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Abstract
In recent experiments on semiconductor nanowires and quantum dots, enhanced g-
factors up to several times the bulk value have been measured [1] [2]. The enhance-
ment is attributed to orbital contributions g∗orb to the effective g-factor g∗ = g∗spin+g

∗
orb

from the coupling of the high angular momentum ring-like states to the magnetic field.
The objective of the work presented here is to model the double quantum dot (DQD)
system in [1], extending previous theoretical models to a two-dimensional (2D) tight-
binding ring-shaped structure using the open-source python package Kwant [3]. It is
found that the enhanced g-factors can be straightforwardly predicted by the model
because of the formation of ring-like states when an even orbital on one dot aligns
with an odd orbital in the other dot. Ring states require combinations of even and
odd orbitals at zero magnetic field, even-even (similarly odd-odd) orbital parity com-
binations lead to poor ring formation. Moreover, Aharonov-Bohm oscillations are
also present in the model when the ring is penetrated by a significant flux in agree-
ment with recent experimental findings in similar systems. The states of interest
transforms from crossing to anti-crossing when increasing the flux through the ring
from 0 to 1

2 flux quanta as the parity requirement of the aligned orbitals to form ring
states are reversed. This means at 1

2 flux quanta the condition of even-odd orbital
alignment to form good ring states is broken and even-even and odd-odd orbital com-
binations form good ring states instead. The model presented here is a more realistic
description of the real experimental system compared with previous theory and the
results are consistent with experimental findings.

1 Introduction

Semiconductor technology has undoubtedly rev-
olutionized electronics and shaped the society.
From the invention of the first operational tran-
sistor at Bell Labs in 1947 the number of transis-
tors on a given circuit has grown exponentially
far greater than anticipated. The A14 processor
is commercially offering node sizes of 5 nm in
Apple products and plans for the 3 nm node ex-
ist [4]. Transistor conductivity is controlled by
an electric potential applied via a capacitively
coupled gate. The gate is separated from the
structure by an insulating oxide. Due to quan-
tum tunneling through the gate oxide causing a
leakage of carriers, device conductivity on these
small scales are becoming increasingly difficult to
mange. At some point the current semiconductor
technologies require a transition to a drastically
new type of technology.

One possible drastic change would be quan-
tum information processing. Quantum informa-
tion is an emerging field with possibilities to

revolutionize modern computation and commu-
nication. The fundamental unit of information in
quantum computation is the quantum mechani-
cal correspondence of a bit, the qubit. Informa-
tion is no longer binary but consists of entangled
quantum states. States can be manipulated by
quantum gates and are anticipated to lead to
more complex and effective computations com-
pared to traditional transistor technologies [5].

The importance of quantum effects is not
limited to quantum information processing de-
vices. In general, as device dimensions approach
the wavelength of electrons and holes, quantum
properties play a major role. In bulk materials
the electrons are free to move in all directions and
as a result, continuous energy bands are formed.
As a dimension is reduced the electron experi-
ences confinement and quantized motion in that
direction. A visualization of confinement in 1,2
and 3 dimensions can be seen in Fig 1. The quan-
tization of motion directly influences the energy
spectrum and in 3D confinement (0D material)
the electron energy levels are discrete. Such a
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system is commonly known as a quantum dot.

Figure 1: Motion of electrons in materials of different
dimensions. Figure taken from [6].

The quantization of energy, orbital and spin
degrees of freedom of the quantum dot resem-
ble the atom. The ability to manipulate these
properties makes the quantum dot excellent for
studying fundamental physics and highly inter-
esting in electronics and is already applied in
numerous components. Quantum dots are for
example used in medicine as tunable dye, in im-
proving light sources such as LEDs and LASERs
[7] and in the realization of true RGB pixels in
displays [8].

One of the most exciting applications is the
realization of the so called spin qubit which is
promising as the main building block in quan-
tum computation [9]. Quantum dots (QDs) are
of high interest in the realization of spin-based
qubits due to the discrete energy levels and the
ability to control spin dynamics. One way to ma-
nipulate quantum spin states utilizes spin-orbit
coupling (SOC). This requires strong spin-orbit
interaction where the electron orbital motion
couples strongly to the electron spin. By the use
of electric fields the spin states can be efficiently
controlled to store and manipulate information
for quantum computing [10].

There are a number of ways to realize quan-
tum dots, this thesis will focus on quantum dots
epitaxially defined in nanowires [6]. Nanowires
are quasi-1D structures where electrons are con-
fined in two dimensions but are free to more lon-
gitudinally, see Fig. 1. Due to advances in mate-
rial science the growth of nanowires can be con-

trolled up to single atomic layer precision and re-
laxation of crystal lattice matching in nanowires
enables interesting combinations of III-V semi-
conductors of different crystal structures such as
Wurtzite and Zinc blende InAs to define a quan-
tum dot [11] [12]. By defining closely separated
regions of high bandgap material a quantum well
is formed [13], visualized in Fig. 2. Since the
well is confined in three dimensions it behaves as
a quasi zero-dimensional quantum dot.

Figure 2: Schematic representation of a Zinc Blende
InAs nanowire defined quantum dot confined between
thin segments of Wurtzite InAs.

Two potential pockets can spontaneously
form within the QD in Fig.2 due to surface
charges of the nanowire and to tuning connected
side gates (not visualised yet). The two pock-
ets acts as two parallel-coupled dots. This is the
double quantum dot system of interest, see Fig
3 [6].

Figure 3: Schematic representation of potential pock-
ets formation (darker region) due to uneven surface
charge distribution and thus the realisation of a DQD
system. Figure taken from [6].

1.1 Quantum Ring Theory

In recent works it has been observed how the
effective g-factor of semiconductor nanowires ex-
periences an enhancement up to several times of
the bulk value [1], in contrast to the expectation
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that confinement would reduce the effective g-
factor [2]. The most common way to rotate spin
states is by an oscillating magnetic field [14]. The
efficiency to which this is achieved depends on
the g-factor. Having large g-factors are therefore
desirable as it allows spin rotation using smaller
magnetic fields. Moreover, as will become more
clear later the g-factor in this particular system
can be tuned dramatically using electric fields.
A possible way to achieve spin rotation is then
to have a constant magnetic field and tune the
g-factor using an electric field. Manipulation of
electric fields are generally significantly more ef-
fective than manipulation of magnetic fields and
this way of inducing spin rotations are a rare
property and possibly very valuable. The ap-
pearance of enhanced g-factors is explained by
strong orbital effects of higher subbands and the
formation of quantum rings. In [2] the quantum
rings form due to rotational symmetric nanowires
whereas in [1] the ring states form despite the
lack of rotational symmetry. By manipulation
of magnetic and electric fields the formation of
quantum rings is possible, even in a non rota-
tionally symmetric system. In this thesis the
experimentally observed effect on the effective
g-factor of these formations will be modeled us-
ing an extension of the 1D model in [1] to a 2D
tight-binding model.

To illustrate the meaning of quantum rings
the 1D ring wave function can be determined,
starting from the free particle Schrödinger equa-
tion

− h̄2

2me
∇2ψ = Eψ. (1)

For a cylindrical system Eq. 1 can be represented
in polar coordinates

− h̄2

2meR2

∂2

∂θ2
ψ = Eψ, (2)

where R is the ring radius and θ the angular coor-
dinate. The solutions to this differential equation
are

ψm(θ) =
1√
2π
eimθ, Em =

h̄2m2

2meR2
(3)

where m = 0,±1,±2,±3... as the boundary con-
dition of a ring requires eim(θ+2π)=eimθ . These are
the quantum ring states. The angular momen-
tum of the ring states is given by L̂z|m⟩ = mh̄|m⟩
.

It was found in [1] that in a specific gate
potential configuration, double quantum dot
(DQD) systems where the dots are coupled in
two points also exhibit ring-like states, surpris-
ingly. The specifics of the system modeled will
be presented in Section 2. It was found that de-
spite the significant tunnel barriers between the
double quantum dots quantum ring states form,
if two criteria are fulfilled. The tunneling cou-
pling strength at the connection points between
the two quantum dots have to be identical and
the aligned energy levels of the two quantum dots
have to be combinations of even and odd orbitals
[1].

Figure 4: Schematic representation of different
aligned orbitals in the double quantum dot. The ring
states can only be observed in the even/odd orbital
combination. Figure taken from [1].

Each electron pocket in Fig. 3 can be thought
of as two adjacent particle in a box system. The
electrons in a particle in a box picture have dis-
crete energy levels of different symmetry. The
first 3 modes in such a system is visualized to the
right in Fig. 4. What is meant by aligning com-
binations of even and odd orbitals is adjusting
the gate potential in such a way that one well has
an even mode aligned with an odd mode in the
other well. In the case of even and odd orbital
alignment visualized in Fig. 4, the hybridization
energy vanishes due to different signs in the over-
lap integral and results in the formation of two
ideal ring states. In the ring-like hybridized wave
function the electrons are free to orbit clockwise
or anti-clockwise. Calculating the expectation
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value of the angular momentum operator yields
a quantitative indication of ring state quality.
This property will be used in evaluating the ring
states.

Moreover, due to the Aharonov-Bohm effect
covered in section 1.1.1, if magnetic flux equal to
1
2 h/e is fed through the ring, the overlap integral
receives an additional minus sign in one of the
tunnel couplings [1]. This results in even-even
and odd-odd symmetry orbitals having vanish-
ing hybridization energies and thus becoming
ring states, while the even-odd orbitals become
poor ring states.

A special feature of ring states in magnetic
fields is that the effective g-factor is given by a
sum of spin (Zeeman) and orbital contributions
g∗ = g∗spin+ g∗orb. The g-factor is a dimensionless
proportionality constant and characterizes how
the electron spin couples to an external magnetic
field. Due to the orbital effects in finite angular
momentum quantum ring states g∗ experiences
enhancement. This will be discussed in more de-
tail in Section 1.2. The ability to control the
quality of ring states by manipulating the elec-
tric field and thus the orbital alignments, leads
to the possibility of tuning the orbital contribu-
tions to the effective g-factor over large ranges.
In this thesis it will be confirmed that the mag-
netic flux influence on the orbital contributions
of quantum ring states indeed explains the ap-
pearance of g-factor enhancement in a nanowire
DQD and can be straightforwardly predicted us-
ing a 2D tight-binding model.

1.1.1 Aharonov-Bohm Effect

A fundamental feature of ring states is the ap-
pearence of the Aharonov-Bohm (AB) effect as
mentioned briefly in the previous section. In
1959 Y. Yakir Aharonov and David Bohm proved
that electrons can be affected by the magnetic
vector potential A in regions of space where the
magnetic field B is zero [15]. For more insight
and detailed derivations see [16].

Figure 5: Illustration of a charged particle travelling
around a solenoid with a magnetic field inside. The
particle is not directly influenced by the magnetic field
but due to the AB effect the effect of the vector po-
tential cannot be excluded. Figure taken from [16].

If a charged particle travels in a closed loop
around a conducting solenoid with a magnetic
field inside, no field is directly acting upon the
particle, see Fig. 5. However, due to the vec-
tor potential of the magnetic field the particle
energy is still affected. The root of this effect
stems from the quantum mechanical formalism
where eliminating the vector potential is not pos-
sible. This is in contrast with classical mechanics
where the equation of motion is expressed in the
field alone and the vector potential is regarded
as a mathematical tool and not a real physical
observable.

Now consider the free particle Hamiltonian

H =
p̂2

2me
, p̂ = −ih̄∇. (4)

In the presence of a magnetic field the momen-
tum is replaced by the kinetic momentum

H =
(p̂− eA)2

2me
, (5)

including the magnetic vector potantial A. Ex-
panding the square, setting e = 1 and explicitly
writing p̂ = −ih̄∇, results in

H =
p̂2 + (p̂A + Ap̂) + A2

2me
, (6)

= − h̄2

2me
∇2 − ih̄

2me
(∇A + A∇) +

A2

2me
. (7)

The vector potential A can be chosen to have
zero divergence (Coulomb gauge)
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∇ · A = 0. (8)

In this gauge the nabla operator ∇ and A com-
mute,

∇A + A∇ = 2A∇, (9)

leading to the Hamiltonian of a free electron in
the presence of an magnetic field

H = − h̄2

2me
∇2 − ih̄

me
(A∇) +

A2

2me
. (10)

The fact that the vector potential cannot be
eliminated results in electrons being influenced
by the potential even if no magnetic field acts
upon them.

Calculating the state energies for the ideal 1D
ring states in Eq. (3) in the above Hamiltonian
yields

Em =
1

me
(
h̄2m2

2R2
+
h̄mAθ

R
+

A2

2
) (11)

where Aθ is the vector component along θ.
Comparing Em in Eq. (11) to Eq. (3) reveals
additional terms stemming from the inclusion of
the vector potential. The first term in Eq. (11)
is the same as the free particle energy in Eq.
(3). The second term reveals that the electron
energy either increase or decrease depending on
the sign of m. This means that right moving
electrons couple differently to the vector poten-
tial than left moving electrons. The state energy
no longer depends solely on m but also on the
magnitude of the vector potential in both the
second and third term.

Moving over to a short introduction of AB os-
cillations which will be useful later to understand
recent unpublished experimental result and their
appearance in the model. Electrons enclosing
a magnetic flux experience a phase shift depen-
dent on the vector potential A [15]. Electrons
encircling in opposing directions pick up differ-
ent phases. This results in a cycling of construc-
tive and destructive interference with a period
of Φ0 = h/e referred to as the magnetic flux

quantum [17]. The magnetic flux is defined as
the surface integral of the norm to the magnetic
field B, as such the flux is both B and area de-
pendent. The flux quantum can be seen as a
flux corresponding to a phase shift to the elec-
tron wave function that leaves the electron in the
same phase as for zero field, eiΦ/2 = ei(Φ+2π)/2.
Therefore 1 flux quantum h/e is the required flux
for an electron to be phase shifted 1 period 2π in
the system.

1.2 Hamiltonian
A semiconductor material (with spin-orbit cou-
pling) is considered in the general case where the
B-field is non-zero in the region where the elec-
trons are localized. In the effective mass approxi-
mation the Hamiltonian of an electron under the
influence of a magnetic field can be expressed as
[1] [2]

H = H0 +HZeeman +HSO + V (r), (12)

where H0 is the free particle Hamiltonian with
kinetic momentum given by Eq. (10) , HZeeman

is the Zeeman energy term, HSO the Rashba
spin-orbit coupling term and V(r) the electro-
static potential.

Introducing both terms separately,

HZeeman =
g∗spin
2

µBσ · B, (13)

HSO =
α

h̄
(e × p) · σ, (14)

with g-factor g∗spin, Bohr magneton µB , Pauli
operator σ, magnetic field B, Rashba parameter
α, electric field direction e generated by polariza-
tion effects in the ZB/WZ junctions and kinetic
momentum p.

The Zeeman effect is the splitting of electronic
states under the influence of an external mag-
netic field and is expressed in Eq. (13). The
root of the effect is in the spin property of elec-
trons. The degeneracy of electron spin states is
disrupted as opposite spins couple differently to
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the magnetic field. Eq (13) describe the linear
splitting of the states ∆Ez = (s↑−s↓)|g∗spin|µBB,
where s↑ = 1

2s↓ = −1
2 . The spin-orbit coupling

term in Eq. (14) is a relativistic impact of the
electric field on the magnetic moment of the
electron and leads to a coupling of orbital mo-
tion and spin [18]. In semiconductors it stems
from the intrinsic bulk inversion asymmetry of
the crystal phase and the extrinsic contribution
from the asymmetry in the confining potential
[6].
Moreover, in quantum ring states with high or-
bital angular momentum, results in g∗ enhance-
ment up to several times the bulk semiconductor
value because of orbital contributions g∗orb to the
total g-factor, given by g∗ = g∗spin + g∗orb.

2 System

In experiments the quantum dot is defined by
sandwiching a 5 nm Zinc Blende (ZB) InAs seg-
ment between two 25 nm Wurtzite (WZ) InAs
segments in a ≈80 nm diameter hexagonal ZB
InAs nanowire, as shown in Fig. 2 [1].
The band offsets between WZ and ZB InAs con-
fine carriers in the region and a quantum well is
formed. The structure rests upon a global back
gate and is capacitively coupled to side gates VL
and VR, see Fig. 6, allowing for electrostatic con-
trol of electron energy levels in the quantum dot.

Figure 6: Cross section schematic representation of
the double quantum dot states and side gates. Fig-
ure taken from [1].

By adjusting applied voltages on the global back
gate and side gates VL and VR two quantum dots
left (L) and right (R) form close to the surface of
the quantum dot as visualized in Fig. 6.

Figure 7: Illustration of the coordinate system of the
model with z-direction along the nanowire axis.

Fig. 7 defines the chosen coordinate system
in the model. As the depth in z-direction of the
quantum dot is ≈ 5 nm and the diameter of the
nanowire ≈ 80 nm the electrons are strongly con-
fined in z and the modeled system is approxi-
mated as a 2D ring-like structure.

3 Method

As described in the previous section the struc-
ture of interest is a double quantum dot epitax-
ially and electrostatically defined in a hexagonal
ZB InAs nanowire. Since the quantum dots are
strongly confined in z-direction they are approx-
imated as a 2D circular surface in the xy-plane
corresponding to the cross section of the wire.
The considered system is circular even though
the nanowire is hexagonal. The reason is due to
the large nanowire diameter, the electron wave
function is mostly localized in the interior of the
wire, unaffected by the edges. By adding barri-
ers at the top and bottom of the ring simulates
the double quantum dot system visible in Fig. 6
and enforces 2-fold rotational symmetry.

A magnetic field is applied along the z-
direction perpendicular to the surface cross sec-
tion B = (0, 0, Bz). Choosing the gauge Ax =
Az = 0 results in the following vector potential

A = (0, xBz, 0). (15)

Eqs. (10, 13, 14) under the influence of an exter-
nal magnetic field along the nanowire z-direction
and the above gauge can be expressed as
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H0 = − h̄2

2m∗ (
∂2

∂2x
+
∂2

∂2y
)− ieh̄

m∗ xBz
∂

∂y
− e2x2B2

z

2m∗

(16)

HZeeman =
g∗spinµB

2
σz ·Bz, (17)

HSO = α(σx(−i
∂

∂y
+
exBz

h̄
) + σy(−i

∂

∂x
)), (18)

To arrive at Eq. (18) the electric field e in Eq.
(14) is chosen along the nanowire z direction.

3.1 Discretization
The tight-binding approximation is achieved by
discretizing the continuous position function.
The system now consists of sites separated by
the lattice constant a. Electrons occupying a site
are represented by a discrete position basis state
|x; y >= |ia; ja >= |i; j > as the model is two
dimensional. The lattice constant a is not nec-
essarily the crystal lattice constant but rather
a parameter defining the resolution of the dis-
cretization. The first and second order partial
derivatives can be expressed as

∂

∂i
=

1

2a

∑
|i+ 1; j⟩ ⟨i; j|−|i; j⟩ ⟨i+ 1; j| , (19)

∂2

∂2i
=

1

a2

∑
|i+ 1; j⟩ ⟨i; j| − 2 |i; j⟩ ⟨i; j|

+ |i; j⟩ ⟨i+ 1; j| .
(20)

By replacing the partials derivaties in Eqs. (16
and 18) with the discretized ones, it is straight-
forward to calculate the tight-binding matrix el-
ements by mapping the Hamiltonian on the dis-
crete position basis. This yields diagonal and
off diagonal elements, more commonly known as
onsite and hopping terms. The onsite terms are
given by

⟨i; j|H |i; j⟩ = (4t+
e2a2

2m∗B
2
z i

2 + V )σ0

+
αe2a2

h̄
Bziσx +

g∗spinµB

2
Bzσz,

(21)

where σ0 is a 2x2 identity matrix. The hopping
terms are given by

⟨i+ 1; j|H |i; j⟩ = −tσ0 − i
α

2
σy, (22)

⟨i; j + 1|H |i; j⟩ = −tσ0 + i
α

2
σx

+i
eh̄

2m∗Bzσ0,
(23)

where the hopping energy t is given by

t =
h̄2

2m∗a2
. (24)

Eq.(21) describes the particular energy on that
tight-binding site. Terms in Eq. (22) describe
the hoppings in positive x direction. Terms in
Eq. (23) describe the hoppings in positive y di-
rection. Any hopping in the opposite directions
is simply the complex conjugate. The hopping
energy between neighbouring sites is t which is a
material specific parameter.

Figure 8: Schematic representation of the modeled
system, each dot represents a tight binding site with
red dots representing the barrier location separating
the two dots (L) and (R) with the coordinate system
orientation included in the center.

Each dot in Fig. 8 represents a tight binding
site not to be confused with actual atoms. The
distance between neighbouring sites is the lattice
constant a. Each site is connected to adjacent
sites by hopping energies. The central barrier
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defining the double quantum dot system is visi-
ble as red marked dots.

It should be noted that a perfect ring has
rotational symmetry meaning it remains un-
changed when rotated by an arbitrary angle. As
the model is discretized at a low resolution the
ring is not perfect but has rough edges. This will
directly influence the energy spectrum in a mag-
netic field and will be discussed in the appendix.

3.2 Angular Momentum
To evaluate the quality of the ring states it’s il-
luminating to calculate the expectation value of
the angular momentum operator

⟨ψi|Lz |ψi⟩ , (25)

where ψi is the i’th eigenstate of the Hamiltonian.
As the system is 2D there are no movement in the
z-direction, this results in Lx = Ly = 0 and thus
L = Lz.

Lcan
z = xpy − ypx = −ih̄(x ∂

∂y
− y

∂

∂x
). (26)

Here the canonical angular momentum is consid-
ered, not including the vector potential. In the
Coulomb gauge, Lcan

z is a conserved quantity (it
commutes with the Hamiltonian). For a cylindri-
cal symmetric system, it is also equal to the total
Lkin
z , which is a conserved and gauge invariant

quantity. Thus Lcan
z is chosen to quantify how

well the states correspond to a cylindrical sym-
metric system, which is a measure of the quality
of the ring-like states. Calculating the matrix el-
ements of Lcan

z in the same position basis as the
Hamiltonian results in

⟨i+ 1; j|Lz |i; j⟩ =
ih̄

2a
yσ0, (27)

⟨i; j + 1|Lz |i; j⟩ = − ih̄

2a
xσ0, (28)

which add to the hopping terms. Again, hop-
pings in the opposite direction are given by com-
plex conjugation. Ring states are necessary for
observing a g-factor enhancement. Comparing

Lcan
z for different states can indicate good or poor

ring formation.

3.3 Kwant

Kwant is an open-source python package for
tight-binding simulations of quantum systems
and is used throughout this project [3]. The
package is designed to be user friendly and
to have high performance using a combination
of high and low level programming languages.
Python is used to setup the system and to de-
fine the tight-binding Hamiltonian. The system
is internally translated to a low level represen-
tation in C dealing with demanding numerical
calculations and algorithms.

3.3.1 Building A System

Specifying the lattice and building the system
can be done as follows

import kwant
lat = kwant.lattice.square(a)
sys = kwant.Builder()

where a is the lattice constant. Next up is spec-
ifying the shape and setting the onsite and hop-
ping terms. The system considered is ring shaped
and can be constructed by the following

sys[lat.shape(ring, (0, r1+1))] =
onsite

def ring(pos):
(x, y) = pos
rsq = x ** 2 + y ** 2
return (r1 ** 2 < rsq < r2 ** 2)

where lat.shape() is a built-in function en-
abling one to pass a customized shape, here
ring is a boolean function returning true for
sites inside the ring where r1 and r2 is the inner
and outer ring radius. onsite is a self-defined
function that returns the onsite element from
Eq (21). Passing functions to sites instead of
fixed numbers makes the model more dynamic
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as one does not need to rebuild the system when
changing a parameter. Also, some terms require
xy-position, passing the term as a function en-
ables one to retrieve the position integer of the
site as will be shown for def hopy() below.

Next the hopping terms are specified

sys[kwant.builder.HoppingKind((1,
0), lat, lat)] = hopx
sys[kwant.builder.HoppingKind((0,
1), lat, lat)] = hopy

where (1,0) and (0,1) are unit vectors that spec-
ify hoppings in x and y directions. Again the
terms are passed as functions hopx and hopy.
Next is an example of the y-hopping function
stemming from Eq. (23) that can be passed to a
site.

def hopy(site1, site2, B):
(x, y) = site1.pos
return -t * σ0 - 1j * α * σx / 2

+ 1j * h̄ / ( 2 * m∗ ) * B * x * σ0

The hopping function requires two site argu-
ments because it involves two sites. As the mag-
netic field is something one wish to vary this is
passed as a parameter B. To get the position of
a site one calls the site1.pos function which
returns a tuple of the x and y coordinate. The
last two lines of code returns the matrix element
given by Eq. (23). The specific expression is de-
pendent on the system geometry and terms in-
cluded in the Hamiltonian. This concludes the
building of the system.

3.3.2 Extracting and Diagonalizing the
Hamiltonian

Extracting and diagonalizing the Hamiltonian
is straightforward. Before any calculations are
made the system needs to be finalized.

import scipy.linalg as la
sys = sys.finalized()
ham = sys.hamiltonian_submatrix()
evals, evecs = la.eigh(ham)

Here the scipy.linalg package was used to
diagonalize the matrix. This gives the com-
plete set of eigenvalues and vectors which of-
ten is excessive. To optimize performance the
scipy.sparse.linalg packge can be used.
Sparse matrix data structures are suitable for a
tight-binding system as the matrix elements are
mostly zeros. Moreover it enables the user to
specify the desired number of eigenvalues and
eigenvectors to be calculated. In this project,
most often only the 10 lowest energy eigenstates
are of interest and in dealing with matrix dimen-
sions of up to 1000x1000, this option is crucial
for code efficiency.

import scipy.sparse.linalg as sla
ham = sys.hamiltonian_submatrix(
params=dict(B=B), sparse=True)
evals = sla.eigsh(ham_mat.tocsc(),
k=10, sigma=0)

where k=10 specifies the number of eigen-
values and vectors to be calculated. The
params=dict(B=B) command in the hamil-
tonian_submatrix function enables one to
pass the magnetic field used in the onsite and
hopping functions. As mentioned before this en-
ables one to vary the magnetic field without re-
building the system after it is finalized.

3.3.3 Modifying Potentials

In order to simulate attaching gate electrodes
and detuning the quantum dot to create ring
states as shown in Fig. 6, one can add a po-
tential to the system. This is done by changing
the energy of the system at desired locations by
adding a potential function to the onsite terms
which takes the site as a parameter. An example
of how this is done is shown below

def potential(site, p):
(x, y) = site.pos
if x == 0:

return V_barr
if x < 0:

return p
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elif x > 0:
return -p

This potential function adds a barrier V_barr
for x = 0 in the system to separate the quantum
dot into two dots left (L) and right (R), as illus-
trated in Fig. 8. It also symmetrically adds and
subtracts the potential p to the left and right
halves of the ring, yielding a potential asymme-
try in the two half rings. This will be used for de-
tuning of the system and will be discussed more
in depth in Section 4.2.

3.4 Building the L̂ Matrix Represen-
tation

To construct the matrix representation of the an-
gular momentum operator in Eq. (26), Kwant
can be used. By defining a separate system iden-
tical to the original model as done in Section
3.3.1, specifying the hopping terms according to
Eq. (27 - 28) and retrieving the matrix by call-
ing hamiltonian_submatrix function, in the
same way as shown in Section 3.3.2. This is a
neat way of obtaining the correct matrix which
can be challenging to build by explicitly specify-
ing the matrix elements. The expectation value
in Eq. (25) is calculated by sandwiching the L̂
matrix representation between the eigenvector of
interest.

4 Results and Discussion

4.1 Ideal Ring

It’s illustrating to start with the ideal ring case,
that is without any barrier. The material param-
eters are shown in Table 1, excluding the barrier.
Here the g-factor enhancement in a circular sym-
metric system with spin-orbit coupling can be
observed by calculating the electron state energy
evolution in B oriented along the z-direction [2].

Figure 9: Energy levels in a uniform magnetic field
along the nanowire z-direction for an ideal ring.

Including SOC splits the four fold degeneracy of
states l ̸= 0 (dashed lines in Fig. 9). The mag-
netic field B couples to the total magnetic mo-
ment, and as a result to the splitting of spin pairs
[2]. In Fig 9 the l = 0 states (solid lines) have no
orbital angular momentum and the states split
by g∗spin. In contrast, the higher angular mo-
mentum states states (dashed lines) which in a
circular symmetric structure have non-zero or-
bital angular momentum (quantum ring states),
have a significant splitting of the states due to
the orbital contributions g∗orb and thus experi-
ence g-factor enhancement, see section 1.1. The
nonzero orbital angular momentum states, play
a similar role in the g-factor enhancement in the
double quantum dot which will be presented in
the next Section 4.2.
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4.2 Double Quantum Dot

The double quantum dot system is now consid-
ered. The material parameters used in the 2D
tight-binding model are shown in Table 1.

Parameters Value
Ring Outer Radius 25 nm
Ring Inner Radius 10 nm
Barrier Height 262 meV
Barrier Width 1 nm
Lattice constant a 1 nm
Rashba Spin-orbit constant α [1] 16 meV nm
g∗spin 10

mInAs 0.026 me

t 1.4655 · 103 meV

Table 1. Model parameters for the DQD system

The system is detuned by shifting the energy lev-
els of the two quantum dots relative to each other
with the intention of aligning different orbitals.
In practice the detuning is achieved by applying
side gate voltages VL and VR as shown in Fig. 6.
As explained in section 3.3.3, in the model this
is achieved by adding and subtracting a symmet-
ric potential to the onsite elements of the tight-
binding Hamiltonian. Ring states in the double
quantum dot system require alignment of even-
odd orbitals, see section 1.1. The crossing of in-
terest is between the second and third states of
the (L) and (R) dot, the so called the (2,3) cross-
ing. This is where the even-odd orbitals align
and the formation of ring states are anticipated.
The detuning is accompanied by calculating the
angular momentum. There are 4 states involved
in each of the (2,3) and (2,2) crossing and anti-
crossing. By introducing a small magnetic field
the angular momentum of the lowest energy state
in each crossing is calculated.

Figure 10: Energy levels in an electric field for an
InAs double quantum dot at B = 0. (2,3) crossing
and (2,2) anti-crossing marked by squares. |⟨L̂2,3⟩| =
1.631h̄; |⟨L̂2,2⟩| = 0.0357h̄. Markings a,b and c is
where the electron wave function is plotted below.

The detuning plot in Fig. 10 is in agreement with
the findings of [1]. The states are labeled accord-
ing to ψR/L

n and represents the n’th eigenstate of
the right (R) or left (L) dot. ∆ is the detuning
potential which is subtracted from the (R) dot
and added to the (L) dot. Therefore ψR state
energy decrease and ψL state energy increase for
positive ∆ detuning potential and the reverse for
negative ∆. At ∆ = 0 the states are linear combi-
nations of states in both dots with equal weights,
thus its not possible to distinguish which state
corresponds to which dot. Delocalized bonding
and anti bonding orbitals are formed similar to
that of molecules. For a perfect ring without bar-
riers states would simply be eigenstates of the an-
gular momentum operator and thus have integer
eigenvalues lm = mh̄ at zero B-field. Due to the
barriers the states are 2-fold rather than 4-fold
degenerate at ∆ = 0. Adding barriers destroyed
the ring states at zero detuning, by adding a fi-
nite detuning the ring states are reformed at the
(2,3) crossing, by realigning the energy levels of
the two quantum dots. There is a tiny split due
to spin-orbit interactions (SOI) in the (2,3) cross-
ing, not visible in Fig. 10 but can be observed in
Fig. 13. The (2,3) crossing between even and odd
orbitals marked by a square in Fig. 10 is present
at ∆ = 8.7 meV detuning potential. Plotting
the probability density for the 2nd and 3rd state
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close to the (2,3) crossing and at the crossing ( a,
b and c in Fig. 10 ) indicates the correct orbital
combinations and the appearance of ring states,
Fig. 11.

Figure 11: Magnitude square of the wave functions
for a) ψL

2 at ∆ = 7 meV, b) ψR
3 at ∆ = 7 meV, c)

one of the ring states in the (2,3) crossing at ∆ = 8.7
meV

In Fig. 11 a) and b) close to the (2,3) crossing,
the (L) dot has an even orbital characterized
as having 1 node in a quantum dot, whilst the
(R) dot has an odd orbital (2 nodes) as ex-
pected. This confirms that the (2,3) crossing is
in fact combinations of even and odd states sim-
ilar to the (L) and (R) dot in the even-odd state
schematic illustration in Fig. 4. In Fig. 11 c) at
the (2,3) crossing the 2nd and 3rd states becomes
two ring states split by spin orbit coupling. The
ring states are characterized by vanishing nodes
and having a more uniform charge distribution
in both QDs. Ín a perfect ring the wave func-
tions would be completely uniform. The angular
momentum for the lowest energy state at this
configuration is significant, |⟨L̂2,3⟩| = 1.631h̄
also indicating the formation of ring states. The
angular momentum of the other ring state in-
volved in the (2,3) crossing is similar. On the
other hand the angular momentum of the (2,2)
anti-crossing at ∆ = 0 signifies poor ring for-
mation, as |⟨L̂2,2⟩| = 0.0357h̄. It confirms that
even-even (and similarly odd-odd) orbital com-
binations are poor candidates for ring formations
as mentioned in section 1.1.

To observe the g-factor enhancement the
state energies are evaluated under the influence
of a magnetic field applied along the z-direction
as done for the ideal ring in Fig. 9 but at a fi-
nite detuning ∆ = 8.7 meV required for the (2,3)

crossing.

Figure 12: Energy levels in a uniform magnetic field
along the nanowire z-direction for an InAs double
quantum dot with ∆ = 8.7 meV detuning potential.

In Fig. 12 (b) the detuning potential ∆ = 8.7
meV is fixed whilst sweeping the magnetic field
from 0 to 0.6 T. In this way the response of
the energy levels to a finite magnetic field is ob-
served. There is an increased splitting of the
states involved in the (2,3) crossing (red dashed)
compared to the lowest states (solid lines) and
this is due to the orbital contributions to the g-
factor of aligned even and odd orbitals and thus
formation of ring states. This is similar to the
splitting of the higher angular momentum states
(dashed lines) in the ideal ring in Fig. 9. To
quantify the results the states involved in the
(2,3) crossing are plotted separately in Fig. 13.
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Figure 13: The energies of the states involved in the
(2,3) crossing in a uniform magnetic field with an es-
timate of the effective g-factors.

The effective g-factor represents the splitting be-
tween the two spin pairs in the presence of a
magnetic field. In this case, this is only relevant
for small B as the states anti-cross around B =
0.025 T due to SOI. The effective g-factor is cal-
culated by extracting g∗ from the split in energy
between the two spin pairs given by g∗µBBz

at 0.01 T. The effective g-factors at low field
g1 ≈ 115 and g2 ≈ 133 are significantly larger
than the bulk g-factor for InAs (g∗spin = 10) and
agrees with previous findings [1] [2] and is at-
tributed to the coupling of the non-zero orbital
angular momentum states to the external mag-
netic field and thus orbital contributions g∗orb to
the effective g-factor g∗.

To further model recent and unpublished ex-
perimental findings of AB oscillations (see sec-
tion 1.1.1) in quantum rings [19] their result are
presented here. Their experimental system is es-
sentially what is modeled in this thesis with some
slight differences. In summary a Θ = 80 nm dia-
mater (compared to 50 nm in the model) InAs
NW with a strongly depth confined DQD. By
adjusting side gates at different B parallel to the
NW, the AB oscillations can be observed and
their result is shown in Fig 14.

Figure 14: Experimental results on AB oscillations in
DQDs. (a) 0 T (b) 1 T (c) 2 T (d) 2.5 T corresponding
to 1 h/e. Figure taken from [19].

The detuning in experiments is achieved by ad-
justing the left (VL) and right (VR) side gate po-
tentials. In Fig. 14 going from (a) B = 0 T to
(b) B = 1 T the states in red and green circles,
corresponding to (2,3) crossing and (2,2) anti-
crossing respectively are disrupted as the states
in the red circle are starting to split while the
green circle states start to cross. From (b) B =
1 T to (c) B = 2 T the states start to return
to their original configuration and at (d) at B
= 2.5 T corresponding to 1 h/e the states re-
form similar to that of (a). To observe this in
the model the detuning plot in Fig. 10 is repro-
duced for key B-field values corresponding to the
ring being penetrated by the flux ϕ = 1

4 ,
1
2 ,

3
4 , 1

h/e. The area which corresponds to 1 flux quan-
tum is obtained from finding the required B-field
for completing one period of the AB oscillation
which was B = 4.5 T. This corresponds to a ra-
dius which is half way in between the inner and
outer ring radius. This is reasonable since this is
where the electron density should be centered. In
Fig. 14 one period correspond to 2.5 T, however
the system is larger than the one used in this the-
sis. The detuning plots are also accompanied by
calculating the angular momentum expectation
value again for the lowest energy state involved
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in the (2,3) and (2,2) crossings.

Figure 15: Energy levels for B-field values corre-
sponding to characteristic flux values with the re-
spective angular momentum expectation value for the
(2,3) and (2,2) anti-crossings. (a) B = 1.125 T; ϕ = 1

4

h/e. |⟨L̂2,3⟩| = 1.402h̄; |⟨L̂2,2⟩| = 0.584h̄, (2,3) anti-
crossing marked by square. (b) B = 2.25 T; ϕ = 1

2

h/e. |⟨L̂2,3⟩| = 0.527h̄; |⟨L̂2,2⟩| = 1.002h̄, (2,2) cross-
ing makred by square. (c) B = 3.375 T ; ϕ = 3

2 h/e.
|⟨L̂2,3⟩| = 1.476h̄; |⟨L̂2,2⟩| = 0.654h̄. (d) B = 4.5 T ;
ϕ = 1 h/e. |⟨L̂2,3⟩| = 1.667h̄; |⟨L̂2,2⟩| = 0.285h̄

In Fig. 15 (a) at B = 1.125 corresponding to
ϕ = 1

4 h/e the states involved in the (2,3) cross-
ing marked by square start to split due to the
incorporation of the vector potential into the
Hamiltonian similar to previous plots (Fig. 12 -
Fig. 13) and thus as a result of the AB effect, see
section 1.1.1. Like before the individual energy
levels also start to split due to the Zeeman effect.
The angular momentum for the (2,3) crossing de-
creases from 1.631h̄ in Fig. 10 to 1.402h̄ indicat-
ing the magnetic field is disrupting the ring states
and is reflected in a decreasing angular momen-
tum. In Fig. 15 (b) at ϕ = 1

2 h/e the even-odd
parity requirement for ring states is reversed. In

(b), the anti-crossing of the (2,3) states (marked
by square in (a)) is maximal which is reflected in
the lowest |⟨L̂2,3⟩| of 0.527h̄. This is also where
the angular momentum of the (2,2) crossing ob-
tains its largest value of |⟨L̂2,2⟩| = 1.002h̄. At
ϕ = 1

2 h/e the even-even and odd-odd states
form ring states instead of the even-odd states
as another minus sign is introduced in one of
the tunneling couplings, discussed in section 1.1.
The connection between the ring states and the
sign of the tunnel coupling will be explained in
detail below. Continuing to Fig. 15 (d) at B
= 4.5 T corresponding to ϕ = 1 h/e the (2,3)
crossing is realigned revealed by crossing of the
(2,3) states comparable with Fig. (10) apart
from the now prominent Zeeman splitting. The
fact that the states cross at this flux magnitude
indicates the correct flux induced phase shifts
in the Hamiltonian and concludes one period 2π
of the AB oscillation. Meaning threading 1 h/e
through the ring leaves the electrons in the same
phase as for zero field eiϕ0/2 = ei(ϕ0+2π)/2, see
section 1.1.1. The |⟨L̂2,3⟩| = 1.667h̄ for this state
is comparable to the angular momentum at zero
B-field in Fig. 10, indicating the ring states are
in fact reformed.

The difference in energy splittings between
(2,2) and (2,3) crossings was explained in [1] by
the use of degenerate perturbation theory in a
simpler 1D chain. Here we want to make use of
this model and include the magnetic field to gain
further insight into the above results. The un-
perturbed system was regarded as two separated
(L) and (R) 1D quantum wells described by si-
nusoidal wave functions which in a tight-binding
setting read

|ψ0
L,n⟩ =

N/2∑
σ,j=1

aL,n,j,σ|ϕ0L,j,n⟩ (29)

|ψ0
R,n⟩ =

N∑
σ,j=N

2
+1

aL,n,j,σ|ϕ0R,j,n⟩ (30)

where aL/R,n,j,σ|ϕ0L/R,j,n⟩ are the (L) and (R)
wavefunction and coefficient at site j for spin
σ =↑, ↓ for the n’th state in the QD. The (L)
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dot consists of sites 1 to N/2, while the (R) dot
consists of sites N/2+1 to N. The particle in a
box wave functions obey

aL,n,1,σ = aL,n,N/2,σ = a; for n odd,

aL,n,1,σ = −aL,n,N/2,σ = a; for n even,

aR,n,N
2
+1,σ = aR,n,N,σ = a; for n odd,

aR,n,N
2
+1,σ = −aR,n,N,σ = a; for n even,

(31)

where a can be chosen positive or negative.
When the levels in Eq (29 - 30) align they form
a degenerate subspace. In [1] the perturbation
is regarded in the form of coupling between sites
at the two tunneling connection points 1,N and
N/2, N/2+1. To reveal how the magnetic field
affects the energy corrections in the perturbation
from [1], and thus if it is in agreement with the
results from the model above, the flux induced
phase shift ei

ϕ
2 is incorporated into the pertur-

bation below, considering only one spin

δH = −t(c†N
2
,↑cN

2
,↑e

iϕ/2 + c†N,↑c1,↑e
−iϕ/2 +H.C.)

+tsoc(−ic†N
2
,↑cN

2
,↑e

iϕ/2 − ic†N,↑c1,↑e
−iϕ/2 +H.C.).

(32)
where c†j,σ (cj,σ) creates (annihilates) an electron
with spin =↑, ↓ at site j. Sandwiching Eq.(32)
between (29 - 30) yields the matrix representa-
tion of the perturbation in the degenerate sub-
space. First the case of B = 0 corresponding
to ϕ = 0 is studied where the |ψ0

L,2⟩, |ψ0
R,2⟩ are

aligned. Diagonalization of the perturbation ma-
trix in the degenerate subsapce yields that the
(2,2) is split by t, where t is the hopping energy
between neighbouring sites. At |ψ0

L,2⟩, |ψ0
R,3⟩ or-

bital alignment the states are split by tsoc, where
tsoc = α/2a. The fact that t is many times larger
than tsoc results in a large difference in the (2,2)
and (2,3) energy splitting, as is observed in Fig.
10. Performing the same calculation for ϕ = π
corresponding to flux equal to 1

2 h/e reveals that
the case is reversed. Now the (2,2) states split by
tsoc and (2,3) are split by t. This is in agreement
with the AB oscillations in Fig. 15 (b).
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5 Conclusion and Outlook

In this report we have studied a double quan-
tum dot system consisting of a ring shaped 2D
tight-binding lattice with the two quantum dots
separated by barriers. The system includes en
extension of previous theory in [1] to a more
complex and realistic model which in turn can
yield a more accurate and insightful picture of
experimental results. A g-factor enhancement
could be straightforwardly observed in agree-
ment with previous experimental findings and
theoretical models [1] [2], thus proving the un-
derlying physics is intact. There are quantitative
indications of the formation of ring states as an
explanation for the g-factor enhancement. These
include significant angular momentum of the in-
volved states when the 2nd orbital on one dot
aligns with the 3rd orbital on the other dot, the
so called (2,3) crossing. Also, the states involved
in the (2,3) crossing exhibit significant splitting
in a magnetic field indicating orbital contribu-
tions from ring states, similar to that of the ideal
ring and in agreement with previous findings of
ring states in similar systems [2].

Moreover AB oscillations are observed in the
system when a significant magnetic field is ap-
plied such that the ring is penetrated by a large
flux. The oscillations demonstrate how the (2,3)
crossing undergoes transformation from cross-
ing to anti-crossing going from ϕ = 0 to 1

2 h/e
and the angular momentum of the (2,3) cross-
ing obtains its minimum. In contrast, the (2,2)
anti-crossing becomes a crossing with states of
significant angular momentum at ϕ = 1

2 h/e indi-
cating formation of ring states. Thus the orbital
parity requirements for good rings are reversed.
These results are supported by a degenerate per-
turbation theory analysis which predicts as small
splitting for the (2,3) crossing and a large split-
ting of the (2,2) anti-crossing at ϕ = 0 h/e, while
the situation is reversed at ϕ = 1

2 h/e.

An illuminating extension of the model could
include different ring shapes such as hexagonal
or square rings and in a consistent way follow the
impact on the result, giving more insight into the

symmetry dependence of the AB oscillations [16].

To observe the findings of highly anisotropic
effective g-factors in [1] the magnetic field could
be applied in different orientations. This would
be straight forward to include in the model.
Another extension of the model would be con-
sidering the 3D system. Because of the efficiency
of the calculations this would most likely be nu-
merically possible to implement in Kwant. In
practice this could be achieved by stacking the
current 2D model in layers with hoppings con-
necting them. This could possibly yield an even
better picture of the experimental system.

In general, Kwant which is focused on trans-
port calculations, has been a solid tight-binding
package even for stationary problems. It’s fairly
easy to adapt and get started with and has
a variety of customization possibilities and an
extensive documentation. It could have been
useful to know more about how the system is
internally translated to enable further modifica-
tion and make visualization of the system using
other plotting software more accessible. The cal-
culation efficiency is decent when complement-
ing with sparse matrices and an estimated time
frame for diagnolaizing the Hamiltonian pre-
sented in this thesis are in the regime of seconds.

The ability to control the ring states from
good to bad and back again by tuning the mag-
netic field possibly enables interesting applica-
tions in controlling spin properties, for example
in spin qubits. Another topic is the coupling of
the double quantum dot system to a supercon-
ductor in order to study the emergence of Ma-
jorana bound states, which has possible applica-
tions in topological quantum computation. As
magnetic field suppresses superconductivity but
is required to induce a topological phase transi-
tion, it’s desirable to have large g-factors. There-
fore the ability to tune the g-factor over a wide
range in materials with strong SOC (InAs, InSb)
could be of great value in the years to come [2].
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6 APPENDIX A

6.1 AB Symmetry Breaking

The presence of the Aharonov-Bohm effect is in-
dependent of the symmetry of the system as long
as the electron travels in a closed loop around the
magnetic field. However the symmetry of the sys-
tem does affect the energy spectrum. In an ideal
ring there is rotational symmetry C∞, meaning
the system is symmetric under rotations by an
arbitrary angle. This symmetry group has an in-
finite amount of irreducible representations and
leads to an infinite amount of energy states with
different symmetry [16]. Together with the effect
of magnetic flux on the electron state energy, the
AB effect is reflected in continuous crossings of
energy levels as a function of magnetic field, Fig.
16 (a).

Figure 16: Electron energies as a function of magnetic
field strength. (a) Circular symmetric system C∞ (b)
4-fold symmetric system C4. Figure taken from [20].

Introducing horizontal and vertical barriers
on the C∞ ring in Fig. 16 enforces 4-fold sym-
metry C4, where the system is symmetric under
rotations by an angle π

2 . The degeneracy of states
in C∞ are broken in the C4 system. The result is
anti-crossing regions repeating for electron states
m = ±2,±4,±6... and orbital states are grouped
in 4 separated by bandgaps [20], Fig. 16 (b). In
general, a system with finite confinement poten-
tial n (Cn) electron states are grouped in num-
bers of n separated by anti-crossing regions or
bandgaps.

Ideal rotational symmetry C∞ does not hold

for ring states in the discretized model. In Fig.
17 (a) there are no obvious indications of sym-
metry breaking however the effect becomes more
evident when increasing the inner radius corre-
sponding to a thinner ring system.

Figure 17: Electron energies as a function of B-field
strength. (a) Inner ring radius = 10 nm showing a
behaviour close to that of a perfect ring (C∞ sym-
metry). (b) Inner ring radius = 20 nm showing a
behaviour closer to that of a C4 symmetric system.

Fig. 17 (a) shows the state energy evolution in a
B-field for parameters used in the main text. In
(b) the inner radius is set to 20 nm correspond-
ing to a thinner ring. The result is a grouping of
energy states in n = 4 similar to Fig. 16 when
moving from C∞ to C4. This is directly caused
by the discretization. A discretized ring at this
low resolution leads to rough edges where the site
pattern of the edges seems to be symmetric un-
der rotations of π

2 , corresponding to C4. Having
a thicker ring seems to reduce the effect of state
grouping and the system behaves more like C∞,
due to the electron wave function being less af-
fected by the edges.
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