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Abstract

A lot of companies have data that can be used to develop a more successful
business. To become more data-driven, it is important to extract valuable infor-
mation from the raw data. One of the largest challenges for companies, while
trying to make this transition, is to ensure a data quality at a high level. In this
thesis, we worked with Alfa Laval’s database of previously sold products. The
main issue with this database was the lack of existing locations, where the prod-
ucts have been installed. In this thesis, we report a solution for the hierarchical
prediction of geolocation on three levels: country, city, and coordinates. To build
a solution, we examined the three tasks using four di�erent supervised machine
learning algorithms. Given our prior knowledge and the available attributes in
the database, most tasks proved to yield surprisingly good results. The prediction
of countries and cities globally achieved an accuracy of 71% and 57%, respectively.
Random forests was the overall best performing algorithm for these two tasks. The
prediction of coordinates for the United States was a harder task, resulting in a
mean error distance of 872 km, which was achieved by an implementation of
artificial neural networks. Our results showed that a prediction of country and
city in fact was an achievable goal, even if the existing input did not have an ob-
vious connection to a location. On the other hand, predicting coordinates did
not give a result with a su�ciently small margin of error to be useful for most
applications.

Keywords: k-nearest neighbors, artificial neural network, random forests, LightGBM,
geolocation
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Chapter 1

Introduction

1.1 Background
For many years, companies all around the world have been collecting data regarding their
business. Whether the data is customer information, sales records or some other type of
data, it can be used for multiple purposes.

In more recent years, the search for ways to become more data-driven has become more
and more relevant. In the highlight of successful tech companies that thrives on their data,
the search for new ways to make earnings using data-driven decisions has become a necessity
for many industries. By not embracing and applying new techniques for usage of data, many
companies are in danger of losing a possible competitive advantage. The Swedish company
Alfa Laval is no way di�erent from these companies.

Alfa Laval was founded in 1883 by Gustaf de Laval and is a leading provider of indus-
trial equipment within heat transfer, separation, and fluid handling on a global scale. The
company can be found all over the world and has its headquarters in Lund, Sweden.

Alfa Laval is trying to become more data-driven in all the aspects possible given their
data. Unfortunately, in the process of implementing more usage of their data, Alfa Laval has
been faced with the issue of deficient data quality. In order for companies to be truly data-
driven, their data must be of a certain quality to be valuable. This is the goal of this master’s
thesis, where we aimed at solving this problem.

The deficient data quality results in that Alfa Laval can not draw substantiated conclu-
sions from the available data. The reason is that a large proportion of the data can not be
accounted for due to faulty, or completely missing data. To improve their data quality, Alfa
Laval could perform a number of di�erent operations. For example, they could investigate
the reason why the faulty data is entered in the database in the first place and set up coun-
teracting methods. This would certainly help improving the data for future entries. Another
approach would be to appoint employees to manually update the values that have been en-
tered incorrectly. This approach would help improve the historical data. Unfortunately, this
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1. Introduction

is only applicable in some rare cases, where the faulty data is obvious. The process would
also be very tiresome and expensive for Alfa Laval. There exist countless of other ways of
improving the data quality, of which Alfa Laval practice several of them already, however
there is still plenty to do.

The solution that we propose is to use di�erent machine learning algorithms that could
predict missing or faulty data. In contrast to the process of manually updating the database,
this solution would be more e�cient and cost e�ective for Alfa Laval.

1.2 Thesis objectives
Alfa Laval sells industrial equipment of di�erent types, as well as services on these equipment.
We will refer to sales of serviced products as service sales in this thesis. In some cases, the
product specifications are poorly documented in Alfa Laval’s database which prevents the
possibilities of further service sales.

One of the main areas, where deficient data quality prevents Alfa Laval’s service sales is
the lack of exact location of some of the products. If the company does not know the location
of a product and neither have contact information to the buyer, it is impossible to proactively
sell services on the product. Thus, it would be beneficial if the coordinates, the city, or even
the country of the product were known. With this information, the unknown products could
be divided into sales regions and the respective regions could perform further investigation
to locate the exact location of the product.

The goal of our thesis is to solve this issue which corresponds to di�erent types of location
predictions. We divided the location prediction of the products into three parts with the
purpose of finding a more precise result:

1. Prediction of the country;

2. Prediction of the city; and finally

3. Prediction of the coordinates.

We will use the same approach to predict both the country and city, where the product
is located. This task will be solved with classification, where each unique city or country is
treated as a category. In contrast to this, when predicting coordinates, we will use regression,
where a continuous value is predicted, in this case the latitude and longitude. All tasks will
be solved with the use of a few chosen algorithms.

1.3 Previous work
To the best of our knowledge, the amount of work regarding prediction of geolocation is
quite limited. Articles regarding trajectory prediction exist, but we argued that those arti-
cles were not relevant enough for this thesis. When predicting the trajectory, you simply take
previous geolocations, such as coordinates, into account and predict the next coordinates.
One example could be to predict in which direction a storm is moving. In contrast to trajec-
tory prediction, where previous coordinates are used as input of utmost importance, we will,
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1.3 Previous work

in this thesis, work with input that does not have an obvious connection to a geolocation. In
the following section, we will discuss three di�erent articles that we found relevant.

Cheng et al. (2010), in the article You are where you Tweet: A content-based approach to geo-
locating Twitter users, used the text content of tweets to predict the users location on a city
level. The algorithm uses several techniques such as naive Bayes and support vector machines
to classify and extract so-called local words, which means words that have a strong correlation
to a specific geographical location. The occurrences of local words in tweets are then used to
classify the city that a specific tweet originates from. In a similar sense, this thesis will relate
to finding a way to connect a specific type of product to its potential location.

Verma et al. (2020), in the article Prediction of residence country of student towards informa-
tion, communication and mobile technology for real-time: preliminary results classified students’
country of residence from personal data. The experiment is performed using several di�er-
ent algorithms and feature selection methods. The data set contains information collected
through a Google form, asking questions towards students in India and Hungary about their
perception of the current state of information, communication and mobile technology in
their society. The article in question is relevant to this thesis because it aims to predict a geo-
graphical location based on information that is not clearly related to geographical locations.
It is also highly related in regards to the methods used. Verma et al. (2020) have chosen to use
random forests, k-nearest neighbors, artificial neural networks and support vector machines
as algorithms to solve the problem.

Gaman et al. (2021), in the article UnibucKernel: Geolocating Swiss German Jodels Using En-
semble Learning, identified German dialects, where they used a data set consisting of Swiss
German Jodels. Jodel is an application, where you can publish posts locally, such a post in
the application is called a jodel. It is similar to a Tweet in Twitter. The task is to predict the
geolocation, latitude and longitude, of the di�erent jodels. To solve the task, they have per-
formed double regression, where both latitude and longitude approximations are treated as
regression tasks. During the process, they have explored a number of di�erent features, where
the authors even constructed handcrafted features. Lastly, they used median error distance
to evaluate their result.

To summarize the studied articles, each of them touches one of the three hierarchical
geolocation levels studied in this thesis. To assist our thesis, we took inspiration mostly in
regards to the algorithms that were chosen in the articles.

With this thesis, we have clearly identified a gap in the available research that we hope to
bridge. To the best of our knowledge, no other research regarding all hierarchical levels has
been performed on a dataset similar to Alfa Laval’s. All specified previous works handle a
dataset consisting of human text entries originating from the wanted location. Our approach,
on the other hand, handles a dataset with no apparent connection to a geographical location.
Instead it aims at finding possible patterns in the world’s behavior with regards to purchases
of industrial machines. For example, it could be that customers in Lund order products with
a specific combination of technical attributes that should be used on a certain market. A
pattern could then be that this frequently occur in Lund and nowhere else.
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Chapter 2

Dataset

2.1 Introduction
As dataset, we used one of Alfa Laval’s databases, the Installed Base (IB). IB contains infor-
mation such as technical data, where manufactured and sold products are installed, together
with information about the customer who purchased the product. IB consists of 187 di�erent
tables. Such a number was intractable for our computing machines. Thus we had to make a
specific selection to reduce it.

2.1.1 Scope
Alfa Laval sells a range of di�erent products on a global scale. For this thesis, we considered
the gasketed plate-and-frame heat exchanger (GPHE), simply for the reason that approximately
53% of the products in IB are GPHEs, making it the most common product.

For the coordinate prediction task, we chose to narrow down the scope by investigating
only the products sold in the United States. The prediction of countries and cities were
performed on a global scale.

2.1.2 Gasketed plate-and-frame heat exchanger
The gasket plate-and-frame heat exchanger, or the GPHE, can be used in a range of di�erent
industries and has the purpose of exchanging heat from one fluid to another without any
interference. This is accomplished by making the fluids pass through between every other of
the several plates as visualized in Figure 2.1 (Alfa Laval, 2021a).
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2. Dataset

Figure 2.1: Alfa Laval’s Gasket plate-and-fram heat exchanger and
a visualization of the heat exchange between two fluids (Alfa Laval,
2021b)

2.2 Relevant tables

2.2.1 General data
Within IB, there is a a table called general data that consists of one row per sold product. Each
row contains information such as the product model, serial number, and several technical
attributes. The table has 1,211,337 rows with 220 columns where 55.7% of the cells are missing
values. In Figures 2.2, 2.3 and 2.4 we can, in the light blue stacks, see the distribution of
the di�erent equipment types, ALSIS application codes and countries for GPHE. ALSIS
application code is a financial code, created by Alfa Laval, used to classify the specific market
that the product have been sold to.

2.2.2 Customer data
Another table is called customer data that contains information about each unique customer
who has bought one or several products throughout the years. This information mainly con-
sists of contact information and, most importantly to this thesis, the geographical location
of the customer. The location is recorded with a country, a region, a city and an address.

Using the Google API, Alfa Laval has also extracted the geographical coordinates for each
address. This enables Alfa Laval to graphically display the customers on a world map. The
table has 410,195 rows with 29 columns where 35.2% of the cells are missing values. Figure 2.5
shows all products with existing customer location information in the United States.

2.2.3 Service data
Lastly we used a table called service data that consists of a record for all the instances of service
that have been performed on the products. Each service contains information about the date
of execution, the serial number of the product in question, type of service, and a handful of

12



2.2 Relevant tables

Figure 2.2: Distribution of the number of sold equipment per equip-
ment type compared to the same distribution for serviced equip-
ment in IB.

other attributes. The table has 380,606 rows with 19 columns where 35.7% of the cells are
missing values.

In the dark blue stacks in Figures 2.2, 2.3 and 2.4 we can see the distribution of equipment
types, ALSIS application codes and countries for the products that have been serviced.

13



2. Dataset

Figure 2.3: Distribution of the number of sold equipment per AL-
SIS application code compared to the same distribution for serviced
equipment in IB.

Figure 2.4: Distribution of the number of sold equipment per coun-
try compared to the same distribution for serviced equipment in IB.
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2.2 Relevant tables

Figure 2.5: All products in the United States with a known position.
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Chapter 3

Method

Throughout the project we have followed the Cross-industry standard process for data mining
(CRISP-DM) (Chapman et al., 2000). CRISP-DM is a framework developed to assist any type
of data mining project to provide a more structured and e�ective approach. The framework
is divided into several phases that create the entire life-cycle of the project (Wirth and Hipp,
2000). The phases and how they are connected are displayed in Figure 3.1.

Figure 3.1: The CRSIP-DM life cycle
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3. Method

3.1 Business understanding
To obtain a good business understanding, we had meetings 1-2 times a week with Martin
Gunnäng. The purpose of the meetings was to align, validate thoughts and determine the
way forward. Additionally, Oskar has been working at Alfa Laval for three years and thus
has a general understanding of the company.

3.2 Data understanding
The first step in this project, as when encountering any problem within data science, was
to perform an exploratory data analysis (EDA) (Tukey, 1977) to some extent. The purpose
of performing an EDA was to analyze the data set to discover characteristics, patterns and
outliers of the data.

The main goal of the project was to improve the data quality where it contributes the
most to Alfa Laval, in terms of service sales. Therefore, we focused the EDA on a comparison
between equipment that has and has not been serviced, in combination with the products
that could generate the highest sales.

To calculate the service potential, we took multiple attributes into consideration, such as
what equipment type, technical attributes, what industry the equipment operated in (ALSIS
Application Code) and country of origin. Our findings can be seen in Figures 2.2, 2.3 and
2.4. However we came to the conclusion that even though several trends could be identified,
there was not enough data in each category to carry out any successful prediction attempts.

3.3 Data preparation
We had to take a number of factors into consideration when we prepared the data. Firstly we
applied all conclusions and focus restrictions from the EDA to the dataset such as correcting
spelling errors, deleting outliers and limited our coordinate prediction to the United States.

As mentioned earlier, a fundamental issue for Alfa Laval is the deficient quality of the
sales data, more specifically the large percentage of missing data. This problem can be han-
dled in two di�erent ways, imputation or deletion:

• By imputing data, the missing data is replaced by either an approximated or a random
value.

• By deleting data, you delete the whole data row for the rows with missing values.

Due to the large amount of data rows that was obtained initially, we concluded that handling
the missing values by deletion would not hurt the final model as much as it might do by
imputing partly incorrect values. Even though this is a very common practice for many data
mining projects, there is a risk of introducing a bias. This highly depends on the reason for
the missing data. If the missing values occur randomly throughout the dataset, there is a very
low risk of introducing a bias. However, the missing values could for example occur mostly
for a specific country or city, which would produce a biased result.

18



3.4 Modeling

Another large issue with the dataset was the amount of free text entries. For example,
several rows contained di�erent formatting of white spaces and dashes making it impossible
to categorize those columns in a correct way. To solve this, we performed manual refining,
grouping several di�erent values into one and finally removing rows that simply could not
be grouped because of their rare occurrences.

Finally, we filtered all numerical columns to remove all potential outliers that could dis-
rupt the model.

3.4 Modeling

3.4.1 Feature selection
In every iteration of the CRISP-DM cycle, feature selection was an important part of the
modeling. To ensure a potentially high-prediction accuracy, it was important that the di�er-
ent features that we used were optimized for the actual problem.

The initial goal when performing the feature selection was to find as many valuable
columns as possible. Due to deficient data quality of the dataset, the goal was often dis-
rupted by the fact that a large proportion of the data was removed due to the occurrences of
empty values. This resulted in that limitations were made, not only based on the information
that the column provided, but also the proportion of empty versus filled out values in that
specified column.

When we analyzed the data, we decided to initially remove all columns that contained
more than 40% empty values. From a total of 220 features, this left us with 92 features. We
then removed all columns that contained unique values for every row such as serial number
and order number.

Next, we performed a manual selection of the columns. The selection was based on the
possibility that the columns could have an impact on the location prediction. We continu-
ously discussed the possible impact of the columns with Alfa Laval to ensure that the decisions
that we made were based on reasonable assumptions. However, we only removed columns
that certainly did not have the possibility to positively influence the prediction. If an un-
certainty occurred, we kept the column and investigated it thoroughly during the ablation
study. An ablation study consists of removing and adding features in a systematical fashion
to identify the features that potentially improves the score, but equally important, to identify
potential features that potentially decreases the score.

Finally, the entire data set was compressed down to 13 features as well as the four targets:
longitude, latitude, country and city. Table 3.1 shows the selected features and targets with
imaginary example values. The table is flipped to fit in the page, thus rows are columns and
vice versa.

3.4.2 Preprocessing
Firstly, we chose to remove all duplicate values in the dataset. We justify this because we
believed that the distribution of the two data sets, with and without location, di�ered. The
reason to our beliefs was that customers order multiple products with the same technical
attributes and within the same markets. These products would be considered duplicates in
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3. Method

Table 3.1: Selected features and targets with imaginary row values.

Example row 1 Example row 2 Example row 3
Equipment M10 M25 T10
ALSIS Application 110 120 114
ALSIS Channel 710 701 710
TotalPlates 15 35 14
SalesPrice 1 2 3
Thickness 0.2 0.5 0.4
CBLength 350 350 250
TempInCold 6 15 22
TempInHot 82 70 100
TempOutCold 63 49 52
TempOutHot 68 55 83
FluidCold Water Water Ethanol
FluidHot Water Oil Water
Latitude 33.744798 55.717209 34.992725
Longitude -84.408256 37.605203 135.732111
Country USA Russia Japan
City Atlanta Moscow Kyoto

our dataset. We believed that the risk that just one of these products was missing its location
was very low when the other products had a location. Thus, any algorithm would probably
present a better score than it actually performed when it was used on products where the
location was missing.

The dataset consisted of two types of columns: categorical and continuous data. We
replaced the categorical data with a one-hot-encoded representation and we normalized the
continuous data to zero mean and unit variance. To one-hot-encode categorical data, we
replaced each unique category with a numeric representation. If the categorical data consist
of two categories, for example True or False then the numeric representation can either be
0 and 1, or 01 and 10. See Table 3.2 for an example with four colors where three colors are
unique.

To normalize data, we first calculated the mean and variance of all values. Then we sub-
tracted every value with the mean and divided with the variance to create a distribution from
-1 to 1. The distribution will now have an average mean of zero and variance 1, thus called
zero mean and unit variance.

Table 3.2: Example of one-hot-encoding

Color
Red
Blue
Green
Red

⇒

Red Blue Green
1 0 0
0 1 0
0 0 1
1 0 0

Lastly, we split the data set into training set, test set and validation set. Firstly we started
with dividing the data set in two parts with the proportion 80/20: split set and test set. Then we
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3.5 Evaluation

divided split set similarly into training set and validation set, resulting in the following propor-
tions 64/20/16 (train/test/validation). To ensure the same distributions in the three di�erent
data sets, i.e. at least one occurrence for each city or country, we applied a filter, before
dividing the data sets, that disregarded every category with less than 1

0.16 ≈ 7 occurrences.

3.4.3 Training
In this phase of modeling, we calculated a baseline for each problem to obtain a good refer-
ence value in how well an algorithm was performing.

To obtain a baseline for prediction of countries, we retrieved the country with most oc-
currences. This country was then used for all predictions and both accuracy and F1 score was
calculated.

When obtaining the baseline for prediction of cities, we chose not to select the most
frequently occurring label as we did for the country prediction. The reason for this was
that the country, that the product was located in, was passed on as a feature. Therefore we
assumed that any algorithm would at least be able to predict the most frequently occurring
city in each country.

Finally, for the coordinate prediction, we calculated the mean value for all the products
in the training set and used that as a baseline prediction. This resulted in that every product
was classified in the center of all data points. This is for obvious reasons a very bad way of
predicting coordinates but a good way to obtain a baseline.

When the baseline was set, we started to train our di�erent algorithms. A thorough ex-
planation of the chosen algorithms will be given in the next chapter. To achieve the best per-
formance, we optimized the hyperparameters of each algorithm, given the prediction result
on the validation set, which is called hyperparameter optimization. It basically refers to chang-
ing parameters for a given algorithm, such as number of iterations, loss function, learning
rate, etc to obtain a better score. We then iterated through this process until an optimal
score was obtained. When the optimization was finished, we predicted the test set using the
models, trained on the split set.

3.5 Evaluation
In the evaluation step of the CRISP-DM model, we performed some assessments of the con-
structed machine learning models. To evaluate the performance of the models, we used ac-
curacy and F1 score for classification tasks.

accuracy =
true positive + true negative

total samples
(3.1)

precision =
true positive

true positive + false positive
(3.2)

recall =
true positive

true positive + false negative
(3.3)
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3. Method

According to Nugues (2014), the F1-score is obtained through a combination between
recall and precision, in fact the harmonic mean of the two performance metrics.

F1-score = 2 ×
precision × recall
precision + recall

(3.4)

To give an example of the accuracy and the F1 score, imagine a distribution of 10 products
in two di�erent countries. The distribution consist of 9 products from Sweden and 1 from
Denmark. If a machine learning algorithm classify every product in Sweden, we would get
an accuracy of 90 %. For this case with Sweden in focus we would get a precision of 0.9 and a
recall of 1 and thus a F1 score of 1.8

1.9 . To get the resulting F1-score, we need to calculate the F1
score with respect to Denmark as well which in this case is equal to zero. Thus the resulting
F1 score, after computing the mean, is approximately 47.4%.

For all regression tasks, we used mean error distance (MED) and mean squared errror
(MSE), seen in Equation 3.5, for evaluation of our results. MED calculates the average distance
in kilometers between the true and the predicted coordinates, while MSE on the other hand
calculates the average squared di�erence between the latitude and longitude values. Despite
the fact that Gaman et al. (2021) used median squared distance as evaluation metric, we
chose to use MED. Generally, using median instead of mean is a good practice when trying
to avoid potential large outliers in the data. On the other hand, in our case, there was a risk
of achieving good results even if the majority of the predictions are considered as outliers to
median. Another reason why we chose to use MED was because coordinates can only assume
values in a limited range, making it impossible for huge outliers to occur.

MSE =
1
N

N∑
i=1

(ytrue − yprediction)2 (3.5)

Based on the di�erent results, we made di�erent conclusions such as consulting with our
supervisors, further feature selection, hyperparameter optimization etc. By iterating con-
tinuously through the steps of the CRISP-DM model, we got a complete understanding of
the problem at hand and could more easily locate the missing factor when we got a poor
evaluation result.

3.6 Deployment
Deployment is the last phase of the process in the CRISP-DM framework. In this thesis, the
objective in terms of deployment was to construct a Power BI dashboard to visualize our
results.

We initially created a map where we could plot the products that had been given a pre-
dicted location. Further, we included a table to visualize parts of the technical data. In this
table, we included a unique id to enable mapping to the database to retrieve additional at-
tributes that was not accounted in the machine learning model. Beyond a unique id, predicted
location and technical data, we also included a probability of how likely each prediction was.
This probability was retrieved from the method predict_proba used in the RF classification.
Lastly, two KPIs and only two filters were visualized since it was possible to apply filters for
all attributes used to construct the dashboard. A preview of the main features of the Power
BI dashboard can be seen in Figure 3.2.
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Figure 3.2: Power BI report for deployment of predicted counties.
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Chapter 4

Algorithms

In the this chapter we will go through the di�erent algorithms that will be used in this thesis.
Furthermore, we will introduce the structure of our method and in detail go through every
step of that structure.

In this thesis, we used four di�erent algorithms to solve our tasks. Much like Verma
et al. (2020), we chose to look at k-nearest neighbors, artificial neural networks and random
forests. In addition to these algorithms, we also used an algorithm called LightGBM. We will
provide more information about each algorithm in the following sections.

4.1 k-Nearest Neighbors
As an initial experiment, we implemented the simple k-nearest neighbors algorithm (k-NN),
created by Fix and Hodges (1985). Since we had little knowledge about the distribution of
the used data set, and due to the simplicity of k-NN, we chose to use k-NN for our first
experiment. k-NN can be used both for classification and regression, where the main idea of
k-NN is to, for a given input, find the nearest, most similar, neighbor in the training set. To
find the nearest neighbor, the distance can be calculated using Euclidean distance (Equation
4.1) or Manhattan distance (Equation 4.2).

d(x, y)Euclidian =

√√ n∑
i=1

(xi − yi)2 (4.1)

d(x, y)Manhattan =

n∑
i=1

|xi − yi | (4.2)

When using a k larger than one, the predicted class is equal to the most frequent true
class among the k neighbors found.

25



4. Algorithms

As implementation, we used the sklearn.neighbors.KNeighborsClassifier from scikit learn
for the prediction of cities and countries. For prediction of coordinates, we used sklearn.-
neighbors.KNeighborsRegressor. The algorithm contains several hyperparameters that can
be tuned for optimal performance.

4.2 Artificial Neural Networks
Artificial neural networks (ANN) are a supervised machine learning algorithms that were
first introduced by Mcculloch and Pitts (1943) and originate from neural networks in the
human brain. A neural network consists of multiple neurons which receives signals through
dendrites that then are forwarded through axons. Similarly, ANNs have nodes that corre-
sponds to the dendrites and edges that corresponds to axons. The nodes are organized in
layers, with one layer’s output serving as input to the next. Each node is connected to all
or a subset of all nodes in the following layer. Each edge in the network has a weight that
determines the impact of the signals that are transported from the nodes through that edge.

In this way the input to each node can be calculated by Equation 4.3. If a weight is set to
zero the inputs that are passed through that edge will not have an impact at all on the final
output. The larger value the weight has, either positive or negative, the more impact that
edge has.

The most simple architecture is called a perceptron, consisting of only one input layer and
one output layer. The output is calculated using an activation function that is applied to
the sum of the weighted inputs (Equation 4.3). An activation function is a type of threshold
function that determines if a signal should be fired or not depending on the value of the
weighted sum.

Most problems cannot be properly solved using a perceptron which leads us to the mul-
tilayer perceptron (MLP). An MLP is an architecture that consists of layered perceptrons, cre-
ating one or several hidden layers between the input and output layer. A visualization of this
can be seen in Figure 4.1.

Figure 4.1: Visualization of an arbitrary MLP

When training an ANN, each weight in the network is adjusted over several iterations to
give the best final result. This is performed initially with a so called forward pass or in other
words a prediction of the inputted training data. The error between the prediction and the
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labels in the training data is then calculated, and the weights are updated accordingly using
gradient descent.

Backpropagation is performed to determine which of the weights that should be used and
how they should be updated. Basically, backpropagation means stepping through the network
backwards, identifying each connection that resulted in an increased prediction error.

yk =
∑
j=1

wk j x j (4.3)

As ANN implementation, we used the Tensorflow and Keras libraries. To tackle the tasks
at hand with this implementation, di�erent adjustments were made depending on whether
the problem was concerning regression or classification. Most importantly, the output ac-
tivation function was set to linear (Equation 4.4) for the regression task. A linear function
basically retrieves an input and sends it forwards as is.

For the classification task, on the other hand, we used the softmax (Equation 4.5) as the
output activation function. The softmax function retrieves input without a specific distribu-
tion and can thus contain positive and negative values in an undetermined range. When the
softmax function is applied, the input is modified and distributed in the interval (0,1). The
sum of all the components adds up to 1 and can thus be transformed to probabilities. This
way the output can be seen as a list of probabilities of that the input belonging to each class
(Géron, 2017).

linear(x) = x (4.4)

softmax(xi) =
exi∑K

j=1 ex j
(4.5)

4.3 Random Forests
The concept of decision trees is the first step required to understand the random forests (RF)
learning method. Decision trees are a popular machine learning method that can be used for
both regression and classification tasks. Decision trees use a divide-and-conquer approach to
construct a tree structure. Figure 4.2 shows a trained decision tree for an arbitrary classifica-
tion task (Quinlan, 1986). One of the benefits with decision trees is that they are descriptive.
If you want to understand why a certain classification was made, such as why a penguin
was the outcome in Figure 4.2, you can simply walk through the decision tree backwards to
examine what actions that were taken.

Decision trees have proven relatively inaccurate in relation to other methods and a mod-
ified model, such as RF, is therefore often used instead. RF is an ensemble method that
combines several decision trees and trains them on randomly selected subsets of the original
training set. The results are then combined to form the overall result.

In this way, RF can counteract potential overfitting and reduce the variance between
results based on di�erent input data (Svetnik et al., 2003). According to Verma et al. (2020),
RF outperforms all the other methods evaluated in the article for two out of three cases and
achieved the overall highest accuracy score of 92.8% when predicting the country of residence.

27



4. Algorithms

Figure 4.2: Visualization of an imaginary trained decision tree pre-
dicting types of animals.

The implementation that we used is the sklearn.ensemble.RandomForestClassifier from
scikit learn.

4.4 Light gradient boosting machine (Light-
GBM)

There are two ways of constructing a model for predicting purposes. Either, one algorithm
is used that can solve the task or a combination of weaker algorithms are combined to form
an ensemble. An example of an ensemble is the previously mentioned RF method. The most
basic and frequently used way of constructing these ensembles is to, after all models have been
created and applied to the dataset, calculate the average of all the models results. This has
proven to be a rewarding practice historically. In contrast, a boosting algorithm sequentially
combines the models, i.e. after each iteration a new model is added to the ensemble based on
the current error obtained from the ensemble (Natekin and Knoll, 2013).

In this thesis, we have chosen to use a boosting algorithm called gradient boosting machines
(GBM) (Friedman, 2001), more specifically, an implementation called LightGBM (Ke et al.,
2017). This algorithm is closely related to XGBoost that was used for a regression task in
Gaman et al. (2021).

LightGBM is a supervised machine learning algorithm that can be used for both regres-
sion and classification tasks and originates from GBM. Since the algorithm is supervised,
we need a data set of format (x, y)N

i=1 where x = (x1, ..., xd) are the input variables and y is
the label that correspond to the input variables. The objective of the algorithm is to find a
function f (x) = y that minimizes a loss function L(y, γ) (Equation 4.6) Natekin and Knoll
(2013).

f (x) = arg min
γ

N∑
i=1

L(ytrue, ypredicted) (4.6)

Much like for the other methods, we used LightGBM to solve both of our tasks: regres-
sion and multi-classification. For the regression task, while training, we used the L2 Loss
(Equation 4.7) as our loss function.
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For the multi-classification task we used categorical cross-entropy error, CCEE (Equation
4.8), when we trained the model (Microsoft, 2021).

L(ytrue, ypredicted)L2Loss =

N∑
i=1

(ytrue − ypredicted)2 (4.7)

L(ytrue, ypredicted)CCEE = −
1
N

N∑
n=1

∑
i

ytrue ln(ypredicted) (4.8)

To set the number of trees used in the training phase, you can change a parameter called
num_iterations. If the number of trees is set too low, the model will be underfitted and if
the number of trees is too high the model will be overfitted. To prevent this from happening,
you simply set a high number of trees and use a parameter called early_stopping_round,
which terminates the training of the model when it has not improved for a given number of
iterations.
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Chapter 5

Evaluation

5.1 Experimental setup
In this section, we present all relevant settings and hyperparameters used for the final model
for each of the algorithms. With the help of this information, our results will be possible to
reproduce with the same dataset, with some reservation regarding di�erent default random
variables.

5.1.1 Country prediction
The same datasets were used for all models for the prediction of countries. Table 5.1 shows
the size of each dataset.

Table 5.1: Sizes of every data set used when predicting countries.

Data set Size
Train 132,136
Validation 33,034
Test 41,293

After we performed hyperparameter optimization on the validation set, we ended up
using the specified parameters shown in Table 5.3. We chose only to list the parameters that
we changed from their default values. Thus, the additional parameters that are not listed in
the tables assume their default value.

When running the ANN algorithm, beyond the hyperparameters in Table 5.3b, the layer
structure used can be seen in Table 5.2.
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Table 5.2: Layer structure for ANN used when predicting countries.

Layer type Activation function Output size
Dense relu 100
Dense relu 25
Dense softmax 131

Table 5.3: Optimized hyperparameters for all algorithms when pre-
dicting countries.

(a) k-NN

Parameter Value
n_neighbors 1
weights ’uniform’
algorithm ’auto’
leaf_size 15
p 1
metric ’minkowski’
n_jobs None

(b) ANN

Parameter Value
batch_size 32
epochs 100
optimizer nadam
loss categorical_crossentropy

(c) RF

Parameter Value
n_estimators 500
max_features sqrt
min_impurity_split 0.01
bootstrap False

(d) LightGBM

Parameter Value
objective multiclass
num_class 131
num_leaves 512
learning_rate 0.03
boosting_type dart
feature_fraction 0.6
num_iterations 600

5.1.2 City prediction
For the prediction of cities, Table 5.4 shows the size of each dataset.

Table 5.4: Sizes of every data set used when predicting cities.

Data set Size
Train 80 032
Validation 20 008
Test 25 011

The hyperparameters used for each algorithm, obtained by hyperparameter optimization,
can be found in Table 5.6. The layer structure used when running the ANN algorithm is
shown in Table 5.5.
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Table 5.5: Layer structure for ANN used when predicting cities.

Layer type Activation function Output size
Dense relu 100
Dense relu 100
Dense softmax 3001

Table 5.6: Optimized hyperparameters for all algorithms when pre-
dicting cities.

(a) k-NN

Parameter Value
n_neighbors 1
p 1

(b) ANN

Parameter Value
batch_size 16
epochs 10
optimizer nadam
loss categorical_crossentropy

(c) RF

Parameter Value
n_estimators 100
max_features sqrt
oob_score True

(d) LightGBM

Parameter Value
objective multiclass
num_leaves 200
max_depth 15
learning_rate 0.05
feature_fraction 0.6
max_bin 50
num_iterations 450

5.1.3 Coordinate prediction

Finally, Table 5.7 shows the size of each dataset, used for coordinate prediction.

Table 5.7: Sizes of every data set used when predicting coordinates.

Data set Size
Train 4948
Validation 1237
Test 1547

The optimized hyperparameters for each algorithm can be found in Table 5.9 and the
layer structure for the ANN algorithm is shown in Table 5.8.
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Table 5.8: Layer structure for neural network used when predicting
coordinates.

Layer type Activation function Output size
Dense relu 500
Dense relu 300
Dense relu 200
Dense linear 2

Table 5.9: Optimized hyperparameters for all algorithms when pre-
dicting coordinates.

(a) k-NN

Parameter Value
n_neighbors 19
p 1
leaf_size 15

(b) ANN

Parameter Value
batch_size 10
epochs 50
optimizer nadam
loss mae

(c) RF

Parameter Value
n_estimators 500
max_features sqrt
min_impurity_split 0.01
bootstrap False
num_iterations 3000

(d) LightGBM

Parameter Value
num_leaves 700
learning_rate 0.002
feature_fraction 0.6
metric l1
max_bin 200
num_rounds 3000

5.2 Results
In the following sections, we will present the results for the di�erent regression and classifi-
cations problems that we have encountered. The result will be presented for the prediction
of countries, cities and coordinates. The same algorithms have been used for all problems.

5.2.1 Country prediction

Table 5.10 shows the algorithm we used, the number of predicted countries, accuracy and F1
score. There is a total of 131 predictable countries. The boldface numbers show the highest
number for that column.
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Table 5.10: Number of predicted countries, accuracy and F1 score
for all methods when predicting country.

Method # predicted countries Accuracy F1-score
Baseline 1 0.122 0.002
k-NN 129 0.627 0.294
ANN 25 0.233 0.024
RF 119 0.700 0.341
LightGBM 131 0.709 0.285

Figure 5.1 shows results for ANN where we see the training and validation accuracy in
the left figure. We clearly see that the training accuracy, dotted line, constantly improves
throughout the process. However, we see that it converges around 100 epochs or slightly
thereafter. The validating accuracy improves in the beginning and follows the training accu-
racy. However it quite quickly falls of and converges slightly over 23% with small changes. In
the right figure we can instead see the training and validation loss. Similarly to the left figure,
we can see that the training loss converges around 100 epochs. The validation loss quickly
assumes its lowest value and then increases.

Figure 5.1: Graphs over training and validation loss and accuracy
during training of the ANN for country prediction over 100 epochs.

Figure 5.2 shows a confusion matrix from predictions with the LightGBM algorithm. Be-
low the confusion matrix, we see five red dots with the purpose of highlighting the five most
occurring countries. We clearly see that the corresponding vertical lines are more distinctive
than other vertical lines in the confusion matrix.
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Figure 5.2: Confusion matrix over all predicted countries using the
LightGBM algorithm. Below the vertical lines, we marked the five
most frequent countries with red dots.

5.2.2 City prediction
In the same way as for countries, Table 5.11 shows what algorithm that was used, number
of predicted cities, accuracy and F1 score. There was a total of 3001 predictable cities. The
boldface numbers show the highest number for that column.

Table 5.11: Number of predicted cities, accuracy and F1 score for all
methods when predicting cities.

Method # predicted cities Accuracy F1-score
Baseline 101 0.192 0.019
k-NN 2789 0.486 0.381
ANN 192 0.080 0.010
RF 2709 0.571 0.447
LightGBM 2490 0.534 0.360

Figure 5.3 shows results for ANN prediction of cities. In the left figure we see both train-
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ing and validation accuracy. Here we clearly see that the training accuracy continuously
increases and converges around 50 epochs. The validation accuracy decreases and also con-
verges. In the right figure, we see both training and validation loss. The right figure is similar
to the left one but with the opposite data set, training and validation.

Figure 5.3: Graphs over training and validation loss and accuracy
during training of the ANN for city prediction over 50 epochs.

Figure 5.4 illustrates a three-dimensional confusion matrix where the underlying confu-
sion matrix contains values for every city. The cities in the confusion matrix were sorted
according to what country they belong to. Thus, one could see squares along the diagonal
showing all cities for a specific country. The confusion matrix is then partly highlighted. The
highlighted part only contains values from cities in Russia.

Figure 5.4: A zoomed in section of the confusion matrix of predicted
cities, using RF, showing only the cities located in Russia.
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In Figure 5.5, we see a similar figure as 5.4 but for the United States. It follows the same
principles but highlights the cities located in the United States instead of in Russia. The
underlying confusion matrix is the same in both 5.5 and 5.4.

Figure 5.5: A zoomed in section of the confusion matrix of predicted
cities, using RF, showing only the cities located in the United States.

5.2.3 Coordinate prediction
Table 5.12 shows what algorithm that was used together with the di�erent error functions. In
contrast to above tables, Tables 5.10 and 5.11, the boldface numbers are the lowest numbers
in the respective column.

Table 5.12: MSE and MED in kilometers for all methods when pre-
dicting coordinates.

Method MSE MED (km)
Baseline 134.16 1230.76
k-NN 118.92 1091.73
ANN 105.83 872.01
RF 107.25 992.73
LightGBM 108.79 1027

In Figure 5.6, we can see the result for ANN prediction of coordinates. We see training
loss in contrast to the validation loss. The reason that we do not have a graph for training and
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validation accuracy is that coordinate prediction is a regression task and accuracy can not be
calculated. We clearly see that the training loss continuously decreases but the validation
accuracy converges early around a loss of 7.

Figure 5.6: Graph over training and validation loss and accuracy dur-
ing training of the ANN for coordinate prediction over 50 epochs.

In Figure 5.7, we can see all labels from the test set. By labels, we are referring to the
correct coordinates that the predictions relate to. In Figure 5.8, the prediction for each algo-
rithm is presented. We clearly see that every algorithm originate at the same spot but more
or less drawn out horizontally.

Figure 5.7: All labels in the test set.
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(a) k-NN (b) ANN

(c) RF (d) LightGBM

Figure 5.8: Predicted coordinates from the test set using all algo-
rithms.
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Chapter 6

Discussion and Conclusion

6.1 Discussion
One of the goals with this master’s thesis was to answer the question whether is is possible to
predict location of products or not. To answer this question, we obtained a simple baseline
and quickly realized that our algorithms performed significantly better. It was surprising to
both us and Alfa Laval that we were able to predict the location with an accuracy as high as
we got, given the type of data and the data quality that we had.

6.1.1 Countries
In Table 5.10, we can see that our baseline obtained an accuracy of 12%. This directly cor-
relates to that Russia is the most frequent country with 12% of the products. Further, when
studying Table 5.10, we can see that ANN performed better than our baseline but was still
very bad. Generally when you are using ANN, you want much data, which we argue was the
scenario in our case, but perhaps we did not have enough data or that the given data was too
narrowed. As can be seen in Figure 5.1, the model seemed to get overfitted, almost immedi-
ately, in respect to the validation loss but the accuracy remained more or less the same. We
noticed that the accuracy did not improve much depending on any of the hyperparameters
and did thereby assume that the ANN could not solve our task with the data set at hand.

The next algorithm we tried was k-NN. k-NN generated a surprisingly good accuracy in
relation to its simplicity. The resulting F1 score was significantly better than the F1 score for
both the baseline and ANN. However, the F1 score was somewhat disappointing in compar-
ison with the accuracy.

When we tried RF, we realized that without hyperparameter optimization we obtained
a good result. We predicted less countries than we managed to predict with k-NN. However,
the F1 score was higher for RF than for k-NN which implies that k-NN predicts more coun-
tries, but the countries were predicted incorrectly. The number of predicted countries is not
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a good measure of how well the algorithm was performing. It was used as a validation to
ensure that the algorithm did not predict only a few countries and that way obtained a good
accuracy. The F1 score served the same purpose and generated a similar kind of validation.

Lastly we used LightGBM to predict the countries. We obtained the best accuracy with
LightGBM of 70.9%, about one percentage point better than RF. LightGBM managed to pre-
dict all countries and thus a logical adoption would be that the F1 score also was high. How-
ever this was not the case, the F1 score was in fact lower than both of the previously tried
algorithms.

Looking at the confusion matrix, Figure 5.2, we can see that the majority of the countries
was partly predicted as the five biggest countries, marked with red dots. The middle red point
in the confusion matrix represents Russia which was the country with the most occurrences,
as mentioned previously. Studying the vertical lines the least prominent was Russia which
indicates that the algorithm was fairly good at predicting Russia compared to the other four
countries with many occurrences.

6.1.2 Cities
When studying Table 5.11, we can see that when selecting the most frequent city for each
country as the prediction, the baseline achieved a score of approximately 19% and a F1-score
of 1.9%. In comparison with our highest scoring algorithms, we clearly see that they perform
significantly better with a score of 57.1% in accuracy and a F1 score of 44.7%.

What we can see is also that the F1 score is much closer to the achieved accuracy for all
methods, in comparison to country prediction, which is very promising. The reason for this
could be that the distribution of cities across the data set was more even. In comparison to
the country prediction, it did not exist a few classes containing the majority of all data points
to the same extent.

Just like for the country prediction, the k-NN algorithm produced a decent result but
was outperformed by RF and LightGBM once more in regards to both accuracy and F1 score.
Although, k-NN manages to achieve the best score when it comes to number of predicted
cities.

Finally, we can see that this was the only experiment, where any of the algorithms per-
formed worse than the baseline, which in this case was the ANN. As discussed for the country
prediction, an important requisite for most types of problems solved with ANN is to have a
data set of extensive size. This could be the issue here as well, or possibly that the data simply
did not contain the information needed to solve the problem with this method. Much like
for the country prediction, we saw signs of clear overfitting when analyzing Figure 5.3. In
contrast to the country prediction, in this case, we can even see signs of overfitting for the
validation accuracy. Because of this, the chosen number of epochs was kept low as can be
seen in Table 5.6b.

Looking at the zoomed in sections of the confusion matrix in Figures 5.4 and 5.5 we can
immediately notice large di�erences. In Figure 5.4, showing the cities that were located in
Russia, we can identify at least two very distinct vertical lines. The leftmost and also the most
significant line belongs to Moscow, which naturally was the city with the most occurrences
among the cities within the data containing product located in Russia.

Comparing this to the submatrix showing the cities in the United States, Figure 5.5, we
can see that the United States shows no similar trends. The missclassified products do not
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seem to all be predicted as the most frequent city.
The conclusion that we draw from this is that the result di�ers a lot between di�erent

countries, which could depend on several reasons. One reason could be that the products
sold to Russia are often very similar to each other. Another reason could be that the sales
representatives in charge of filling out the data for the sales to Russia make consistent errors
in important columns that other countries, such as the United States, do not. Both reasons
could make it very di�cult for our algorithms to predict the location properly and thereby
gain more in accuracy by predicting the locations as the most frequent city. Obviously, trends
such as the one for Russia can be identified for several other countries but we choose to
highlight Russia and the United States because of their large share of the dataset.

6.1.3 Coordinates
When we obtained our baseline for coordinate prediction, as mentioned previously, we placed
every product at the location of the mean coordinate. Then we calculated the MED and got
1231 km, see Table 5.12. Our initial experiments of the di�erent algorithms with default pa-
rameters showed the same trend as for the baseline. The predictions originated around the
mean coordinate with some adjustments.

Even after we performed the hyperparameter optimization, the results showed quite poor
distribution of the predicted coordinates, as can be seen in Figure 5.8. Only the ANN proves
to predict coordinates all across the country and started to resemble the true coordinates
in Figure 5.7. On the other hand, we can also see that there is an increase of clearly faulty
predictions, such as the ones placed outside the coast line. Investigating Table 5.12 seems to
prove the theory that the more distributed the predictions are across the country, the lower
is the MED.

ANN achieved the overall best score in comparison to all other methods with an MED
of approximately 872 km. The result was quite disappointing in relation to the purpose of
this thesis. After meetings with our supervisor, Martin Gunnäng, we came to the conclusion
that, for it to be valuable to Alfa Laval, we had to narrow the error to somewhere below 10
km in MED. We tried to reduce the error with some hyperparmeter optimization but it only
resulted in small changes.

The high MED does not seem to be a result of overfitting either, as can be seen in Figure
5.6. The graph shows that no matter the increase in epochs, the validation loss does not
increase or decrease. Instead it drops to a threshold and stays there throughout the training.
Thus, given the initially large error we realized that, we would never obtain an error small
enough to satisfy the needs from Alfa Laval for this task.

6.1.4 Improvements
Unbiased data set
To obtain a completely unbiased result, we would need to predict on a subset of the dataset
that has an unknown location. For that to be possible, someone would have to manually
validate the predicted values. Further, to implement a completely unbiased model, one would
need the manually located subset as a part of the training, test and validation set.
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The reason that we did not include a completely unbiased dataset was due to two rea-
sons. The main reason was that, given our dataset and the specific columns selected, it is
next to impossible to make this manual prediction, which is also why our master thesis was
originated. The second reason was that we could not see any obvious di�erences between the
datasets and as far as we knew, they had similar distribution.

Improve the dataset
The dataset that we used for training is generally based on technical attributes in combina-
tion with a few others such as to what market the product was sold, how it was sold, etc. To
improve the dataset, we could have done further feature selection. The reason why we did
not select additional columns from the database was that they had too many empty values.
We could have tried to include those columns and filled them out using some form of data
imputation. For example using the mean value or the most common value of that column.
However, there is a risk that these columns instead have a negative impact of the model.
Thus, an ablation study would have been of great importance especially in this case.

To further improve our dataset, we could have investigated di�erent columns that were
not in the database. This could have been done through studies and meetings with sales
companies within Alfa Laval to investigate what considerations are of importance when they
manually determine the location of products.

Another idea could be to perform feature engineering. Feature engineering is often re-
ferred to manual creation of columns. This can be done by combining two columns into a
third one in a way that gives the algorithm a correlation between them, not found otherwise.

Improve the model
One thing that we could have investigated further was to put a threshold on predict_proba
when predicting countries and cities using RF. Then we could have, using the training and
validation phase, investigated the outcome of predictions that had a probability higher than
a certain value, a threshold. If the accuracy and F1 score improved, we could have either cho-
sen to discard the predictions below the threshold or segment the predictions into di�erent
certainties.

6.2 Conclusion
To summarize the solution that we created, we can clearly state that when it comes to exact
coordinate prediction, the algorithms can’t properly solve the task for the given data2set.
On the other hand, the other two tasks: country and city prediction, show great promise.
With an accuracy top score of 70.9% for country prediction and 57.1% for city prediction, this
project exceeded all of ours and Alfa Laval’s expectations.
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