Emulated Hardware for Embedded Control System Testing

Josefine Mollerstrom & Max Nyberg Carlsson

Have you used any electronic appliance to-
day? If so, chances are you used an embed-
ded system. With the increasing number of
embedded microcontrollers, emulating hard-
ware could be used to aid development and
testing [1].

We created an emulation mimicking the main mi-
crocontroller of the Crazyflie 2.1 quadcopter, Fig-
ure [1} which passes the startup tests. We did this
using the open source framework Renode [2] to im-
plement peripherals and build the virtual platform.
The emulated platform should be used for further
research and by Bitcraze.

Figure 1: The Bitcraze Crazyflie 2.1 [3].

Several peripherals pre-existed in Renode but some
had to be either modified or implemented from
scratch. An example of some peripherals that had
to be implemented in order to build the virtual plat-
form, is the Crazyflie sensors. All the peripherals
were written in C# and connected to each other in
Renode to emulate how the real hardware is con-
nected.

Embedded systems can be tested on different levels,
e.g. running on the real hardware or having parts
emulated. Since the research area surrounding dif-
ferent testing levels is relatively unexplored there
is a need to have a case study that can be used to
compare different levels. The Crazyflie is a good
case study with regards to complexity and open
source firmware. The goal is for the emulation to
be used in further studies to compare the strength
and weaknesses of the different levels. The aim with
this research is to find ways to make development
and testing more efficient. As control failures usu-
ally occur due to software problems, improving the
development cycle is important and can help guar-
antee the safety of control systems.

The emulation can also be used by Bitcraze AB, the

Crazyflie creators. Since embedded system testing
is hard, with opaque parts and limited debugging
possibilities, tools that aid are valuable. With em-
ulated hardware extreme cases may be tested much
easier, such as pausing the system mid-flight to in-
vestigate. It would also be possible to include the
emulation in their CI pipeline as an extra automatic
testing check whenever changes to the firmware are
proposed.

During testing of the emulation different test cases
were created by introducing bugs in the firmware.
The purpose of each test was for the emulation to
result in a fail if the self tests did not pass or the
system crashed.

The Crazyflie has two microcontrollers, one exe-
cuting the main firmware and one mainly for radio
communication. A limitation to the emulation was
that the second microcontroller was not included
and the responses from the second controller to
the main one had to be simulated. Expanding this
functionality would allow more interesting tests to
be performed and should be prioritised in future
development.

There are still some improvements that can be
made to our emulation to increase the accuracy.
It is difficult to imitate every property of a sys-
tem for creating a perfect emulator. The main goal
for the thesis to be successful was for the Crazyflie
firmware to be run on the emulator and pass the
self test successfully. This was achieved and the
resulting emulator can be used by Bitcraze and in
further research work.

References

[1] Mollerstrom, J and Nyberg Carlsson, M. (2021).
”Emulation of the Crazyflie 2.1 Hardware for
Embedded Control System Testing”

[2] Renode, ”Renode”, 2020, URL: https://
renode.io/

[3] Bitcraze AB, ”Crazyflie 2.1 | Bitcraze”, 2020,
URL: https://www.bitcraze.io/.


https://renode.io/
https://renode.io/
https://www.bitcraze.io/

