
LU-TP 21-20
June 2021

Primordial Gravitational Waves and ultra-light Dark Matter in a
complex singlet extended Standard Model

Sara Wildenor

Department of Astronomy and Theoretical Physics, Lund University

Bachelor thesis supervised by Roman Pasechnik,
Co-supervised by Caterina Doglioni,

and António P. Morais



Abstract

In this thesis, the consequences of extending the internal symmetries of the standard model
with a complex singlet scalar field, are investigated in terms of dark matter phenomenology
and the possibility of primordial gravitational wave detection utilizing space based laser
interferometry. The scalar potential of the model is constructed with a Z2 symmetry, which
allows for the retainment of a linear and a quadratic coupling parameter, as well as a stable
dark matter candidate, and an additional non-zero vacuum expectation value for the real
component of the scalar field. The gravitational wave power spectrum is then calculated
by implementing cosmoTransition packages, which identifies the phase transition profiles,
tunneling solutions and minimum of the effective potential. The results are discussed and
compared to the sensitivity curves of the proposed gravitational wave facilities LISA, BBO
and DECIGO.



Popular abstract

The Universe is a large and mysterious place. So large that it would take light 93 billion
years to cross it (comparable with the rather short 8 minute distance to the Sun), and so
mysterious that what little we do know about it, only concerns about 4% of the mass of
the Universe - the rest is dark and unknown. What follows here, is a plausible scenario,
a little story of what might have happened as the Universe was born, and unimaginable
forces replaced some kind of Nothingness with some other kind of Something. It takes
place in the aftermath of the Big Bang, during the so called inflation period, where the
dynamics of the early Cosmos could provide crucial insight - not only to the true nature
of our world, but also regarding the dark aspects of reality; dark matter and dark energy.
Little is known about this era, as this part of history is shielded by an opaque veil of light
(known as the cosmic microwave background), which our current methods of observation
are unable to penetrate. However, gravitational waves have the peculiar ability to prop-
agate freely through all sorts of seemingly impervious obstacles, and with their detection
and deciphering, we would be able to open a new window of physics, and look out into a
whole new world - or rather a different time of our present world; into the early epochs of
the cosmological evolution.

Once upon a long long time ago (more or less the longest time ago it has ever been), in the
first millionth of a millionth of a second of what has become an almost 14 billion year long
life, the Universe was a hot, boiling primordial soup of primarily radiation and light, with
very few similarities to the world we know today. One may think of this rather chaotic
state of the Universe as symmetric with respect to its potential energy, but then something
happened which where to break this symmetry. As the rapid expansion of the Universe
caused it to cool down, bubbles composed of an asymmetric state started to form, move
and burst in this boiling soup, which eventually transformed the potential energy of the
entire Cosmos into an asymmetric shape. Rather like a phase transition causing a face
transition, the appearance of the Universe, was forever changed. The bursting bubbles and
the turbulence caused by the bubble walls moving through the blazing plasma, initiated
a process so violent that the fabric of space-time itself was disrupted, resulting in the
formation of gravitational waves.

For the entire age of the Universe (minus the millionth of a millionth of a second which took
place before the considered event), these primordial waves have propagated through the
vastness of cosmos at the speed of light, and will most likely continue to do so forever, since
nothing seems to slow them down. Thus, clues to the history of the Universe and reality
itself, might not be a remote goal, but lie in the nature of these waves, this omnipresent
humming echo of the early world dynamics which is causing the space-time around us
to gently vibrate. The great technological advancement in experimental research and
gravitational wave detection, means it might not be long before (at least hopefully some
of) the unknowns concerning the early Universe are unraveled.
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1 Introduction

In the last couple of decades, through the development of the theoretical framework and
technological advancements, our knowledge of the world, its constituents and its history,
has increased enormously. Recent additions to the fields of particle physics, such as the
experimental verification of the Higgs boson [1] and the top quark mass [2], lead us to
assume that our current understanding of the particles that make up our reality and their
interactions, is - at least to some extent - correct. While the strong and electroweak in-
teractions are described by quantum field theory (QFT) and the standard model (SM),
the force of gravity is negligible on the relevant scales in which particles interact, and
is therefore separately expressed by the formalism of general relativity. In addition to
unifying gravity with the existing framework, there are a number of observed phenomena
both in the realm of particle physics and on larger astronomical scales, that the SM are
not able to provide an explanation for. One being the presence of Dark Matter (DM),
whose existence has been indicated by a number of observables, such as mass displacement
in bullet clusters [3], the rotational velocity of spiral galaxies, and the structure of the
cosmic microwave background (CMB) [4]. Among other relevant issues that would have
to be taken into consideration when developing the physics Beyond the SM, (BSM), are
the mass generating mechanism of the neutrino, CP-violation and the baryon asymmetry-
problem. Various extensions to the SM have been proposed in order to address some of
these problems. Some of the more popular models include Grand Unified Theory (GUT),
which features a high temperature merger of the electroweak and strong forces, and su-
persymmetric (SUSY) models, in which each SM integer (half-integer) spin particle has
a half-integer (integer) spin symmetric twin. However successful in providing a solution
to baryogenesis, the super-symmetric particles stipulated by SUSY are yet to be detected
by colliders, and the absence of experimental verification for any present day BSM theory
suggest the need to further develop the framework of the BSM in addition to evolving
the experimental framework. The main objective of this thesis is to investigate the im-
plications of a specific BSM scenario, where the symmetries of the SM are extended with
an additional complex scalar field. The presence of this field during the inflation era of
the early Universe may have resulted in a number of present day detectable phenomena,
where the advancement and development of experimental technology provides hope of a
possible detection within the coming decades. The goal of this thesis is to analyze the
scalar potential of the considered model and thereby being able to identify the probabil-
ity of a detection by either proposed or present day GW and DM experimental research
facilities. Essential characteristics of the phase transition (PT), such as bubble nucleation
dynamics and minimization points of the effective potential of the model will be discussed
and implemented through cosmoTransitions packages.

The simplest additions to the SM are extensions in the scalar sector, where previous re-
search include minimal extensions with one real scalar [5], or further expansions such as
the Two-Higgs Doublet Model [6, 7, 8, 44, 10] and the addition of one or several complex
scalar singlets [11, 12, 13, 14, 15, 16]. The complex scalar singlet extension to the SM will
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be the focus of attention in this thesis, as it stipulates the conditions in which primordial
gravitational waves (PGWs) may have formed through first order electroweak phase tran-
sitions (FOEWPTs), features the possibility of a stable DM candidate and the possibility
of baryogenesis.

The one complex scalar extension to the SM Lagrangian, referred to as the cxSM , is
constructed by extending the internal symmetries of the SM with an additional global U(1)
symmetry, which, when both softly and spontaneously broken, yields a cold DM candidate
as well as FOEWPTs. The presence of these thermal transitions and their effect on space-
time, could provide the conditions necessary to generate the baryon-asymmetry observed
in the Universe through baryogenesis [11]. The deviation from thermal equilibrium as a
result of the strong FOEWPT, would generate a net baryon number, which together with
the violation of baryon number and CP symmetries, postulates the Sakharov conditions
required for baryogenesis [17]. Through the spontaneous breaking of the U(1) symmetry
and the presence of a vev, the real part of the complex singlet is mixed with the Higgs
fields and the imaginary part is turned in to a massless Goldstone boson, whose eigenstate
represents the additional degree of freedom of the theory. By further allowing for explicit
symmetry breaking, the Goldstone boson acquires mass, and thereby becomes a stable
scalar DM candidate. An attractive feature of the cxSM is that the DM of the theory
have the possibility of a mass range from a few eV to a few TeV, making it a versatile
candidate whose prospects of detection - or exclusion by non-detection - could be possible
by present or future DM experiments. This thesis will focus on the DM produced by a
freeze-in scenario, whose mass lies in the eV range.

Given the apparent influence that gravity has on DM, these phenomena clearly couple
to each other in some aspect, making their respective fields inevitably interlinked. The
research possibilities which comes with the relatively new addition of GW detection, does
not only yield knowledge about gravity, but serves as a compliment to existing and fu-
ture particle physics experiments by providing further insight on the nature of DM. While
the forefront of particle physics is mainly carried out by colliders like the LHC, the del-
icate detection of GWs is performed by interferometry technology, where perturbations
in space-time are distinguished through phase shifts in finely tuned lasers. Technological
advancements and improvement in sensitivity of interferometers like those at the Laser In-
terferometer Gravitational-Wave Observatory (LIGO), has resulted in the successful direct
detection of GW signatures produced by astronomical events such as the merger between
black holes and between neutron stars. In addition to facilities dedicated to the study of
large scale cosmological events, there are a number of strong theoretical and experimental
motivations to further examine the field of GWs. These are proposed to have originated
during the inflation period of the early Universe, as the violent interaction between expand-
ing vacuum bubbles and the cosmic medium caused ripples in the fabric of space-time. The
relic of these strong first order PTs would be a stochastic background of Primordial Grav-
itational Waves (PWGs), observable at a low frequency range. The opacity of space-time
during the inflation era would not affect the propagation of PGWs; thus, their potential
detection would enable us to observe the parts of cosmos currently beyond the visible hori-
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zon, and thereby provide crucial information regarding the dynamics of the early stages
of the Universe. There are other possible sources of PGWs with origins in the inflation
era, such as those produced during gravitational reheating [18] or from cosmic strings [19].
However, this thesis will focus on GWs generated through the process of bubble nucleation
and a strong FOEWPT, as a consequence of extending the scalar sector of the SM.

This thesis is structured as follows: in section 2, the concept of phase transitions is briefly
introduced, section 3 focuses on GWs in terms of methods of detection and the imple-
mentation of cosmoTransitions and in section 4 the effective potential is derived. Section
5 provides an introduction to DM and relevant constraints for the considered model and
in section 6 numerical results are presented and discussed, while conclusions are given in
section 7.

2 Phase Transitions

Roughly a nano-second after the Big Bang, as the radiation-dominated, hot Universe was
cooling down, it underwent a PT. If this were to be a PT of the first order - as is the
case in many scalar extensions to the SM - the dense primordial plasma would reach what
is referred to as the critical temperature Tc, meaning that the coexisting phases have the
same free energy. At this stage, symmetry breaking occurs and the effective potential
develops a degenerate minimum and a potential barrier, resulting in an non-zero vacuum
expectation value, vev. As the temperature reaches below Tc, the system is trapped in
the false vacuum of the symmetric state, requiring the transition to the true vacuum of
the broken phase, across the potential barrier either through thermal jumps (in the high
temperature limit), or by tunneling (at low temperatures) [6]. Analogous to a pot of boiling
water, domains of the new broken phase containing the true vacuum form in the hot dense
medium. The balance between the surface tension and the pressure difference of the two
phases cause small bubbles to collapse, whereas bubbles of a ’critical size’ avoid collapse
and instead expand and eventually collide, resulting in a phase conversion of the whole
system. Through this process, referred to as bubble nucleation, the Universe transitions
from a metastable quasi-equilibrium state into a stable equilibrium state. For a more
in-depth discussion of the dynamics of bubble nucleation the reader is referred to Refs.
[20, 21, 22, 23, 24, 25]

2.1 Phase Transitions in the SM

In the SM the EWPT takes place at Tc = 160 GeV [26], as the electroweak symmetry
SU(2)L × U(1)Y is spontaneously broken to U(1)em. This is a second order PT, also
referred to as a crossover, where the two different phases never coexist. Thus, unlike the
case for the first order PT, Tc for a second order PT indicates the temperature where the
rate of change from one phase to the other is at a maximum. For this to be a PT of the
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first order and a GW generating event, the mass of the Higgs is required to be less than
80 GeV [14], which is far below its observed mass of 125 GeV. Hence, in order for the
theoretical models to yield PGW producing mechanisms via strong FOPT’s and thereby
provide the conditions needed for baryogenesis, scalar extensions to the SM, such as the
cxSM , are required.

3 Gravitational Waves

3.1 Detection

With the new technology of space based laser interferometers, the vibrational background
originating from Earth can be eliminated and thereby the sensitivity of the instruments is
significantly improved. One proposed project is the Laser Interferometer Space Antenna
(LISA). Set to launch in the 2030’s, LISA will consist of a constellation of three spacecrafts
orbiting the Earth arranged in an equilateral triangle with sides in the range of 106 km.
The large scale of the project enables it to search for low frequency PGW signatures in
the domain between 0.1 mHz and 100 mHz (compared to LIGO’s frequency range of 10-
1000 Hz [27]), such as those produced around the scale at which electroweak symmetry
breaking takes place (approximately 100 GeV). In addition to hopefully providing insight
to PGWs and the dynamics of first order PTs in the early Universe, LISA will have a
sensitivity range suitable for detecting more recent astronomical events corresponding to
low frequency GWs, such as the orbital motion of massive objects. Another proposed
project which aims to benefit from the low background noise of space, is the successor of
LISA, the Big Bang Observer (BBO) [28]. BBO would operate on the same principles as
LISA, but due to its large scale heliocentric orbit and six link triangular interferometer,
it would be considerably more sensitive, approximately in the range 0.1 - 1 Hz. While
both LISA and BBO are missions operated by NASA and ESA, the third proposed GW
detection experiment of interest for this thesis, is a Japanese space mission: the DECi-hertz
Interferometer Gravitational wave Observatory (DECIGO) [29]. DECIGO has a sensitivity
range of 0.1 - 10 Hz and is proposed to be placed in a heliocentric orbit. Similar to BBO,
DECIGO has the primary goal of finding PGWs produced during inflation through direct
detection. The GW spectrum generated by the PT of the cxSM will in this thesis be
compared to the sensitivity range of both LISA, BBO and DECIGO. The experimental
sensitivity curve for LISA were extracted from Ref. [12], for BBO they were taken from
Refs. [46, 47], and for DECIGO from [48].

3.2 Gravitational Wave-parameters

The GW spectrum is deduced from a number of quantities related to the dynamics of the
phase transition, i.e., transition temperatures and shape of the effective potential, bubble
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wall velocity, duration of the PT, and the efficiency factor κ which denotes the amount of
latent heat (the fraction of released thermal energy converted either into kinetic energy of
the field, κφ, or bulk motion of the plasma, κv). From these phase transition character-
istics one may deduce the parameters α, β and Tn, which signify the transition strength,
inverse time duration of the phase transition, and nucleation temperature, respectively.
The parameter α is related to the potential energy difference between the two vacua in the
phase transition, and the quantity β/H is derived in terms of the bounce solution to the
Euclidian action at nucleation temperature. The nucleation temperature Tn can be found
using CosmoTransitions packages, which identifies the phase transition profiles in terms
of tunneling solutions and minimum of the effective potential. These quantities are then
used as inputs in order to determine the stochastic GW power spectrum, h2ΩGW and the
signal-to-noise ratio (SNR). The SNR compares the GW power spectrum of the proposed
model to the sensitivity curve of LISA, BBO and DECIGO, and indicates to what extent
the detected signal is clear enough for the observed event to be reconstructed and separated
from background noise [30, 31].

Figure (1) Blueprint for the analysis methods used to identify the GW power spectrum
and the SNR for LISA, BBO and DECIGO, based on the dynamics of a PT. Image from
Ref. [31].

The power spectrum of the GWs is given in terms of the energy density of the radiation
[7];

h2ΩGW ≡
h2

ρc

∂ρGW
∂ log f

, (3.1)

where ρGW is the energy density of the GWs, ρc is the critical energy density today and f
is the frequency. ρc is defined as ρc = 3H2

0/(8πG), where H0 = 100h km s−1Mpc−1 is the
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present day Hubble expansion rate with h = 0.791 ± 0.013, and G is Newton’s constant
[32]. The disturbance caused by the rapidly expanding bubble walls during the nucleation
process give rise to the formation of ’sound shells’ of plasma, whose dynamics may be
matched to those of sound waves. As have been showed in previous work [33], through the
bubble nucleation process the colliding shells generate GWs, which would be detectable as
a stochastic background radiation of PGWs in the low frequency range. Collisions between
bubble walls and the turbulence in the ionized plasma also contribute to the production of
GWs, for which the total energy density of the GW production may be approximated as

h2ΩGW ' h2Ωsw + h2Ωcoll + h2Ωturb, (3.2)

where h2Ωsw is the sound wave contribution, h2Ωcoll is associated with collisions and h2Ωturb

is related to the turbulence in the plasma. However, previous Refs. [7, 20, 31] have shown
that the main contribution to the GW production derive from the effects of the sound
waves and the generated echo which is present even after the PT is completed and thereby
enhancing the signal by orders of magnitude. Therefore, I will in this thesis approximate
the total energy contribution for the GW production to be of an acoustic origin;

h2ΩGW ' h2Ωsw. (3.3)

It should be mentioned that there are plausible runaway scenarios, in which the bubble
walls reach relativistic velocities and thereby increase the energy contribution from the
collisions to a magnitude comparable to that of the sound waves [7, 31]. However, this
limit will not be taken into consideration in this thesis, instead bubble wall velocities
comparable to the speed of sound in the plasma, cs, will be of focus for reasons that are
discussed in the section below.

3.3 The effective action and nucleation temperature

The energy density of the GWs produced in the FOPT is in general an increasing function
of the wall velocity vb. Thus, a model which yields fast expanding walls is desirable when
considering the possibility of PGW detection by facilities like LISA, BBO or DECIGO.
However, in order for the PT to accommodate the electroweak baryogenesis, it is required
that the bubble wall velocity relative to the surrounding plasma is below the speed of sound
[7, 34, 35, 36]. This allows for certain particle species to scatter from the bubble walls where
C and CP violation occurs, and diffuse back into the plasma where sphalerons1 convert
the CP asymmetry into a net baryon number. Through the expansion of the bubble walls,
the generated net baryon number is shifted into the broken phase of the bubble, where it
is preserved due to sufficiently suppressed sphaleron processes. Previous research [23, 37]
has shown that there is a viable range for which the wall velocity is sufficient to result

1Sphalerons are solutions to field equations, whose trajectory are along the potential over the top of
potential barrier, as oppose to the instantaneous solutions which describes tunneling. For more information
on this subject see Refs [14, 20].
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in detectable GWs, while being slow enough to allow for the process of baryogenesis to
take place. This subsonic limit along with faster bubble wall velocities will be taken into
consideration when determining the efficiency factor κ, since there is a possibility that
the presence of an additional scalar field could have generated substantial PGWs, but no
baryogenesis, and vice versa.

In order for the PT to be classified as strong first order, and thereby prevent ”washout”
[38] of the baryon asymmetry generated in the process, the following requirement has to
be satisfied [6, 11];

vc
Tc

& 1, (3.4)

where νc denotes the Higgs vev for the SM scenario. ’Deflagrations’, i.e., sub-sonic bubble
wall velocities, may be denoted as vb < vJ = cs, where cs is the speed of sound in the
plasma, and vJ is the Chapman-Jouguet speed, which is defined as the speed at which
the exit velocity of the fluid in the bubble wall frame is that of the speed of sound [35].
Meanwhile, supersonic wall velocities may be denoted as vb > vJ , and are referred to
as detonations. Relevant details regarding the Chapman-Jouguet speed may be found in
Appendix B. For the numerical analysis both detonations and deflagration scenarios are
examined, but considering that PGWs detectable by either LISA, BBO or DECIGO as
a result of deflagrations represent a very fine tuned and rather unlikely scenario [37], the
generated data points will in general be derived from detonations with vb = 0.95 > vJ ,
which maximizes the resulting PGW spectrum.

The bubble wall velocity and the fluid profiles 2 of the plasma depend on the nucleation
temperature, Tn, of the EWPT, which signifies the temperature at which the nucleation
rate is comparable to the expansion of the Universe. By analysing the Lagrangian and
the effective potential of the model of interest, the phase structure of the theory may be
calculated for a finite temperature. Given a Lagrangian for a scalar field φ, such that

L = ∂µφ∂
µφ− V (φ), (3.5)

the nucleation temperature of the PT is found through the three-dimensional bounce so-
lution to the Euclidian action S3 (see Eq. (3.12)), which reads [6, 20, 34],

S3 =

∫
d3x
[1

2
(∂µφ)2 − Veff (φ, T )

]
. (3.6)

The bounce solution allows one to describe both high and low temperature scenarios with
the same formalism, and it is O(3) symmetric at reasonable high temperatures. Assuming
the bubble expansion is spherically symmetric, the action in terms of spherical coordinates
is

S3 = 4π

∫ ∞
0

dr r2
[

1

2

(dφ
dr

)2
+ V (φ, T )

]
, (3.7)

2For more information on this topic the reader is referred to Refs. [23, 39].
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where the general equation of motion of the system takes the form

V (φ, T ) =
d2φ

dr2
+

2

r

dφ

dr
. (3.8)

As demonstrated below in the section Effective potential at a finite termperature, V (φ, T )
of the Euclidian action is given by the effective potential Veff (φ, T ) = Veff (h, S,A, T ),
which is found through perturbative expansions to one loop order in 4D.

The nucleation rate of the bubbles at a finite temperature T is given by

Γ(T ) = A(T )e−S3(T )/T , (3.9)

where A(T ) is a dynamical prefactor which may generally be estimated on dimensional
grounds as A(T ) = O(T 4) [7, 22]. The probability for the PT to exhibit a certain scalar
solution to the Euclidian action, may in the high temperature limit be approximated to
[6, 20]

Γ(T ) ∼ T 4

(
S3

2πT

)3/2

e−S3(T )/T , (3.10)

where T here denotes the nucleation temperature, Tn, which signifies the state where the
nucleation rate per unit volume reaches one bubble per Hubble volume per Hubble time
[39]:

Γ(T ) ∼ H4. (3.11)

By the same methods as have been applied in Refs. [6, 7, 31] one can show that the bubble
nucleation temperature for EW-scale transitions may be estimated through

S3

Tn
∼ −4 log

(
Tn
mP

)
∼ 140, (3.12)

where mP is the reduced Planck mass. If the nucleation temperature given in Eq. (3.12)
is much smaller than the critical temperature; Tn << Tc, the system is said to exhibit
supercooling. Meanwhile, if the relation given in Eq. (3.12) has no solution, the PT is a
non viable scenario and the system is trapped in the supercooled symmetric phase until
the cosmological expansion cause the temperatures to eventually reach zero. Since the
relevant processes - baryogenesis and GW production - take place around the nucleation
temperature we may modify Eq. (3.4) in order to improve our estimations:

vn
Tn

& 1, (3.13)

where vn denotes the vev at nucleation temperature. The vevs are not expected to vary
significantly with temperature, therefore, Eq. (3.4) and Eq. (3.13) only differ in regards to
the critical and nucleation temperature respectively. For the EWPT to classify as strong
first order, the value of Eq. (3.4) has been estimated to be in the range of 0.6-1.5, although
it should be mentioned that there is no precise consensus on this value. As mentioned

12



above, the relation Tn << Tc leads to the transition described in Eq. (3.13) being of much
stronger nature than the one given by Eq. (3.4), and it has been shown in previous work
[6] that a baryogenesis relevant scenario would include transitions where

vc
Tc

& 0.5. (3.14)

For the numerical analysis the relation ∆vn/Tn will be implemented. This translates as
∆vn/Tn = (vfinaln − vinitialn )/Tn, and signifies the contribution the change of the vev has to
the energy budget of the PT.

3.4 The α and β parameters

The inverse duration of the PT β(T ) is an essential parameter when estimating the GW
power spectrum of the theory, and it is defined in terms of the nucleation rate as

β(T ) =
d

dt
ln Γ(T ), (3.15)

which enables us to express it relative to the Hubble parameter H for the time of the
transition as [7, 23, 39]

β

H
= Tn

d

dT

(S3

T

)∣∣∣∣
T=Tn

. (3.16)

The GW signals from the relation in Eq. (3.3) are identified through the following gener-
alization [7],

signal ∼ amplitude× spectral shape(f/fpeak), (3.17)

where f is the GW frequency, and fpeak is the peak-frequency in terms of the redshift
caused by the expansion of the Universe. The relevant peak frequency for the transition
we are considering is as follows [7]

fpeak = 26 · 10−6
(

1

HR

)(
Tn
100

)(
g∗

100 GeV

) 1
6

Hz, (3.18)

where g∗ = 106.75 is the number of relativistic d.o.f.’s, and the mean bubble separation,
R, is given in terms of the dimensionless quantity HR, as

HR =
H

β
(8π)1/3max(vb, cs), (3.19)

with cS being the speed of sound in the plasma, and vb the bubble wall velocity. The
mean radius between the bubbles is an essential feature of the theory, given that sound
shells of size R are predicted to be the dominant source of energy transfer during the
phase transition [31]. For a FOPT the bubble sizes are expected to be of a rather large
distribution, but approximations in scales of the mean radius and simultaneous bubble
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nucleation, has previously in Refs. [35] been successful in providing good results regarding
the amplitude and spectral shape of the GW power spectrum.

The strength of the phase transition, α, is usually defined as [7, 35]

α =
1

ργ

[
Vi − Vf −

T

4

(∂Vi
∂T
− ∂Vf
∂T

)]
, (3.20)

where Vi and Vf are the initial and final potentials of the metastable and stable phases,
respectively. The energy density of the radiation at the time of the PT, ργ, in terms of the
number of relativistic d.o.f.’s, g∗, is given by [7]

ργ = g∗
π2

30
T 4
n . (3.21)

The parameter α allows us to define the the fraction of the kinetic energy of the fluid to
the total bubble energy, in terms of the efficiency factor κ, as [31]

K =
κα

1 + α
. (3.22)

Semi-analytical approximations to the relevant efficiency coefficients in terms of κ where
taken from Refs. [7, 36], and are given in Appendix B. The acoustic phases in the sound
wave formations discussed above, have a lifetime determined by the generation of shocks
which take place on a timescale τsh, and may be denoted relative to the Hubble parameter
as a function of R and K [7, 31, 40];

Hτsh =
2√
3

HR

K1/2
. (3.23)

This quantity enables us determine the duration of the GW source in units of the Hubble
time, resulting in the following relations for the peak energy density [7]:

Hτsh < 1 −→ h2Ωpeak
GW = 1.159 · 10−7

(
100

g∗

)(
HR√
cs

)2

K3/2, (3.24)

Hτsh ' 1 −→ h2Ωpeak
GW = 1.159 · 10−7

(
100

g∗

)(
HR

cs

)2

K2, (3.25)

with the source lasting less or approximately equal to the Hubble time, respectively. The
two expressions given in Eqs. (3.24) and (3.25) are valid for both deflagrations and detona-
tions, and the relevant numerical factors where taken from Ref. [31] and may be found in
Appendix B. In accordance with the relation in Eq. (3.17) the GW spectrum is found by
multiplying the appropriate amplitude in Eq. (3.24) or (3.25) with the spectral function
which takes the following form [7]

h2ΩGW = h2Ωpeak
GW

(
4

7

)−7/2(
f

fpeak

)3[
1 +

3

4

(
f

fpeak

)]−7/2
. (3.26)
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3.5 Signal to noise ratio

In order to determine the viability of the detected GW radiation signatures w.r.t. the
background, the proposed GW power spectrum is compared to the sensitivity range of
LISA, BBO and DECIGO. As demonstrated above, thermodynamical quantities lead to a
possible calculation of h2ΩGW , which enables one to finally estimate the SNR through the
standard formula [31]

SNR =

√
τm

∫ fmax

fmin

df

[
h2ΩGW (f)

h2Ωsens(f)

]
, (3.27)

where τm = is the duration of mission, and h2Ωsens is the nominal sensitivity of the consid-
ered GW detection experiment, which is formulated in terms of the spectral density Sh(f)
as

h2Ωsens(f) =
2π2

3H2
0

f 3Sh(f). (3.28)

h2ΩGW is for deflagration scenarios equal to the expression in Eq. (3.24). Given the long
observation time of the mission there is a great probability of a future detection of GWs
with an acoustic origin - even considering they are distinctively weaker than those produced
by supersonic detonation or runaway models.

4 One complex scalar extended model

4.1 Tree Level Potential

The cxSM is built by adding a complex scalar singlet field, S, to the SM Lagriangian. S
couples only to the fermions and bosons of the SM through the Higgs, often referred to as
the ”Higgs portal”. Thus, the only interaction terms between S and the SM is found in
the scalar potential V (H,S). In order to simplify this potential we impose two symmetries
to the theory:

a) S→ −S, throughout this thesis referred to as Z2. This discrete symmetry results in
the elimination of all terms in the scalar potential containing odd powers of S. It also
enables the stability of the DM particle through symmetry breaking of the last two
terms of the potential in Eq. (4.29), and thereby avoiding the issue of cosmological
domain walls.

b) By requiring that the cxSM scalar potential possess a global U(1) symmetry, all
terms containing complex coefficients in the scalar potential may be eliminated.
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The resulting scalar potential of the cxSM is then given by

VcxSM(H,S) =
µ2
h

2
H†H +

λh
4

(H†H)2

µ2
S

2
|S|2 +

λhS
2
H†H|S|2 +

λS
4
|S|4

+
(
|a1|eiφa1S +

1

4
|b1|eiφb1S2 + c.c.

)
,

(4.29)

where H represents the complex Higgs doublet, which is usually parametrized in terms

of the physical field; H =

(
0
h+v√

2

)
, with the Higgs vev vh = 246 GeV, and S is given by

S = (S + iA)
√

2. The appearance of the potential VcxSm(H,S) is identical to one obtained
by the addition of of two real scalar singlets, each corresponding to the imaginary and real
components of S.

Before any symmetry breaking occurs, the presence of a singlet vev at zero temperature
results in the real component of S, S, appearing as a massive scalar and mixing with the
neutral component of the Higgs. The imaginary part, A, is a massless Goldstone boson,
which - although stable - is not phenomenologically viable since its presence would modify
the effective number of light neutrinos in the Universe [11]. By introducing a soft breaking
of the global U(1) symmetry, more specifically to the last two terms of the scalar potential,
A requires mass and thereby becomes a viable cold DM (CDM) candidate. Breaking
terms, such as the one proportional to b1, which do not generate additional soft symmetry-
breaking terms when normalized [11], are preferred. The symmetry of the potential would
have been retained for a1 = 0, but since spontaneously broken symmetries tend to give
rise to cosmological domain walls [13], an explicit Z2-breaking term proportional to a1 is
required.

On the basis of the given scalar potential one can consider a number of different scenarios
depending on the choice of vev in relation to the type of symmetry breaking. This have
been studied in greater detail in Refs. [11, 13]. However, this thesis will from now on focus
on the scenario where both a1 6= 0 and the singlet acquires a vev, since these requirements
must be fulfilled in order for the theory to yield a stable CDM candidate as well as an
EWFOPT. In order to further simplify Eq. (4.29), the phase φa1 can be eliminated through
absorption and redefinition of a1 and S. In accordance with convention, φb1 = π is chosen
[13]. By expanding the scalar potential with H = h/

√
2 and S = (S + iA)/

√
2, we obtain

the tree-level potential:

V0(h, S,A) =
µ2
h

4
h2 +

λh
16
h4 +

λhS
8
h2(S2 + A2) +

1

4
(µ2

S − b1)S2

+
1

4
(µ2

S + b1)A
2 −
√

2a1S +
λS
8
S2A2 +

λS
16

(S4 + A4).

(4.30)
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4.2 Minimizing the tree-level potential

In order to obtain the mass eigenstates of S, which are generated by fluctuations around the
singlet vev, we minimize the potential in Eqn. (4.30) w.r.t. each field. For a full analysis
of the scalar potential, the mass eigenstates for both the zero temperature as well as the
finite temperature scenario will have to be identified and calculated. The global minimum
of the tree-level potential is found through the following minimization conditions:

∂V0
∂h

= 0,
∂V0
∂S

= 0,
∂V0
∂A

= 0. (4.31)

For the zero temperature scenario we require that 〈H〉 = h/
√

2 = vh/
√

2, with vh being
the Higgs vev, together with the conventional definition 〈S〉 = (vS + ivA), where vS and vA
represents the vev of the real and imaginary field components of S. In order to ensure that
there are no mixing between the scalar and pseudoscalar mass eigenstates, the vev of the
imaginary component of the scalar field has to be zero; i.e., vA = 0. For scenarios where
vA 6= 0, the reader is referred to Ref. [11]. Applying the above mentioned conditions we
obtain the following equations:

∂V0
∂vh

=
vh
2

(
µ2
h +

λhv
2
h

2
+
λhS(v2S + v2A)

2

)
= 0

∂V0
∂vS

=
vS
2

(
µ2
S − b1 +

λhSv
2
h

2
+
λS(v2S + v2A)

2

)
−
√

2a1 = 0.

(4.32)

This yields the two tadpole conditions

µ2
h = −λhv

2
h

2
− λhSv

2
S

2
,

µ2
S = b1 +

2
√

2a1
vS

− λhSv
2
h

2
− λSv

2
S

2
,

(4.33)

which ultimately allow us to eliminate the parameters µ2
h and µ2

S, and instead express the
zero temperature masses in terms of the Higgs vev vh, the singlet vev vS, and the coupling
parameters λh, λS and λhS.

In order to obtain the finite temperature mass eigenstates we examine the second derivative
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of the tree-level potential w.r.t. h, S and A;

m2
h =

∂2V0
∂h2

=
µ2
h

2
+

3λhh
2

4
+
λhS(S2 + A2)

4
,

m2
S =

∂2V0
∂S2

=
1

2
(µ2

S − b1) +
λhSh

2

4
+
λS(3S2 + A2)

4
,

m2
A =

∂2V0
∂A2

=
1

2
(µ2

S + b1) +
λhSh

2

4
+
λS(S2 + 3A2)

4
,

m2
hS =

∂2V0
∂h∂S

=
∂2V0
∂S∂h

=
λhShS

2
,

m2
hA =

∂2V0
∂h∂A

=
∂2V0
∂A∂h

=
λhS
2
hA,

m2
SA =

∂2V0
∂S∂A

=
∂2V0
∂A∂S

=
λS
2
SA,

(4.34)

where each expression in Eq. (4.34) can be arranged in a matrix form in the following way

M2
cxSM =

 m2
h m2

hS m2
hA

m2
hS m2

S m2
SA

m2
hA m2

SA m2
A

 . (4.35)

For the numerical analysis the thermal masses for h, S and A are calculated by diagonal-
izing the M2

cxSM above in Eq. (4.35). Other field dependent thermal masses are given in
Appendix A.

By combining Eqns. (4.34) and (4.33), the eigenvalues for the zero temperature masses
may be expressed as

m2
h =

1

2
λhv

2
h,

m2
S =

λSv
2
S

2
+

√
2a1
vS

,

m2
A = b1 +

√
2a1
vS

,

m2
hS =

λhSvhvS
2

.

(4.36)

As a result of the spontaneously and explicit breaking of the U(1) symmetry, the linear
parameter a1 and the quadratic parameter b1 will give mass to the Goldstone boson of the
cxSM . The stability of the DM candidate is provided by the Z2 symmetry, and therefore
the scalar DM of the cxSM is referred to as Z2xSM . As can be seen in Eq. (4.34), there
is no mixing between A and the h and S fields. Meanwhile, the non-zero entry for m2

hS,
causes the real component of the singlet to mix with the SM Higgs, resulting in two massive
scalars, whose mass eigenstates we denote as h′ and S ′, reflecting their ”Higgs-like” and
”singlet-like” state respectively. Their masses are given by the eigenvalues of the 2x2 upper
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left quadrant of Eq. (4.35), which in full details becomes3

m2
h1,2

=
λhv

2
h

4
+
λSv

2
S

4
+

√
2a1

2vS
±
√(λhv2h

4
− λSv2S

4
−
√

2a1
2vS

)2
+
λ2hSv

2
hv

2
S

4
. (4.37)

Which one of the eigenstates h′ and S ′ that corresponds to mh1 or mh2 , will depend on ones
choice of parameters. The two expressions in Eq. (4.37) may be more generally expressed
as

m2
h1,2

=
1

2

[
m2
h +m2

S ±
√

(m2
h −m2

S)2 + 4(m2
hS)2

]
=

1

2

[
Tr(McxSM)±

√
(Tr(McxSM))2 − 4Det(McxSM)

]
,

(4.38)

with the requirement that Det(McxSM) > 0 in order to ensure that the masses are real
positive numbers [13]. For v2h > v2S the heavier eigenstate mh2 will correspond to h′, and
should the singlet vev have a mass greater than the Higgs vev, then S ′ = mh2 . For the
numerical analysis Eq. (4.38) may be recast to the more convenient expression

m2
h1,2

=
1

2

[
m2
h +m2

S ± (m2
h −m2

S) sec 2θ
]
. (4.39)

Given that h′ and S ′ are orthogonal representations of the mass eigenstates, we may express
them in terms of their mixing eigenstates such that[

h′

S ′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
h
S

]
, (4.40)

which gives us the relations
h′ = h cos θ + S sin θ,

S ′ = S cos θ − h sin θ.
(4.41)

As is evident in Eq. (4.41), the h′ and S ′ coupling to the fermions of the SM via the Higgs,
is reduced by a factor cos θ and − sin θ respectively. Subsequently the mixing angle at tree
level is given by [11]

tan 2θ =
2m2

hS

m2
h −m2

S

=
λhSvhvS

1
2
λhv2h − 1

2
λSv2S −

√
2a1
vS

.
(4.42)

The range −π/4 < θ < π/4 is chosen for the mixing angle, as to ensure the nature of h′

maintains ”Higgs-like” and S ′ ”singlet-like” [12, 13, 14]. By assuming the Higgs-like state,
h′, to have a mass of 125.09 GeV and thereby taking the singlet state to be the heavier
scalar, current constraints on the mixing angle requires it to be in the limit of [31]

| sin θ| . 0.2− 0.3, (4.43)

depending on the mass of S ′. This constraint is a result of direct searches at the LHC and
EW precision measurements, and is applicable in the mass range S ′ ∼125 GeV - 1 TeV
[31].

3See Refs. [11, 12, 13, 14] for further discussion regarding this and the details throughout this section.
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4.3 Vacuum stability

The vacuum stability of the cxSM potential at tree level is ensured by the fulfillment of
the following requirements:

λh > 0,

λS > 0,

λhλS > λ2hS.

(4.44)

The first two conditions may be derived from Eq. (4.36), and ensure that the potential
is bounded from below. The last condition guarantees that the mass-squared eigenvalues
of the mix between the real component of the singlet and the Higgs doublet is positive.
For more on details on the vacuum stability of the cxSM , the reader is referred to Refs.
[11, 13, 15, 16].

4.4 Effective potential at a finite temperature

The dynamics of the EWPT (as discussed in section ”Phase Transitions”) are determined
by the shape of the effective potential Veff (h, S,A, T ), which describes the energy density of
a homogeneous state at a finite temperature T . In order to fully comprehend the dynamics
of the phase transition, the temperature dependence of the effective potential is a crucial
aspect as it allows one to study the development of the different vacua in the cooling
process through perturbation theory.

The scalar potential analysis using cosmoTransition is performed in three parts: by iden-
tifying tunneling algorithms and phase tracing algorithms, and the implementation of the
model of interest. This is done through the generic potential class, which calculates the
one-loop corrections from the field-dependent mass spectrum using the Coleman-Weinberg
potential VCW = (h, S,A, T ), found below in Eq. (4.46) [22].

The additional degree of freedom of the cxSM that is represented by A, will (due to self
interaction) generate a one loop Coleman-Weinberg potential VCW = (h, S,A, T ), whose
contribution to the effective potential needs to be examined along the tree level potential in
Eq. (4.30). In addition to this one must also include thermal corrections, here denoted as
Vth(h, S,A, T ), as well as the counter term Vct(h, S,A). Thus, we may express the effective
potential at a finite temperature as

Veff (h, S,A, T ) = V0(h, S,A) + VCW (h, S,A, T ) + Vth(h, S,A, T ) + Vct(h, S,A). (4.45)

The Coleman-Weinberg potential, calculated in the Landau gauge and renormalized in the
MS scheme, is given by

VCW (h, S,A, T ) =
∑
i

ni
m4
i (h, S,A, T )

62π2

[
ln
(m2

i (h, S,A, T )

µ2
R

)
− ci

]
, (4.46)
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where the sum i runs over all scalar, fermion and boson contributions, ni denotes the
number of degrees of freedom for the each respective field, mi represent the field dependent
mass, µR is the renormalization scale which we fix to µ2

R = v2h, and ci = 3/2 for bosons,
and ci = 1/2 for fermions [7].

The lowest-order one-loop thermal correction term for a finite temperature T , is obtained
as

Vth(h, S,A, T ) =
T 4

2π2

[∑
b

nbJB

(
m2
i (h, S,A, T )

T 2

)
−
∑
f

nfJF

(
m2
i (h, S,A, T )

T 2

)]
(4.47)

where

JB,F (a2) =

∫ ∞
0

x2dx ln
[
1∓ exp(−

√
x2 + a2)

]
. (4.48)

The negative and positive sign in the logarithmic term in Eq. (4.48) corresponds to bosonic
and fermionic contributions respectively. JB and JF are the thermal integrals for the
bosons and fermions, which in the high temperature limit, where a ≡ m/T << 1, can be
approximated as [6]

JB(a2) ' −π
4

45
+
π2

12
a2 +

π

6
a3 +O(a4),

JF (a2) ' 7π4

360
− π2

24
a2 +O(a4).

(4.49)

Fermionic contributions to the thermal corrections other than that of the top quark are
excluded due to the relative smallness of their Yukawa couplings. Thus, the thermal
corrections, expanded at order a2, reduces to [6]

Vth(h, S,A, T ) =
T 2

24

[
Tr(M2

h,S,A) +
∑

i=W,Z,γ

nim
2
i +

∑
i=fi

ni
2
m2
i

]
. (4.50)

where fermionic contributions for all three generations are taken into consideration in the
last sum with fi = t, bτ, c, s, µ, u, d, e, ν1,2,3, and the coefficient ni represents the number of
d.o.f for each given particle, these are given in Appendix A.

The presence of the T 2 term in the effective potential usually indicates that there is a
symmetry restoration and therefore a collapse of perturbation theory at T ∼ Tc. This
requires an all-order resummation of higher order corrections, which is accomplished by
replacing the field-dependent masses with the thermal masses [7]:

m2
i −→ µ2

i (T ) = µ2
i + ΠiT

2, (4.51)

where Πi is the finite temperature mass function [6, 12], which can be calculated by taking
the second derivative of Eq. (4.47) w.r.t. h, S and A. The relevant contributions for the
considered model are listed in Appendix A.
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In accordance with Refs. [6, 10, 12, 44], the counter term Vct is included in the effective
potential in order to maintain the minimization conditions stated in Eq. (4.32). It is as
follows

Vct(h, S,A) = δm2
hh

2 + δm2
SS

2, (4.52)

where the relevant coefficients at zero temperature where (h, S,A) = (vh, vS, 0), are given
by

δm2
h =

1

2vh

∂VCW
∂h

δm2
S =

1

2vS

∂VCW
∂S

.

(4.53)

This ensures that the vevs of h and S, as well as the mass of A, will not be shifted. In order
to compensate for the shift of the mass matrix of h and S, more complex terms would have
to be added. However, since these shift are relatively small we do not include them here.

5 Constraints

When analyzing the cxSM a number of factors related to DM collider and cosmologi-
cal phenomenology, as well as constraints imposed by the requirement of GW generating
FOEWPTs, and the possibility of baryogenesis, are taken into consideration when limiting
the range for which the parameters of the model will have to be varied. The domain of
detection made available through the realization of facilities like LISA, BBO and DECIGO
will be of focus in this thesis, as its contributions will be vital for the field of GW and DM
research - whether it be through experimental verification or further limiting the viable
BSM range by imposed constraints.

The tree level potential in Eq. (4.30) has six free parameters after applying the tadpole
conditions the quartic couplings λh and λS associated with the self-coupling of the Higgs
and complex singlet, respectively; the quartic interaction coefficient λhS which signifies
the strength of the interaction between the SM Higgs and the complex singlet; the vev
of the S field, vs; and the parameters a1 and b1 which are a result of symmetry breaking
of the theory and determines the mass of the DM component A through the relationship
described by the expression for m2

A Eq. (4.36). The quantities µ2
h and µ2

S are given in terms
of the other parameters of the model, as demonstrated in Eq. (4.33). Fixed parameters of
the model include the Higgs vev v = 246.22 GeV and the Higgs mass mh = 125.09 GeV
[41].

When analyzing the cxSM with the cosmoTransition package a total of five physical ob-
servables, mh1 , mh2 , cos θ, Br(h → AA) and h2ΩA, are used as input parameters. This
allows one to define an equal amount of Lagrangian parameters in terms of the physical
observables. The Lagrangian parameters of interest to the cxSM are a1 and b1, whose mag-
nitude define the DM mass, and the quartic coupling parameters λh, λS and λhS. With
the requirement for a theory which yields a stable DM, the main constraints of interest
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are sourced from experimental DM research in combination with astrophysical observables
such as the DM relic density. Below follows a short introduction to these subjects along
with the equations necessary for a full analysis of the scalar potential.

5.1 Dark Matter

DM can be categorized into two subgroups: CDM and hot dark matter (HDM). Their
classification is related to their relativistic nature, rather than temperature, and is an
indication of how far the DM particles are able to move before being slowed down due to
cosmic expansion; also referred to as the free streaming length (FSL). Considering a number
of factors, with one of them being the mass structure formation of the early Universe, as
observed in the cosmic microwave background (CMB), CDM is thought to be the most
suitable DM candidate.

There are several sub-classes of CDM, with plausible DM masses varying over a wide
span, from ”fuzzy DM” at 10−21 eV, to heavy WIMPs in the TeV range. The two most
common classifications are Weakly Interacting Massive Particles (WIMPs) and axions,
where the mass difference of the particles of respective model (with the mass of the WIMP
is generally in the GeV range, and the axion mass in the sub eV range) requires slightly
different detection methods. The detection technology is also highly dependent on the
interaction between the DM particle and the particles of the SM.

The field of DM detection can be divided into three subgroups: direct detection, where
scientists hope to observe low-energy recoils of the nuclei of highly reactive fluids as a result
of DM interaction; indirect detection, which includes cosmological observables (gamma-
ray and neutrino measurements in particular) due to DM self-annihilation and decay; and
collider measurements, by which constraints on decays and Higgs couplings to DM may
be specified. Of specific interest to the Z2xSM , are the Higgs related constraints which
concern the coupling strength to the Higgs field, and the possibility of DM particle creation
in colliders through the Higgs portal, which we would observe as invisible decays. These
constraints, in relation to the capacity and sensitivity of both existing and proposed future
colliders, will be taken into consideration when evaluating the DM aspect of the cxSM .
However, one also needs to consider constraints imposed by astrophysical observables and
the relic density, and include data from direct detection facilities in order to ensure that
the viable range of the proposed model agrees with experimental research.

There are two possible DM outcomes for the cxSM : (a) a single component scenario where
explicit symmetry breaking causes the Goldstone boson of the theory to acquire mass and
thereby becoming the pseudoscalar DM candidate A, and (b) in which the vev of the scalar
field S is equal to zero, resulting in a two component DM scenario involving both A and S.
This thesis will focus on case (a), with the prospect of a theory which yields stable DM.
For more information on scenarios where vs = 0, the reader is referred to Refs. [11, 13, 14].
Constraints applicable to the Z2xSM and a stable DM scenario where vs 6= 0, are - with
emphasis on Higgs related collider constraints - listed below.
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5.2 Z2xSM

As mentioned before, one of the attractive features of the considered scalar extension to
the SM is the fact that the DM mass of the model is independent of ones choice of scalar
potential. Previous work in Ref. [13] have implemented DM mass in the GeV range, but
in this thesis a mass range of 0.01 eV - 10 keV will be used for the numerical analysis.

Higgs related physics have a central role when developing the colliders of the future, and
measurements of the Higgs potential is a high priority goal, since its reconstruction would
reveal important information regarding the electroweak symmetry breaking. The coupling
between the particles of the SM and the Higgs are (at the time of writing) uniquely deter-
mined in terms of the Fermi constant and the particles masses, but new physics BSM may
modify these couplings in many ways. In order to identify a potential deviation from the
SM, an essential aspect of Higgs related collider physics consists of measurements of the
decay branching ratio times the Higgs production cross section [13]:

ξ2 ≡ Br(→ invisible)× σBSM
σSM

. (5.54)

The invisible decay branching fraction, Br(h′ → invisible), associated with the Z2xSM is
defined as Br(h′, S ′ → AA), but since we do not have any information about the decay of
the scalar S, this expression simplifies to

Br(h′ → AA) =
Γ(h′ → AA)

Γ(h′ → AA) + Γ(h′ → SM)
, (5.55)

where Γ(h′ → SM) = 4.07 MeV [42] signifies the width of the coupling between the Higgs
and the SM, and Γ(h′ → AA) is given in Eq. (5.61). Relevant processes contributing to
the decay widths can be seen below in Fig (2).

A vital aspect when analyzing the Z2xSM , is to establish its contribution to the DM relic
density ΩDM , requiring that it does not exceed [32]

h2ΩDM = 0.102± 0.010, (5.56)

however, under-saturation is allowed since it permits the existence of DM other than the
Z2xSM . The DM relic density of the Universe is determined from acoustic peaks in the
CMB, and there are two different scenarios in the early Universe, in which the DM relic
density became relatively fixed; freeze-out and freeze-in.

1. Freeze-out

According to this scenario, the DM particles are in thermal equilibrium at high tem-
peratures, but as the plasma temperatures drop below the mass of the DM, the Hubble
expansion rate overpowers the processes responsible for the equilibrium, thus resulting in
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Figure (2) Feynman diagrams depicting the possible decay modes which contribute to
the annihilation cross section of the DM particle A, with f and V being the fermions and
the vector bosons of the SM, respectively. Image credit Ref. [13].

ceased interaction amongst particles; a freeze-out. In this model the comoving DM number
density becomes fixed, and it is in general only dependent on the masses and couplings of
the DM of the theory. This makes it an attractive scenario, since the necessary parameters
may be independently measured in particle physics facilities, and therefore it is not depen-
dent on the relatively unknown early thermal history of the Universe [43]. In a freeze-out
scenario the relic density can be approximated as [44]

h2ΩA =
78

g∗

mA

keV
, (5.57)

where g∗ = 106.75 is the number of relativistic d.o.f’s at the electroweak scale. Applying
the criteria that h2ΩA ' h2ΩDM , the DM mass can be constrained to the following range

0.112keV ≤ mA ≤ 0.167keV. (5.58)

2. Freeze-in

In the freeze-in process the DM is produced by the decay or annihilation of a heavier
particle X, and therefore the DM relic density is directly proportional to the annihilation
cross-section of the DM. For the cxSM , X represents the SM particles and since A only
interacts with the SM via the Higgs, the relic density generally depends on the magnitude
of the Higgs portal in Eq. (5.62). For the freeze-in scenario the relic density may be
approximated as

h2ΩA ' 2
1.09 · 1027

g
3/2
∗

mAΓ(h′ → AA)

m2
h

, (5.59)

where

Γ(h′ → AA) =
1

4π

λ2hAA
mh

√
1− 4

m2
A

m2
h

, (5.60)
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and λhAA is the effective Higgs-DM coupling, which in the mass eigenbasis is

λhAA =
λhSvh cos θ

2
. (5.61)

A small value for the portal coupling, λhS . O(0.01), is required in order to comply with
experimental data. One of the main collider constraints of interest to the Z2xSM , is
the upper limit on the Higgs coupling to the DM, in our case to A, which determines the
detectability of the pseudoscalar through the interaction with the SM Higgs. The prospects
for finding evidence for a scalar model like the cxSM , when considering the DM of the
theory, are limited in regards to colliders since the pair production of A via the Higgs means
it could only observed indirectly through invisible decays and missing collision energy. To
this date no invisible decays have been observed, but data from CMS [45] presents an upper
bound on the Higgs invisible decay branching ratio of 0.15.

By solving Eq. (5.56) for Γ(h′, S → AA) and combining the result with Eq. (5.60), one
obtains an expression for the mass of the DM, whose form is convenient for the numerical
analysis:

mA = m2
h

h2ΩA

κ

[1−Br(h′ → AA)]

Br(h′ → AA)Γ(h′ → SM)
with κ ≡ 2

1.09 · 1027

g
3/2
∗

. (5.62)

In order to extract the parameters λh and λS, Eq. (4.39) is utilized in combination with
the mass eigenvalues given in Eq. (4.34). λhS is found by combining Eqs. (5.61) and (5.62)
by eliminating the parameter λhAA. This finally allows us to represent the Lagrangian
parameters in terms of physical observables in the following manner

λh = 2
m2
hvS −

√
2a1

vSv2h

λS =
2m2

s

v2S

λhS =
mh

vh cos θ

√√√√8πBr(h′ → AA)√
1− 4

m2
S

m2
h

.

(5.63)

6 Numerical analysis and discussion of results

As can be seen in Eq. (4.36), the mass of the DM of the cxSM will depend on the linear
coefficient a1 and the quadratic coefficient b1. Previous work has been presented in Ref.
[13], where a fixed low value for a1 = 10−3 GeV3 gives m2

A ' b1. However, in this analysis
both a1 and b1 will be treated as free parameters, and a1 will be varied between 10−20

GeV3 - 10−8 GeV3, which - through the relation a1/vS will correspond to a mass range for
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the Z2xSM of 0.01 eV - 10 keV, while b1 will be given in terms of other parameters of the
model by combining Eqs. (4.36) and (5.62) into the following expression

b1 =
[
m2
h

h2ΩA

κ

[1−Br(h′ → AA)]

Br(h′ → AA)Γ(h′ → SM)

]2
−
√

2a1
vS

. (6.64)

For the vev of the scalar field S, vS, input values in the range 10 - 103 GeV2 where chosen,
and the mixing angle θ was varied between 0.01 - 0.15.

For the initial run with cosmoTransitions the mass range for the scalar S where set to
60 GeV < mS < 500 GeV, but since measuring points close to the sensitivity curves
of LISA, BBO and DECIGO corresponded to the lower values of mS, another run with
60 GeV < mS < 150 GeV was initialized. The data from both results were combined and
are presented below in Figs. 3-8. As can be seen in Figs. 3-7, there is one data point
that is relatively close to the sensitivity curves of LISA, BBO, and DECIGO. For a better
probability of detecting GWs, one should fine tune the input parameters of the model
in order to examine this area in greater detail, with the hope of acquiring data points
within the sensitivity range of detection. While there are relatively few and scarce data
points close to the detection range, the majority of data points are represented by a peak
frequency, fpeak of approximately 1 < 103 Hz, and a corresponding value for the GW peak

signal of 10−34 < h2Ωpeak
GW < 10−27.

The area representing the best range of detection roughly corresponds to a model with a
mass eigenstate of mS = mh2 ∼ 150 GeV (see Fig. 3a), and a mass eigenstate for the dark
matter candidate of log10 mA ∼ −6 eV, which corresponds to mA = 10−6 eV (see Fig 3b).
In regards to the values for the vev, vS, which can be seen in Fig 4a, detectable scenarios
appears to be in the range of vS ' 100 GeV, i.e. close to the scale at which electroweak
symmetry takes place. As may be observed in Fig. 4b, the data points closest to the
detection range correspond to a value of cos θ close to 1. This translates to a value for θ
close to zero, indicating that there is very little mixing amongst the mixing eigenstates h
and S in the mass eigenstates h′ and S ′, as can be seen in Eq. (4.41), i.e. h′ ' h and
S ′ ' S

The relation ∆vn/Tn for the two vevs of the cxSM , vS and vA, which may be seen in the
plots in Fig. 5, show a similar scenario where the majority of data points depicts vS,A ∼ 0,
i.e., the vevs hardly change over the course of the PT, and therefore contribute little to
the over all energy budget of the PT. However, the points of interest which are close to
the detection range indicate another scenario where vS > 1, and vA > 5, and suggests
towards a scenario where there the initial and final value of the vevs are not equal, thus
contributing to the energy budget of the PT. Fig. 6, which depicts the change of the Higgs
vev in relation to the nucleation temperature, indicate that the change of vh during the
course of the PT for the scenarios closest to the detection domain, is close to zero. Even
when considering the areas in the plot which is experiencing the largest change of the
vev (corresponding to a peak frequency value of ∼ 100 Hz), these values are considerably
smaller than the maximum change of vS and vA. These results seems to indicate that vh is
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Figure (3) Plot (a) is depicting the values for the mass eigenstate mh2 and plot (b) is
depicting the values for the mass eigenstate the dark matter candidate, mA, of the cxSM .
Both eigenstates are plotted against the net produced GW signal, h2Ωpeak

GW , and the peak
frequency, fpeak. The value of each data point is indicated by the colour scheme, which
is given to the right of the graph. The sensitivity range for LISA, BBO, DECIGO are
indicated by the coloured lines.
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Figure (4) Plot (a) is depicting the vev, vS of the real component of the scalar field S,
and plot (b) is depicting the values for cos θ. Both vS and cos θ are plotted against the net
produced GW signal, h2Ωpeak

GW , and the peak frequency, fpeak. The value of each data point
is indicated by the colour scheme, which is given to the right of the graph. The sensitivity
range for LISA, BBO, DECIGO are indicated by the coloured lines.

an overall more stable point than vS and vA. In addition to this one may conclude that vh
experience a larger change in magnitude for a larger value of the peak frequency, whereas
the largest change in magnitude of vS and vA correspond to a lower peak frequency of
fpeak < 10−3 Hz and a rather high GW signal of h2Ωpeak

GW > 10−20.

Fig. 7 depicts the GW parameters α and β/H, highest probability of detection is log10 α >
−2 and 2 < log10 β/H < 4. In Fig. 8a. the nucleation temperature Tn is plotted as a
function log10 α, and as can be seen, there are two areas with a nucleation temperature of
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∼ 25 and ∼ 90, corresponding to a value of log10 α ∼ −6 and log10 α ∼ −4 respectively.
For 8b. were Tn is plotted as function of β/H, there is a relatively scarce distribution of
data points with small clusters of points where Tn ∼ 90 and Tn ∼ 25 corresponding to
β/H ∼ 6 and β/H ∼ 1 respectively.

There are no plots for the SNR included in this result section, this is because there are
no data points within the sensitivity range of either LISA, BBO or DECIGO. It should be
mentioned that in order to produce more reliable and better results, the cosmoTransition
package should be set to run for an extensive amount of time (preferably in the span of
several weeks), in order to provide a larger amount of data points. The measuring points
used for this analysis were collected after a total run of 5 days.
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Figure (5) Plot depicting the relation between the vevs of the complex scalar field, S, at
nucleation temperature, vS,A(Tn), and the nucleation temperature, Tn. Plot (a) shows the
relation ∆vS(Tn)/Tn, and plot (b) depicts ∆vA(Tn)/Tn. Both relations in (a) and (b) are
plotted against the net produced GW signal, h2Ωpeak

GW , and the peak frequency, fpeak. The
value of each data point is indicated by the colour scheme, which is given to the right of
the graph. The sensitivity range for LISA, BBO, DECIGO are indicated by the coloured
lines.
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Figure (6) Plot depicting the relation between the Higgs vev at nucleation temperature,
vh(Tn), and the nucleation temperature, Tn, as ∆vh(Tn)/Tn. Data points are plotted
against the peak value of the corresponding net produced GW signal, h2Ωpeak

GW , and its
peak frequency, fpeak. The sensitivity range for LISA, BBO, DECIGO are indicated by the
coloured lines.
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Figure (7) The GW power spectra parameters α, (a), and β/H, (b), plotted against the
peak value of the corresponding net produced GW signal, h2Ωpeak

GW , and its peak frequency,
fpeak. The value of each data point is indicated by the colour scheme, which is given to
the right of the graph. The sensitivity range for LISA, BBO, DECIGO are indicated by
the coloured lines.

7 Conclusion

The advancement within the field of GW phenomenology has provided an additional win-
dow of physics, through which we are able to perceive and explore new areas and periods
of the Universe, previously beyond our reach. In order to probe deeper into the fabric of
cosmos and refine existing theoretical framework, the development of low frequency laser
interferometry will play a crucial role by providing valuable constraints on the theoretical
models. A direct detection of PGW’s by facilities like LISA, BBO and DECIGO would
suggest towards a model exhibiting electroweak first order phase transitions, such as the
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Figure (8) Plots depicting the nucleation temperature, Tn, as a function of the GW power
spectra parameters α, (a), and β/H, (b).

one examined throughout this thesis (although other model which exhibits FOEWPTs are
not to be ruled out). Thus, progress in GW research will not only shed light on the dy-
namics of the early Universe, but evidently also play an important role in extending the
framework of the SM, both w.r.t. a particle physics model which may include the force of
gravity, but also in regards to dark matter phenomenology in terms of constraints and/or
detection through GW experiments.

The LISA, BBO and DECIGO mission details may change over the coming years, which
effects predictions of detectability of a given model, but providing that the sensitivity
ranges remains approximately unchanged, there seems to be a good probability of PGW
detection. For the condition examined in this thesis, the best probability of detection
appears to be for a dark matter scalar with a mass around 50 GeV. A more extensive
analysis could be done by varying the input parameter a1 over a larger span, which would
result in a slightly different mass range for the dark matter of the model. The mass of the
scalar S could also be limited as to further increase the probability of a GW peak signal
closer to LISA, BBO and DECIGO.

Appendices

A Thermal corrections

The number of d.o.f. for the particles who contribute to the thermal correction, Vth(h, S,A, T ),
and the effective potential, are as follows

nW = 6, nZ = 3, nγ = 2, (A.65)
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where γ is the transversely polarized photon. For the longitudinal polarized photon

ns = 6, nAL
= 1, (A.66)

and for the fermionic contributions

nu,d,c,s,t,b = 12, ne,µ,τ , nν1,2,3 = 2. (A.67)

The finite temperature mass functions Πi are given by

Πh =
3

16
g2L +

1

16
g2Y +

1

8
λh +

1

24
λhS +

1

4
(y2t + y2b + y2c + y2s + y2u + y2d) +

1

12
(y2τ + y2µ + y2e),

ΠS = ΠA =
1

12
(λS + λhS).

(A.68)

The thermal corrections to the gauge sector of the SM is

M2
gauge(h, T ) = M2

gauge(h) +
11

6
T 2


g2 0 0 0
0 g2 0 0
0 0 g2 0
0 0 0 g2

 , (A.69)

where the eigenvalues for the zero-temperature mass matrix M2
gauge are given by

m2
W =

1

4
h2g2L

m2
Z =

1

4
h2(g2L + g2Y ).

(A.70)

For the thermal masses, only the longitudinal polarizations of the gauge bosons; W+
L ,

W−
L , ZL and AL, acquire thermal corrections, while the mass of the transversely polarized

photon, mγ remains zero. These eigenvalues are as follows

m2
WL

(h, T ) = m2
W (h) +

11

6
g2T 2,

m2
ZL,AL

(h, T ) =
1

2
m2
Z(h) +

11

12
(g2L + g2Y )T 2 ±D,

(A.71)

where the field-dependent masses for the W and Z bosons are given by Eq. (A.69), and D
reads as follows

D2 =
(1

2
m2
Z(h) +

11

12
(g2L + g2Y )T 2

)2
− 11

12
g2Lg

2
Y T

2
(
h2 +

11

3
T 2
)
. (A.72)
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B Efficiency Coefficients

The semi-analytical approach to the efficiency coefficients are given here in terms of the
Chapman-Jouguet speed, vJ , and the bubble wall velocity, vb. The fraction of vacuum
energy that is converted to kinetic energy of the fluid is as follows,

κ =
(vJ − 1)3v

5/2
J v

−5/2
b κ1κ2[

(vJ − 1)3 − (vb − 1)3
]
v
5/2
J κ1 + (vb − 1)3κ2

(B.73)

where κ1 denotes the efficiency factor in the limit of Jouguet detonations where vb = vJ ,

κ1 =

√
α

0.135 +
√

0.98 + α
, (B.74)

κ2 is the efficiency factor for large bubble wall velocities, i.e., vb −→ 1,

κ2 =
α

0.73 + 0.083
√
α + α

, (B.75)

and the Chapman-Jouguet speed is denoted by

vJ =
1

1 + α

(
cs +

√
α2 +

2

3
α

)
. (B.76)
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