer

Report
authors

First peak RVAPeak1 1003 1370 1679 RVU

Final viscosity RVAFinalVisc 1289 1781 2154 RVU

Pasting
temperature

RVAPastingte
mp

85.0 87.4 90.1 ℃

SDmatic Previous
Master’s
student

Damaged starch AACC 4.80 6.28 7.67 %

Farinogra
ph

Lantmänne
n Cerealia

Water absorption
(14%)

FWaterAbs14 55.0 59.5 65.5 %

Development
time

FDevTime 1.2 3.7 7.4 min

Stability FStability 3.4 6.7 12.5 min

Degree of
softening

FDegSoft 36.0 79.5 121 BU

Farinogram
quality number

FQN 16.0 75.2 126 -

Amylogr
aph

Lantmänne
n Cerealia

Amylogram max Amymax 692 1329 2081 AU

40



Gelatinisation
temperature

Amygeltemp 84.5 89 93.9 °C

Test
baking

Lantmänne
n Cerealia

Baking volume BakingVol 1650 2158 2970 ml

Wet
gluten

Lantmänne
n Cerealia

Gluten index GlutenIndex 72.6 91.4 99.6 %

Wet gluten as is WetGlutenAsi
s

22.9 29 35.5 %

Falling
Number

Lantmänne
n Cerealia

Falling number FallingNumb
er

304 394 471 s

Fibre SLU Water
unextractable
arabinoxylan

WUAX Data not yet published

Water
extractable
arabinoxylan

WEAX

Insoluble
arabinoxylan

insolaraxyl

Soluble
arabinoxylan

solaraxyl

FOSS
NIT

Lantmänne
n Cerealia

Protein content Protein 10.5 12.4 16.2 %

Ash content Ash 0.48 0.60 0.72 %

41



Appendix 2: Reproducibility data
Table B displays results from the reproducibility study conducted for Mixolab and Rheo F4, where the
accepted ranges are based on limit of reproducibility values provided by Chopin Technologies.

Table B. Reproducibility data for Mixolab and Rheo F4.

Instrument Parameter Reproducibility

Mixolab Water absorption 100%

Torque C2 100%

Torque C3 100%

Torque C3 100%

Torque C4 100%

Torque C5 100%

Stability 100%

Time 100%

Temp C1 100%

Temp C2 100%

Temp C3 80%

Temp C4 100%

Temp C5 100%

Rheo F4

Hm 100%

h 100%

(Hm-h)/Hm 100%

T1 100%
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T2 100%

T2-T’2 100%

H’m 100%

T’1 100%

Tx 100%

Total volume 100%

Volume CO2 100%

Retention volume 100%

Retention coefficient 100%
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Appendix 3: Mixolab curves for optimal worked dough
Figures 1-4 displays the raw curves, from Mixolab 2, for the remaining flours assessed in section 4.5
Optimal worked dough and adjusted flour. The green line represents unadjusted flour, the blue line is the
adjusted flour and the yellow line is connected to the pre-worked dough. Underneath each figure it is
stated what type of flour the measurement is based on.

Figure 1. Mixolab raw curve of a Spring 1 flour.

Figure 2. Mixolab raw curve of a Blend flour.
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Figure 3. Mixolab raw curve of a Winter 1 flour.

Figure 4. Mixolab raw curve of a Winter 1 flour.

45


