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Abstract

Embedded systems are hard to debug and the field of control software testing is rela-
tively unexplored. Progress in these areas could provide better testing heuristics and
safer systems. More specifically, hardware emulation is a potentially powerful tool
that can help improve the speed and quality of the development cycle. Therefore,
this study developed a hardware emulator for supporting embedded testing, debug-
ging and development. As target hardware, the Bitcraze Crazyflie 2.1 quadcopter
was used. The emulation was done in the open source framework Renode. The de-
velopment of the emulator is accompanied by a discussion on the uses both in the
industry and research environments. In order to set up the emulation, we extended
Renode by implementing different peripherals such as sensors, the EEPROM and
a basic timer. These, together with the created platforms were pushed to the forked
Bitcraze Renode repositories. The repositories are open source and available for
future research projects to use. The emulator allows interactive use to debug and
explore the virtual system without extra hardware. It can also be setup to automati-
cally test proposed firmware changes. The usage is showcased in several test cases,
where different bugs have been injected into the firmware and then found using the
emulation. The main goal for the thesis was to run the same firmware as used in real
Crazyflies and pass a built-in, start-up, self test. Accuracy of hardware emulators is
also an open research problem. As such, the thesis provides a thorough discussion
on the accuracy of the proposed tool. The discussion also includes possible future
work to improve it.
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1

Introduction

The introduction provides an explanation of the relevance and difficulty of firmware
testing, with focus on the different levels of abstraction that can be used. It also
discusses the purpose and the aim of this thesis as well as a description of the report
structure.

1.1 Firmware Testing in Embedded Systems

Control systems today are often implemented digitally, with the control laws imple-
mented as firmware and run on a microcontroller. Control calculations, in practice
compared to mathematical models in a theoretical system, have limited precision
and are not instantaneous. Therefore numerical properties and real-time capabilities
of the microcontroller and written software are crucial for the correctness of the
control system. The physical nature of embedded systems means that flawed im-
plementations may have severe consequences including death [Leveson and Turner,
1993]].

As firmware is developed, changes may unintentionally cause the implementa-
tion to diverge from the original design [Balasubramaniam et al., 2020]. Examples
of changes include altering the type of a variable or allocating different amounts of
memory which may have unexpected side effects. In order to assure the correctness
of the control software the changes needs to be tested. One way to test for the ef-
fect of these changes is uploading the firmware to the microcontroller and running
tests on the physical process. While accurate, assuming the hardware is working
correctly, this method has some flaws.

Compiling and flashing new versions of the firmware and running tests on the
physical process can be a slow and time-consuming task, which needs to be redone
after each firmware change to ensure the feasibility of the changes. Since controllers
evolve and are constantly updated throughout their lifetime [Balasubramaniam et
al., 2020], speeding up tests may provide faster feedback and more time can be
used for development instead of testing.



Chapter 1. Introduction

Non-technical reasons, such as economical or safety factors, may also limit the
possibility to perform test scenarios on real hardware. Examples include rockets,
usually single-use devices, and nuclear power plants, where experiments can be
detrimental. If hardware is emulated, functionality could be removed or altered to
identify how hardware faults affect the firmware. Emulated hardware also allows
execution at a chosen timescale.

Despite simulations being faster than real world testing it is not used to the
same extent in practice when for example developing service robots. One of the
main reasons to why is the limitations of how well simulations capture real world
behaviour [Garcia et al.,[2020]]. Further research to find ways to improve correctness
of simulations could prove fruitful to enable more usage of simulations.

1.2 Levels of Control Firmware Testing

Failures are consequences of errors i.e. the system being in a faulty state. Errors oc-
cur due to anomalies in the software, commonly known as bugs, caused by human
mistakes. There are several different levels of abstraction that can be used when
designing and testing control systems to detect failures and finding these bugs. The
level of abstraction depends on which parts are realised and which are virtual. Some
of the most common concepts can be summarised in the four levels model-in-loop
(MIL), software-in-loop (SIL), hardware-in-loop (HIL) and process-in-loop (PIL)
with a decreasing usage of emulated components. While providing more accurate
test results and covering more possible problems, using additional hardware can
cause tests to be more expensive and time consuming. It may therefore be a waste
to use additional hardware if problems are detectable with more emulated compo-
nents of the system. What needs further research is which level of testing is optimal
in a given situation, which could provide heuristics to streamline control software
testing.

As seen in the setup presented in Figure[I.Ta] the MIL level is based on the use
of both a controller model and a process model. The MIL method is most commonly
used when starting to design a controller and directly implements a mathematical
model, such as a transfer function or state-space model. During MIL testing the
simulated model of the physics of the plant is used to develop the controller. This
is often done in simulation tools such as Simulink At this level one would expect
to find problems with the control law, such as instability even during ideal circum-
stances and whether the performance is satisfactory.

From the controller algorithm designed during the MIL level the control soft-
ware is written. During SIL testing this software is executed instead of using a
mathematical model as done during MIL testing. The setup model for SIL testing
is presented in Figure How this simulation is designed varies. In some cases

Uhttps://se.mathworks.com/products/simulink.html
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1.2 Levels of Control Firmware Testing
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(a) Model-in-loop testing setup. (b) Software-in-loop testing setup.
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(c) Hardware-in-loop testing setup. (d) Process-in-loop testing setup.

Figure 1.1: Comparison of the setup for the different testing levels. It shall be noted
that the process-in-loop setup shown in Figure is equivalent to the setup of the
final implementation.

SIL means that the software is tested with the same plant model as in MIL but with
the controller model replaced by executing firmware. In other cases it is tested in
simulation software designed to be as close to the real intended hardware as possi-
ble [Sarhadi and Yousefpour,2014]|. During SIL testing the main focus would be on
discovering software bugs and run-time errors.

HIL testing is where the target hardware is incorporated into the testing as illus-
trated in Figure[I.Tc] Hardware in the loop is a real-time simulation where the plant
and environment can still be simulated, while the software is run on real hardware
such as embedded computers with actuators and sensors [Sarhadi and Yousefpour,
2014]). Incorporating the target hardware enables timing and communication prob-
lems to be discovered.

Testing the real setup, PIL in Figure[I.1d] should have the ability to catch every
possible problem. In PIL testing everything is setup as the final version i.e the phys-
ical process is included in comparison to the HIL testing where it was simulated.
The main problem is that it in most cases becomes harder to diagnose the problem
and identify whether it is caused by the hardware or the firmware.

11
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1.3 Purpose and Aim

In order to enable further research in control software testing, this thesis provides
a case study of SIL modelling for the Crazyflie 2.1. Developed by Bitcraze the
Crazyflie is a small indoor quadcopter used for both research and education.

The aim of the master thesis is to emulate the Crazyflie hardware in the open
sourced software framework RenodeE] The goal is that it should be possible to ex-
ecute the unmodified firmware on the emulated hardware and pass the built-in self
test.

The purpose of the emulated system is to be used both for improving devel-
opment cycle speed for Bitcraze and for research to study control software testing
methods. The feasibility of emulating the hardware in Renode is discussed as well
as the feasibility of the hardware emulation itself. This thesis will thus provide both
industrial and academic value.

The scope of the thesis is limited to SIL testing of the Crazyflie firmware with
only the required peripherals emulated. The emulation was also limited to the main
application microcontroller, handling the flight loop.

The requirements are therefore summarised as:

* Emulate the Crazyflie hardware using Renode
* Flash the unmodified firmware

* Pass the Crazyflie start-up self test

* Integrate with the Bitcraze development cycle
 Discuss feasibility of the hardware emulation

All of these requirements are met with the exception that the firmware had to be
slightly modified, explained in Section [3.3]

1.4 Report structure

The following section summarises the different chapters of this thesis.

Introduction

The introduction contains a general background to firmware testing in embedded
systems and different levels of testing. The chapter also explains the purpose and
aim of the thesis as well as an outline of the report structure. A list of abbreviations
and keywords is also presented.

2https://www.bitcraze.io/
3https://renode.io/
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1.4 Report structure

Background

In this chapter a background to the Crazyflie and the microcontroller used by the
Crazyflie is presented. The software framework Renode is also presented with an
explanation of how Renode platform files are built. An example of such a file is also
given.

Emulator Implementation

In this chapter a description, of the method used when implementing the Crazyflie
hardware in Renode, is given. The pre-existing emulation elements used are de-
scribed while the specific peripherals that were modified or implemented are ex-
plained and described in more detail.

Example Usage

This chapter gives a brief explanation of how to use the emulator and run simula-
tions in Renode with the use of Renode script files. An overview of different usage
areas are presented and example test cases are given to showcase the usage.

Discussion

The advantages and drawbacks with the approach as well as the accuracy of the em-
ulator are discussed in this chapter. Also discussed are the benefits and expectations
of using the emulation and future work that can be done to improve the emulator.

Conclusion

This chapter concludes the report by summarising how the project went with reflec-
tions of the goals and if they were achieved.

Appendix A

Includes a description of how to install and use the emulator.

Appendix B
Includes the Renode script file used to load the Crazyflie platform.

Appendix C

Includes the Renode script file used for automatic testing.

Appendix D

Includes the shell script file used to automatically test if the firmware self test is
passed.

13
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1.5 Division of Labour

Both students involved in this project have, in all parts of the report and the emula-
tion, provided an equal amount of time and effort. No specific division can therefore
be presented. Both students have written and revised all documents, contributed to
the code and the assembled the emulation to the same extent. Both students have
also performed the simulations and tests.

1.6 List of abbreviations and keywords

Table 1.1: An overview of words and acronyms used in this report.

Keyword | Description

Crazyflie 2.1 | A small expandable quadcopter with open source

firmware, see Section

MCU | Microcontroller Unit
Flashing | Uploading firmware from a host machine to the target sys-
firmware | tem, saving it to flash memory or directly execute it from

RAM

CI pipeline | Continuous integration, automatic tests run to check
changes proposed to software

GDB | Gnu Debugger

OpenOCD | Open On-Chip Debugger, debug software for embedded
system running on a host machine

I/O | Input/Output
MIL | Model-in-Loop, see Section|1.2

SIL | Software-in-Loop, see Section (1.2

HIL | Hardware-in-Loop, see Section|1.2

Continued on next page
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1.6  List of abbreviations and keywords

Table 1.1 — Continued from previous page

Keyword | Description
PIL | Process-in-Loop, see Section (1.2
RESC | Renode Script, see Section
REPL | Renode Platform, see Section
STM32F405 | MCU where the main firmware of the Crazyflie 2.1 is exe-
cuted
nRF51822 | MCU handling power, radio and expansion decks of the
Crazyflie 2.1
KiB | 2'° bytes
MiB | 2% bytes
SRAM | Static Random Access Memory
CCM | Core Coupled Memory, a type of work memory not con-
nected to a DMA, meant for executable code and data
OTP | One-Time Programmable, memory location written to dur-
ing production
DMA | Direct Memory Access, see Section
I’C |%Tocol to transfer data between two devices, see Section
1-wire | A type of communication protocol using only one wire
BMIO088 | Inertial sensor for motion in six degrees of freedom, see
Section
BMP388 | Pressure and temperature sensor, see Section

15
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Background

This chapter gives a short background to the Crazyflie 2.1 hardware along with
information about the firmware and a motivation to why the Crazyflie was chosen
as a case study. Information regarding the microcontroller used by the Crazyflie and
how it works is also presented. The chapter also gives general information about
Renode and how the Renode platform files are built.

2.1 The Crazyflie 2.1 Quadcopter

The Crazyflie is an open source flying development platform developed by Bitcraze.
The quadcopter, shown in Figure 2.I] weighs approximately 27 g. The size of
the Crazyflie motor-to-motor, including the motor mount feet, is approximately
92x92x29 mm?.

Figure 2.1: The Crazyflie 2.1.

16



2.1 The Crazyflie 2.1 Quadcopter

The Crazyflie has been used in several different research projects. Among other
things, it is often used in swarm control research [Preiss et al., 2017]]. The CrazyS
[Silano and Iannelli, 2020] is an extension of the Robot operating system RotorS,
aimed to modelling, developing and integrating the Crazyflie in the physics based
simulation environment Gazebo and it is used in several different research projects
[Silano et al.,|2019][Silano et al.,|2018]]. The Crazyflie is also used by hobbyist in
smaller projects.

The firmware used, being open source, allows other users to modify it and con-
tribute with changes. For task scheduling and synchronization, the real time operat-
ing system FreeRTOﬂis used.

From the fact that the Crazyflie is designed for indoor flight and the firmware
is open source it follows that the Crazyflie is a good case study. The firmware is
also considered manageable and not too complex in comparison to the more gen-
eral drone controllers like ArduPiloﬂ and PX4E] which both aim to support a variety
of different boards. The Crazyflie may be simpler, but it is still more than an aca-
demic proof of concept. It still has many of the functionalities expected from any
larger drone, like autonomous flight, radio communication, possibility of carrying a
camera and streaming images.

There are two microcontroller units (MCU) on the Crazyflie, an STM32F405
controller connected to an nRF51822 controller. The STM32F405 is the main ap-
plication MCU, handling e.g. the flight loop, whereas the nRF51822 is the radio and
power management MCU. It is possible to add extension decks to the main deck,
adding more features than provided by the base configuration.

Not all peripherals available on the microcontrollers are used for the Crazyflie.
Which are used can be found by examining the Crazyflie firmware. The Crazyflie
firmware is accessible at Bitcraze Github repository The ones that were added to
the emulation are presented in Table [2.1] For information about the unused periph-
erals, see the reference manual [STMicroelectronics, 2019]. Aside from internal
peripherals in the microcontroller, external peripherals such as an EEPROM, de-
scribed in section and sensors are soldered onto the Crazyflie board.

Uhttps://www.freertos.org/index.html
2https://ardupilot.org/

3https://pxé.io/
“https://github.com/bitcraze/crazyflie-firmvare
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Chapter 2. Background

Table 2.1: The peripherals added to the emulation and the ones not added. The used
peripherals are presented in Chapter

Peripherals Peripherals
added not added
Flash DMA2D
CPU ADC
SRAM DAC
CCM DCMI

OTP IWDG

BitBanding WWDG
NVIC RNG
RCC SPI
RTC SDIO

USART 3, 6 USART 1, 2,4,5
EXTI bxCAN

’C2,3 ’C1
DMA 1,2 USB
GPIO FSMC
Timer 2, 4,7 | Timer 1, 3,5, 6, 8-14

2.2 The STM32F405 Microcontroller

As previously mentioned, the main MCU is the STM32F405 microcontroller. The
MCU is manufactured by STMicroelectronics and uses a 168 MHz ARM Cortex-
M4 core and several peripherals. Information regarding the peripherals were found
in the reference manual [STMicroelectronics, 2019]).

Peripherals

The microcontroller includes numerous peripherals for more functionality. The pe-
ripherals are connected to the core via buses in a bus matrix. Different peripherals
are connected to different buses which limits how they can communicate.

Peripheral units include pins for inputs and outputs and are interacted with via
registers. Those registers are memory mapped to one unique address each, which
means that they are accessible via firmware instructions. One notable peripheral for
this work is the inter-integrated circuit (I2C) interface, used to communicate with
external peripherals such as sensors and non-volatile memory.

The I2C interface can connect several devices into an 12C-network, although
only two devices, a master and a slave, communicate simultaneously. Each device in
the network has their own address from which they are identified. The master device
initiates communication with the slave device by sending a start signal, which the
slave acknowledges, and after each transferred byte either an acknowledged or not

18



2.2 The STM32F405 Microcontroller

acknowledged signal is sent from the receiver. Finally the transaction is finished
with a stop signal from the master device.

Addressing

Using 32-bit addresses, divided into eight 512 MiB blocks as illustrated in Figure
[2.2] the core can access peripheral registers and memory. Each block may also be
divided into multiple sub-regions, e.g. the flash memory region with executable in-
structions starts at address 0x08000000 and is where the program counter should
point to normally. The third memory block, starting at address 0x40000000, is
mapped to the peripherals. This memory mapping enables configuring and con-
trol of the peripherals by simple read and write instructions. The three flexible
static memory controller (FSMC) blocks, i.e. blocks 3, 4 and 5, are not used by
the Crazyflie. Block 6 is never used by the STM32F405.

0y Oy 0y 04 o O O O
‘&, o Spﬁpp ‘yﬁkpp &)'X\/o gpﬁpp epppp Opﬁpp ppﬁpp
ﬁpp Fpp ﬁ)z,\p ﬁ)z,\p iv}% &y, }v},xp Ppp
| | 7
0 1 2 L0345 6 Cortex-M4
Code SRAM |Peripherals FSMC banks and registers Not used | internal
| | peripherals
0, o 0 7 0 o 0
0 g o) g, X6, s, 4, g’ 1L
00000 00000 00000 00000 00000 400000 00000 00000
0 (7] (7] 0 (77) (7] (47) (7]
Figure 2.2: Memory mapping of the STM32F405.
Interrupts

Hardware interrupts allow hardware to signal the core that a certain event has hap-
pened or a condition is fulfilled. These signals are sent from peripherals but may
be caused by external events. When an interrupt occurs it is masked i.e. decided
whether the interrupt should be handled. After being masked the interrupt is ap-
propriately prioritised relative other interrupts and may cause the core to execute
a subroutine to handle the interrupt. Once handled the firmware can continue. In-
terrupts enable the firmware to respond immediately and may be configurable for
each peripheral. An example is setting a peripheral to interrupt once data transfer
has been completed.

Direct Memory Access (DMA)

As a way to transfer data without using instructions to the central processing unit
(CPU), direct memory access can be used. During normal data transfer, the CPU is
occupied for the entire duration of the read or write operations. With the DMA, the
CPU initiates the transfer and then it does other operations while the transfer is per-
formed by the DMA. This allows data to be sent between peripherals and memory or

19



Chapter 2. Background

between two memories connected by the same bus as the DMA peripheral without
occupying the CPU. The STM32F405 has two DMA peripherals, each connected to
different sets of peripherals depending on the buses.

2.3 Renode

Renode is an open source development framework that lets the user build and as-
semble virtual systems-on-chips (SoC). This is done using a variety of available
cores, communication buses and interfaces. A SoC is an integrated circuit known
as a chip that almost always include a CPU, memory and input/output ports along
with other components. Everything is on a single microchip.

Firmware in Renode can be emulated as though flashed from ELF (executable
and linkable format) binary files. This type of binary is built by default when making
the Crazyflie firmware along a smaller binary file which normally is the file flashed
to the real Crazyflie. The ELF file is larger and contains extra information useful for
debugging.

Emulators in Renode are not cycle-accurate, the time required to execute in-
structions on real hardware is not reflected in the emulations. The core emulation
method instead reflects the focus on fast simulations to achieve efficient function
validations of large and complex systems [Herdt et al., [2020]]. The time model is
also made for multi-node systems. The highest time resolution in Renode, a "quant",
is one millionth of a second. Each machine in an emulation has a local clock and
resolution, allowing different machines to exist and synchronise with a given period.

Two alternative simulation platforms not chosen were QEMU [Bellard, [2005]]
and gem5 [Binkert et al., 2011]], both focus on emulating core architectures instead
of entire platforms. However, for testing control systems, the entire platform with
actuators and sensors are needed. Considering the scope of this thesis Renode was
chosen as the simulation framework. Note that the core emulation library, tlibE] used
in Renode is based on QEMU.

Renode Peripherals

The peripheral modules are primarily written in C# and use features of object ori-
ented languages, such as interfaces and inheritance, to build the communication
connections between the peripherals. If a peripheral has registers, they can be im-
plemented with an existing register class. The register class supports callback func-
tions, which can be used to emulate hardware responses to registers being read or
written. Certain bits or whole registers may be reserved, named or defined as read or
write only, violating these annotations causes Renode to print a message informing
the user of the violation. Public functions are used for interacting with other parts
of the emulation or the user, typically functions to read or write registers or reading
the state of a peripheral for example an LED.

Shttps://github.com/antmicro/tlib/tree/master
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2.3 Renode

Some functions are also written in C and there is support for Python as well.
Mainly, to make it possible to create and integrate simple Python scripts acting as
peripherals. It is also possible to add hooks listening to certain events which execute
Python scripts when triggered, such as when access to a peripheral is made.

There is an already existing library of peripherals in Renode. Renode therefore
has built in support for several different microcontrollers and boards. There are also
several board descriptions provided, one of them for a microcontroller from the
STM32F4 family.

Renode Platforms

Platforms are described in Renode platform (REPL) description files and are used
to attach peripherals to a machine. The syntax used when attaching peripherals is
exemplified in Listing[2.1] Note that the indentations matters. Single line comments
start with two slashes. Peripherals create instances of C# classes and attach them
to a parent peripheral at the specified address. The parent peripheral can either be
another peripheral such as the I>C or the sysbus. The sysbus is used in the emu-
lation as a base to which the peripherals can be attached. The given name is used
to reference the peripheral via Renode and thus several instances of the same class
can be used. Additional arguments for the object constructor can be provided when
creating the peripheral, for example the memory size. Finally an arrow can be used
to connect signals between peripherals, commonly used for interrupts. In the ex-
ample, when the object named Interrupt in ClassName is activated input 3 in the
peripheral interrupthandler is triggered. Further details are available in the Renode
documentation

Listing 2.1: Example REPL file syntax.

// 1 am a comment

peripheralname: Namespace.ClassName @ parent 0x08000000
numericConstructorField: 0x100000
stringConstructorField: "template"
Interrupt —> interrupthandler@3

REPL File Example

The example of a REPL file is presented in Listing [2.2] The listing, a subset of
the finished Crazyflie platform, showcases how a complete platform with multiple
peripherals added may look. No explanations of these peripherals are given here, as
previously mentioned the details are presented in Chapter 3]

In the example a core is added to the sysbus. As mentioned the sysbus is the
base used in the emulation to attach peripherals to. The added core is of the type

Shttps://renode.readthedocs.io/en/latest/
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Chapter 2. Background

Cortex-M4 and the NVIC used by the core is defined as the peripheral named nvic.
A flash memory of the size 0x100000 is defined at the address 0x08000000 followed
by the definition of the NVIC peripheral named nvic. The EXTI is added and the
different external interrupts are set to different NVIC interrupts.

A GPIO port, added at 0x40020C00 with size 0x400, is connected to EXTI
channels while the second interrupt channel is connected to the LED. The LED is
added by connecting it to the GPIO port and is an example of how some peripherals
can be attached to other peripherals and not directly to the sysbus.

Listing 2.2: Example REPL file with multiple peripherals.

cpu: CPU.CortexM @ sysbus
cpuType: "cortex —-m4"
nvic: nvic

flash : Memory.MappedMemory @ sysbus 0x08000000
size: 0x100000

nvic: IRQControllers .NVIC @ sysbus OxEOOOEO000
priorityMask: 0xFO
systickFrequency: 72000000
IRQ —> cpu@0

exti: IRQControllers .EXTI @ sysbus 0x40013C00
[0-6] —> nvic@[6-10, 23, 40]

gpioPortD: GPIOPort.STM32F4GPIOPort @ sysbus <0
x40020C00, +0x400>
[0,1,3-15] —> exti@[0,1,3-15]
2 —> ledB@0O

ledB: Miscellaneous .LED @ gpioPortD

22




3

Emulator Implementation

Section [3.1] presents the outline of the method used when creating the emulation
and the Renode platform. The pre-existing emulation elements used are explained
in Section followed by the specific peripherals modified or implemented for
the thesis in Section [3.3] A summary of peripherals not included in the emulator
concludes the chapter in Section [3.4]

3.1 Outline of Method

Since hardware emulation itself is not a well-established field, the implementation
process used in this thesis could prove useful for future emulations. The method
was based on the task to run the firmware and pass the start-up self test, not imple-
menting the entire system and thus some peripherals were excluded.

The Crazyflie firmware was examined to get a better understanding of the
Crazyflie 2.1 platform and how the firmware is structured. After understanding the
general structure of the firmware, Renode was studied. The existing tutorials were
read and done to get familiarised with the emulator framework before starting to
implement the emulated platform.

As a reference for writing the platform description file for the STM32F405, the
layout of the pre-existing STM32F4 platform description was used. While being a
part of the same microcontroller family with several reusable peripherals, there were
important differences between the pre-existing STM32F4 and the STM32F405 that
had to be included in the implementation.

The implementation in Renode was done by going through the Crazyflie
firmware and adding peripherals step by step to iteratively execute more of the
firmware. Since not all available peripherals on the STM32F405 are used by the
Crazyflie only the relevant ones were added. The unused peripherals could not be
properly tested without major changes to the firmware and it was therefore decided
that focus should be on the ones needed.

While the emulation should mimic the real system, some simplifications were
made. As mentioned in Section the real peripherals should be connected to dif-
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; E STM32F405 Core Flash GPIO ; LEDs
SRAM Bitbanding CCM 12C E EEPROM
oTP NVIC RCC Timers Sensors
EXTI RTC DMA USART nRF

_____________________________________________________

Figure 3.1: The emulated system illustrating how peripherals relate to the
STM32F405. Those connected to the STM32F405 are attached to the sysbus. Sen-
sors and the EEPROM are attached to I>C peripherals and LEDs are outputs from
GPIOs. Due to how it was implemented, the nRF is also attached to the sysbus.

ferent buses, but instead peripherals that are a part of the board were connected to
the sysbus, explained in Section[2.3] This mainly affects how peripherals may inter-
act and is further discussed in Section[5.3] The single sysbus was used because that
is how Renode is structured and different platforms are built on the sysbus.

During the implementation Renode’s showAnalyzer function was used to dis-
play debug print messages added to the firmware on the USART, described in Sec-
tion [3.2] The log provided information when registers were read or written, with
verbosity configurable for each peripheral. To Renode it was also possible to con-
nect a GNU Debugger (GDB) session and e.g. stop at breakpoints at specific lines in
the firmware source code to be able to read specific registers at certain times during
a simulation.

Once the emulation worked, the peripherals were sorted into two REPL files,
one containing the peripherals on the STM32F405 and one for the external periph-
erals added to the Crazyflie board. This is illustrated in Figure [3.1]
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3.2 Existing Emulation Elements

Since a library of different components and peripherals already existed in Renode,
there were some components that could be reused for the Crazyflie platform without
any changes. Even though the peripherals already existed they had to be checked to
make sure they worked as intended before they were used. Different properties and
settings, such as memory sizes and interrupt locations, also had to be found and
configured when putting the platform together.

Core

The core used in the STM32F405 is an Arm Cortex-M4 core. The Cortex-M4 core
is intended for deeply embedded applications that require fast interrupt response
features. Two of the processor features are the processor core and the nested vec-
tor interrupt controller (NVIC), which is explained later in this section. Emulation
of the Arm Cortex-M4 core was already supported, handled by the C library tlib
based on QEMU. As seen in the example given in Listing the core is defined
to be "cortex-m4" since the Cortex-M implementation supports other cores, such as
"cortex-m3", in the Cortex-M series. How the NVIC used by the core is defined is
also shown in the example.

Flash, SRAM, CCM and OTP

Memory peripherals implemented were the flash and one-time programmable
(OTP) storage memory as well as static random access memory (SRAM) and core
coupled memory (CCM) work memory. The main 1 MiB flash memory is where
executable code is stored. As an example, Listing [3.1|shows how the flash memory
was included in the STM32F405 REPL file. The 528 byte OTP is written to during
production and contains e.g. an identification number of what platform the chip is
mounted on. Adjacent to the OTP is a 30 KiB system memory used for a specific
boot mode. The work memories consist of 128 KiB SRAM and 64 KiB CCM. The
main difference between them is that CCM is only connected to the core and thus
inaccessible from a DMA unit but also provides lower access latency.

For instructions to be executable in the emulation, the mapped memory periph-
eral operates at C level like the core emulation instead of C#. A memory peripheral
on the C# level exists but is slower and code cannot be executed from it, for those
reasons only the C peripheral was used. The C memory peripheral has size con-
straints and the peripheral used for the OTP therefore had to be larger than 528
bytes. This limitation caused the system memory and some reserved memory to be
included in the emulated OTP peripheral, with a total size of 32 KiB.

Listing 3.1: Description of the flash memory.

flash: Memory.MappedMemory @ sysbus 0x08000000
size: 0x100000
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The firmware periodically writes an increasing value to a reserved memory lo-
cation. As a way to suppress the warning messages and use the values written, a
dummy memory peripheral was added at address 0OxEO000000. Due to the same
Renode limitations as for the OTP the peripheral had to be larger than one byte.

Bit-Banding

The Cortex-M4 supports bit-banding for the SRAM and peripheral registers. Bit-
bands allow atomic operations to access register bits since addressing normally
has a byte-wise resolution. The two bit-band regions start at 0x20000000 and
0x40000000 respectively as seen in Listing To access the bit-band region bits,
an aliased region, where each 32-bit word is an alias to one bit in bit-band re-
gion, is used. The two aliased regions in the STM32F405 starts at 0x22000000
and 0x42000000 respectively and both are of size 0x02000000.

Listing 3.2: Description of the bitbanding regions added in the REPL file.

bitbandPeripherals: Miscellaneous.BitBanding @ sysbus
<0x42000000, +0x02000000>
peripheralBase: 0x40000000

bitbandSram: Miscellaneous.BitBanding @ sysbus <0
x22000000, +0x02000000>
peripheralBase: 0x20000000

General-Purpose 1/0s (GPIO)

The 9 GPIO ports, with 16 pins each, are used to connect certain external units,
for example the LEDs. Only 4 GPIO ports were added to the emulator since the
majority are unused in the Crazyflie. Internally when creating peripherals, GPIO
objects can be used to emulate interrupts from peripherals. Thus when describing
platforms, GPIO connections are made with the same syntax as interrupts.

Nested Vectored Interrupt Controller (NVIC)

The NVIC manages all interrupts including the core exceptions. The NVIC also
handles the priority of the interrupts. To enable low latency interrupt processing and
efficient processing of late arriving interrupts, the NVIC and the processor core are
closely coupled. The NVIC provides 256 priority levels. The interrupts are masked
and prioritised, then handled by the core via a function call from the NVIC or ig-
nored.

For the emulation, interrupting peripherals must be connected to the NVIC in the
platform description file. In the file they are also given their position in accordance
to the reference manual i.e. the interrupt is connected to the NVIC, an example can
be seen in Listing where the EXTI is connected to the NVIC.
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External Interrupt/Event Controller (EXTI)

The EXTI peripheral is used to signal an interrupt when triggered by a peripheral
connected via GPIO. The real EXTI can also wake up the system when a wake up
event occurs. This functionality is not used and therefore not implemented.

The EXTI was connected to the NVIC according to the STM32F405 reference
manual. Up to 16 GPIO pins can be configured as external interrupts. In Listing [2.7]
it can be seen how 15 GPIO pins are configured as inputs that may trigger interrupts.

Reset and Clock Control (RCC) & Real-time Clock (RTC)

In real systems the RCC controls whether peripherals should receive clock signals
and be enabled. Although with no apparent use during the emulation, it was imple-
mented with the help of the RTC based on another STM32F4 board described in
Renode. The RTC, providing absolute time information such as current day of the
week or year, is not used by the Crazyflie but the RCC dependency meant that it
was added.

Universal Synchronous Asynchronous Receiver Transmitter
(USART)

The USART peripheral is used to interconnect the STM32F405 with other systems.
In the Crazyflie the USART communication interface is used to connect the two
microcontrollers, the STM32F405 and the nRF51822. Debug messages may also
be read via a USART connection using a built-in Renode monitor.

For the implementation of the USART in the emulation, the existing Renode
peripheral STM32_UART was used. This was possible since the Crazyflie does not
use the synchronised communication functionality specific to the USARTS.

Different USART peripherals e.g. USART3 and USART®6, are described and
added in the platform description file whereas connections between them are made
via Renode commands. Different USARTSs can be collected in hubs. When con-
nected to a hub all USARTs will receive a message being sent by one of the
USARTS. This property is used when mimicking the syslink, which is described
in Section[3.3] External communication outside the emulation is possible by linking
a USART peripheral to a socket server, allowing an external program to affect the
emulation.

Light Emitting Diodes (LEDs)

The LEDs are external peripherals that are connected to the STM32F405 via the
GPIO. An LED can print to the log when changing state (on or off). The signal for
changing state is an example of a signal between peripherals that is not an interrupt.
In Listing [3.3] output 2 from GPIO port D is connected to an undefined peripheral
ledB which is then created, demonstrating how peripherals can be created in any
order when describing platforms.

27



Chapter 3. Emulator Implementation

Listing 3.3: The blue LED connected to the STM32F405.

gpioPortD:
2 —> ledB@0O

ledB: Miscellaneous .LED @ gpioPortD

Direct Memory Access (DMA)

The DMA is a communications peripheral for transferring data, presented in Section
[2.2] Because of the complex structure and the fact that the DMA appeared to work
with the registers that were implemented, no changes were made to the pre-existing
STM32_DMA peripheral. When running the emulation there are a few warnings
from unhandled read/writes to unimplemented registers. These registers would con-
trol a buffer which is not implemented in the emulated peripheral and is unused by
the Crazyflie. The settings the Crazyflie tries to write to the registers would disable
the use of this buffer. Note how on a physical system, the bus connections would
limit what peripherals a DMA could transfer to and from. In the emulation there are
no such hardware limitations and this is discussed further in Section 5.3

3.3 Modified and New Peripherals

Whereas the previous section described pre-existing peripherals that could be used
without any modifications, the following where either implemented or modified.

Inter-Integrated Circuit (12C)

The I>C connects the STM32F405 with external peripherals. One master device,
here the I2C peripheral on the STM32F405, controls the communication to a slave
device with a clock signal and data is transferred via a data signal. The flow of
messages is handled via physical start and stop conditions i.e. when the clock signal
is high and data signal switches. The master requests either reading or writing when
initiating the transfer by sending an address with a read-or-write bit to all connected
peripherals. Note that only 7-bit addressing is used in the Crazyflie although 10-
bit addressing is possible. As an example, when writing to the EEPROM the byte
0x51 would be sent from the master whereas 0x50 would be used for reading. The
corresponding peripheral then acknowledges and the rest of the communication,
between the master and the slave, is peripheral dependant.

The emulated version is based on writing data to a buffer and then burst trans-
ferring the data as an argument to a function in the receiving peripheral. There is a
C# interface which must be implemented by all classes that connect via I>C. The
interface mainly specifies the signatures of Read and Write functions.

Using the original I?C implementation caused issues during transfer of data to
peripherals. The status register for when byte transfer was completed got set before
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all data was sent, causing the firmware to believe the transaction was finished with-
out sending all data. In an attempt to fix this issue, a task is scheduled with a delay
to wait for more data to be transferred. If no extra data has been received, the 12C
byte transfer finished register is set. The I>C peripheral now sends one extra byte
which can be handled by ignoring the final byte in the receiving peripheral.

When reading over the I2C interface, direct memory access is used by the
Crazyflie firmware which for unknown reasons does not work in the emulated sys-
tem. By adding a function in the firmware to enable DMA before every read, every-
thing works as intended. This was the only functional change made to the firmware
and has been incorporated into the real firmware, tagged for future removal. The
impact of the I*C problems is discussed in Section

With the current implementation of the I>C, the connected peripheral does not
know how many bytes should be read. For this to be possible the read function
would need to be rewritten. Further work to be done on the I2C is discussed in
Section[5.4]

Timers

The STM32F405 has three types of timers: the advanced, general purpose and basic
timers. Of the three types only the latter two are used by the Crazyflie firmware.

The general purpose timers have all the features of a typical timer-counter mod-
ule. Some of the basic uses are pulse width modulation (PWM) generation, input
capture, time-base generation and output compare. Basic timers are in comparison
strictly used for time-base generation purposes since they have neither I/O channels
for input capture nor PWM generation. The advanced timers are however very sim-
ilar to the general purpose timers, but they have the additional ability to generate
complementary PWM signals and to generate brake and dead-time for such signals.

The existing STM32 general purpose timer in Renode did not allow reading or
writing 16-bit words. This was changed so that 16-bits words could be read and
written as well.

While the general purpose timers are used by the motors, the basic timer is used
when timing is needed with microsecond resolution in the firmware. Several reg-
isters and functionalities regarding the capture and compare ability, were removed
from the general purpose timer to create the basic timer peripheral used in the em-
ulation.

Electrically Erasable Programmable Read-Only Memory
(EEPROM)

The EEPROM is storage memory used to store configuration data such as the radio
address. It is re-writable with a physical pin used to toggle write protection, which
is grounded in the Crazyflie i.e. always disabled. Communication is done via I*C.
No EEPROM peripheral existed, thus the 24AA64 EEPROM had to be imple-
mented using the I?C interface. Aside from read and write functions, the default
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stored data is the default Crazyflie radio configuration which can be changed eas-
ily. Although the EEPROM is a storage peripheral, memory access is not trivial
since communication is done via the I*C interface. Whenever data should be read
or written two addresses are needed, one for the EEPROM peripheral and one inter-
nal pointing to the memory location of interest. This can be compared to memory
mapped storage such as the flash which only requires one address.

The 8 KiB available memory is divided into 256 pages, each 32 bytes and writ-
ing data is done either as a single byte or multiple in a single page. If more bytes
would be written than the available space in the current page, a wrap-around hap-
pens to the beginning of the page instead of continuing to the next. This could lead
to accidentally overwriting data and further complicates the implementation.

The three read modes available are current address, random and sequential read.
Current address mode reads the next byte following the internal address pointer,
random address mode first receives the address to be read from and in sequential
mode consecutive bytes are read until a stop signal is received [Microchip, 2012].
Given the way the I>C is implemented in Renode, the EEPROM cannot know how
many bytes are read (even though the Read function in the I*C-peripheral interface
takes an integer argument) and thus the entire memory buffer is returned upon read-
ing as illustrated in Listing[3.4] As such sequential read, which should increase the
address pointer for each byte read, followed by current address read does not work
in the emulation since only one increment is made.

Listing 3.4: The EEPROM read function without comments and logging commands.

public byte[] Read(int count = 1)

{
byte[] result = new byte[storage.Length];

var ap = ((ushort)highAddress <<8)+lowAddress;
Array .Copy(storage , ap, result, 0O, storage.Length — ap);
Array .Copy(storage , 0, result, storage.Length — ap, ap);

lowAddress ++;
if (lowAddress == 0)
{
highAddress ++;
highAddress &= OxI1F;
}

return result;
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nRF/Syslink

In the real platform, the syslink connects the STM32F405 to the nRF via a USART
connection. The syslink is the name used in the Crazyflie firmware for this com-
munication connection. In the emulation the nRF was implemented as a simple pe-
ripheral echoing back the received messages. This was achieved by letting the mock
nRF be a simplified UART peripheral named CF_Syslink. As previously mentioned,
in the "USART" subsection in Section the communication was achieved using
a hub. The function for sending back a message is presented in Listing

Aside from power and radio management, the nRF also handles attached ex-
pansion decks via 1-wire, which is the communication bus used for the expansion
decks. When a message is sent to the nRF, the STM32F405 expects a response. This
is usually the sent message echoed back but exceptions exist. As seen in Listing 3.5
the case when the message is SYSLINK_OW_SCAN a different message, telling the
emulated STM32F405 that no expansion decks are attached, is returned. How this
implementation could be improved is discussed in Section[5.4]

Listing 3.5: The function for the emulated nRF to echo back messages after receiv-
ing and storing data in receiveFifo.

private void SendBack ()
{
byte[] data = receiveFifo.ToArray();
switch (data[2])
{
case 0x20: // SYSLINK_OW_SCAN
byte[] OwScanData = CreateMessage (0x20,
0x01, new byte[]{0x00});
for(int i = 0; i < OwScanData.Length; ++i)
{
CharReceived ?. Invoke (( byte ) OwScanData[i]);
}
receiveFifo.Clear ();
break ;
default:
while (receiveFifo.Count > 0)
{
CharReceived ?. Invoke ((byte)receiveFifo .Dequeue ());
}
break ;
}

this .Log(LogLevel.Noisy, "Complete _data_sent _back!");
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Sensors

There are two sensors used by the Crazyflie. A BMIO88, with both a gyroscope
and accelerometer, and a BMP388 barometer. Since neither of these sensors were
pre-existing in the Renode library they had to be implemented based on existing
Renode C# interfaces similarly to other sensors. The BMIO8S is effectively two
sensors, a gyroscope and accelerometer with separate pins and registers, and those
were therefore implemented separately. Communication with the sensors is done
via the IC and the interrupts are set by EXTI and GPIO pins. The inclusion of the
sensors in the REPL file is shown in Listing Due to the way the interrupts are
wired according to the Crazyflie schematics[ﬁ%]y the interrupts from the gyroscope
are used by the firmware. Because of this only the interrupts in the gyroscope were
implemented.

Listing 3.6: The sensors used by the Crazyflie platform.

bmi_gyro: Sensors.BMIO88_Gyroscope @ i2¢3 0x69
Int3 —> exti@14

bmi_accel: Sensors.BMIO88 Accelerometer @ i2¢c3 0x18

bmp_baro: Sensors.BMP388 @ i2¢3 0x77

The sensors can parse mock data from a text file, which can be used to test the
emulation’s ability to handle data values read from the sensors via the I*C. Data may
also be fed directly via the Renode interface when running the emulated system.
Due to the way the firmware works, data from the sensors is read when interrupts
from the gyroscope occur. It is possible to trigger the gyroscope interrupt using an
external signal sent over sockets.

The BMIOS88 unit is configurable to select the measured data range and resolu-
tion by writing to configuration registers. This allowed the conversion from given
input data to corresponding bytes to be performed in the sensor unit. When read by
the microcontroller, these bytes are interpreted as the measured data. The BMP388
is calibrated during production and calibration data is stored in the unit. Since these
values are specific for each sensor, data from a real unit was extracted and hard
coded into the emulated one.

The sensors include built-in hardware self tests performed within the sensors.
How these checks are performed by the sensors is not provided in the sensor manu-
als [Bosch, 2020al][Bosch, [2020b]]. The results of these self tests are read from from
specific registers. Since the tests could not be performed in the emulated sensors
and would only indicate faulty hardware, the default values of said registers were
changed so the tests succeeded i.e. they always return the value for success when

Uhttps://wuw.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2.1_
schematics_rev.b.pdf

32



https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2.1_schematics_rev.b.pdf
https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2.1_schematics_rev.b.pdf

3.4  Excluded Peripherals

they are read by the firmware. The changed default value for the gyroscope is shown

in Listing

Listing 3.7: Three of the defined register in the gyroscope included the GyroSelfTest
with the modified default value. In real hardware the default value is 0x00.

Registers . Int3Int4I0OConf. Define (this , 0xOF)
. WithFlag (0, name: "int3_1lvl")
.WithFlag (1, name: "int3_od")
.WithFlag (2, name: "int4_lvIl")
. WithFlag (3, name: "int4_od")
. WithReservedBits (4, 4);
Registers . Int3Int4IOMap . Define (this , 0x00)
. WithFlag (0, out int3Data, name: "int3_data")
. WithReservedBits (1, 1)
.WithFlag (2, out int3Fifo, name: "int3_fifo")
. WithReservedBits (3, 2)
.WithFlag (5, out int4Fifo, name: "int4_fifo")
. WithReservedBits (6, 1)
. WithFlag (7, out int4Data, name: "int4_data");
Registers.GyroSelfTest.Define (this , 0x12);

3.4 Excluded Peripherals

Depending on relevance and if they already existed in Renode, not all peripherals
used by the Crazyflie were implemented. The USB port, while important for the real
Crazyflie if radio communication is not possible, was excluded since it is unused if
no USB connection is detected. Since power management is handled by the nRF, the
power controller was not implemented. The analog-to-digital converter (ADC) did
not already exist as a Renode peripheral and is only used for battery level measure-
ment, therefore it was excluded. The independent watchdog IWDG) was excluded
since there was no built-in peripheral and the RTC occupied the memory space used
for the watchdog. The emulation runs and signals are sent to the watchdog, but there
is no check if the software hangs.
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4

Example usage

This chapter explains some basic functionality of the Renode simulation using the
Crazyflie platform and Renode script files. Furthermore, a brief overview of differ-
ent areas where the emulation can be useful is presented along with test cases to
showcase the usage.

4.1 How to use

The custom Renode version is available for download from Bitcraze repositories us-
ing the same build instructions[] as the standard version. The Crazyflie platform was
added to the Bitcraze Renode reposito whereas the modified or implemented pe-
ripherals explained in Section[3.3|were pushed to the Bitcraze Renode infrastructure
repository.

The Renode user interface is a custom command-line. Sequences of commands
can be collected in Renode scripts (RESC) files and automatically executed, see
Appendix |Alfor further details how to manually use Renode.

Two custom RESC files are provided for the Crazyflie platform, available at the
Bitcraze repository. Calling crazyflie.resc sets up a machine using the Crazyflie
REPL file. These command lines from the RESC file are presented in Listing .1}

Listing 4.1: Example of the command lines from the crazyflie.resc used to
create a machine and loading the c£2.repl file.

mach create "CF2.1"
machine LoadPlatformDescription @platforms/boards/cf2.
repl

After the REPL file has been loaded, data is written to the one-time pro-
grammable memory area in order to identify the emulated Crazyflie as "CF21".

'https://renode.readthedocs.io/en/latest/advanced/building_from_sources.html
2https://github.com/bitcraze/renode/tree/crazyflie
3https://github.com/bitcraze/renode-infrastructure/tree/crazyflie
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4.2 Usage areas

This emulates the data written during production. The firmware binary is loaded,
peripherals are connected and finally some mock data is loaded for the gyroscope
to pass its firmware initialisation test. The command line for loading some data to
the gyroscope is given in Listing[4.2] The entire crazyflie.resc file is given in

Appendix

Listing 4.2: Example of the command line from the crazyflie.resc used to load
some mock data to the gyroscope.

# Two initial data samples required to pass
initialisation and test
sysbus.i2c3 .bmi_gyro FeedGyroSample 10 20 30 2

In crazyflie_test.resc, the crazyflie.resc script is called fol-
lowed by some hooks getting set. These hooks enable logging of debug mes-
sages from the USART to a log file and automatic termination once a cer-
tain line is printed, which can be used for firmware testing. An example of
a hook from crazyflie_test.resc is given in Listing while the entire
crazyflie_test.resc file s given in Appendix[C]

Listing 4.3: Example of the command line from the crazyflie_test.resc used
to set a hook to exit Renode when "Free heap" has been printed in the USART.

sysbus.usart3 AddLineHook "Free heap" "Antmicro.Renode.
Emulator . Exit ()"

4.2 Usage areas

There are several different areas where Renode and SIL testing could be used. These
include being used as an interactive development tool, as a part of a CI pipeline for
automatic testing and for further studies of control software testing.

Development Tool

When no hardware is available, the emulated hardware can be used as an interac-
tive development aid. Compared to only emulating the core without peripherals,
emulating the entire platform includes the hardware functionality and side-effects
from peripherals and how they affect the registers. As the emulation depends only
on software, the test results are easier to repeat than when running them on real
hardware. With the possibility to save and load system states, tests can be shared
and reproduced. It is also easier to create faulty states that are difficult to reproduce
in physical hardware and test them in an emulation. One example could be corrupt
EEPROM data which can be created by changing the initial data.

Emulation enables checking register values whenever desired using external de-
bugging software, something not always possible in real systems e.g. pausing a
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system mid-flight. With the program counter available and debug information in the
executed binary, it is also possible to easily trace execution at a specific point in
time to the corresponding source code line.

As an example it is possible to check that all necessary peripherals are correctly
enabled when adding functions or enabling the use of peripherals in the firmware.
If a peripheral or necessary bit is forgotten, the emulation would either generate
a warning or it would not be possible to perform the requested task. Additionally,
it is easier to get information of what might be wrong from the emulation than
connecting the hardware, in this case the Crazyflie, to an external debugger and
with the use of breakpoints try to find the cause of the error.

Continuous Integration

Continuous integration (CI) involves automatically testing firmware changes. The
simulation is started and writes the USART output to a log file. After a certain
amount of time or once a success message is written, the simulation stops. Depend-
ing on the result the new firmware either passes or fails the tests, with a log file
available for debugging.

By including Renode in a CI pipeline, the simulation is automatically run when-
ever a firmware change is proposed. The automatic tests performed may also be ex-
panded to check more than the start-up self test and additional tests can be added.
This enable users to discover errors, such as peripherals not being enabled cor-
rectly, before flashing to actual hardware. In open source projects like the Crazyflie
firmware there are numerous different contributors. Although the contributions must
be manually approved, an extra check in the pipeline acts as one more barrier to help
prevent bugs in the firmware. It is also possible to get more information from the
simulation than from a test that checks if building works. This will aid Bitcraze in
their work to check and make sure the code is correct, since the open source nature
results in contributions from outside the Bitcraze team.

Research of Control Software Testing

The study of control software testing is a relatively unexplored research area. Sys-
tems with tests at different levels can be used as case studies. The emulator devel-
oped in this master thesis is available as open source for future researchers to further
investigate the field of testing control software.

A research direction enabled by this work is the comparison of different lev-
els of abstraction in testing of control firmware. The result of the simulation, be-
ing software-in-loop, after introducing bugs can be compared to the same bugged
firmware run on hardware-in-loop and the real process. This would make it possible
to compare the different testing methods and analyse their strengths and weaknesses
for different classes of bugs.

It would also be possible to compare SIL with the other levels in regards to
how easy and useful they are to work with during development. Additionally, the
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complexity of setting up the level and getting started can be compared.

4.3 Test Cases

In order to demonstrate how the emulator can be used as a tool for testing, different
bugs were injected in the firmware and the emulation was run to automatically test
whether the firmware self test is passed. During the automatic testing, bugs expected
to be discovered are those that either cause the firmware to crash or a part of the self
test to fail. If a bug affects something not checked in the self test or uses unimple-
mented parts of a peripheral, it cannot be expected to be found. With criteria based
on the self test, the utility of the automatic test depends on how well the self test
detects failures.

The modified firmware, where the bug has been introduced, was compiled and
copied into the Renode folder to use the correct path in the crazyflie.resc file.
The test is then performed by a shell script created as a general test model, see
Appendix [DJ for the full shell script. The script starts the simulation by loading the
crazyflie_test.resc file and initiating a timeout clock to catch the cases where
an infinite loop occurs. The test script is successful if the line Self test passed!
is found in the log file written from the USART. As mentioned in Section {i.1] the
second hook, shown in Listing @ terminates the simulation after the self test has
been passed. For the sake of the automatic test, the emulation is no longer interesting
once the self test has given a result. The check to determine if the test was successful
is then made and if the line is found the script exits with a zero exit code. The test
fails if the line cannot be found or if the script timeouts, both resulting in a non-zero
exit code.

By changing the firmware and introducing bugs different errors occurs, resulting
in failed tests when using the automatic test shell script included in Appendix
Five test cases used to illustrate different failures are presented in the following
subsections.

Case 1 — Assertion fail

The EEPROM is used to store the configuration block, data with e.g. the Crazyflie
radio address, and the connection, via I2C, must be initialised. This is done when
the configuration block is initialised. Not initialising this connection, as done by
deleting line 131 from src/modules/src/system.c and shown in Listing
leads to a null pointer assertion, from FreeRTOS, to fail. Both the program counter
and stack pointer are set to zero and the core emulation terminates. If running the
automatic test script, this results in a timeout since the termination occurs before
reaching the hook exiting and closing the simulation.
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Chapter 4. Example usage

Listing 4.4: src/modules/src/system.c

131 eonfighltoeldnit-O+
132 storagelnit ();
133 workerlInit ();

Case 2 — Infinite loop

The firmware uses DMA to transfer data over the syslink to the nRF. By not enabling
the DMA, achieved by removing line 266 in Listing[4.3] sending data is impossible.
Since data cannot be sent the semaphore that is taken on line 267 will never be given.
This blocking causes the system to never continue the start-up initialisation, which
results in a timeout when running the automatic test since the emulation never exits.

Listing 4.5: src/drivers/src/usart_syslink.c

264 USART_ClearFlag (UARTSLK _TYPE, USART_FLAG_TC);

25 /# Enable DMA USART TX Stream #/

206 PMA-Cmd (UARTSEK_DMA_STREAM ,— ENABLE )~

267 xSemaphoreTake (waitUntilSendDone , portMAX_DELAY );
268 xSemaphoreGive (uartBusy );

Case 3 — lllegal address

By altering the number of iterations when initiating the motors, as done in Listing
[4.6| where NMB_OF_MOTORS is increased with one, an index can exceed the bounds
of an array. The data where the extra element would be is interpreted as an extra
element. When the firmware assumes a structure has an address to a function and is
called, the code at that address is executed. Depending on other values in memory
that address might be illegal, OxA in this case as shown in Figure after attempts
to read from and write to non-implemented peripherals, which causes the core em-
ulation to halt since nothing can be executed from that address and the automatic
test timeouts.

Listing 4.6: src/drivers/src/system.c

109 for (i = 0; i < NBR_OF MOTORS+1; i++)

110 {

11 // Clock the gpio and the timers

112 MOTORS_RCC_GPIO_CMD (motorMap[i]->gpioPerif , ENABLE);
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Figure 4.1: The final log output from test case 3 before crashing. Accessing memory
with reads and writes precedes an attempt to execute code at an illegal location.

Case 4 — Failed self test

By not initialising the worker queue, as done in Listing £.7] where line 133 has
been removed from src/modules/src/system.c, the start-up self test (which
explicitly includes a worker queue test) fails. The failure is printed in the output
log, but the firmware still continues since the failure is non-fatal. When running
the automatic test the simulation exits automatically but the test script exits with
a non-zero exit code, indicating an error, since the expected self test passed line
cannot be found. Note that the worker queue initialisation is completely software
based, no specific peripheral is initialised, and is used to buffer tasks to be done.
This indicates that the emulation can find bugs in the firmware not directly linked
to a certain peripheral.

Listing 4.7: src/modules/src/system.c

131 configblocklInit ();
132 storagelnit ();

133 wetkertnitO+

134 adclnit ();

135 ledseqlnit ();

Case 5 — False success

A case not caught by the emulation is where the command to enable DMA requests
online 135 in src/drivers/src/i2c_drv. c has been removed, as seen in Listing
@8] Running this bug on the emulated system causes no problems while on the real
hardware the I*C communication fails.
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Listing 4.8: src/drivers/src/i2c_drv.c

131 // Disable buffer I2C interrupts

132 [2C_ITConfig(i2¢c—>def—>i2cPort, 12C_IT_EVT | I2C_IT_BUF,
DISABLE) ;

133 // Enable the Transfer Complete interrupt

134 DMA_ITConfig(i2c —>def —>dmaRxStream , DMA_IT_TC | DMA_IT_TE
, ENABLE) ;

135 REDMACmd2e—>def—>i2ePort—ENABEE)+ // Enable before
ADDR clear
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Discussion

In this chapter the advantages and drawbacks with the approach used when devel-
oping the emulator is discussed. The chapter also presents the benefits and expecta-
tions of using the emulation and uses the test cases presented in previous chapter as
examples. A discussion on the accuracy of the emulator and further work conclude
the chapter.

5.1 Approach

The main approach used to construct the emulator was to add the peripherals one
at a time, based on the order they are initialised in the firmware. Due to the way
the Crazyflie firmware is structured, with the initialisation functions being called in
system. c before starting the main loop, this could easily be done. By doing so it
is possible to follow along using debug prints and log messages to make sure each
peripheral works as intended. Advantages with this approach are that it is easier to
find problems as they are introduced and get early results before the whole system
is described. A flaw of this approach is that for it to work, a correct and working
firmware must already exist. It also assumes that the firmware is written in a read-
able and manageable way, where it is possible to identify and initialise one part at a
time.

The approach used built-in debug messages from the Crazyflie firmware to get
feedback from the firmware during the emulation. There were several benefits with
using the debug prints. No external debug program is needed to get information
since the information can be printed over the USART alongside pre-existing mes-
sages providing additional context. It is also possible to get an acknowledgement on
how far the firmware executes. Debug prints are also customisable and the results
easily repeatable, during execution the same messages are printed without interac-
tion from the user.

The drawbacks consist of the fact that source code needs to be changed and
then reverted. The firmware has to be compiled as well after making each change.
This leads to several compilations since the process is iterative and the messages are
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refined in several instances. If the firmware was larger and not built as efficiently this
could become a time consuming inconvenience. Another problem discovered was
that if an interrupt occur while a message was being written on the USART then the
interrupt might lead to other messages being written before the first is completed. It
is thus not a thread safe operation.

The work required to implement an emulator of this kind should decrease as the
library of implemented peripherals in Renode increases. This because the periph-
erals can be reused in different platforms and fewer have to be created. The com-
plexity of creating new peripherals is reflected by how advanced the real peripheral
is. A more advanced peripheral will lead to a more complex emulated peripheral
implementation. If a similar peripheral already exists it can be used as a template
and simplify the implementation of the new peripheral.

The sensors all use the same structure as existing I?C sensor peripherals. Once
the gyroscope had been implemented, as explained in Subsection "Sensors" in Sec-
tion 3.3] it was used as a template for the accelerometer and the barometer. As
mentioned in that same section, the barometer needed calibration data from a real
unit. This required extra work since the data had to be extracted from a real unit.
This also means that the emulated sensor represents a unique sensor which is fur-
ther discussed in Section [5.3] Even though the sensor structure was based of other
sensors, the more advanced barometer required more work. The implementation
was also hindered by the fact that not all details were disclosed in the sensor manu-
als. This can also limit how well some peripherals can be implemented without the
involvement and support of the manufactures.

The EEPROM had no similar peripheral and thus had to be implemented from
the I2C interface, using functions to read and write data as explained in Subsec-
tion "EEPROM" in Section The approach to this implementation was for the
write function to sequentially write all data received to the storage as described in
the manual, with page overflow emulated with modular arithmetic. Since the I*C
peripheral sends one extra byte, explained in Section [3.3] the final byte received is
ignored. If the I>C is fixed, all peripherals communicating with this protocol must
be changed accordingly to use the complete message. The I>C caused more prob-
lems when implementing read functionality, since no information is given to the
EEPROM how many bytes should be read. Therefore, while all three EEPROM
reading modes are implemented, the internal address pointer cannot update cor-
rectly. Thus the approach to implement missing peripherals after that peripherals
manual can be limited by the existing peripherals in Renode, as in this case, where
the 12C limited what the EEPROM could do.
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5.2 Benefits and Expectations

As mentioned in Section there are three main usage areas. The first is as a
development tool which may be the largest area. The main reason for this is that
there are several possible ways to interactively use the emulator. As mentioned it is
for example possible to access memory registers and check that individual bits are
set correctly.

The emulator runs the Crazyflie firmware, the same as used for real hardware.
In order to print messages to the used USART two pre-existing compile flags in
tools/make/config.mk, described in Appendix [A] are required when compiling
the firmware. The only functional changes made were a workaround to manually
enable the DMA when reading from I2C peripherals and extra debug messages
printing if certain components of the self test fail. These changes have been in-
corporated in the Crazyflie firmware, with the workaround noted to be removed if
obsolete from further development of the emulator.

Development tool

In test case 2 the programmer is assumed to have missed enabling the DMA i.e.
line 266 in Listing[4.5]has not been added. It is possible from inspecting the log and
Crazyflie debug messages to make an educated guess that the problem occurs due to
either the USART used for the syslink communication or the DMA used with said
USART. This guess can be made based on the last prints before the loop, where
access to those peripherals was done. By using the command readDoubleWord in
Renode to read the registers of those two peripherals, it is possible to see that the
bit that enables transfer has not been set in the configuration register for stream 7 at
offset 0xB8.

Test cases 1 and 3 fail in different ways but both are caused by similar errors
where the program counter points to illegal values from where code cannot be exe-
cuted. In the first case the address is zero and automatically caught by FreeRTOS,
null pointers are probably common enough for this assertion to always be made. In
the latter case the address is faulty due to an index exceeding the boundary of an
array. The program counter became non-zero but happened to be outside executable
memory space which causes the emulation to fail. Depending on the data stored
after the array this could lead to an arbitrary function executing, possibly not cause
the system to fail directly and complicate debugging.

In the same way as for the first three cases, test case 4 would be discovered
first when flashing to the hardware. For the physical Crazyflie, the debug prints for
the self test are visible when connected to the Crazyflie client. The messages for
the failed self test would therefore be visible once the firmware has been flashed.
However actually finding the error would be much harder since no other log output
is given. Figuring out that it is the worker queue that has not been initialised and
therefore cause the system fail message is harder.

Since these errors are discovered during the simulation and not compilation of

43



Chapter 5. Discussion

the firmware it follows that the errors would be discovered after flashing to the
hardware. However they would still be discovered in the sense that the Crazyflie
would not work. To actually find the error causing the failure would have required
more work. Debugging embedded systems is difficult since they do not run a proper
operating system and therefore require the use of extra hardware for interaction.
In this case the STM debugger link needs to be established with a debugger like
OpenOC on another machine which takes some time to set up. Executing inside
an emulator in a multi-purpose computer makes is possible to easily access the state
of the processor and detect bugs without the use of extra hardware.

One more example where emulated hardware can be useful is during work with
peripherals that are hard to debug, such as the EEPROM with page overflows and
I>C communication which requires additional overhead. In the emulator, it is possi-
ble to access and see the entire EEPROM to check that it is written to as expected.
An alternative to emulating could be to formally specify the behaviour to prove
whether an implementation should work. Being able to try the firmware directly
however enables a more interactive development method.

Continuous Integration

As seen in the test cases the simulation is useful in finding different types of errors.
Using the simulation in a CI pipeline, described in Section .2} would therefore be
possible. The main deciding factor would be the actual correctness of the emulation
and how well it represents the physical hardware, in other words the accuracy. The
accuracy of the emulation is discussed in Section[5.3]

Tests can be either successful or result in a failure. The test is successful if it
passes the start-up self test. When testing there are two faulty conclusions that may
be done, false failure and false success. Neither of the cases should ever occur in a
perfect emulator and have different effects during automatic testing. False failures
means that working pull requests are rejected. If the proposed changes that fail the
simulation are proven to work on hardware and therefore are accepted it will lead to
future simulations failing as well. The emulator would require an update based on
the failed case to implement the missing logic, which would improve the accuracy of
the emulator but need extra work. False successes would cause bugs to pass through
as though the simulation was not a part of the CI pipeline. They would hopefully
be detected when run on real hardware and then fixed. Although not causing the
emulated system to fail, it might be possible to use the emulator as an interactive
tool to fix the bug.

If the emulation is accurate it would mean that the rate of false failures and
false successes would be low to non-existing. An example of a false failure, where
a temporary workaround had to be added to the firmware, has already been seen
when the DMA was not enabled automatically during I*C transfer. Test case 5 is an
example of a false success, commenting out the [2C_DMACmd enable has no effect

Uhttp://openocd.org/
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in the emulation since the DMA requests are not emulated properly for the I2C.
However, in the real hardware the line has to be included for the I*C communication
to work properly.

Research of Control Software Testing

The main focus in this area is the possibility the Crazyflie offers as a case study in
future work. Some of the reasons for why the Crazyflie was chosen for this project
have already been mentioned in Section[I.1} With a working emulation of the hard-
ware, with the possibility to run simulations, the Crazyflie’s potential for software
testing increases. It is then possible to set up test studies for the different test levels
using the same target product. This enables the test levels to systematically be com-
pared and different types of bugs to be classified depending on expected visibility
in different layers.

As mentioned before, the Crazyflie is already used in several control research
projects. Since the emulation is open source and publicly available it can be used as
a research tool in those projects as well and not only for control software testing.
The open source nature also means that the emulator can be adjusted and modified
to suit different use cases.

5.3 Accuracy

One of the main problems with emulators is how accurate they are, does the emu-
lated system mimic the real system? With the approach used to construct the emu-
lator, this is directly influenced by how well the actual hardware is described by the
reference manuals, as an example the STM32F405 reference manual used has been
revised 17 times in just over eight years. Undocumented functionality might cause
side-effects when real hardware is used. These may cause firmware to function on
hardware but not when emulated or vice versa.

Not all parts of the platform are required for the simulation to pass the self
test. The current version only uses one bus to connect all peripherals while the real
microcontroller has several, physically limiting how e.g. DMA can be used. This
means that faulty address configuration of a DMA unit could work in the emulated
system but fail on real hardware. There are also differences in maximum frequen-
cies between buses. How the lack of this affects emulation accuracy has not been
investigated.

Not implementing unused peripherals can actually be more useful than imple-
menting them. If something goes wrong during the emulation and attempts to access
unused peripherals are made, as in test case 3 and shown in Figure[d.1] the warning
messages can help to locate the bug. If there was no function call there would be no
crash since reads and writes are in most cases non-fatal operations. If that occurred
on real hardware the error would possibly not be easily detected. It would be harder
to locate the bug on an emulator including all peripherals as well, since the warnings

45



Chapter 5. Discussion

about non existing peripherals would disappear. For test case 3, the failure would
still be discovered because of the fatal error but that may not always be the case.

For the barometer implementation the calibration data was taken from a real
Crazyflie. Thus any calibration errors of that drone would be present in the emula-
tion. This only affects the measured values fed to the barometer. If the emulation
should be used for project where accuracy of those values are of importance this
should be considered, otherwise it does not affect the emulation itself.

The memory peripheral used for the OTP had to be larger than what it should
be due to Renode limitations. The extra address space occupied is reserved by the
MCU though and should not cause problems since the MCU does not use it in the
emulation.

The emulation does not occur in real-time and, as mentioned in Section [2.3]
Renode is not cycle-accurate. Choosing between an emulation tool that is cycle-
accurate and one that is not, is a trade-off where the user has to prioritise. What is
considered more important, fast results or high accuracy and does the extra accuracy
really matter? While using Renode, we have not noticed any problems regarding
the fact that Renode is not cycle-accurate. On the other hand we have not done
anything where it would have been important such as hard real-time constraints at
the time resolution of the duration of a single cycle. The user also has to weigh in
the increasing complexity of trying to create a cycle-accurate emulation. Although
in a more complex proposed model for emulating RISC-V architecture [Herdt et al.,
2020], high cycle accuracy could be achieved but with an increased overhead cost.
Future and more exact models might make cycle-accurate emulators more common.

One obvious problem with the test cases is how they were designed. The test
cases were designed to show how bugs can cause visible failures, which causes a
bias from the authors. Tools to randomly mutate the source code, as used by [Bala-
subramaniam et al.,2020], could be used to create a large set of test cases to inves-
tigate. Those changes would depend on possible mutations but not be designed to
specifically cause certain failures.

5.4 Further Work

In order to improve the emulation, the peripherals mentioned in Section[3.4] which
are used by the physical Crazyflie but not included in the emulated version, could
be implemented. Notably the independent watchdog, which causes the system to
reset unless it receives periodic writes.

The nRF microcontroller did not have the same priority as the STM32F405
where the main firmware is executed. This led to the syslink only providing the
necessary functionality for the self test to pass. By connecting to an external pro-
gram, or another Renode system, more advanced cases could be tested. Apart from
the 1-wire connection to expansion decks, the nRF handles the radio connection
and should periodically send battery information. With those properties emulated,
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the simulation could be connected to the client used for controlling real Crazyflies.

The simulation runs through the firmware start-up and enters the work loop.
Since no signal to start flying is sent to the Crazyflie, in-flight states and associated
tasks performed are never tested. While this work focused on the firmware passing
the start-up self test, the simulation could be extended to test the virtual Crazyflie
in flight with an external physics simulator. Generated data can be fed directly to
the sensors and, with the syslink extensions above, signals to fly could be sent to
the system. This could be used to test extreme conditions and edge cases or how
the firmware handles faulty sensor readings. It would also be possible to set break-
points mid-flight, something impossible on a real system, to check registers and
other interesting memory addresses.

As mentioned before the main problem found was the I?C implementation. To
get a better implementation of the I2C, for which the workaround added to the
firmware no longer is needed, is one of the most important things to fix. Apart from
requiring a change in the firmware, the I>C is such an important peripheral in the
Crazyflie and used as a communication bus in so many instances. It is for example
used by the sensors and the EEPROM.

Although the simulation works and successfully passes the self test, there are
still things that can be done to improve the accuracy of the emulation. If in-flight
testing during development is of interest then some extra nRF and sensor function-
ality should be prioritised. For continuous integration, focus should probably be on
the I>C and other peripherals to improve the accuracy.
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Conclusions

Overall the project was a success, we managed to get the firmware to pass the self
test when run on the emulated hardware. Unfortunately a small addition had to be
made so the firmware was not unmodified. Fixing the emulation to handle the I?C
and DMA situation would probably require remodelling how both peripherals are
implemented.

The emulation can be used as a development tool and work as a research test
case. The utility for both cases can be expanded depending on the situation. The
simulation has not yet been integrated into the CI pipeline. While ready to be used,
some of the additions for extra emulation accuracy discussed in Sections [5.3] and
[5.4| might be wise to make before using the results as more than warnings. If false
failures occur, an automated test could cause more harm than good.

In Section [[.T|we stated that running tests on the physical process can be a slow
and time-consuming task. During this thesis we have seen that once an emulation
exist it is easy and fast to use. We have also seen that feedback is given immediately
and the information is easy to access.

We concluded that it is possible to emulate hardware in Renode but that the time
effort is dependant on what already has been implemented. The accuracy may also
vary because of the complexity of some peripherals limiting how well they can be
implemented.

48



A

Readme

Installation

Cloning & Dependencies

1. Clone and install all dependencies for making the ﬁrmware
2. Clone the custom RenodeE] repository.
3. Install dependencies according to Renode build instructionsE]

Building
L. Compileﬂ the Crazyflie firmware. In order to get outputs via the USART, un-
comment CFLAGS += -DDEBUG_PRINT_ON_UART intools/make/config.mk
and add CFLAGS += -DENABLE_UART1. These flags are mandatory for con-
tinuous integration and provides more information when running the emula-
tor.

2. Builcﬂ Renode. The first time might take a while.

Starting Renode
To start Renode run

mono output/bin/Release/Renode.exe [option] [script]

Uhttps://github.com/bitcraze/crazyflie-firmvare

2https://github.com/bitcraze/renode

3https://renode.readthedocs.io/en/latest/advanced/building_from_sources.
html#core-prerequisites

“https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/
building-and-flashing/build/

“https://renode.readthedocs.io/en/latest/advanced/building_from_sources.
html#building-renode
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For a complete list of launch options, call with option --help. To automatically
load a Renode script file when starting add the script_name.resc as script input.

Example Usage

Loading a Renode script file

A .resc file is loaded with include @script_name.resc. The .resc file contains
Renode commands that also may be run manually. In Renode, paths are prefixed
with an @ and can be printed with the path command.

Controlling the emulation

Start the emulation with start or s. Pause with pause or p. To reset the Renode
instance use Clear. Quit with quit or g.

Read a register

To check the content of a register of a certain peripheral run for example
sysbus.dmal ReadDoubleWord 0x10 where 0x10 is the offset.

Show analyzers

Output from the USART buses, here the usart6 peripheral, can be shown with
showAnalyzer sysbus.usart6.

Logging
To change loglevel (verbosity of the log) run
loglevel [level] [option] [peripheral].
To create a logFile run logFile @some_file_nam.
For more information see documentation on Using the loggerE]

Sensor data

Data input values can be added to the sensors directly or from files with
sysbus.i2c3.bmi_gyro FeedGyroSample x y z [repeat] or
sysbus.i2c3.bmi_gyro FeedGyroSample ’filename’
sysbus.i2c3.bmi_accel FeedAccSample x y z [repeat] or
sysbus.i2c3.bmi_accel FeedAccSample ’filename’
sysbus.i2c3.bmp_baro FeedPTSample press tmp [repeat] or
sysbus.i2c3.bmp_baro FeedPTSample ’filename’

Shttps://renode.readthedocs.io/en/latest/basic/logger.html
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Connect to GDB server

The running emulation can be debugged using GDB. Assuming the pro-
vided script file is run, start the appropriate GDB version and connect with
target remote :3333 where the port can be configured in board.resc. Start
the emulation and continue via the debugger as usual. For more information see the
documentation on Debugging with GDBE]

Connect via network socket

The provided script starts a socket terminal on port 3456 which can be used to signal
an interrupt from the gyroscope by sending a byte. This causes the firmware to read
data from the sensors.

By enabling the terminal on port 3457 messages sent to the nRF can be read. This
could be used to further improve the emulation and how the syslink is handled. For
more information see the documentation on UART integrationﬂ

"https://renode.readthedocs.io/en/latest/debugging/gdb. html
8https://renode.readthedocs.io/en/latest/host-integration/uart.html#
socket-terminal
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B

crazytlie.resc

sdescription: This script emulates the Bitcraze
Crazyflie 2.1 platform and runs the Crazyflie
firmware.

mach create "CF2.1"
machine LoadPlatformDescription @platforms/boards/cf2.
repl

# Should be written during production
sysbus.otp WriteString 0x7800 "0;CF21"

# Uncomment/comment to toggle open Analyzer windows
showAnalyzer sysbus.usart3

# showAnalyzer sysbus.usart6

# showAnalyzer sysbus.nrf

sysbus LoadELF @cf2.elf

emulation CreatetUARTHub "syslink"
connector Connect sysbus.usart6 syslink
connector Connect sysbus.nrf syslink
syslink Start

machine StartGdbServer 3333

emulation CreateServerSocketTerminal 3456 "sensors”
connector Connect sysbus.i2c3.bmi_gyro sensors

# emulation CreateServerSocketTerminal 3457 "syslink"
# connector Connect sysbus.usart6 syslink
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# Uncomment/comment

logLevel
logLevel
logLevel
logLevel
logLevel

-1 console
-1 console
-1 console
-1 console
—1 console

# Uncomment/comment

W R

sensors log

Appendix B. crazyflie.resc

to toggle noisy LEDs logLevel

sysbus .
sysbus .
sysbus .
sysbus .
sysbus .

gpioPortD .ledB

gpioPortC .ledRL
gpioPortC .ledGL
gpioPortC .ledGR
gpioPortC .ledRR

to toggle how much information

logLevel -1 console sysbus.i2c3.bmi_gyro
logLevel —1 console sysbus.i2c3.bmi_accel
logLevel -1 console sysbus.i2c3.bmp_baro

# Two initial data samples required to pass
initialisation and test
sysbus.i2c3 .bmi_gyro FeedGyroSample 10 20 30 2

the

53




C

crazytlie_test.resc

sdescription: Runs the firmware (compiled with uart
debug flag set) and saves the log+uart output
to a logfile.

logFile @logfile.log true
logLevel 3 file

include @scripts/single —node/crazyflie.resc

sysbus.usart3 AddLineHook "" "Antmicro.Renode.Logging.
Logger.Log(LogLevel.Error, line)"

sysbus.usart3 AddLineHook "Free heap" "Antmicro.Renode.

Emulator. Exit ()"

start
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D

Test shell script

set —e

timeout ——foreground 120 mono output/bin/Release/Renode

.exe ——hide—-analyzers ——console
single —node/crazyflie_test.resc
grep —q "Self test passed!" logfile.log

scripts/
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