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Abstract
Optical cavities should be designed to be insensitive to vibration in all directions.
The study of the behavior of the material used to develop an optical cavity is vital
for the cavity to be insensitive in all orders. In this project, we are using Abaqus
to generate a FE model of an optical cavity and its mountings via support points in
order to investigate the effects of vibration in different directions during machining.
In any machining operation, mounting the workpiece is critical, and it is one of the
most critical factors in reducing vibration, by varying mounting orientations.

The work begins with the recreation and development of a FE model in Abaqus with
appropriate boundary conditions as in the reference paper [1].To achieve the desired
results, various load and boundary conditions were simulated. Material properties
were varied for the same model with obtained boundary and load conditions, and
differences in deformation and stress patterns are presented in this paper.

The optimal mounting position was chosen to investigate the anisotropy material
behavior for different orientations by varying the stacking directions. The effects
and sensitivity of vibrations due to external loading on optical cavities for different
anisotropy material orientations were investigated. Finally, modal analysis was per-
formed for the selected model properties and mounting position to investigate the
system’s natural frequencies and behavior.

Keywords : Optical cavity, Anisotropy material, FE simulation, Modal analysis.
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1 Introduction
This research includes a FE simulation in Abaqus software to investigate the differ-
ences in vibration effects and behavior between an anisotropic and isotropic optical
cavities using appropriate load and boundary conditions, as well as a modal analysis
is performed in the end. The history of the subject and the work’s goal and intent
are all covered in this chapter.

1.1 Background
Ultra-stable laser light is used in a wide range of applications, including optical
frequency standards, relativity experiments, the generation of low-phase-noise mi-
crowave signals, and the transmission of optically stable frequencies over fiber net-
works as well as gravitational wave detection[5]. Furthermore, they are critical in
high-resolution spectroscopy, fundamental physics experiments, and interferomet-
ric measurements such as future space flights, including the laser interferometer[1].
These new approaches to the design of Fabry-Perot reference cavities, which are used
to stabilize lasers, have been sparked by these research topics, especially cold atoms,
and single-ion optical frequency standards[5].

The dick effect limits the clock frequency stability of optical frequency standards
with neutral atoms due to the frequency noise of state-of-the-art ultra-stable clock
lasers[6]. Because of this restriction, the best recorded Allan deviations are more
than one order of magnitude greater than the clocks’ ultimate quantum limit[7]. Re-
ducing the spectral density of the laser’s frequency noise in the low frequency range
to achieve ultimate stability close to the quantum projection limit[5].

The effect of residual vibration must be minimized to reduce the frequency noise
of stabilized laser cavities[8]. While vibration isolation systems can reduce noise,
most compact commercial systems are insufficient to achieve a sub-hertz laser line
width[9]. By carefully designing the geometry of the cavity and its mounting, one
way to increase the spectral efficiency of the stabilized laser is to reduce vibration
sensitivity[10].

Figure 1: Cylindrical spacer cavity [1]
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The figure 1 shows the cylindrical cavity mounting, which will be recreated in this
paper. The initial focus here is to reduce the vibration of the spacer cavity by
optimizing the mounting positions. Later for the obtained mounting position, the
vibration sensitivity of different material properties will be analyzed.

1.2 Aim and Purpose
This master’s project aims to recreate an FE model of the workpiece in Abaqus
software, followed by appropriate boundary conditions to investigate the different
mounting positions and responses to different material properties. This project aims
to study the best possible stress-free mounting orientation by simulation, which helps
to reduce the vibration of the workpiece. Then the modal analysis is performed
for the least vibrating mounting position to study its range of natural frequencies.
By Completing all the simulations, sensitivity to vibration will be investigated and
analyzed, which were induced due to the external loading for different orientations
of the anisotropic workpiece.

1.3 Disposition of Report
The report begins with details about the thesis’s context, goal, intent, and limita-
tions. Then, it briefly outlines the science behind machining and vibrations, including
the fundamentals of anisotropic materials and the concept of modal analysis, and its
significance using the Finite element method. The methodology is then presented,
which includes the procedure used in the thesis, the software used, the boundary con-
ditions and loads used in the simulations, and post- processing of the data. Following
the methodology, the results are described in tables and figures in the following sec-
tion, which contains relevant details from the simulations with brief comments to
the corresponding figures. In the discussion portion, the majority of the findings
are anatomized with explanations. In the conclusion section, the most significant
observations are summarized and represented.
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2 Theory

This section is organized as follows: an overview of current machining process un-
derstanding with mounting positions, vibrations, anisotropic material descriptions,
modal analysis, and finally finite element analysis.

2.1 General Process of Machining

Machining is a material removal process from a workpiece in the form of powder,
chips, and parts at a regulated rate and condition in order to give the workpiece the
desired shape and size by applying external force or load[11]. Material removal for
workpieces is done in all machining processes by applying load or forces with or with-
out cutting equipment[12]. So, regardless of the machining method, the application
of external pressure or load, whether conventional or non-conventional, is needed[13].
The force or load is applied in conventional machining by various cutting tools that
come into contact with the workpiece[14]. The load application approach differs from
traditional methods such as different cutting tools and non-conventional techniques
such as chemical and other energy sources in non-conventional methods[15].

The applied loads, forces, friction, and other energy sources for the machining process
are transformed into another form in all machining processes[16]. Heat, vibration,
and stress will be produced in the workpieces due to the converted load or energy
applied. These outcomes for the process cannot be removed, but they can be reduced
or regulated[17]. Heat, vibration, and stress will trigger issues during machining and
affect the machining process final product[18]. The analysis of these outcomes dur-
ing machines is more important to minimize and improve the machining process’s
performance[19].

In any machining method, mounting is one of the most basic functions. During
machining, mounting limits the movement of the material or workpiece to a single
location. During the machining process, all workpieces should be secured to some
mounting system to exploit the forces applied by the cutting tools fully. The impor-
tance of the mounting process and its mechanisms in precision machining at the micro
and nanoscale and the machining of small workpieces are of greater importance[20].

During machining, vibration is caused by the relative motion between the workpiece
and the cutting tool. This vibration influences the result of the machining process.
This vibration can be minimized by adding a damping effect or using proper mount-
ing techniques[21]. When it comes to machining anisotropic materials, anisotropy is
a big issue. These materials are difficult to machine due to their properties, which
vary depending on the direction in which they are processed. As a result, it is more
necessary to study anisotropic materials before machining[22].
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2.2 Vibrations
Vibration is a self-repeating motion. This pattern may or may not continue. It’s
also not necessary for the replication to be a literal duplicate. In a statistical scene,
specific vibrations can repeat themselves[23]. The presence of inertial and elastic
components like mass and spring are not the vital elements for vibration. Since
vibration is described as the transfer of kinetic and potential energy, a vibratory
device must provide a mechanism for storing both of these energies[24]. The former
is often accomplished by a mass, while the latter is performed by a spring. A typical
vibratory mechanism is shown in Figure 2 as a mass connected to a horizontal spring.
The mass is in charge of kinetic energy, while the spring is in charge of potential
energy. A pendulum may also represent a vibratory mechanism.

Figure 2: Two different simple vibratory systems [2]

There is no spring-like part for potential energy in this device. In reality, mass serves
as a source of both kinetic and potential energy. This illustration refutes the belief
that a vibratory machine must have both mass and stiffness components. Before
analyzing a dynamic system’s vibration, it is essential to know how many degrees of
freedom the design has. The number of DOF in a vibratory system is defined as the
smallest number of independent coordinates needed to fully determine the motion of
all system components at any given time[2].

2.2.1 Mathematical Model - Vibration
Vibration issues can range from basic to complex. Except for those structures whose
dynamics can be adequately represented by a finite number of partial differential
equations, vibration theory seldom applies directly to an existing system[25]. This
is because a theory is typically formulated for a simplified version of a particular
problem based on a set of assumption. Not all these assumptions are quickly spelled
out. Mathematical Modeling for the structure is the method of idealizing a particular
structure until it can be analyzed.

The model created by the idealization process for an actual structure is not unique.
The need to derive a basic, accurate, and easy-to-understand model is a challenge
that can be faced by both experience and a deep understanding of dynamics[26].
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The mathematical model for modal analysis is often discretized with a finite number
of coordinates. A chosen spatial resolution is used to reflect continuous behavior,
such as mode shapes. As a result, the model is often expressed as a collection of
ordinary equations. These equations can be translated into algebraic equations us-
ing the Laplace or Fourier transform. This emphasizes the significance of material
algebra in modal analysis[2].

2.3 Anisotropic Material
Anisotropy refers to properties of the substance or material in which those mate-
rial properties vary with respect to the direction in or along with the measurement.
Anisotropic materials are also called direction dependency materials. Isotropic on
the other hand in which material properties are same irrespective of direction of
measurement. Authors need to know the effect of anisotropy on the materials be-
havior under the application of load. mechanical response of anisotropic materials
are preferred by the presence of one or more directions[27].

Machining of the anisotropic materials is difficult not only because of hardness and
brittleness but also because of structural anisotropy of the materials[28]. For elas-
tic materials, inversion of linear stress–strain relations is often theoretically feasible,
allowing for immediate determination of the strain associated with characterization
tests. For isotropic materials, this inversion is easy, but for anisotropic materials,
the process can be extremely difficult[29]. The magnitude of the applied strain is
significant in anisotropic material designs. Their material properties are highly de-
pendent on the applied deformation, with highly nonlinear constitutive law behavior
being typical[30][31]. Anisotropic material designs are appealing not only because of
stiffness requirements but also because of volumetric behaviors. Near-zero Poisson’s
ratio values, in particular, have been found to favor nanoengineering applications[32].

The deformation mechanism is strongly affected by structural anisotropy. Because
of this, load application on anisotropic materials is complex. An investigation
of anisotropic materials is usually accompanied by a study of isotropic materials,
which have mechanical responses that are independent of direction and therefore
have a straightforward mathematical theory. The design of ideal wind morphing
structures has been linked to the creation of highly anisotropic artificial materi-
als. Furthermore, various mechanical engineering, such as ceramics and the auto-
motive industry, require lightweight synthetic materials with direction-based static
properties[33][34]. The figure 3 gives the brief view of the difference between the
isotropic and anisotropic materials response due to the application of force along the
different direction.

Elastic constants are parameters that express the relationship between stress and
strain on materials in the stress range where they exhibit elastic behavior[35]. Elas-
tic constants are fundamental properties that specify how a crystal reacts to a load
applied from the outside. They include information on the chemical bonding as
well as the solid’s mechanical and structural stability[36]. The elastic constants that
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Figure 3: Schematic representation of an anisotropic and isotropic two- dimensional material
response upon the application of normal strains.[3]

make up the stiffness matrix are not explicitly calculated in a material’s laboratory.
Laboratory experiments may be used to determine engineering constants such as
Young’s modulus, shear modulus, and Poisson’s ratio. Stiffness matrix of the elastic
constants and engineering constant does not have any direction connection. With
the help of engineering constants and compliance matrix coefficient, equation 2 can
be formed [37].

The elastic constant of the anisotropic material can be finding by different mate-
rial depending on the type of material. With the help of hook’s law elastic constants
can be calculated, common anisotropic material with a linear elastic behavior can
be expressed with stress-strain relationship as follow,

σij = Cijklεkl (1)

Where:

σij : stress component
Cijkl: elastic constant or moduli
εkl: strain component



σ1 = σxx
σ2 = σyy
σ3 = σzz
σ4 = σyz
σ5 = σxz
σ6 = σxy

 =



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε1 = εxx
ε2 = εyy
ε3 = εzz
ε4 = εyz
ε5 = εxz
ε6 = εxy

 (2)

In the above matrix Equation 2 each stress components are depending on all strain
components. With the help of numbering the stress and strain components, the
equation anisotropic elasticity can be written in the matrix form as above. The 36
Cij are material constants called as stiffness. The matrix is called as stiffness matrix.
Form the principle of symmetric properties, the whole matrix is symmetrical and
only 21 independent material constants will be obtaining in the case of anisotropic
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material. Therefore, in the above matrix due to symmetry bottom half can be elim-
inated and the matrix can be simplified as below Equation 3,



ε1
ε2
ε3
ε4
ε5
ε6

 =



S11 S12 S13 S14 S15 S16
S22 S23 S24 S25 S26

S33 S34 S35 S36
S44 S45 S46

S55 S56
S66





σ1
σ2
σ3
σ4
σ5
σ6

 (3)

Due to a large number of elastic constants, completely anisotropic materials are chal-
lenging to model. Fortunately, many materials that aren’t isotropic do have certain
material symmetries that make the equations 2 and 3 above easier to understand[38].

2.4 Modal Analysis
One of the most critical methods in searching to determine, improve, and optimize the
complex characteristics of engineering is modal analysis. The method of evaluating
a system’s inherent dynamics characteristics, such as natural frequencies, damping
factors, and mode shapes, and using them to develop a mathematical model for it’s
dynamic behavior is known as modal analysis [39]. Modal data is the information
gathered as characteristics, and the developed mathematical model is known as the
modal model of the system[40].

Frequency and orientation are used to decompose the dynamics of a structure phys-
ically. According to modal analysis, the vibration response of a linear time-invariant
dynamic system can be expressed as a linear combination of a series of simple har-
monic motions called natural modes of vibration[41]. A Fourier method of sine and
cosine waves is used to describe a complicated waveform[42]. A dynamic system’s
natural modes of vibration are determined entirely by its physical properties such
as mass, stiffness, damping, etc., and their spatial distributions. The natural fre-
quency, the modal damping factors, and the characteristic displacement pattern,
namely mode form, are all modal parameters for each mode[43].

Modes are intrinsic properties of an elastic structure that are determined by ma-
terial properties (mass, damping, and stiffness), as well as the structure’s boundary
conditions change, the structure’s modes change as well. When a mass is applied to
a system, for example, it vibrates differently[44].

The form of the mode may be complex or straightforward. Each one is associated
with a natural frequency. The degree to which each natural mode participates in the
overall vibration is determined by the properties of the excitation sources as well as
the system’s mode shape[45].

Theoretical and experimental approaches are combined in modal analysis. Theoret-
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ical modal analysis is based on a physical modal of a dynamic system that includes
mass, stiffness, and sampling characteristics. These characteristics can be expressed
as partial differential equations. The equation of wave of a constant vibratory string
derived from its mass distribution and elasticity properties is an example[46]. The
equation’s solution yields the string’s natural frequencies and mode forms, as well
as its forced vibration responses. A more practical model, on the other hand, would
typically include the mass, stiffness, and damping properties as spatial distributions,
i.e., the mass, stiffness, and damping matrices. These matrices are used to solve a
series of ordinary differential equations of motion. We can covert these equations into
a standard edge value problem using the superposition principle of a linear dynamic
system. Its solution provides the system’s modal results[47].

Modern finite element analysis allows almost every linear dynamic structure to be dis-
cretized, significantly expanding the potential and range of theoretical modal analy-
sis. On the other hand, significant developments in the experimental field of research,
known as modal testing, have resulted from the rapid growth of data collection and
processing capabilities over the last two decades[2].

2.4.1 Modal Testing
It is an experimental technique for determining a linear time-invariant vibratory sys-
tem’s modal model. The three steps of experimental modal analysis are test planning,
frequency response measurements, and modal parameter recognition. Selection of a
structure’s type of support, type of excitation force, location of excitation, hardware
to measure the force contains points of response to be measured; and identification
of mechanisms that could contribute to incorrect measurement are all part of the
test preparation process. A set of frequency response function data is collected and
stored during the test, then analyzed to determine the evaluated structure’s modal
parameters[48].

2.4.2 Mathematical Model – Modal Analysis
Math is used in modal analysis to create theoretical models for complex system
and analyse data in different formats. Since modal analysis includes both time do-
main and frequency domain analysis, the mathematics involved is extensive. It deals
with both discretised and continuous dynamic processes[49]. Curve fitting, matrix
manipulation, statistical analysis, parameter recognition, and other analytical and
numerical studies were conducted. As a consequence, proper mathematical planning
is needed.

In modal analysis, matrix theory is critical. This because modal analysis theory
is focused on the study of a multi-degree-of-freedom dynamic structure, which is
based primarily on matrix theory. The solution of linear equations, matrix inverse,
and edge value problems are the most common matrix analyses.

In modal analysis, the Fourier transform is essential for signal processing. The quick
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Fourier transform is widely regarded as a watershed moment in the advancement of
modal analysis technology. Modal research would always be an empirical and scien-
tific endeavor without it[44].

2.4.3 Single Degree of Freedom
In the Time domain, the following Equation 4 describes a single-degree-of-freedom
mechanism, where the mass m can only pass along the vertical x-axis.[44]

mẍ(t) + cẋ(t) + kx(t) = f(t) (4)

Equation 4 states that the sum of all forces acting on the mass m should be equal
to zero, with f(t) representing an externally applied force, mẍ(t) representing the
inertial force, cẋ(t) representing the damping internal force, and kx(t) representing
the restoring force. Where, x(t) is the position of the mass. Changing the domain
to that of Laplace [44]gives,

Z(s)X(s) = F (s) (5)

With Z(s) the dynamic stiffness,

Z(s) = ms2 + cs+ k (6)

The inverse of the dynamic stiffness equals the transfer function,

H(s) =
1

ms2 + cs+ k
(7)

The poles of the system are the roots of the denominator of the transfer equation.
The damping coefficient in mechanical structures is usually very small, resulting in
a complex conjugate pole pair,

λ = −σ ± iωd, with σ = −ζωn (8)

Where:

ζ= The damping factor

fd =
ωd
2π : damped natural frequency, with ωd = ωn

√
1− ζ2

fn = ωn
2π : natural frequency, with ωn =

√
k
m = λ
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ẍ+
c

m
ẋ+

k

m
x = 0 (9)

where:
c
m = 2 ζ ωn

k
m = ω2

n

The mechanism is not damped if c=0, and the poles become strictly imaginary. H(iω)
denotes the Frequency Response Function (FRF), which is obtained by replacing the
Laplace variable s in Equation 7 with iω.

H(iω) =
1

−mω2 + icω + k
(10)

We can observe that if c = 0, then H(iω) will be infinity for ω =
√
k/m. While

only a few functional structures can be realistically modeled by a single-degree-of-
freedom (SDOF) system, SDOF properties are important because those of a more
complex multiple-degree-of-freedom (MDOF) system can often be expressed as the
linear superposition of many SDOF characteristics[44].

2.5 Finite Element Analysis
Starting with a basic model is an excellent place to begin with, when using finite
element modeling. When a mathematical model has been solved correctly, and the
results have been interpreted, a more refined model can be considered to improve the
accuracy of the actual system prediction. The more complicated model would have
more complex response effects, but it will also be more expensive, time-consuming,
and often challenging to interpret the results. Modeling necessitates a thorough un-
derstanding of the physical action of the problem to choose appropriate types of
analysis. By avoiding Over refining and badly shaped elements can helps to save
time and computer resource. The finite element analysis method is a numerical solu-
tion technique that divides an area into small subregions and seeks an approximate
solution. The solution that satisfies the governing equations within each sub-region
is much easier to find than the solution needed for the entire region. The sub-region
is called as elements. The elements are put together by connecting a limited number
of points on each one is called as nodes. In commercial FEA software, there are
several different types of finite elements as shown in Figure 4, Figure 5 and Figure 6
[4].

It is simpler to obtain FEA results than it is to perform hand calculations using
traditional theories. In theory, three-dimensional volume elements may be used to
model any design. However, this is not realistic since many designs can be simplified
using rational assumptions to obtain good FEA results without sacrificing accuracy.
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Figure 4: One dimensional line element have trusses, beams and boundary elements [4]

Figure 5: Two-dimensional plane elements has plane stress, plane strain, axisymmetric, membrane
and shell elements [4]

The time and effort required to arrive at FEA solutions are significantly reduced
when simpler models are used[4].

The type of finite element software used for machining analysis has a significant im-
pact on the quality and nature of the analysis that can be done, and it provides com-
prehensive and efficient solutions for both routine and complex engineering problems
across various industrial applications. For this project we select Abaqus as a FEM
tool to perform the all the simulations[50][51]. Abaqus is a general-purpose finite ele-
ment model (FEM) program that can be used to address a wide range of issues. It has
three different technologies to simulate different area of problems. Abaqus/Standard
is used to simulate static and low-speed dynamic events. Abaqus/Explicit is used to
simulate highly nonlinear and high-speed dynamic events[52]. Abaqus/CFD is used
to simulate computational fluid dynamics. Processing of the simulation depends on
the keywords that are used to set up the simulation. With the help of specific axioms
to model the machining operation, the user has complete control over the simula-
tion and Abaqus does not endorse any materials, however it does enable users to
customize them using a variety of models. Meshing and element types used in the
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Figure 6: Three-dimensional volume elements has tetrahedral, hexahedral and brick elements [4]

model are also completely under the user’s control. The most significant benefit of
Abaqus is that it allows for detailed modeling. The user may create a very com-
prehensive model that describes different types of actions. The disadvantage in this
program is the user must manually set several of the simulation parameters, which
takes a long time to “setup” simulations[53].
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3 Methodology
This project was performed in three different phases, the first of which was to re-
construct the work of T. Nazarova and her team on "Vibration-insensitive reference
cavity for an ultra-narrow-linewidth laser" [1]. The material’s mechanical properties
of Yttrium Orthosilicate, which was suggested by Amin Mirzai and his team in their
work on "First-principal investigation of doping effects on mechanical and thermody-
namic properties of Yttrium Orthosilicate," [36] were investigated in the second phase
to evaluate and compare the different responses of the material, the same model,
boundary, and load conditions obtained from stage one were used. The bound-
ary condition, load, and material properties from the first two phases were used to
evaluate and observe the dynamic responses of a rectangular cavity in the final stage.

The available literature was systematically explored in the first step, and the knowl-
edge and data needed to run the simulation were gathered. Specific differences were
discovered during the analysis and had to be assumed in order to operate a simula-
tion effectively. The exact geometrical dimensions of the model used by T. Nazarova
were used with the same material properties based on the data gathered[1]. Since
the boundary and load conditions were not precisely defined, load and boundary
conditions were varied to find the optimal location and value of the prior conditions
in order to achieve the same results as T. Nazarova’s work. Just a quarter of the
cavity was measured using symmetric boundary conditions due to symmetry, which
helped minimize the cavity’s overall simulation run time.

In the second phase, one set of load and boundary conditions were finalized by
consulting with the supervisors. The part dimension was kept constant as in the
first phase. The material properties were changed to Yttrium Orthosilicate to study
the difference in this composite material’s behavior compared with the Ultra-low
expansion glass, which was used in the first phase. The result of the analysis were
analyzed and presented in the section below. The final step was to analyze the dy-
namic properties of the rectangular cavity defined to us using the same boundary
and load conditions as the second phase, as well as the same material properties.
Compared to the component model used in the first two stages, the rectangular cav-
ity had a different shape and size[1][36].

The figure 7 represents the flow chart used to build the FE model. In the following
sections, more information about each phase of the method is provided in greater
detail.
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Figure 7: Working procedure used to develop the FE model
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3.1 CAD Geometry
Parts are the elements that make up an Abaqus/CAE model. Each component is
created, modified, and manipulated using the Part module. In this project, two
models were used, each with a unique geometry. The cylindrical model was used in
the first two phases of the thesis, and the rectangular model in the third phase, as
described in the previous section. The modeling space was set to 3D deformable,
and the base function was set to solid extrusion when creating the part.

Figure 8: Cylindrical spacer cavity model

Figure 9: Rectangular spacer cavity model

The cylindrical spacer has a length of 0.1m and a diameter of 0.08m, as shown in
Figure 8. The support holes measure 0.008 meters in diameter and 0.01 meters in
depth. The support points of the cylindrical spacer are 0.07m apart and 0.035m
from the center in the Z-axis. The support points are 0.0009m in the negative Y
direction. The rectangular spacer cavity was used to explore the final steps of this
thesis as shown in the figure 9. The rectangular spacer cavity has a height of 0.014m
and a width of 0.015m, with a length of 0.02m. The support holes have a diameter

24



of 0.001m and a depth of 0.002m. The support holes have a diameter of 0.001m and
a depth of 0.002m. The support holes are 0.012m apart, and 0.006m from the center
axis in either direction of the Z-axis and are on the symmetry axis in the Y-axis.
The dimensions of the rectangular spacer cavity was suggested by the supervisors as
the rectangular model is being used in the department of physics, Lund university
and this is the reason for dimensional differences between two models.

3.2 Material Model
Defining materials, defining beam section profiles, defining sections, assigning sec-
tions, orientations, normals, tangents to components, and defining composite layups
are all the tasks that the Property module can be used for. The materials used in
this study are ultra-low expansion glass and Yttrium Orthosilicate, both of which
were chosen based on the literature available to us.

Ultra-low expansion glass with a density of 2210 Kg/m3 was used in the first phase.
ULE has a Poisson’s ratio of 0.17 and Young’s modulus of 67.6 GPa. In both the
second and third phases, Yttrium Orthosilicate was used; the density of Yttrium
Orthosilicate was taken to be 4440 Kg/m3, and the elastic constants are represented
in the following elastic stiffness matrix C, with units in GPa.

C =



212.21 62.78 78.65 0 11.64 0
− 197 49.50 0 −13.56 0
− − 173.21 0 −21.07 0
− − − 61.42 0 10.08
− − − − 48.41 0
− − − − − 69.25


Following the development of the components, materials were created, and they
were assigned to their respective models. Local coordinates were established for
anisotropic materials, and material orientations were allocated.

3.3 Step
The splitting of the problem history into steps is a fundamental principle in Abaqus.
Any suitable phase of the past can be a thermal transient, a creeping hold, a dynamic
transient, and so on is referred to as a step. A step can be as simple as static analysis
of a load shift from one magnitude to another in Abaqus/Standard. Since the aim
was to research the system’s quasi-static deformation and natural frequencies, we set
the step to Dynamic, Explicit, Automatic Increment, and Nilgeom - ON, as shown
in the Figure 10.
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Figure 10: Step instance

3.4 Boundary and load conditions
After assigning the material properties to the model and selecting the required step
based on the type of simulation to run, the next important step is to apply boundary
conditions and loads to the designated face or plane of the model. Boundary condi-
tions are applied to restrict the model’s movement from the forces or loads applied
externally or due to self-driven load in the model. These boundary conditions are
directions dependent factors that should be carefully assigned to the required surface
or plane of the model. A minor unnecessary constraint leads to a more considerable
simulation time variation and inappropriate results.

As mentions previously, all the data are extracted from the given paper to recre-
ate the model. According to the article[1], the model should be constraining or
supported at four supporting holes drilled on the symmetrical axis of the cavity or
model. It is also clearly mentioned that the whole supporting holes are not entirely
constrained in all directions. But the specification of the boundary conditions is not
mentioned in the paper. This leads to an increase in the number of simulations to
determine the proper constraints of the face and its directions of the model.

We ran several simulations using the limited data in the paper for boundary condi-
tions by adjusting constrained faces and directions within the supporting holes. The
different boundary conditions are considered based on our knowledge, along with the
suggestions from our supervisors. After every simulation, the results were carefully
monitored and discussed with our supervisor to develop better boundary conditions
to give relevant results. Each simulation with varying boundary conditions is finite
due to the long simulation time, ranging from 12 to 48 hours. A result that is nearly
similar to the one discussed in the paper, is obtained after several simulations. The
upper half of the inner circle was constrained normal to the surface by the bound-
ary conditions used to obtain this result, i.e., XSYMM(U1=UR1=UR2=0), which is
shown in the figure 11 (Area marked with red). The load is also tracked, in addition
to the boundary conditions, by applying it to different phases of the model. As seen
in the figure 11 , the considered load is a 10 m/s2 acceleration in upward Y-direction
acting on the mirrors (represented by yellow lines).
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Figure 11: Applied load and boundary conditions for cylindrical model

The boundary conditions and load from the simulation that produced results that
are about 90 percent close to the results in the reference paper are taken into ac-
count for subsequent simulations. The geometry and material properties are the only
things that are altered. The modified geometry is shown in the figure 12, for the
same boundary conditions and load.

Figure 12: Applied load and boundary conditions for rectangular model

3.5 Meshing of the model
The Mesh module includes tools for creating meshes from parts and assemblies gen-
erated in Abaqus/CAE. The Mesh module also contains functions for verifying an
existing mesh. Due to the geometry’s complexity, some approximations and geome-
try clean-up were needed to mesh the model as precisely as possible. Even though
a mesh with many elements produces more accurate results than a rough mesh, it
was essential to mesh irregularly. This is because, holes in the geometry rapidly in-
crease the number of elements required, lowering the study’s computational cost and
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jeopardizing the model’s stability. The mesh was given a tetrahedron shape to avoid
affecting the geometry of the holes. The meshed models for both the geometries are
shown in figure 13 and figure 14.

Figure 13: Meshed image of cylindrical model

Figure 14: Meshed image of rectangular model
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4 Results
There are three sections in the simulated results. Section 4.1 presents the results
of a cylindrical model simulation with two different material properties. Section 4.2
shows the results of a rectangular model simulation with two different material prop-
erties, and section 4.3 presents the modal analysis results for both models. In the
chapter 5, these results are contrasted and explained in detail.

4.1 Simulation of cylindrical model
Because of the symmetry, just a half of the model is shown below. This section is
broken down further into two subsections. Section 4.1.1 shows the results of a cylin-
drical model simulation with isotropic material properties, while section 4.1.2 shows
the results of a cylindrical model simulation with anisotropic material values, these
material properties are described in section 3.2. Legends represent the stresses with
corresponding color code in the figures.

4.1.1 Cylindrical model with isotropic material proper-
ties

The below figures shows the deformation and stress distributions on the cylindrical
model with isotropic material properties. The exhibited data have been scaled for
better comparison and analysis.

From the figure 15, for the deformation occurring in X-direction, it is evident that
the magnitude of deformation is distributed throughout the cylindrical cavity. As we
have considered only half of the cavity due to it’s symmetrical property, it is probable
to conclude that the other half of the cavity will also have identical distribution of
load and deformation. The obtained results in figure 15 suggests that when the load
conditions are applied in positive Y-direction, both compression and expansion takes
place at the cylindrical cavity. The scaling of the magnitude of deformation is done
in such a way, that the green part of the cavity holds the ideal or minimal deforma-
tion, whereas when expansion takes place, the magnitude of deformation increases
positively, which is represented with yellow to red. Similarly, it is evident that the
blue part of the cavity denotes the compression that takes place at the bottom part
of the cavity, gradually increasing from centre of the cavity towards the circumfer-
ence of the cylindrical cavity.

From figure 16, when the results are obtained for deformation in Z-direction, it is
evident that expansion takes place at the bottom part of the cavity, with the maxi-
mum magnitude of 1.55e-11 m. Whereas, compression takes place at the top part of
the cavity, with the maximum magnitude of 1.55e-11 m.
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Figure 15: Simulated deformation in X-direction under an 0.1 m/s2 acceleration in Y-direction

Figure 16: Simulated deformation in Z-direction under an 0.1 m/s2 acceleration in Y-direction

Figure 17 shows the von-mises stress distribution when the cavity is under 0.1 m/s2
acceleration in Y-direction. The stress component clearly shows that the stress is
more concentrated at the mirror. The results obtained are logical and reliable be-
cause, it is obvious that the stresses will act at the interference of the mirror and
cavity. From figure 16, we can see that the magnitude of the maximum stress is
553.8 N/m2 at the interference of the mirror and cavity and the stress is distributed
only up to a certain extend in cavity with a minimum magnitude of 41.67 N/m2.

Figure 18 shows the maximum principal stress distribution under an acceleration of
0.1 m/s2 in Y-direction. The results obtained shows us that the stress is concen-
trated at the interference of mirror and cavity with a maximum magnitude of 464.7
N/m2. The load is distributed to the cavity which decreases gradually towards the
outer part of the cavity. The minimum magnitude of stress recorded is a compressive
stress of 5.35 N/m2
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Figure 17: Von-Mises stress distribution under an 0.1 m/s2 acceleration in Y-direction

Figure 18: Maximum principal stress distribution under an 0.1 m/s2 acceleration in Y-direction
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4.1.2 Cylindrical model with anisotropic material prop-
erties

The below figures shows the deformation and stress distributions on the cylindrical
model with anisotropic material properties. The exhibited data have been scaled for
better comparison and analysis. There were three orientation conditions analyzed.
In the first condition, the stacking direction is element isoparamatric direction Z-
axis . Figure 19 shows the deformation that takes place in X-direction, when an
acceleration of 0.1 m/s2 is applied. From the results obtained we can see that the
compression takes place at the bottom part of the cavity, with a maximum magni-
tude of 4.36e-12 m, whereas expansion takes place at the top part of cavity with a
maximum magnitude of 3.429e-12 m .

Figure 19: Simulated deformation in X-direction under an 0.1 m/s2 acceleration in Y-direction

From figure 20, we can see the deformation in Z-direction under 0.1 m/s2. The results
obtained clearly shows that extension takes place at the bottom part of the cavity
with a maximum deformation of 1.31e-11 m. Whereas, at the top of the cavity, we
note compression of magnitude 1.365e-11 m.

From figure 21 we can identify the von-mises stress acting on the optical cavity, with
a acceleration of 0.1 m/s2 applied on the mirror. We can clearly see that the stress
is distributed evenly around the interference region of the mirror and cavity. With a
maximum stress of 1267 N/m2. The stress gradually decreases towards the circum-
ference of the cavity.

Figure 22 shows the maximum principal stress acting on the optical cavity when sub-
jected to a acceleration load of 0.1 m/s2. From the results obtained we can deduce
that the stress is distributed unevenly around the interference zone of mirror and
cavity. In this case, we can identify both compressive and tensile stress that acts
upon the cavity, with a maximum magnitude of 1052 N/m2 for tensile stress and a
maximum compressive stress of 21.9 N/m2.
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Figure 20: Simulated deformation in Z-direction under an 0.1 m/s2 acceleration in Y-direction

Figure 21: Von-Mises stress distribution under an 0.1 m/s2 acceleration in Y-direction
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Figure 22: Maximum principal stress distribution under an 0.1 m/s2 acceleration in Y-direction
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In the second condition, the stacking direction is element isoparamatric direction
Z-axis with additional rotation of 90 degrees with respect to Y-axis of orientation
is considered. The figure 23, figure 24, figure 25 and figure 26 shows the simulated
results of cylindrical anisotropic model of second condition.

Figure 23: Simulated deformation in X-direction under an 0.1 m/s2 acceleration in Y-direction
with 90 degrees additional rotation of orientation

Figure 24: Simulated deformation in Z-direction under an 0.1 m/s2 acceleration in Y-direction
with 90 degrees additional rotation of orientation
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Figure 25: Von-Mises stress distribution under an 0.1 m/s2 acceleration in Y-direction with 90
degrees additional rotation of orientation

Figure 26: Maximum principal stress distribution under an 0.1 m/s2 acceleration in Y-direction
with 90 degrees additional rotation of orientation
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In the third condition, the stacking direction is element isoparamatric direction Z-
axis with additional rotation of 270 degrees with respect to Y-axis of orientation is
considered. The figure 27, figure 28, figure 29 and figure 30 shows the simulated
results of cylindrical anisotropic model of third condition.

Figure 27: Simulated deformation in X-direction under an 0.1 m/s2 acceleration in Y-direction
with 270 degrees additional rotation of orientation

Figure 28: Simulated deformation in Z-direction under an 0.1 m/s2 acceleration in Y-direction
with 270 degrees additional rotation of orientation
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Figure 29: Von-Mises stress distribution under an 0.1 m/s2 acceleration in Y-direction with 270
degrees additional rotation of orientation

Figure 30: Maximum principal stress distribution under an 0.1 m/s2 acceleration in Y-direction
with 270 degrees additional rotation of orientation
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4.2 Simulation of Rectangular model
This section is also broken down further into two subsections. Section 4.2.1 shows the
results of a rectangular model simulation with isotropic material properties, while
section 4.2.2 shows the results of a rectangular model simulation with anisotropic
material values, these material properties are described in section 3.2. However, due
to time constraints, the material properties of the rectangular models were scaled
down by nine orders of negative magnitude. which saved about seventy percent of
the simulation time for each simulation. Legends represent the stresses with corre-
sponding color code in the figures.

4.2.1 Rectangular model with isotropic material proper-
ties

The figure 31, figure 32, figure 33 and figure 34 shows the deformation and stress
distributions on the rectangular model with isotropic material properties. The ex-
hibited data have been scaled for better comparison and analysis.

Figure 31: Simulated deformation in X-direction under an 0.1 m/s2 acceleration in Y-direction
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Figure 32: Simulated deformation in Z-direction under an 0.1 m/s2 acceleration in Y-direction

Figure 33: Von-Mises stress distribution under an 0.1 m/s2 acceleration in Y-direction

Figure 34: Maximum principal stress distribution under an 0.1 m/s2 acceleration in Y-direction
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4.2.2 Rectangular model with anisotropic material prop-
erties

The figure 35, figure 36, figure 37 and figure 38 shows the deformation and stress
distributions on the rectangular model with anisotropic material properties. The
exhibited data have been scaled for better comparison and analysis. There were
three orientation conditions analyzed. In the first condition, the stacking direction
is element isoparamatric direction Z-axis.

Figure 35: Simulated deformation in X-direction under an 0.1 m/s2 acceleration in Y-direction

Figure 36: Simulated deformation in Z-direction under an 0.1 m/s2 acceleration in Y-direction
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Figure 37: Von-Mises stress distribution under an 0.1 m/s2 acceleration in Y-direction

Figure 38: Maximum principal stress distribution under an 0.1 m/s2 acceleration in Y-direction
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In the second condition, the stacking direction is element isoparamatric direction
Z-axis with additional rotation of 90 degrees with respect to Y-axis of orientation
is considered. The figure 39, figure 40, figure 41 and figure 42 shows the simulated
results of rectangular anisotropic model of second condition.

Figure 39: Simulated deformation in X-direction under an 0.1 m/s2 acceleration in Y-direction
with 90 degrees additional rotation of orientation

Figure 40: Simulated deformation in Z-direction under an 0.1 m/s2 acceleration in Y-direction
with 90 degrees additional rotation of orientation
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Figure 41: Von-Mises stress distribution under an 0.1 m/s2 acceleration in Y-direction with 90
degrees additional rotation of orientation

Figure 42: Maximum principal stress distribution under an 0.1 m/s2 acceleration in Y-direction
with 90 degrees additional rotation of orientation
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In the third condition, the stacking direction is element isoparamatric direction Z-
axis with additional rotation of 270 degrees with respect to Y-axis of orientation is
considered. The figure 43, figure 44, figure 45 and figure 46 shows the simulated
results of rectangular anisotropic model of third condition.

Figure 43: Simulated deformation in X-direction under an 0.1 m/s2 acceleration in Y-direction
with 270 degrees additional rotation of orientation

Figure 44: Simulated deformation in Z-direction under an 0.1 m/s2 acceleration in Y-direction
with 270 degrees additional rotation of orientation
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Figure 45: Von-Mises stress distribution under an 0.1 m/s2 acceleration in Y-direction with 270
degrees additional rotation of orientation

Figure 46: Maximum principal stress distribution under an 0.1 m/s2 acceleration in Y-direction
with 270 degrees additional rotation of orientation
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4.3 Modal analysis
The modal analysis results on isotropic and anisotropic material properties of both
the cylindrical and rectangular models are presented in this section. Each mode shape
corresponds to a natural frequency, and the mode shape represents the displacement
behavior. A mode of vibration is distinguished by its modal frequency and mode
shape.The mode shape is determined by the surface shape as well as the boundary
conditions. Modal analysis is divided into two sections. The modal analysis of a
cylindrical model with two different material properties is presented in Section 4.3.1.
The modal analysis of a rectangular with two different material properties is shown
in Section 4.3.2. For better understanding both deformed and undeformed contours
are plotted below.

4.3.1 Modal analysis of cylindrical model with isotropic
material properties

The first ten natural frequencies of the cylindrical model with isotropic material
properties are depicted in Figure 47. Figure 48 depicts the displacement of these
ten natural frequencies as mode shapes. From the modal analysis conducted for an
isotropic material, we can identify 10 different frequencies that are inadequate for the
particular model. From figure 47, we can extract the frequency range, namely, 20391
to 47168 cycles/time. These frequencies range, as suggested from modal analysis
produces the worst conditions for vibrations when it matches the loading frequency,
as the model starts to resonate due to incompatible frequency conditions.

Figure 47: First 10 mode Natural frequencies (fn) of the isotropic cylindrical model
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 48: Initial 10 modes of frequencies of isotropic cylindrical model
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Cylindrical model with anisotropic material properties with the stacking direction
in element isoparamatric direction Z-axis. From the modal analysis conducted for
an anisotropic material, we can obtain the inadequate frequencies for the particular
model. For the optical cavity that undergoes severe vibration due to high frequen-
cies, it is absolutely crucial to identify the suitable loading conditions.

Figure 49: First 10 mode Natural frequencies (fn) of the anisotropic cylindrical model
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 50: Initial 10 modes of frequencies of anisotropic cylindrical model
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Cylindrical model with anisotropic material properties with the stacking direction
in element isoparamatric direction Z-axis and additional rotation of 90 degrees with
respect to Y-axis of orientation is considered. For the modal analysis conducted for an
anisotropic material with a additional rotation of 90 degrees with respect to Y-axis.
Any frequency that is used iin this particular frequency, will result in resonance inside
the cavity. Even though the minimum frequency is similar to previous orientation, it
is crucial to identify even the slightest of variations for all the possible orientations
of the anisotropic material.

Figure 51: First 10 mode Natural frequencies(fn) of the anisotropic cylindrical model
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 52: Initial 10 modes of frequencies of anisotropic cylindrical model
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Cylindrical model with anisotropic material properties with the stacking direction in
element isoparamatric direction Z-axis and additional rotation of 270 degrees with
respect to Y-axis of orientation is considered.

Figure 53: First 10 mode Natural frequencies(fn) of the anisotropic cylindrical model
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 54: Initial 10 modes of frequencies of anisotropic cylindrical model
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4.3.2 Modal analysis of rectangular model with isotropic
material properties

The first ten natural frequencies of the rectangular model with isotropic material
properties are depicted in Figure 55. Figure 56 depicts the displacement of these ten
natural frequencies as mode shapes.

Figure 55: First 10 mode Natural frequencies(fn) of the isotropic rectangular model
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 56: Initial 10 modes of frequencies of isotropic rectangular model
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Rectangular model with anisotropic material properties with the stacking direction
in element isoparamatric direction Z-axis.

Figure 57: First 10 mode Natural frequencies(fn) of the isotropic rectangular model
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 58: Initial 10 modes of frequencies of isotropic rectangular model
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Rectangular model with anisotropic material properties with the stacking direction
in element isoparamatric direction Z-axis which is from bottom to top and additional
rotation of 90 degrees with respect to Y-axis of orientation is considered.

Figure 59: First 10 mode Natural frequencies(fn) of the isotropic rectangular model

59



(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 60: Initial 10 modes of frequencies of isotropic rectangular model
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Rectangular model with anisotropic material properties with the stacking direction
in element isoparamatric direction Z-axis which is from bottom to top and additional
rotation of 270 degrees with respect to Y-axis of orientation is considered.

Figure 61: First 10 mode Natural frequencies(fn) of the isotropic rectangular model
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 62: Initial 10 modes of frequencies of isotropic rectangular model
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The figure 63 shows the comparison chart of frequencies for different cylindrical mod-
els used. By comparison, it is evident that the trend for all anisotropic cylindrical
models are similar. Whereas, the isotropic model behaves differently with a higher
trend, comparatively. In anisotropic models, the first 7 modes suggests almost 0
frequency. Although, we can see a sudden spike of frequency from mode 7 to mode
8. Whereas, in isotropic model, we notice a gradual increase in frequency right from
1st mode to the 10th mode.

The figure 64 shows the comparison chart of frequencies for rectangular models.
From the results obtained, it is evident that all the rectangular model behaves al-
most identically. The trendline suggests that for all the rectangular models have
similar frequencies right from mode 1 to mode 10.

Figure 63: Mode number vs frequency for cylindrical model

Figure 64: Mode number vs frequency for rectangular model

63



5 Discussion and Conclusions
In order to obtain accurate results, FE simulations take more time. All of the results
mentioned in the results sections are apparent for comparison. The quarter half of
cylindrical models were simulated and represent as half symmetric in result section
and rectangular models are simulated and represent in complete models. Because a
single simulation took around 30 to 60 hours to complete, all of the results of the
simulations are considered and studied qualitatively, at the expense of quantitative
analysis. That is why all models are based on 0.1m/s2 force. Figure 16 depicts the
z-direction deformation for a 0.1 m/s2 acceleration in the positive Y-direction for an
isotropic material model. These results, which are nearly 90 to 95 percent close to
the reference paper, were obtained after several simulations with different loads and
boundary conditions. The outcomes are considered in two directions, X and Z. To
investigate the deformation and stress distribution behavior of anisotropic materials
and compare them to isotropic materials, additional simulations were performed by
changing the anisotropic orientation while keeping all loads and boundary conditions
constant. Figures 14 and 18 show that the deformation patterns are similar in the x-
direction, and the anisotropic model deformed more than the isotropic model under
the same load conditions. When we look at the results in Z-direction from Figures
16 and 20 , we can see that deformation is slightly more significant in the isotropic
model than in the anisotropic model due to the orientation’s direction. When it
comes to stress distribution, as shown in figures 17 and 18 for the isotropic model
and figure 21 and figure 22 for the anisotropic model, both principal and Von Mises
stresses are more significant in the anisotropic material model and are concentrated
near the circumference of the circular mirror where the load is applied. In contrast,
fewer stresses are induced near the support points.

For a better understanding of anisotropic material behavior, simulations were con-
ducted by rotating the local coordinate system concerning the global coordinate sys-
tem. Due to time constraints, only three material orientations (0,90,270 degrees) were
simulated.It can be seen that the deformation in the X-direction of an anisotropic
material model for different material orientations has the same deformation pattern.
Still, the model with no altered material orientation has deformed more than the
other two orientations. Figures 20, figure 24 , and figure 28 show the deformation in
the Z-direction. The patterns remained the same, but the model with the unaltered
material orientation had more deformation. From the figure 21, figure 22, figure 25,
figure 26, figure 29, and figure 30, Both stresses are increased in the model with
unaltered material orientation, and stresses are induced in the same area as in the
isotropic material model. We can also see that the anisotropic model has minor de-
formation and stresses than the isotropic model because it has an additional material
orientation rotation of 90 and 270 degrees.

A rectangular CAD model with the same material properties, load, and boundary
conditions was created to gain a better understanding of the material behavior.
Figure 16 and figure 32 show that the deformation pattern for the cylindrical and
rectangular models is not the same and that the rectangular model is more deformed,
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maybe because of the geometrical differences. Comparing isotropic and anisotropic
rectangular models is made in the same way that the comparison of cylindrical mod-
els is made. When comparing the rectangular isotropic and anisotropic models in
figure 31 and figure 35, it is clear that the deformation pattern is not uniform and is
distributed unevenly throughout the model in the X direction, with the anisotropic
model having deformed more than the isotropic model. When the results from figure
32 and figure 36 are viewed in the Z direction, the distortion pattern is the same, and
anisotropic material has slightly more deformation value. The maximum Von Mises
stress for the anisotropic model is more than double that of the isotropic model, and
also the stress distribution patterns are not the same, but the minimum Von Mises
stress value is similar, as shown in figures 33 and figure 37. Figures 34 and figure
38 show the maximum principal stress. The maximum and minimum values of the
anisotropic model are more than double those of the isotropic model. Figure 35,
figure 39, and figure 43 show the results of anisotropic models. The original material
orientation model deforms more in the X-direction than the 90 and 270-degree ma-
terial orientation models. The deformation results in the Z-direction are the same as
the X-direction in figure 36, figure 40, and figure 44. When the stresses from figure
37, figure 41, figure 45 for Von-Mises stress and figure 38, figure 42, and figure 46 for
maximum principal stress are studied, both Von Mises and maximum principal stress
values are more than double in the model with original material orientation than in
the model with 90 and 270-degree material orientation. The anisotropic model with
the original material orientation has more deformation than the isotropic model in
the rectangular model. However, anisotropic models with 90 and 270-degree material
orientation deform less than isotropic models.

Modal analysis is used to find the eigenfrequencies, also known as natural frequen-
cies, for all cylindrical and rectangular models. These frequencies are responsible for
workpiece resonance, deformation, and failure. Modal analysis was used to simulate
the first ten natural frequencies and mode shapes for all models. This will aid in
determining the ideal frequencies required for the machining process of the workpiece
due to the influence of vibration.

From the results obtained in section 4.3 for modal analysis, it is probable to conclude
that the change in shape for each mode is varying completely for different cylindri-
cal models. Whereas, for rectangular model, we see a similar behavior for some of
the models. Figure 63 clearly indicates that the range of frequencies for anisotropic
cylindrical models are almost identical for first 7 modes for cylindrical model. From
mode 8 we see a sudden increase in frequency with a increase in magnitude of al-
most 20000 cycles/time. Whereas, for isotropic cylindrical model, we see a gradual
increase in frequencies, ranging from 20000 to almost 50000 cycles/time. From figure
64, we can identify the range of frequencies for rectangular models for both isotropic
and anisotropic models. Compared to cylindrical models, rectangular models have
a similar trend of frequencies for all the isotropic and anisotropic models. From the
comparison chart, we can identify the range of frequencies for first 4 modes to be
almost 0, but we can identify increase in frequency from mode 5 with a magnitude
of 1 cyle/time. But towards the end of the modal analysis, we can identify a gradual
increase in frequencies with a magnitude of 3.5 to 4 cycles/time. This difference in
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frequencies for rectangular and cylindrical models maybe because of the geometrical
differences and changes in material properties.

With all of the comparisons and observations made between isotropic and anisotropic
material orientation models, we can conclude that it is critical to study the material
properties and its behavior under loading conditions in order to find the ideal work-
ing condition. Especially when anisotropic materials are taken into account, as they
exhibit different material properties in different directions. Different anisotropic ma-
terial orientations cause varying degrees of deformation and stress.By knowing the
material behavior before machining, it is possible to reduce the deformation, induced
stresses, and vibrations of models during machining by supporting the model in a
specific position.It is also critical to investigate the material’s behavior concerning
the geometry of the model being used. We can achieve a nearly vibration-insensitive
model by simulating and studying different orientations of the material layups in the
anisotropic model.
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