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Popular Scientific Summary
Number theory is in a sense among the oldest disciplines of mathematics. A running theme is that
many number theoretic problems are very easy to state and understand. However, actually solving
these problems often requires much work or some very clever trick. An extreme case of this would be
Fermat’s last theorem: originally a conjecture by French lawyer Pierre de Fermat whose statement is
understandable to anyone who knows how to add and take powers; however, it took over three and a
half centuries to prove, despite many of history’s greatest mathematicians giving it their best efforts.

During the 17th century Fermat made a note in a copy of Diophantus’s Arithmetica of a statement
for which he famously claimed to have a marvelous proof; this is the very same note where he famously
wrote that the margins of the book were too small for said proof. The statement he wrote down was
simply that the equation

xn + yn = zn

has no solutions such that x, y and z are all non-zero integers when n is an integer strictly greater than
2. This is the statement that would eventually became known as Fermat’s last conjecture. For centuries
this conjecture remained uncracked until the matter was finally settled by Andrew Wiles toward the end
of the 20th century. Wiles managed to prove that the conjecture was in fact true, earning it the title it
is currently known by: Fermat’s last theorem.

Before yielding to Wiles, Fermat’s last theorem was highly sought after. Many a great mathematician
attempted to prove the statement long before Wiles, including the likes of Euler and Gauss, but they
were only ever able to establish special cases. Among these was French mathematician Gabriel Lamé.
In fact, Lamé was convinced that he had essentially found a proof for the statement [2]. The trick was,
according to Lamé, to look at a certain factorization of xn + yn as a cyclotomic integer. He thought
that he could use the uniqueness of this factorization to prove Fermat’s last theorem. However, his proof
turned out to have a fatal flaw.

Cyclotomic integers are essentially a collection of complex numbers with an arithmetic very similar
to that of the integers. For instance, much like integers, cyclotomic integers have irreducible numbers
that all cyclotomic integers factor into. Here irreducible essentially means that there are no “meaningful”
cyclotomic integers dividing the factor and that the number itself is “meaningful” as a divisor; some
cyclotomic integers divide all other cyclotomic and in this sense behave very much like ±1, since knowing
that they divide a given number tells us nothing about that number. The collection of cyclotomic integers
can be different depending on what specific cyclotomic integers we are talking about. Each collection
of cyclotomic integers corresponds to the complex number ω = e

2πi
m for some integer m, and can be

constructed by extending the integers to also include ω and all possible finite sums and products of
integers and ω, with repetition of numbers allowed.

On the 4th of January 1847, Lamé proposed to use the cyclotomic integers corresponding to n to
factorize xn + yn . Where he went wrong was in assuming that factorization into irreducible cyclotomic
integers was in fact unique. That this was not always the case had in fact been proven in a paper by
German mathematician Ernst Kummer three years prior to Lamé presenting his supposed proof [2]. One
integer n such that unique factorization fails for the corresponding cycltomic integers is n = 23, as is
shown in this paper.

While Kummer’s paper was a death-blow to Lamé’s arguments, Kummer was convinced that unique
factorization into irreducible numbers was in fact valid for cyclotomic integers if one also considered
what he called ideal numbers. Using these he was able to use Lamé’s factorization to prove Fermat’s
last theorem for special primes that are known as regular primes, although his proof was much more
complicated than that which Lamé had proposed. A proof of Fermat’s last theorem for regular primes
can be found in the last section of this paper.



Abstract

The two main aims of this paper are to show that there are rings of cyclotomic rings which are not
UFD’s and to prove Fermat’s last theorem for regular primes, assuming the statement of Kummer’s
lemma holds.
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1 Introduction
On the January 4 1847, French mathematician Gabriel Lamé published a proof of Fermat’s last theorem,
which made use of an infinite descent in rings of cyclotomic integers [3]. The main idea was to factor
the equation xp + yp = zp into

∏p−1
k=0(x + ωp

ky) = zp in the ring Z[ωp] ∼= Z[x]/(φp(x)), where ωp is a
primitive pth root of unity for a prime p and φp(x) = xp−1

x−1 .
Set ω = ωp. Under the assumptions that Z[ω] is a UFD and that none of the factors x + ωky are

units, this leads to an infinite descent in Z[ω] as follows. We begin by assuming that x, y, z are pairwise
relatively prime in Z, which we may do since if any two of these numbers share a common factor, so
does the third. Our next step is to change our factorization of xp + yp slightly. For each k we can find
an integer j such that 2j ≡ −k mod p. It is clear that as k runs through the integers 0, . . . , p− 1, then
so does j. We therefore have the factorization

xp + yp = ω−
p(p−1)

2

p−1∏
0

(xω−j + yωj) =

p−1∏
0

(xω−j + yωj)

in Z[ω]. Let us now define αj to be the jth factor in this factorization. Take n and m to be two distinct
integers contained in the set {0, . . . , p− 1}. Lamé goes on to show that

αn + αm = x(ω−n + ω−m) + y(ωn + ωm) = cdαs,

with 2d ≡ n −m mod p and 2s ≡ n + m mod p, with cd := ωd + ω−d. He then states that whenever a
cyclotomic integer d is a common divisor of two factors αi it is a common divisor of all of them and that
cd cannot divide any factor αi without dividing every one of them.

While rational integers indeed factorize uniquely, this is unfortunately not the general case for
cyclotomic integers. On March 1 1847, after Lamé had presented his proof during a meeting at the Paris
Academy, Joseph Liouville criticized the assumption that factorization in rings of cyclotomic integers
works like that of the rational integers [2]. Unique factorization into prime elements for cyclotomic
integers was not obvious and more importantly not proven. The matter therefore required further
motivation before Lamé’s proof could possibly be considered complete.

In May the same year Liouville received a letter from German mathematican Ernst Eduard Kummer,
where he not only assured Liouville that he was right to criticize Lamé’s proof; Kummer also included
a copy of a by then three-year-old paper he had written. He had in this very paper proven that there
indeed exist primes such that unique factorization fails in its corresponding cyclotomic ring of integers.

However, Kummer himself was developing theory that might allow for one to circumvent the fact that
the cyclotomic integers lack unique factorization; he was convinced that one could embed each ring of
numbers into a ring of what he called ideal numbers, which had the desired unique factorization property
[5]. Kummer’s theory of ideal numbers was later further developed by Richard Dedekind into the theory
of ideals that is now essential in the study of arbitrary rings.

Fermat’s last theorem is often split into two cases: case I and case II. In case I one considers non-zero
integral solutions of xp + yp = zp such that p - xyz and in case II non-zero integral solutions such that
p | xyz. We may assume that x, y and z are relatively prime so that p divides only one of the variables,
since any divisor of two of the variables is a divisor of all three. Which variable is divisible by p doesn’t
matter since p must be odd and thus rewriting the equation as xp + yp + (−z)p = 0 makes it clear that
the choice completely arbitrary. Both cases may be proven by starting out similarly to Lamé’s proposed
“proof” for a subclass of primes called regular primes. A prime p is called regular if it does not divide
the class number of Q(ωp), which we will define later. For now, it suffices to know that this is euqivalent
to the statement that for each ideal a of Z[ωp], we have that a is principal if and only if ap is principal.

If p is assumed a regular prime, then instead of what Lamé proposed one may consider the factorization

p−1∏
0

(x+ ωky) = (z)p,

where ω = ωp, of principal ideals of Z[ωp]. We will later prove that Z[ωp] is an example of a Dedekind
domain, in which all ideals factor uniquely into prime ideals. Since this is the case, we may in case
I show that (x + ωiy) and (x + ωjy) are relatively prime by assuming toward contradiction that there
exists a prime ideal p dividing both, where divisiblity of ideals a and b is defined by a | b ⇐⇒ a ⊃ b.
The importance of p being regular comes from that we can in fact show that (x + ωy) = ap, for some
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non-trivial ideal a. Regularity ensures that a is in fact also principal. Finishing the argument requires
a bit more theory than is readily available to a student without any background in algebraic number
theory and is therefore better saved for later. We will return to proving Fermat’s last theorem for regular
primes in Section 6.

Our inital goal in the following sections will be to prove that Z[ω23] is not necessarily a UFD. This
can be easily done, albeit somewhat tediously, by first showing that 2 is irreducible in Z[ω23] and then
considering the product

(1 + ω2 + ω4 + ω5 + ω6 + ω10 + ω11)(1 + ω + ω5 + ω6 + ω7 + ω9 + ω11),

with ω = ω23 which is divisible by 2 despite neither of its factors being divisible by 2, as is outlined in
an exercise in Chapter 1 of [4]. The above factorization thus violates the notion of unique factorization
required for Z[ω23] to be a UFD and the proof is complete. While this may prove the statement, it is
not a very satisfying proof. For instance, it tells us very little about why such a product exists in Z[ω23]
or under what conditions we could expect unique factorization to fail in other rings. Furthermore, the
product seemingly comes from nowhere and as such the proof certainly doesn’t feel very elegant. It will
therefore be in our interest to develop more advanced theory in order to better understand what is going
on in Z[ω23].

This paper assumes a basic knowledge of abstract algebra corresponding roughly to a one-semester
introductory course in abstract algebra. In addition, the reader would do well to have some basic
knowledge of Galois theory, module theory and commutative Algebra; these fields are not always touched
upon in an introductory course. As is standard in algebraic number theory, all rings are assumed to be
commutative with 1.
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2 Algebraic Integers

2.1 Rings of Integers
Our first step in setting up the framework required in order to gain a satisfactory understanding of why
Lamé’s proof fails is to generalize the notion of an integer. The following definitions lay the foundations
for this.

Definition 2.1. A number field is a finite extension K|Q.

Definition 2.2. We say that an element a of K is an algebraic integer of K if a is the root of a monic
polynomial in Z[x]. The set of all algebraic integers of K by OK .

Definition 2.3. More generally, for a ring extension A ⊂ B we say that b ∈ B is integral over A if b
is the root of some monic polynomial with coefficients in A. If all elements of B are integral over A, we
simply say that B is integral over A.

The set OK defined above is in fact a ring. A rather straightforward approach to this would be to
show that OK is a subring of K, which would essentially reduce to showing that given two elements
a, b ∈ OK we have that the difference and product a − b, ab ∈ OK . This is easier said than done with
the tools currently available to us, as given monic polynomials with roots a and b it is not completely
obvious as to how one would construct monic polynomials with roots a−b. It will therefore be of interest
to find a condition on elements of K that is equivalent to being an algebraic integer.

Lemma 2.1. Suppose we are given an extension of rings A ⊂ B. The elements of the finite subset
{b1, . . . , bn} of B is are algebraic over A ⇐⇒ the ring A[b1, . . . , bn] = {g(b1, . . . , bn) | g ∈ A[x1, . . . , xn]}
is finitely generated as an A-module.

Proof. We begin by proving the =⇒ part of the statement. Suppose first that b is an element of B that is
integral over A. There must then exist some monic polynomial f(x) ∈ A[x] such that f(b) = 0 for each by
hypothesis. Now for any g(x) ∈ A[x] the division algorithm may be applied to get g(x) = f(x)q(x)+r(x),
with deg r(x) < n. Hence g(b) = f(b)q(b) + r(b), and since f(b) = 0 this reduces to g(b) = r(b), so that
each element of A[b] may be written on the form

∑n−1
0 aib

i, with ai ∈ A. Hence {1, b, . . . , bn−1 is a set
of genertors of A[b] and thus it follows that A[b] is finitely generated as an A-module.

Now assume instead that finitely many elements b1, . . . , bn are integral over A. By the above we
may then find a finite set of generators Xi for each A-module A[bi]. The cardinality of the product
X =

∏n
1 Xi = {

∏n
1 xi | xi ∈ X} is clearly bounded by

∏n
1 |Xi|, which is finite. The set X generates

A[b1, . . . , bn] as an A-module, so A[b1, . . . , bn] is a finitely generated A-module whenever the adjoined
elements are integral over A.

For the converse implication ⇐= , consider some set of finitely many generators {e1, . . . , en} of
A[b1, . . . , bn] and let b = bi act on these as an A-linear transformation by multiplication. In terms of
matrices, this takes the form

b

e1...
en

 = Mb

e1...
en

 ,
for some n× n matrix Mb with coefficients in A. If we rewrite this as the equivalent matrix equation

(bI −Mb)

e1...
en


it is immediate that det(bI −Mb) = 0. This proves that b is a root of the characteristic polynomial
det(xI −Mb) of Mb, i.e. a monic polynomial contained in A[x] of degree n. Hence bi is integral for each
i.

Corollary 2.1.1. Suppose A ⊂ B is a ring extension and that b1, b2 ∈ B are integral over A. Then so
are b1 − b2 and b1b2.

Proof. The elements b1 − b2 and b1, b2 are elements of A[b1, b2], so that in fact

A[b1, b2, b1 − b2, b1b2] = A[b1, b2],

from which the statement immediately follows.
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Corollary 2.1.2. Integrality is transitive; if A ⊂ B ⊂ C, B is integral over A and C is integral over B,
then C is integral over A.

Proof. Let c be any element of C. Then B[c] is a finitely generated B-module and c satisfies some monic
polynomial of B[x], so that cn + bn−1 + cn−1 . . . + b0 = 0. Setting R = A[bn−1, . . . , b0], it is clear that
R[c] is finitely generated as an R-module. Since R is finitely generated as an A-module, this gives that
R[c] is actually also finitely generated as an A-module. In fact, R[c] = A[bn−1, . . . , b0; c], so c is therefore
integral over A.

Corollary 2.1.3. The set OK is a subring of K; we call it the ring of integers of K and in general
we call rings of integers number rings.

Definition 2.4. Given an extension of rings A ⊂ B, we call the ring A = {b ∈ B | b is integral over A}
the integral closure of A in B. In particualar, OK is the algebraic closure of Z in K.

In consideration of the above, it might be tempting to try to prove that the cyclotomic integers
Z[ωp] is the ring of integers of the corresponding cyclotomic field Q(ωp). While this is indeed the case,
a proving this statement is better left for later, when we will have access to better tools for doing so.
The ring of integers of Q(

√
d), however, will not be much easier to determine later and will be of great

importance to us. One could perhaps to be lead to think that this number ring is simply the ring Z[
√
d],

but things turn out to be somewhat more interesting.

Theorem 2.2. Let d be a squarefree integer and K = Q(
√
d). Then OK is Z[ 1+

√
d

2 ] if d ≡ 1 mod 4 and
Z[
√
d] otherwise.

Proof. The field K consists of elements of the form a + b
√
d with a, b ∈ Q, so finding the elements of

OK essentially reduces to figuring out when one of these is the root of a monic polynomial with integer
coefficients. This is equivalent to the minimal polynomial m(x) having integer coefficients.

Any a+b
√
d ∈ K\Q has a minimal polynomial of degree 2. The polynomial (x−a+b

√
d)(x−a−b

√
d) =

x2− 2ax+a2− b2d is a monic polynomial of degree 2 with a+ b
√
d as a root and is therefore its minimal

polynomial m(x). Hence a+ b
√
d ∈ OK if and only if both −2a and a2 − b2d are integers.

Regardless of d, the only possibility for a to be something other than an integer is if a = a′

2 with a′

an odd integer. Setting b = b′

2 , with b
′ ∈ Q, we get that the above has to coincide with

a′
2 − b′2d

4
∈ Z,

or equivalently
a′

2 − b′2d ≡ 0 mod 4,

which shows both that b′ must be an integer and that a′, b′ can only be odd at the same time and that
this is possible if and only if d ≡ 1 mod 4, from which the original statement immediately follows.

2.2 Trace, Norm and Discriminant
We now define the trace and norm of a number field, which gives us two very potent tools to work with.
The norm in particular will be of great importance in many proofs that lie ahead.

Definition 2.5. Let L|K be a finite extension of fields and define Tα to be the endomorphism on L as
a K-vector space given by sending β to αβ, for each β ∈ L. The functions

TrL|K(α) = Tr(Tα), NL|K(α) = det(Tα)

are then called the trace and norm of L|K, respectively.

If the extension is separable, one may alternatively characterize them as follows.

Theorem 2.3. Suppose L|K is a separable extension of fields. Let H = HomK(L,K) be the set of K-
embeddings of L into an algebraic closure K of K. Then the trace and norm can equivalently be defined
by

TrL|K : α 7→
∑
σ∈H

σ(α), NL|K : α 7→
∏
σ∈H

σ(α)

and the characteristic polynomial fα(x) is a power of the minimal polynomial mα(x).
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Proof. Let mα(x) be the minimal polynomial of α over K and set d = degmα(x) = [K(α) : K] and
n = [L : K(α)]. We clearly have that 1, . . . , αd−1 is a basis of K(α)|K as a K-vector space, so given a
basis β1, . . . , βn of L|K(α) as a K(α)-vectorspace, we have that

β1, . . . , β1α
d−1; . . . ;βn, . . . , βnα

d−1

is a basis of L|K as a K-vector space. The matrix for Tα with respect to this basis simply becomes a
block diagonal matrix with n identical blocks whose characteristic polynomial are the minimal polynomial
mα(x) of α. It follows that fα = mn

α.
The set H is partitioned by the equivalence relation

σ ∼ τ ⇐⇒ σ(α) = τ(α)

into n different equivalence classes each containing d elements. Let S be a set of representatives. Then
clearly

mα(x) =
∏
σ∈S

(x− σ(α))

and so fα(x) =
(∏

σ∈S(x− σ(α))
)n

=
∏
σ∈H(x−σ(α)). Now let ak denote the coefficient of the xk-term

in fα. The trace is clearly equal to −and−1 and the norm to (−1)nda0, from which it now follows that

TrL|K(α) =
∑
σ∈H

σ(α), NL|K(α) =
∏
σ∈H

σ(α).

The trace and norm have some very useful properties. For instance, it is clear from either definition
that NL|K(αβ) = NL|K(α)NL|K(β). The norm in particular will be crucial in proving that Z[ω23] is not
a UFD. We therefore state and prove a handful of results about the trace and norm below.

Theorem 2.4. Let A be a ring, K its field of fractions, L|K a separable extension, B the integral closure
of A in L and b an element of B. Then

TrL|K(b), NL|K(b) ∈ A.

Proof. Let mb(x) be the minimal polynomial of b over K and d its degree. −TrL|K(b) and ±NL|K(b) are
clearly the coefficient of xd−1 and the constant term, respectively, so they are therefore both contained in
K. Each conjugate σ(b) is algebraic over A due to being a root of mb(x), and as such of any polynomial
in K[x] having b as a root. By Corollary 2.1.1 the trace and norm of α are then both algebraic over A
and contained in K. They are therefore in particular elements of B.

Theorem 2.5. Suppose that K ⊂ L ⊂M is a tower of finite separable extensions. We then have that

NM |K = NL|K ◦NM |L.

Proof. The relation
σ ∼ τ ⇐⇒ σ|L = τ |L

on the set H = HomK(L,K), with K an algebraic closure of K, is clearly an equivelence relation and as
such it partitions G into n = [L : K] equivalence classes, with representatives σ1, . . . , σn. It follows that

TrM |K(α) =
∑
σ∈H

σ(α) =

n∑
1

∑
σ∼σi

σ(α) =

n∑
1

σi(TrM |L(α)) = TrLK ◦ TrM |L(α),

where the last equality is due to TrM |L(α) ∈ L. The proof for the norm is identical but with the sums
replaced by products.

Theorem 2.6. Suppose L|K is a finite separable extension, such that the extension of rings A ⊂ B has
the properties that B is the integral closure of A in L and that A,B have K,L as their respective field of
fractions. Then NL|K(b) is a unit of A if and only if b is a unit of B.
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Proof. Suppose first that NL|K(b) is a unit of A and let H = HomK(L,K), with K being an algebraic
closure of K. The element b is integral over A by hypothesis and therefore is the root of some polynomial
f(x) ∈ A[x]. The minimal polynomial mα(x) ∈ K[x] must divide this polynomial and as such σ(b) is
also integral over A, for each σ ∈ H.

Now NL|K(b) is a unit, so aNL|K(b) = 1 for some a ∈ A. There exists at least one K-embedding
σ ∈ H that sends b to itself, so ab−1NL|K(b) = ab−1

∏
σ∈H σ(b) is an element of L that is a product

of integral elements; it is therefore an element of B. In particular, this means that we have found an
inverse of b in B, so b is a unit.

Conversely, if b is a unit of V , it is an immediate consequence that NL|K(b) is indeed a unit of A, as
NL|K(b)NL|K(b−1) = NL|K(1) = 1.

We are now done with establishing the properties of the trace and norm that we will need later on.
Let us therefore introduce an important invariant of a number field, the discriminant.

Definition 2.6. Let α1, . . . , αn be a basis of a separable extension L|K. The discriminant of the basis
is then defined by

d(α1, . . . , αn) = det((σiαj))
2,

where σi runs through the n K-embeddings of L into an algebraic closure of K and (σiαj) denotes the
n× n matrix with σiαj as its ij entry.

The discriminant may be equivalently defined by d(α1, . . . , αn) = det(TrL|K(αiαj)). This is due to
the identity TrL|K(αiαj) =

∑
k(σkαi)(σkαj), which shows that the matrix (TrL|K(αiαj) is in fact equal

to the product (σiαj)
t(σiαj), whose determinant is clearly equal to that of ((σiαj))

2.
Let A ⊂ B be a ring extension with corresponding extension L|K for their respective field of fractions

and B is the integral closure of A in L. One may wonder if there is any K-basis of L|K that is also an
A-basis of B. After proving a lemma below, we shall be able to establish that this is indeed the case
when A is a PID.

Lemma 2.7. Suppose α1, . . . , αn is a basis with discriminant d of L|K that is contained in B. Then

dB ⊂ Aα1 + . . .+Aαn.

Proof. Let b be an arbitrary element of B, which may of course be written on the form

b =

n∑
1

akαk,

with ak ∈ K. Multiplying by αi and then applying the trace on both sides of the above equation gives

TrL|K(αib) =

n∑
k=1

TrL|K(αiαk)ak,

as each K-embedding of L fixes K and therefore ak. Both αk and b are elements of B and so TrL|K(αib)
is contained in A. Solving for ak by means of Cramer’s rule shows that

ak =
dk

det(TrL|K(αiαj))
=
dk
d
,

with dk being the determinant of the matrix (TrL|K(αiαj)) but with the kth column replaced with a
column with entries TrL|K(αib). The matrix in question has entries in A and therefore its determinant dk
is also in A. Hence aj is in fact the quotient of an element of A by d, or equivalently db ∈ Aα1+. . .+Aαn.
Since b was taken to be an arbitrary element of B, we have that db ∈ Aα1 + . . . + Aαn for any b ∈ B,
and so the desired statement follows.

Theorem 2.8. Suppose L|K is separable and A a PID. Then every finitely generated B-submodule
M 6= 0 of L is isomorphic to the free A-module An of rank n as an A-module, where n = [L : K]. The
ring B therefore admits an integral basis over A.
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Proof. Suppose we are given a finitely generated B-submodule M 6= 0. Let α1, . . . , αn be a basis of
L|K. Since each αi is a root of its minimal polynomial mαi(x) ∈ K[x], we may assume that the basis is
contained in B.

This can be seen by noting that αi must be a root of its minimal polynomial mα1
(x) ∈ K[x], whose

degree we denote by d and mutliplying by a power of the product ` of the denominators of the coefficients
of this polynomial. More precisely, if a0, . . . , ad are the coefficients, we have that

d∑
j=0

aj`
d−j(`αi)

j = 0,

so that `αi is the root of the monic polynomial
∑d
j=0 aj`

d−jxj ∈ A[x] and is therefore integral over A.
It therefore follows from Lemma 2.7 that

dB ⊂ Aα1 + . . .+Aαn,

and hence rank(B) ≤ n. We need not settle for a bound of the rank, however; any basis of B as an
A-module must span L as a K-vector space, and so rank(B) = n.

Now let µ1, . . . , µr be a basis of the given finitely generated B-submoduleM 6= 0 of L. We may argue
as we did above for the basis of L that there is some a ∈ A \ {0} such that aM ⊂ B, so that

daM ⊂ dB ⊂ Aα1 + . . . , Aαn.

As the right-most module in this series of inclusions is a free A-module, so is daM and therefore
equivalently M , by the theory of modules over PID’s. We therefore have

n = rank(B) ≤ rank(M) = rank(daM) ≤ rank(dB) = rank(B) = n,

and so rank(M) = n.

The discriminant of a Z-basis of OK is simply called the discriminant of K. It is unique up to sign, since
any matrix changing from one Z-basis of OK to another must have determinant ±1, or the other basis
would necessarily have to contain some element not in OK . Hence if α1, . . . , αn and β1, . . . , βn are two
Z-bases of OK and T the matrix from α1, . . . , αn to β1, . . . , βn, then

d(α1, . . . , αn) = (detT )2d(β1, . . . , βn) = d(β1, . . . , βn),

which shows that it is not misguided to talk about the discriminant of K.
We now round of this section by proving two results about the discriminant that will be used later.

Theorem 2.9. Suppose the extension L|K is separable and that α1, . . . , αn is a basis. Then

(x, y) = TrL|K(xy)

is a non-degenerate bilinear form and
d(α1, . . . , αn) 6= 0.

Proof. The second part of the statement clearly follows from the first, so it suffices to show that (x, y)
is a non-degenerate bilinear form. L|K is separable, so there exists a primitive element α, so that
1, α, . . . , αn−1 is a K-basis of L. With respect to this basis, (x, y) takes the form

(x, y) = xMy,

whereM is the n×n matrix given byM = (TrL|K(αi−1αj−1)). Now let σ1, . . . , σn be the K-embeddings
of L into an algebraic closure of K. Since

detTrL|K(αi−1αj−1) = d(1, α, . . . , αn−1) = det((σiα
j−1))2,

we have from the fact that ((σiα
j−1)) is a Vandermonde matrix that

detM =
∏
i<j

(σiα− σjα)2 6= 0,

where the inequality is due to the separability of L|K.
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Theorem 2.10. Let N ⊂M be two non-zero finitely generated OK-submodules of K. Then

d(N) = [M : N ]2d(M).

Proof. The modules M and N are also finitely generated free Z-modules. The index [M : N ] is simply
equal to the absolute value of the determinant of any matrix representing the injection homomorphism
N ↪→ M , i.e. a change of base matrix that changes from a basis of N to a basis of M . Since M
and N are isomorphic to Zn as Z-modules, with n equal to the degree [K : Q], by Theorem 2.8.
Identifying M with a copy of Zn and N with an embedding therein, we may consider any matrix A
representing the injection map. This matrix A is invertible as a matrix over Q and therefore has a
Smith normal form PAQ with no zeroes on the diagonal. The index [M : N ] is therefore given by
[M : N ] = [Zn : AZn] = [Zn : PAQZn] = detD = |detA| and thus the desired statement follows.

We round off the section by proving that the ring of cyclotomic integers Z[ωp] is, as its name suggests,
the ring of integers of the corresponding cyclotomic field Q(ωp).1

Theorem 2.11. The ring Z[ωp] is the ring of integers of Q(ωp).

Proof. Let φp denote the minimal polynomial of ω over Q, ω := ωp and O the ring of integers of Q(ω).
The ring Z[ω] is clearly a subring of O. The discriminant of 1, ω, . . . , ωp−1 is given by

d(1, ω, . . . , ωp−1) = ±
∏
i6=j

(ωi − ωj) =

p−1∏
1

φ′p(ω
i) = NK|Q(φ′p(ω)).

Now differentiating on both sides of
(x− 1)φp(x) = xp − 1

yields the polynomial equation
φp(x) + (x− 1)φ′p(x) = pxp−1

and evaluating at ω shows that
(ω − 1)φ′p(ω) = pωp−1.

The element ωp−1 is a unit and therefore has a norm of ±1. As for ω − 1, its norm is the product∏p−1
1 (ωk − 1) = p. Taking the norm and then dividing by p on both sides of the above equation

therefore gives
d(1, ω, . . . , ωp−1) = ±NK|Q(φ′p(ω)) = ±pp−2.

Before proceeding, we show that (ω − 1) is a prime ideal of O lying over p of intertia degree 1. We
have in terms of ideals that

∏p−1
1 (ωk − 1)O = pO, so it suffices to show that (ωk − 1)O = (ω− 1)O. Now

ωk−1
ω−1 =

∑k−1
0 ωi is clearly an element of Z[ω] and therefore O, so (ω− 1)O ⊃ (ωk − 1)O. Next, take j to

be a positive integer such that jk ≡ 1 mod p. Then
∑j−1
i=1 ω

ki =
(ωj)

k−1
ωk−1 = ω−1

ωk−1 shows that in fact the
reverse inclusion (ω − 1)O ⊂ (ωk − 1)O holds, so that the ramification index is p − 1 and therefore the
inertia degree 1.

Now set d = d(1, ω, . . . , ωp−1). By Lemma 2.7 we then have that

pp−2O = dO ⊂ Z + Zω + . . .+ Zωp−1 = Z[ω] ⊂ O.

The inertia degree of (ω − 1) over p is 1, i.e. [O/(ω − 1) : Z/(p)] = 1, from which it follows that
O/(ω − 1) ∼= Z/(p). Hence O = Z + (ω − 1)O, which of course implies that

O = Z[ω] + (ω − 1)O. (1)

Multiplying by ω − 1 give

(ω − 1)O = (1− ω)Z[ω] + (ω − 1)2O ⊂ Z[ω] + (ω − 1)2O

and substitution of (ω − 1)O in (1) now yields

O ⊂ Z[ω] + (ω − 1)2O.

Repeating this argument (p− 2)2 − 2 times finally shows that

O ⊂ Z[ω] + pp−2O = Z[ω] + dO ⊂ Z[ω] + Z[ω] = Z[ω].

1The statement actually holds for arbitrary positive n. This is however not used in this paper and requires a bit more
work; it is therefore omitted, but the interested reader may consult for instance [4] or [5].
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3 Dedekind Domains

3.1 Unique Ideal Factorization
While unique factorization of elements generally fails for number rings, it turns out that ideals factor
uniquely into a product of prime ideals. In fact, rings of integers are contained in a larger class of rings,
called Dedekind domains, that all share the property of unique factorization of ideals into prime ideals.

Definition 3.1. A Dedekind domain is an integral domain that is noetherian and integrally closed whose
prime ideals p 6= 0 are all maximal.

Theorem 3.1. Every number ring OK is a Dedekind domain.

Proof. The ring OK is clearly integrally closed, as it is the integral closure of Z in K.
Every ideal of OK is contained in K. Hence they are all finitely generated free Z-modules by

Theorem 2.8, and must therefore also be finitely generated as a OK-modules. Hence OK is noetherian.
An ideal a of a ring A is maximal if and only if A/a is a field and every finite integral domain is a

field. It therefore suffices to show that OK/p is finite for every prime ideal p 6= 0 of OK .
The set p ∩ Z is clearly a prime ideal of Z, as it is the contraction of p via the unique2 homorophism

Z ↪→ OK . It is in fact also non-zero, which we may see by fixing an element π ∈ p \ {0} and considering
some monic polynomial with coefficients in Z with π, but not 0, as a root; we know such a polynomial
must exist since π is an algebraic integer and since 0 cannot possibly be conjugate to π. Suppose this
polynomial has coefficients a0, . . . , an−1, so that

πn + an−1π
n−1 + . . .+ a0.

This shows that a0 ∈ Z ∩ p, and so this ideal is non-zero. It is therefore equal to pZ, for some rational
prime p.

Note that OK is a finitely generated Z-module, as are both OK/p and OK/pOK . In particular, it is
clear that

|OK/p| ≤ |OK/pOK |. (2)

It follows from the Z-module isomorphisms

OK/pOK ∼= Zn/pZn ∼= (Z/pZ)n

that the order of OK/pOK is pn. Hence it follows from (2) that OK/p is also finite and therefore a
field.

With this basic fact established we now develop the theory of ideal factorization in the more general
case of a Dedekind domain O with field of fractions K. As a natural generalization of the case of PID’s,
we say that an ideal a divides another ideal b, denoted a | b, if a ⊃ b. The notion of a greatest common
divisor and least common multiple are similarly defined by gcd(a, b) = a + b and lcm(a, b) = a ∩ b. The
following definition, however, is in some sense more novel.

Definition 3.2. For any non-zero prime ideal p of O, we define a corresponding so-called fractional
ideal p−1 by p−1 = {x ∈ K | xp ⊂ O}.

Having set up the basic terminology, we may now start setting up the proof for unique factorization.

Lemma 3.2. Suppose a 6= 0 is an ideal of O. Then there exists a product
∏r

1 pi of non-zero prime ideals
contained in a.

Proof. Assume that the set S of ideals not satisfying this condition is non-empty. Dedekind domains
are noetherian, so S must contain a maximal element m. This ideal cannot be prime, for it were then m
would be a prime product contained in m, contradicting m’s inclusion in S. We can must therefore be
able to find elements x1, x2 ∈ O such that x1x2 /∈ m but x1, x2 /∈ m. Now let m1 = (x1) +m and similarly
m2 = (x2) + m, which are both clearly not contained in S by the maximality of m. It is also clear that
m ( m1,m2 and that m1m2 ⊂ m. Since neither m1 nor m2 are in S, they must both contain a product of
primes, and so m must contain the product of these products, which is also a product of primes. This is
a contradiction; the set S must therefore be empty.

2The homomorphism is unique since Z is initial in Ring.
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Lemma 3.3. Let a 6= 0 be an ideal of O and p a prime ideal. Then

ap−1 = {
n∑
1

aixi | ai ∈ a, xi ∈ p−1, n ∈ Z} 6= a.

Proof. We begin by showing that for any prime ideal p we have that p−1 6= O. Take a to be a non-zero
element of p, and suppose we have p1 . . . pr ⊂ (a) ⊂ p, with r as small as possible. These ideals are all
prime, so p1 ⊂ p after suitable re-indexing. In fact, since all non-zero prime ideals of Dedekind domains
are maximal, we must actually have p1 = p. We cannot have p2 . . . pr ⊂ (a), for this would contradict
the minimality of r. It is therefore possible to find an element b of p2 . . . pr such that b /∈ (a) = aO. This
is clearly equivalent to a−1b /∈ O. Note also that a−1bp ⊂ a−1pp2 . . . pr ⊂ a−1(a) = (1) = O. This shows
that a−1b is in fact an element of p−1 not contained in O. It therefore follows that p−1 6= O.

Now take a to be any non-zero ideal of O generated by α1, . . . , αn. We assume, in order to get a
contradiction, that a = ap−1. We can then for each b ∈ p−1 write

bαi =

n∑
j=1

aijαj ,

with the aij being elements of O. Denote the matrix (bδij − aij) by A and observe that by definition it
must satisfy

A

α1

...
αn

 = 0.

We therefore have that detA = 0, and so b is a zero of the monic polynomial det(xδij − aij) with
coefficients in O, so that b is in fact integral over O. But O is integrally closed in K, so b must be an
element of O, for every element b of p−1. The fractional ideal p−1 must therefore be equal to O, which
contradicts what we showed about p−1 earlier. Hence it follows that ap−1 6= a.

Theorem 3.4. Every non-zero proper ideal a of O admits a factorization into non-zero prime ideals

a =

r∏
1

pνii ,

which is unique up to permutation of factors if we require that the prime ideals pi be distinct.

Proof. We start by proving that each ideal has some factorzation. Once this has been established we
show that it is also unique.

Let S be the set of non-zero proper ideals of O that do not factor into prime ideals. If it is non-empty,
it must have a maximal element, say m, since O is noetherian. The fractional ideal p−1 clearly properly
contains all of O and pp−1 must be equal to O by how p−1 is defined, so

m ( mp−1 ⊂ pp−1 = O.

In particular this shows that, mp−1 is an ideal of O properly containing m. By m’s maximality, mp−1

admits a prime factorization
∏
i pi. The idealmmust then, however, be equal to p

∏
i pi, which contradicts

m’s inclusion in S. The set S must therefore be empty, so that every non-zero proper ideal admits a
prime factorization.

The proof for uniqueness is essentially the proof for the uniqueness part of the fundamental theorem
of arithmetic but in the language of ideals and can be found in [5].

With the above theorem proven, let us now generalize the notion of a fractional ideal and prove a useful
statement about these.

Definition 3.3. We call a subset of K a fractional ideal if it is a non-zero finitely generated O-
submodule of K. A fractional ideal is said to be principal if it is of the form aO, with a a unit of K.
We sometimes call the ideals of O integral ideals, to emphasize that fractional ideals are generally not
ideals.

Theorem 3.5. The set JK of all fractional ideals is a free abelian group generated by the non-zero prime
ideals of O. The identity of JK is O and the inverse of any fractional ideal a is given by a−1 = {x ∈ K |
xa ⊂ O}.

10



Proof. Multiplication of fractional ideals is clearly an associative and commutative operation that JK is
closed under, Oa = a for any fractional ideal a and a−1 = {x ∈ K | xa ⊂ O} is clearly a fractional ideal
whenever a is.

The set aa−1 = {
∑
i aixi | ai ∈ a, xi ∈ a−1} clearly contains 1, as a is a finitely generated O-module

and as such we may form the least common multiple ` and consider `a. Now `a clearly has inverse
(`a)−1 = `−1a−1, so that in fact aa−1 = (`a)(`a)−1 = O. The set JK is therefore an abelian group.

Every fractional ideal a must by definition be of the form

a = α1O + . . .+ αnO,

with each αi an element of K. This can clearly be made into an integral ideal by multiplying by some
element b of O, i.e. .

ba ⊂ O.

Both (b)a and (b) have unique prime factorizations (b)a =
∏
i pi and (b) =

∏
j qj . Multiplying a by the

fractional ideal (b)−1 =
∏
j q
−1
j gives a unique prime factorization a =

∏
i pi
∏
j q
−1
j of a.

The set PK consisting of all principal fractional ideals is clearly a subgroup, as (aO)(b−1O) = (ab−1)O is
still principal. Quotienting JK by PK gives rise to a new abelian group

ClK = JK/PK .

If O is a number ring it turns out that ClK is finite and that there is an upper bound for its order that
depends on K. Its order is denoted hK and clearly hK = 1 is equivalent to that OK is a PID.

3.2 Splitting and Ramification of Primes
In this subsection O is always taken to be a Dedekind extension and K its field of fractions. In the same
vein, L|K is a finite field extension and O the integral closure of O in L. We furthermore assume that
L|K is separable. The main goal will be to understand how the prime ideals of O and O are connected.
This understanding will then be of great use to us in later sections.

Theorem 3.6. The ring O is a Dedekind domain3.

Proof. The fact that O is integrally closed is trivial, as it is defined to be the integral closure of O in L.
Let α1, . . . , αn be a K-basis of L contained in O of discriminant d. Then

O ⊂ Oα1

d
+ . . .+ O

αn
d
,

and so in fact every ideal A of O is contained in a finitely generated O-module and therefore themselves
finitely generated O-submodules. Any set that generates A as a O-module also generates A as a O-module
and so each ideal of O is finitely generated and therefore O is noetherian.

Finally, we prove that each non-zero proper prime ideal of O is maximal. The contraction p = P∩O
of a non-zero proper prime ideal P of O with respect to the containment injection is also a proper
prime ideal. As O is integral over O, it is possible to select a non-zero element b ∈ P such that
bn + a1b

n−1 + . . . + an = 0 (or else b would have to be a conjugate of and therefore equal to 0), from
which it follows that an is a non-zero element of p. Hence p is a non-zero proper prime ideal of O and
therefore O/p is a field.

Now consider the map ι : O/p → O/P sending a mod p to a mod P. This is a well-defined
homorphism, since p = P ∩ O. Furthermore, it clearly has a trivial kernel, so O/p may in fact be
identified with a subring of the integral domain O/P. Since O is integral over O it is also algebraic
over O, which extends to each element of O = O/P being algebraic over k = O/p. Each element b of
O is contained in the ring extension k[b], which is in turn contained in O; let mb(x) be the minimal
polynomial of b over k. The extension k[b] is then isomorphic to k[x]/mb(x), which is in fact a field, so
that each element b of O has an inverse contained in O. The integral domain O is therefore a field, from
which it follows that P is maximal.

3It is actually true that O is a Dedekind domain even when L|K is not separable [5], but this would require a more
involved proof and is not a fact that will be used in this paper.
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Theorem 3.6 in particular tells us that each each prime p of O has a prime factorization in O in the
sense that we can find primes Pi of O such that

pO =

r∏
1

Pi
ei .

Given a factorization of the form above, we say that each Pi lies over p, or equivalently that p lies under
Pi. A prime P of O lies over exactly one prime p of O, since P ∩ O is a non-zero proper prime ideal
containing p and must therefore equal p. The number ei is called the ramification index of Pi over p
and the number fi = [O/Pi : O/p] the inertia degree. When working with some specific primes lying
over p it may be convenient to denote the ramification index of a fixed prime P over p by e(P|p) and
the corresponding inertia degree by f(P|p).

The ramification indices and inertia degrees of a given prime are intimitely related to each other and
to the degree of the extension by an identity that we shall now endeavor to prove.

Theorem 3.7. The ramification indices and inertia degrees satsify the identity

r∑
1

eifi = [L : K].

Proof. The main idea of the proof is to use the isomorphism

O/pO ∼=
r⊕
1

O/Pi
ei

from the Chinese remainder theorem and counting their dimensions as vector spaces over the field
k = O/p. These dimensions must be equal by the isomorphism as rings and therefore k-vector spaces; if
we can then just show that the respective dimensions are equal to n = [L : K] and

∑r
1 eifi, we are done.

First, in order to show that dimkO/pO = n, take the elements α1, . . . , αm of O to be representatives
of the k-basis α1, . . . , αm of O/pO. The current goal is to show that α1, . . . , αm is a basis of L|K, as
this will immediately imply that m = n, as desired. Suppose now that on the contrary, the elements
α1, . . . , αm are linearly dependent. Then it is possible to find a1, . . . , am in K, and in particular in O,
that are not all zero such that

m∑
1

aiαi = 0.

Consider the ideal a of O generated by a1, ..., am. Due to the unique ideal factorization of Dedekind
domains, the fractional ideals a−1 and a−1p are not equal, so it is possible to find some a ∈ a−1 that
is not in a−1p. Hence aa 6⊂ p, and so aai /∈ p, so the linear dependence of α1, , αm in fact implies that
α1, . . . , αm are linearly dependent by

m∑
1

aaiαi ≡ 0 mod p.

This is a clear contradiction, so α1, . . . , αm must be linearly independent.
With linear independence established, it only remains to show that α1, . . . , αm actually span the

entirety of L|K. We therefore consider the O-modules M =
∑m

1 Oαi and N = O/M . It follows from the
definition of α1, . . . , αm that O = M + pO and so pN = N ; this is due to the fact that every element
b of O can be written as a sum m + ab′, with m ∈ M , a ∈ p and b′ ∈ O, so that in N it holds that
b ≡ m + ab′ ≡ ab′ mod M . Due to the hypothesis that L|K is separable, O is a finitely generated O-
module, as was established in the proof of Theorem 3.6; the O-module N must therefore also be finitely
generated. Now let n1, . . . , nk be elements that generate N . Then each of these may be written as a sum
ni =

∑
j aijnj , where each aij is an element of p, since pN = N . This may be written in matrix form as

(A− I)

n1...
nk

 = 0,

with A the k × k matrix (aij) and I the identity matrix. Let (A− I)a be the adjoint matrix of A and d
the determinant of A− I. The determinant d is clearly non-zero, as otherwise 1 would have to be a root
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of the polynomial det(A− xI), but all of the entries of A are contained in p and 1 is not an element of
p. It follows that dn1...

dnk

 = dI

n1...
nk

 (A− I)a(A− I)

n1...
nk

 = 0,

so that in particular dN = 0, and by equivalence dO ⊂M =
∑m

1 Oαi. It follows that L = dL ⊂ KM as
K-vector spaces, and so α1, . . . , αm spans L and dimkO/pO = n.

Computing the remaining dimension is significantly less work. Fix some index i and set P = Pi,
e = ei and f = fi. Consider the ascending chain

(0) ⊂ Pe−1/Pe ⊂ . . . ⊂ P/Pe ⊂ O/Pe

ofK-vector spaces. The quotientsPν/Pν+1 are all isomorphic toO/P since the surjective homomorphism
O � Pν/Pν+1 mapping b ∈ O to ab ∈ Pν/Pν+1, with a some element of Pν/Pν+1, has kernel P; it
is surjective because gcd(Pν ,Pν+1) = Pν , so that Pν = aO + Pν+1. Therefore dimkP

ν/Pν+1 =

dimkO/P = [O/P : k] = f . Now setting P0 = O, we have that O/Pe ∼=
⊕e−1

0 Pν/Pν+1, so
dimkO/Pe = ef . We may therefore finally conlude that

dimk

r⊕
1

O/Pi
ei =

r∑
1

eifi,

as was to be shown.

Since L|K is assumed to be separable, we have that L = K(α) for some primitive element α. It may
be assumed that α is an element of O and that its minimal polynomial is contained in O[x], for if one or
both of these do not hold then multiplying by a suitable element of O will force them to.

Definition 3.4. Let A ⊂ B be an extension of rings. The conductor of A in B is the ideal

F = AnnB(B/A) = {b ∈ B | bB ⊂ A}

of B. In particular, the conductor is the largest ideal of B contained in A.

It turns out that given such a primitive element, the primes of O lying over some prime p of O are
closely related to the minimal polynomial of α, given that p is relatively prime to the conductor F of
O[α] in O.

Theorem 3.8. Suppose that α is a primitive element generating L|K such that it is contained in O with
a minimal polynomial contained in O[x]. Let p be any prime of O that is relatively prime to the conductor
F = AnnO(O/O[α]) of O[α] and m(x) be the minimal polynomial of α with coefficients reduced mod p,
so that it is contained in O[x] = O/p[x]. Suppose that the factorization of m(x) into monic irreducible
polynomials of O[x] is

m(x) =

r∏
1

(mi(x))
ei .

Then Pi = pO +mi(α)O are the primes of O lying over p with ramification index ei and inertia degree
equal to deg pi(x). That is,

pO =

r∏
1

Pi
ei

and fi = deg pi(x).

Proof. Set A = O[α]. We aim to prove that

O/pO ∼= A/pA ∼= O[x]/(m(x))

as rings. It will then follow from the Chinese remainder theorem that

O/pO ∼= O[x]/(m(x)) ∼=
r⊕
1

O[x]/(mi(x))ei ,
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which implies that the prime ideals of O[x]/(m(x)) are simply those generated by mi(x), which must
then correspond to the prime ideals Pi. If we index the prime ideals of O = O/pO such that the prime
ideal Pi is mapped to mi(x) by the isomorphism ϕ : O/pO ∼−→ O[x]/(m(x)) that sends f(α) to f(x),
then it follows immediately that

[O/Pi : O] = [O[x]/(mi(x)) : O] = degmi(x).

Setting Pi = pO +mi(α)O, Pi is then the inverse image of Pi with respect to the canonical projection
O � O, in view of the isomorphism ϕ and the fact that O = pO + F = pO + A; the latter is due to
p and F ⊂ A being relatively prime. The inverse image of a prime ideal is again prime, so the Pi’s are
prime ideals of O lying over p and

fi = [O/Pi : O/p] = [O/Pi : O] = degmi(x).

The primality of the ideals (mi(x)) of O[x]/(m(x)) lets us conclude that

(0) = (m(x)) =

r∏
1

(mi(x)) =

r⋂
1

(mi(x))ei ,

so that we must likewise have
r⋂
1

Pi

ei
= (0).

Since Pi

ei is the image of Pi
ei and the inverse image of an ideal is again an ideal, the inverse image of

Pi

ei must be an ideal of O containing Pi

ei , so it must be of the form Pi

ν
. However, ν must equal ei,

since for ν < ei the given ideal has an image that is not contained in Pi

ei ; the ideal Pi
ei is therefore the

inverse image of Pi

ei . Hence pO ⊃
⋂r

1 Pi
ei =

∏r
1 Pi

ei , and the given ei’s satisfy
∑r

1 eifi, from which it
follows that the ei must in fact be the ramification indices and therefore equality must hold, so that we
indeed have that

pO =

r∏
1

Pi
ei .

We now prove the two isomorphisms mentioned in the beginning of the proof. First consider the
homomorphism ψ : A → O/pO that sends a to a mod pO. This homomorphism is in fact surjective,
since O = pO +A. Its kernel is clearly A ∩ pO, which by O = p + F implies that

A ∩ pO = (p + F)(A ∩ pO) ⊂ (p + F)A = pA

and the reverse inclusion is obvious since ψ(pA) = (0). This establishes the isomorphism A/pA ∼= O/pO.
For the other isomorphism, it suffices to note that

O[x]/(m(x)) ∼= O[x]/(p,m(x)) ∼= A/(p) = A/pA.

If the number of factors r in the prime decomposition of p in O

p =

r∏
1

Pi
ei

is greater than 1, then p is said to split in L and if ei > 1 for some i it is said to ramify in L. A prime
that does not split is called non-split and one that does not ramify is similarly called unramified. If a
prime on the other hand has r = n factors or ei = 1 for every i, it is said to be totally split or totally
ramified, respectively. For a prime P lying over p, we say that it splits over K whenever p splits in L
and that it ramifies over K if p ramifies in L.

One may wonder how common each of these scenarios is; it turns out ramification is an exceptional
case when L|K is separable in that it can only ever happen to a finite amount of primes.

Theorem 3.9. Only finitely many primes of K are ramified in L.
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Proof. There exists a primitive element α since L|K is separable, so that L = K(α). We can take α to
be in O, as if it is not then multiplication by a suitable non-zero element of O will certainly make it so.
Setting α1, . . . , αn to be the n = [L : K] conjugates of α and m(x) to be the minimal polynomial of α
over O, we have that the discriminant d of m(x) is

d = d(1, α, . . . , αn−1) =
∏
i<j

(αi − αj)2.

Set O = O/p and suppose that p is a prime of O that both ramifies in L and is relatively prime to both
dO and the conductor F of O[α]. Then some prime Pi of O lying over p must ramify over O. Then there
is a ramification index ei > 1, which implies that m(x) has a double root so that in turn d = 0. However,
this contradicts the assumption that p - dO, the ramification index ei must be equal to 1 for each prime
Pi lying over p. Each field extension O/Pi|O/p is of the form O/Pi = O/p(α), with α = α mod Pi. The
element α is separable, for if it were not then neither would α mod p, and so the corresponding extension
is separable.

The statement is thus proven, as it has now been shown that any prime p that is ramified in L must
either divide dO or F and each of these have only a finite amount of prime divisors.

The assumption of L|K being separable is now restricted further and L|K is assumed to be Galois.
Its Galois group is denoted G. This assumption is particularly attractive due to the fact that Q(ωp)|Q
is in fact a Galois extension, for it is the splitting field of the polynomial x

n−1
x−1 over Q.

Lemma 3.10. Suppose that L|K is Galois. Given a prime p of O, the Galois group G acts transitively
on the set of primes of O lying over P.

Proof. Suppose that P1 and P2 are primes lying over p that are not conjugate. Then by the Chinese
remainder theorem it is possible to find some element a of O such that

a ≡ 1 mod σP1, a ≡ 0 mod P2,

for all σ ∈ G. Hence a is not contained in any of the primes σP1 and equivalently σa /∈ P1. Hence
NL|K(a) =

∏
σ∈G σa is contained in P2 ∩ O but not in P1 ∩ O. But these primes of O are both equal to

p and we cannot have both a ∈ p and a /∈ p. All primes lying over p must therefore be conjugate.

Theorem 3.11. Let p be a prime of O and assume that L|K is Galois with Galois group G. Then

pO =

r∏
1

Pi
e.

That is, the ramification indices are all equal; the same is true for the inertia degrees.

Proof. Set P = P1. Then each Pi is a conjugate of P, so that Pi = σP for some σ ∈ G. Now consider
the following diagram.

O

����

σ // O

����

O/P σ // O/σP

The induced isomorphism σ : a mod P 7→ σa mod σP shows that O/P ∼= O/σP. It follows that
[O/P : O/p] = [O/σP : O/p], i.e. that the inertia degrees are equal.

Since the automorphisms σ ∈ G fix K and therefore p, the ramification degrees are shown to be equal
by simply considering the equivalence

Pν | pO ⇐⇒ σPν | pO.
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4 The Minkowski Bound and the Class Number
Throughout this section K is understood to be an arbitrary number field. The main aim throughout this
subsection is to prove that ClK is always finite. In order to meet this end a basic knowledge of lattices
will have to be acquired.

4.1 Lattices and Minkowski Theory
A lattice in an n-dimensional euclidean vector space V is an additive subgroup of the from

Γ =

m⊕
1

Zvi.

The set

Φ = {
m∑
1

xivi | xi ∈ [0, 1) ⊂ R}

is called the fundamental mesh of Γ. When m = n, or equivalently when Γ + Φ covers the entirety of
V , we call the lattice complete. A subset X of V is called centrally symmetric if x ∈ X =⇒ −x ∈ X
and convex if for any two points x1 and x2 of X, the line segment {tx1+(1−t)x2 | t ∈ [0, 1]} is contained
in X.

Theorem 4.1 (Minkowski’s Lattice Point Theorem). Suppose that Γ is a complete lattice in a euclidean
vector space V and let X be a subset of V that is convex and centrally symmetric. Then X contains at
least one non-zero lattice point provided that

vol(X) > 2nvol(Γ).

Proof. Suppose that we are able find two points, γ1 and γ2, in the lattice Γ, such that the intersection
( 1
2X + γ1) ∩ ( 1

2X + γ2) is non-empty. Then it is possible to find two elements x1 and x2 of X such that
1
2x1 + γ1 = 1

2x2 + γ2, or equivalently an element γ of Γ such that

γ = γ2 − γ1 =
1

2
(x1 − x2).

Hence it suffices to show that whenever all intersections of the form ( 1
2X + γ1) ∩ ( 1

2X + γ2) are empty,
vol(X) ≤ 2nvol(Γ).

Let us therefore equivalently assume that the sets of form Xγ := 1
2X + γ are pairwise disjoint. Then

their intersections with Φ are also disjoint, so that∑
γ

vol(Φ ∩Xγ) ≤ vol(Φ).

Now Xγ has the same volume as its translate Xγ − γ = 1
2X and Γ is complete, so

vol(Γ) ≥
∑
γ

vol

(
(Φ− γ) ∩ 1

2
X

)
= vol

(
1

2
X

)
=

1

2n
vol(X).

Hence the pairwise disjointedness has enabled us to conclude that in fact

vol(X) ≤ 2n vol(Γ),

contrary to the hypothesis of the theorem.

In order to apply this theory about lattices to a number field K, first map K to the complex vector
space KC :=

∏
τ C by the map j : K → KC, mapping each element a of K to the n-tuple ja = (τa)

consisting of the images of a with respect to each embedding τ : K → C of K into C. If z is an element
of KC, then by zτ we mean the entry of z that corresponds to the embedding τ in the tuple. The sum

〈x, y〉 =
∑
τ

xτyτ

16



defines a Hermitian inner product as it is clear that it is linear with respect to the first variable and
〈x, y〉 = 〈y, x〉.

Taking elementwise complex conjugates defines an involution F on KC by mapping (zτ ) to (zτ ).
Denote the set of points of KC that are invariant under F by KR. The map j actually embeds K into
KR; since σ is also an embeds K into C we have that (σaσ) = (σaσ), so all elements ja are indeed
F -invariant. This embedding will eventually let us use the theory of lattices to say things about K itself.

Let us now partition the set Hom(K,C) of embeddings τ : K → C by the equivalence relation

τ1 ∼ τ2 ⇐⇒ τ1 = τ2 or τ1 = τ2.

If ρ(K) ⊂ R we call ρ a real embedding; embeddings σ such that σ(K) ∩ (C \R) 6= ∅ we call complex.
Embeddings of the latter kind always come in distinct pairs; if σa is not real, then it is distinct from σa,
so that σ and σ are differ for at least one point a. The real embeddings, however, are clearly invariant
under conjugation. Hence the equivalence relation partitions Hom(K,C) into r equivalence classes each
consisting of a single real embedding and s equivalence classes each consisting of two complex embeddings.
Setting n = [K : Q], we find that n = r + 2s.

Upon restriction to KR, the Hermitian inner product restricts to a positive-definite scalar product,
which gives us a notion of volume of its lattices as follows: the volume of the lattice Γ =

⊕n
1 Zvi of KR

is given by
vol(Γ) = vol(Φ) = |det(〈vi, vj〉)|

1/2.

This defines a Haar measure which we shall call the canonical measure

Theorem 4.2. Set S to be a set containing a system of representatives of the equivalence classes of the
complex embeddings of Hom(K,C). There exists an isomorphism

KR
∼ //
∏
τ R

such that (zτ ) 7→ (xτ ), where xρ = Re(zρ), xσ = Re(zσ) and xσ = Im(zσ) for all real embeddings ρ and
σ ∈ S. Furthermore, the scalar product on KR is taken to the scalar product (x, y) =

∑
τ ατxτyτ , with

αρ = 1 for real embeddings ρ and ασ = 2 for complex embeddings σ. Hence

volcanonical(X) = 2s volLebesgue (imX) .

Proof. The map is clearly a bijective homomorphism of eucliden vector spaces, ergo an isomorphism of
these. Setting (zτ ) = (xτ + iyτ ) and (z′τ ) = (x′τ + iy′τ ), it is easily seen that the product z′ρzρ is sent
to x′ρxρ and the sum of products z′σzσ + z′σzσ = z′σzσ + z′σzσ to 2Re(z′σzσ) = 2(x′σxσ + x′σxσ).
The inner product and volume parts of the statement now follow.

Lemma 4.3. For any non-zero ideal a of OK , Γ = ja is a complete lattice in KR with fundamental mesh
of volume given by

vol(Γ) =
√
|dK |[O : a].

Proof. Set dK to be the discriminant of K and let α1, . . . , αn to be a Z-basis of a, so that one may write

Γ = Zjα1 ⊕ . . .⊕ Zjαn.

Let A be the matrix (τiαk). Now the discriminant d(a) of a is given by

d(a) = (detA)2 = [OK : a]2dK ,

whereas
[vol(Γ)]2 = |det (〈jαi, jαk〉) | = |det(AA†)| = |detA|2,

and from these two equations it follows that

vol(Γ) = [OK : a]
√
|dK |.
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4.2 Finiteness of the Class Number
Now in possession of a method through which to identify K with a lattice, we are ready to prove the
Minkowski bound. This bound in turn lets us show that the class number hK of a separable number
field is always finite. However, we first take a detour to define and study the norm and absolute norm of
an ideal.

Definition 4.1. Define the absolute norm N of a non-zero ideal a of OK by the identity

N(a) = [OK : a].

The norm NL|K of a non-zero ideal a of OL, given a separable field extension L|K, is given by

NL|K(a) =
∏
σ

σ(a),

where σ runs through the K-embeddings of L into an algebraic closure of K.

Theorem 4.4. Let a =
∏r

1 p
νi
i be the prime factorization of an ideal a of OK . The absolute norm of a

is then multiplicative in the sense that we have the identity

N(a) =

r∏
1

N(pi)
νi .

The norm is of course also multiplicative in the same sense, but this fact is so trivial that it needn’t
be properly stated and proven. We now show that the absolute norm essentially corresponds to applying
the norm and then extracting the generator of the resulting principal ideal of Z when K|Q is Galois.

Lemma 4.5. Suppose that L|K is Galois. The image of a prime P of OL under the map NL|K is a
power of the prime p of OK lying under P in the sense that

NL|K(P) = pf(P|p)OL.

Proof. Set e = e(P|p) and f = f(P|p). The primes lying over p are all conjugates, so

NL|K(P) =
∏
σ∈G

σP =

(
r∏
1

Pi
e

) n
re

= (pOL)f = pfOL.

Theorem 4.6. For any non-zero ideal a of OK the following identity holds if L|K is Galois.

NK|Q(a) = N(a)Z

Proof. Due to the complete multiplicativity of both norms involved it suffices to prove the statement for
prime ideals p. Since OK/p is a finite field of prime characteristic its order is a prime power. In fact, if
p is taken to be the prime of Z lying under p, it is easily seen that |OK/p| = p[OK/p:Z/(p)] = pf , where
f = f(p|p). That NK|Q(p) = pfZ follows from Lemma 4.5.

Corollary 4.6.1. Given a Galois4 extension K|Q, the principal integral ideal (a) of OK satisfies

N((a)) = |NK|Q(a)|.

Proof. It follows directly from Theorem 4.5 that N((a)) = NK|Q((a)), so that the latter is an ideal of Z.
Since Z is a PID and since a generates all of (a) in OK , it follows that N((a))Z = NK|Q(a)Z. The units
of Z are simply ±1, so we must then have N((a)) = |NK|Q|.

With these facts about the absolute norm established, it is time to get back to stating and proving
the Minkowski bound.

4The statement is actually true for separable extensions, but requires a bit more work to prove when K|Q is not normal.
Since we only apply the theorem to the Galois case in the sequel, we do not prove this here. The interested reader may
find a proof in [4].
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Lemma 4.7. The convex and centrally symmetric set

X = {(zτ ) ∈ KR |
∑
τ

|zτ | < t}

is of volume vol(X) = 2rπs t
n

n! .

Proof. Consider instead an isomoprhic image imX =
{

(xτ ) ∈
∏
τ R

∣∣∣∑ρ |xρ|+ 2
∑
σ

√
xσ2 + xσ

2 < t
}

of X in
∏
τ R. Now re-index the coordinates of elements in imX with numbers, so that the inequality

that defines it may instead be written as

r∑
1

|xi|+ 2

s∑
1

√
yj2 + zj2 < t.

Determining the volume of this set is simply done by integrating 1 over imX. By symmetry we may
consider only non-negative xi when computing it and then multiply by 2r in order to recover the original
integral. Changing the yj ’s and zj ’s into polar coordinates such that yj = vj cos θj and zj = vj sin θj and
then performing the change of variables 2vj = wj gives us a simpler domain

D(t) := {(x1, . . . , xr;w1, . . . , ws; θ1, . . . , θs) ∈ Rn |
r∑
1

xi +

s∑
1

wj < t, 0 ≤ xi, 0 ≤ wj , θj ∈ [0, 2π], }

to integrate over. Hence the integral we wish to compute is

I(t) = 2r4s(2π)s
∫
D(t)

w1 . . . ws dx1 . . . dxrdw1 . . . dws.

From the above it is clear that I(t) = tr+2sI(1) = tnI(1). Let us therefore instead consider the integral

Ir,s(1) =

∫
Dr,s(1)

w1 . . . ws dx1 . . . dxrdw1 . . . dws,

with Da,b(t) being D(t) but with a coordinates xi and b coordinates wj and θj . With this notation

Ir,s(1) =

∫ 1

0

Ir−1,s(1− x1) dx1 = Ir−1,s(1)

∫ 1

0

(1− x1)n−1 dx1 =
Ir−1,s

2s(2s− 1)
,

and so by induction it follows that

Ir,s(1) =
I0,s(1)

Pnr
, (3)

with Pnr being the number of r-permutations of n elements, i.e. Pnr = n(n − 1) . . . (n − r + 1). In the
same fashion

I0,s(1) =

∫ 1

0

w1I0,s−1(1− w1) dw1 = I0,s−1(1)

∫ 1

0

w1(1− w1)2(s−1) dw1 =
I0,s−1(1)

2s
,

and so again by induction I0,s(1) = 1
(2s)! , which combined with (3) yields

Ir,s(1) =
1

Pnr (2s)!
=

1

n!

and by how Ir,s(1) was define in relation to I(t) it finally follows that

vol(X) = 2s vol(imX) = I(t) = 2s
2r(2π)stn

4s
Ir,s(1) =

2rπstn

n!
.

Theorem 4.8 (The Minkowski Bound). Every ideal a 6= 0 contains some element whose norm satisfies
|NK|Q(a)| ≤ bMN(a)c, where M = n!

nn

(
4
π

)s√|dK | is the Minkowski bound.
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Proof. Consider the set X from Lemma 4.7. Suppose we are able to set t to be such that

2rπstn

n!
= vol(X) > 2n vol(Γ) = 2nN(a)

√
|dK |

and ∑
τ

|zτ | < B(t),

with B(t) some real number depending on t satisfying bB(t)c < n (MN(a))
1/n. Then we will have

by AM-GM and Minkowski’s lattice point theorem that there exists some a ∈ a whose norm satisfies
|NK|Q(a)| < MN(a), since then

NK|Q(a) =
∏
τ

|aτ | ≤

(
1

n

∑
τ

|aτ |

)n
≤
(

1

n
bB(t)c

)n
< MN(a);

we may take the floor of B(t) above since we know that NK|Q(a) must be an integer. If we have that
M0 := n(MN(a))

1/n is not an integer, then choosing t to be a real number such that t ∈ (M0, dM0e) , we
get that

vol(X) >
2rπsnnMN(a)

n!
= 2nN(a)

√
|dK | = 2n vol(Γ)

and setting B(t) = t finishes the proof. It therefore only remains to show that M0 /∈ Z. If s > 0 this
is immediate, as π is transcendental. In the case s = 0 either M0 is not an integer and we may argue
similarly, or if M0 were somehow an integer the inequality

NK|Q(a) ≤MN(a)

still arises from taking t to be a real number contained in the interval (M0,M0 + 1) and B(t) = t,
although it is not strict. In either case, the inequality |NK|Q(a)| ≤ bMN(a)c holds.

Corollary 4.8.1. Each ideal class of ClK contains an integral ideal whose absolute norm is bounded
from above by the Minkowski bound M .

Proof. Fix an integral ideal and consider its ideal class aPK . It is a simple matter to see that all ideal
classes are of this form; any fractional a can be made integral by multiplying by the principal ideal (a)
for any denominator present in any element of a. This can be forced to be a finite process by considering
a finite5 set of generators, since OK is noetherian.

Now ClK is a group, so it is possible to find a class bPK such that abPK = OKPK and we may of
course also assume that b is integral. It contains an element b of norm bounded by the Minkowski bound
through the inequality

|NK|Q(b)| ≤MN(b).

Now abPK = (b)PK , so after suitable multiplication of prinipal ideals, we may write ab = (b), and it
follows that

N(a)N(b) = N(ab) = N((b)) = |NK|Q(b)| ≤MN(b),

and we are done after division by N(b) on both sides.

Corollary 4.8.2. The class number of any number field is finite.

Proof. Each ideal class in ClK contains an ideal a whose norm is bounded by the number field’s Minkowski
bound M . The absolute norm is multiplicative and thus

N(a) =

r∏
1

N(p)νi .

As seen in the proof for Theorem 4.6, absolute norms of primes of OK are prime powers of Z and there
are only finitely many primes of OK lying over any single prime of Z. Hence there are only finitely many
possible representatives for the ideal classes in ClK and therefore there can only be finitely many classes,
so ClK must itself also be finite.

5In fact, each ideal of a Dedekind domain can be generated by only two elements, since the quotient OK/a can be shown
to be a PID.
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5 Failure of Unique Factorization
We are now in a position to give two different proofs of the failure of unique factorization in Z[ω23]. The
majority of the first proof was outlined by Prof. Arne Meurman for p = 23 early on in the project –
in particular, all results in Subsection 5.1 appearing before Theorem 5.4 – and the second is essentially
a solution to a series of problems from Chapter 3 of [4]. However, before delving into either proof, we
prove that Q(ωp) contains a unique quadratic subfield. This subfield will play an important role in both
proofs.

Theorem 5.1. Let L = Q(ωp), with p a prime, and K its quadratic subfield. Then K = Q(
√
ap), with

ap = (−1)
p−1
2 p.

Proof. The field of cyclotomic integers L contains a unique quadratic subfield since G := Gal(L|Q) ∼=
Cp−1, which has a unique subgroup of order 2. Hence there exists one and only one subfield of L of
index 2 over Q by the fundamental theorem of Galois theory. Set K to be the quadratic subfield of L
and ap to be the squarefree integer such that K = Q(

√
ap). Now

√
ap ∈ OK , regardless of what exactly

ap might be, so
(
√
ap)

2 = (ap) (4)

in OK . The element √ap has a norm of either ap if congruent to 3 mod 4 or ap
4 if congruent to 1 mod

4; its norm can therefore never be 1 and √ap cannot be a unit of OK . Hence the ideal it generates is a
non-trivial proper ideal and by unique ideal factorization this shows that some prime q dividing ap must
ramify in K and therefore also in L. But the discriminant of L is ±pp−2 and L is separable, so we may
apply Theorem 3.9 in OL with the conductor set to F = OL, so that it doesn’t matter. Hence q | pp−2,
which forces q = p.

Now consider the equation of ideals
a2 =

ap
p
OK

which results from dividing by (p) on both sides of (4). Repeating the argument above for all primes
dividing ap

p , we get that they are all also equal to p and this in turn forces ap = ±p, since ap was assumed
to be squarefree. Finally, consider the prime 2 of Z. It certainly does not divide pp−2 and can therefore
not ramify in L. If ap ≡ 3 mod 4, then clearly

2OK ⊃ (4, 2 + 2
√
ap, 1 + 2

√
ap + ap) = (2, 1 +

√
ap)

2,

or in the language of prime factorization in Dedekind domains, 2OK | (2, 1 +
√
ap)

2 Furthermore, 2 -
(2, 1 +

√
ap), so 2OK is not prime and must therefore split. The ideal (2, 1 +

√
ap), howevever, is clearly

a non-zero proper prime ideal, and so the only possiblity is

2OK = (2, 1 +
√
ap)

2.

But then 2 ramifies in K and therefore also in L, a clear contradiction. This tells us that ap ≡ 1 mod 4,
which forces ap to be as was stated in the theorem.

5.1 First Proof
Definition 5.1. A Sophie Germain prime is a prime p such that q = 2p+ 1 is also a prime. The prime
q is called the safe prime associated with p.

Let p be a Sophie Germain prime with safe prime q. We begin by considering the maps ψ : f(x) 7→
f(ωp) and π : f(x) 7→ f(x) mod (q) as is illustrated in the diagram

Z[x]

π

||||

ψ

"" ""

Fq[x] Z[ω]

and the ideals mj = (q, x− j2), for 2 ≤ j ≤ p. The ideals mj are easily seen to be maximal, as

Z[x]/mj = Z[x]/(q, x− j2) ∼= Fq[x]/(x− j2),

which is clearly a field, since x− j2 is irreducible.
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Lemma 5.2. The minimal polynomial of ωp, φp(x), is contained in the ideal (q, x − n) if and only if
n is a quadratic residue mod q incongruent to 1. In particular, φp(x) ∈ mj. These ideals have natural
correspondents in Z[ω], namely the ideals pj = (q, ω − j2). As we shall soon see, these are the prime
factors of the ideal (q).

Proof. It is equivalent to show that φp(x) ∈ (x − n) ⊂ Fq[x], with φp(x) considered as a polynomial in
Fq(x). Now φp(x) ∈ (x−n) is equivalent to x−n | φp(x), i.e. n is a root of φp(x). Since φp(1) ≡ p−1 6≡
0 mod q, it suffices to consider the case n 6≡ 1 mod q. By the identity

φp(x) =
xp − 1

x− 1

and the fact that ϕ(q) = 2p, where ϕ is Euler’s totient function, we may now conclude that

φp(n) ≡ 0 ⇐⇒ np − 1 ≡ 0 ⇐⇒ n is a quadratic residue mod q,

since the quadratic residues mod q are precisely the elements whose orders are p.

The above lemma can now be used to factorize the ideal (q, ϕp(x)) of Z[x] into a product of maximal
ideals.

Theorem 5.3. We have the ideal factorization (q, φp(x)) =
∏p

2 mj in the ring Z[x].

Proof. We have by the above lemma that the only divisors of φp(x) in Fq[x] are x − n, where n is a
quadratic residue incongruent to 1 mod q. Now φp(x) =

∑p−1
0 xi so its degree is p − 1 and there are

exactly p− 1 quadratic resudues mod q, not counting 1. Hence φp(x) =
∏p

2(x− j2) in Fq[x], from which
it indeed follows that

(q, φp(x)) =

p∏
2

(q, x− j2)

from the correspondence theorem.

Corollary 5.3.1. The ideal (q) factors into the product
∏p

2 pj of prime ideals in the ring Z[ωp].

Proof. The surjective homomorphism ψ sends mj to pj and (q, φp(x)) to (q). Since kerψ is contained in
the respective ideals of Z, the pj are all prime.

With the above facts established, we are now ready to prove our main result.

Theorem 5.4. Suppose p is a Sophie Germain prime with safe prime q. Then unique factorization fails
for Z[ωp] if there exists no integer solutions (x, y) ∈ Z2 to the equation x2 + (−1)

p+1
2 py2 = ±4q.

Proof. Let L = Q(ωp) and suppose that OL is a PID. By the corollary above we have that
∏p

2 pj is the
unique decomposition of (q) as a product of prime ideals in Z[ωp], so if q =

∏p
2 πj , with (πj) = pj . The

number q has norm NL|Q(q) = qp−1. Hence it follows by multiplicativity of the norm that NL|Q(πj) = ±q,
because any πj having a norm of a higher power would force some other πj to have a norm of 1, thus
being a unit. If this were the case we would have pj = OL. But the pj are all proper prime ideals, so
this is impossible.

The field Q(ωp) contains the quadratic subfield K = Q(
√
d), with d = (−1)

p−1
2 p. It therefore follows

from Theorem 2.5 that we may decompose the norm of L|Q as

NL|Q = NK|Q ◦NL|K .

Since d ≡ 3 mod 4, it follows that K has OK = Z[ 1+
√
d

2 ] as its field of integers by Theorem 2.2. Now
suppose α ∈ Z[ωp]. The ring Z[ωp] is the ring of integers of L, so NL|K(α) ∈ OK and we may therefore
write

NL|K(α) =
a+ b

√
d

2
,

for some pair of integers a, b ∈ Z such that a ≡ b mod 2. The conjugate of such an element is simply
a−b
√
d

2 and so we finally arrive at

NL|Q(α) = NK|Q

(
a+ b

√
d

2

)
=
a+ b

√
d

2

a− b
√
d

2
=
a2 − b2d

4
=
a2 + (−1)

p+1
2 pb2

4
.
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Hence we would in particular have to have

a2 + (−1)
p−1
2 pb2 = 4NL|Q(πj) = ±4q,

if L were a PID. Therefore Z[ωp] can only be a PID when it is possible to find a, b ∈ Z such that
a2 + (−1)

p+1
2 pb2 = ±4q. UFD ⇐⇒ PID for Dedekind domains, so Z[ωp] must satisfy the same

condition if it is a UFD.

The above theorem is particularly useful when p ≡ 3 mod 4, as we can then sometimes prove that
Z[ωp] is not a UFD simply by showing that the two-element set S(p) = {4q−4p, 4q−p} does not contain
any squares, as a2 + pb2 is always positive.

Corollary 5.4.1. If p is a Sophie Germain prime congruent to 3 mod 4 and in the interval [23, 1000],
then Z[ωp] is not a UFD.

Proof. Since the relevant primes are all congruent to 3 mod 4, it is suffient to show that no element of
S(p), as defined above, is a square. The relevant sets S(p) are listed below.

S(23) = {96, 165}, S(83) = {336, 585}, S(131) = {528, 921},

S(179) = {720, 1257}, S(191) = {768, 1341}, S(239) = {960, 1677} S(251) = {1008, 1761},

S(359) = {1440, 2517}, S(419) = {1680, 2937}, S(431) = {1728, 3021}, S(443) = {1776, 3105},

S(491) = {1968, 3441}, S(659) = {2640, 4617}, S(683) = {2736, 4785}, S(719) = {2876, 5037},

S(743) = {2976, 5205}, S(911) = {3648, 6381}

None of the numbers contained in the above sets are squares and this covers all Sophie Germain primes
in the interval [23, 1000] as listed in OEIS [6]. Thus the proof is complete.

5.2 Second Proof
The second proof only considers the case p = 23. If we are solely interested in whether Z[ω23] is a UFD or
not, this proof will add nothing of interest. While this might seem redundant at first glance, this second
proof will make up for its comparative lack of generality by requiring us to understand more about the
quadratic subfield Q(

√
−23) of Q(ω23). In particular, we will have an added incentive to compute the

class number of said quadratic subfield.
For the rest of this section, set K = Q(

√
−23), L = Q(ω23), α = 1+

√
−23
2 and lastly p1 = (2, α) and

p2 = (2, 1− α) to be ideals of OK .

Lemma 5.5. The ideal p1 is not principal.

Proof. Set p = p1. Had p been principal, we would have p = (π) for some π ∈ OK and we would have
by Corollary 4.6.1 that 2 = N(p) = NK|Q(π) = x2+23y2

4 , where x, y ∈ Z. This, however, implies the
existence of a pair (x, y) ∈ Z2 such that x2 + 23y2 = 8, which is clearly ridiculous. It follows that p
cannot be principal.

Lemma 5.6. Let Q ⊂ K ⊂ L be a tower of Galois extensions of Q, p a prime ideal of OK and P a
prime ideal of OL lying over p. The map N : ClL → ClK defined by mapping the ideal class of a to the
class of the ideal NL|K(a) ∩ OK is then a group homomorphism that sends the class of P to the class of
pf(P|p).

Proof. Set f = f(P|p). By Lemma 4.5 we already have that NL|K(P) = pfOL. It is clear that the
operations performed byN on an ideal are well-defined and it therefore suffices to show that aOL∩OK = a,
as then it will both follow that N is a homomorphism and that N(P) = pf . It is clear that aOL ∩ OK
is an ideal of OK containing a, so the proof may be further reduced to showing the reverse containment
aOL ∩ OK ⊂ a.

The key to this is using the unique factorization into prime ideals; the ideal a factorizes into

a =

r∏
1

pνii .
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With this in mind, fix an index i and set p = pi and ν = νi. In view of the containment a∩OK ⊂ pν∩OK ,
it suffices to show that pν ∩OK = pν and it will then immediately follow that a | aOL ∩OK and therefore
that in fact a = aOL ∩ OK . Now suppose that on the contrary, pOL ∩ OK 6= pν . This must imply that
p is in fact equal to pn for some integer n satisfying 1 ≤ n < ν, as clearly pνOL ∩ OK must contain pν .
However, if this were true, we would have

pnOL = (pνOL ∩ OK)OL = pνOL,

which stands in clear violation to the unique prime factorization of OL. To see that the latter equality
above holds, simply observe that the middle expression is aece = ae, with a = pν and ae = aOL and
Ac = A ∩ OK the extension and contraction, respectively, with respect to the injection homomorphism
OK ↪→ OL.

Lemma 5.7. The class number of Q(
√
−23) is 3.

Proof. Let K = Q(
√
−23). The Minkowski bound for K is M = 2

π

√
23 and it is easily seen that

M2 < 4
9 · 23 = 92

9 < 144
9 = 42, so M < 4. The ideal class group of K is therefore generated by the primes

lying over (2) and (3). Denote the non-trivial element of Gal(K|Q) by σ and set α = 1+
√
−23
2 , p = (2, α)

q = (3, α). In this notation
(2) = p(σp), (3) = q(σq).

Now consider the principal ideal (α). It has norm N((α)) = 6 and must therefore be divisible by
exactly one prime lying over each of the ideals (2) and (3). As (α) ⊂ p, q, the decomposition of (α) into
a product of prime ideals must be (α) = pq. It follows that (σp)−1PK = pPK = q−1PK = (σq)PK and
so ClK is generated by pPK .

Finally, we consider what p2PK could possibly be. We have by the Minkowski bound that p2PK
must contain some integral ideal of norm 1, 2 or 3. It suffices to consider O, p and σp, since each of the
primes lying over 3 are in the same ideal class as a prime lying over 2. If O ∈ p2PK , we must have that
p2 principal, which would imply that it is generated by an element π of norm 2 or 4. This would further
require that at least one of the equations

x2 + 23y2 = 8, x2 + 23y2 = 16

would have to admit an integral solution. Under these conditions the left equation is clearly unsolvable
and the right equation admits only the solutions (x, y) = (±4, 0), so then π would have to be 2, which
is not even an element of p2. On the other hand, p ∈ p2PK would force O ∈ p−1p2PK = pPK , which
contradicts the fact that p is non-principal. We must therefore have that σp ∈ p2PK . In particular, this
proves that

p3PK = pp2PK = p(σp)PK = (2)PK = PK ,

so the order of p, and consequently ClK , must be 3.

Theorem 5.8. The ring Z[ω23] is not a UFD.

Proof. Set p = p1 and P = pOL. We begin by showing that P lies over p with inertial degree f = 11.
The ideal (2) splits into two prime ideals in OK , as (2, α)(2, 1− α) = (2) is the unique factorization

of (2) into prime ideals of OK . Hence its inertia degree is f(p|(2)) = 1.
Let us now consider f(P|(2)). We first prove that P actually lies over (2). Of course Z ⊂ OK , so

P ∩ Z = (P ∩ OK) ∩ Z = p ∩ Z = (2), and so P indeed lies over (2). Now consider the identity

f(P|(2)) = [OL/P : Z/(2)] = [OL/P : OK/p][OK/p : Z/(2)] = f · 1 = f.

Theorem 3.7 tells us that the only possible alternatives are 1 and 11. However, 1 is impossible, since this
would imply that 2 is completely ramified in Z[ω23], despite 2 not dividing the discriminant of Z[ω23]. It
follows that f = 11.

This tells us that the homomorphism N from Lemma 5.6 sends PPL to p11PK . We therefore have
that the order p11PK divides that of PPK . The desired statement will therefore follow if we can show
that the order of pPK is not a multiple of 11, as this will imply that p11PK 6= PK . Fortunately, this is
an immediate consequence of Lemma 5.7. UFD ⇐⇒ PID for Dedekind domains, so we have just shown
that Z[ω23] cannot be a UFD.
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There is a bit more to be taken away from this proof than merely another way of proving something
we already knew. Not only have we learned the class number of Q(

√
−23) is 3; this number along with

the non-triviality of the homomorphism N from Lemma 5.6 tells us that the class number of Q(ω23) must
be divisible by 3. Actually, equality to 3 is in fact the case [7], although showing this would require us
to consider many more cases than we had to in Q(

√
−23) if we were to use essentially the same method

due to the sheer size of the Minkowski bound in the cyclotomic case.
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6 Fermat’s Last Theorem and Regular Primes
In the previous section we investigated a prime for which Lamé’s proof did not work. Here we prove
Fermat’s last theorem for a subclass of primes called regular primes. We begin by dealing with case
I; the proof for regular primes other than 3 is essentially follows a series of exercises from Chapter 1 of
[4] whereas the case p = 3 is an argument found in [1]. When these two instances are dealt with we
finish by showing case II for arbitrary regular primes, closely following the treatment of the proof given
in [1]. Throughout this section, we set ω = ωp and let p be an arbitrary regular prime unless otherwise
explicitly stated.

6.1 Case I for p = 3

Although Euler never published a correct proof, case I can be established for p = 3 using methods known
to Euler, as is done in Sections 2.4–2.5 of [1]. Alternatively, if we are content with settling only case I
for p = 3, we may observe that 3 is a Sophie Germain prime. We may therefore prove a more general
statement that holds for arbitrary6 Sophie Germain primes.

Theorem 6.1. Let p be an odd Sophie Germain prime. Then any integral solution (x, y, z) to the
equation

xp + yp = zp

has the property that p | xyz.

Proof. We assume without loss of generality that the involved variables are relatively prime and begin
by rewriting the equation on the symmetric form

xp + yp + zp = 0

by changing the sign of z. It may now be observed that

−zp = (x+ y)

p−1∑
0

xi(−y)p−1−i

and clearly the same holds for any permutation of the order of the entries of (x, y, z) by symmetry. Now
fix a prime r and suppose that r divides x+ y. Then x ≡ −y mod r, so that

p−1∑
0

xi(−y)p−1−i ≡ pxp−1.

This forces either r = p, in which case we are done, or r | x. The latter case would imply that x and y
are not coprime, contrary to hypothesis, since it was assumed that r also divides x+ y.

Since the factors x + y and
∑p−1

0 xi(−y)p−1−j were shown to be coprime, we have by the original
eqution and symmetry that

x+ y = ap,
∑p−1

0 xi(−y)p−1−i = Ap, z = −aA,
y + z = bp,

∑p−1
0 yi(−z)p−1−i = Bp, x = −bB,

z + x = cp,
∑p−1

0 zi(−x)p−1−i = Cp, y = −cC.

However, if ϕ is taken to denote Euler’s totient function, we have that ϕ(q) = 2p, and so the only pth

powers mod q are 0 and ±1. Hence the only way for the equation

xp + yp + zp ≡ 0 mod q

is for at least one variable, say x, to be divisible by q. We may easily deduce that

2x = bp + cp + (−a)p

by the equations involving sums of two of the variables above and so at least one of the numbers b, c
and a must be divisble by q. However, if a or c is divisible by q then either y or z is also divisible by q,

6In fact, even for p = 2, as is easily seen by considering the equation x2 + y2 = z2 in F2; however, since this is hardly
relevant, we only properly state and prove the statement for Sophie Germain primes p ≥ 3.
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contradicting the assumption of the entries of (x, y, z) being coprime. It must therefore be the number
b that is divisible by q, but then y ≡ −z mod q, so that in fact

Bp ≡ pyp−1 mod q.

Since x was assumed to be divisible by q, it may also be seen that yp−1 ≡ Ap mod q, so that in fact

Bp ≡ pAp.

Since the pth powers mod q were precisely 0 and ±1 the only way for this to happen is B ≡ A ≡ 0 mod q,
in which case q is a common divisor of x and y. This is yet another contradiction of the assumption that
the entries of (x, y, z) are relatively prime and this finally yields the desired divisibility p | xyz.

Before moving on to other primes, we show that Z[ω3] is in fact a UFD. One way to prove this is
to show that it is a Euclidean domain, but let us instead see if we can do this by determining the class
number of Z[ω3]. Set ω = ω3 and K = Q(ω). The Minkowski bound M satisfies

M =
2!

22

(
4

π

)1√
32 =

6

π
< 3,

so every ideal class of K contains an ideal of absolute norm 2. Therefore ClK is generated by the prime
ideals of Z[ω] lying over 2. It is well-known that the polynomial x2 + x+ 1 in F2[x] is irreducible, so by
Theorem 3.8 it follows that

2O = (2, ω2 + ω + 1) = (2, 0) = (2),

and so 2 splits into just one principal ideal of intertia degree 2. Since every ideal class contains a prime
ideal lying over 2 and as there is only one such ideal there can be only one ideal class and thus hK = 1.
The foundational arguments of Lamé’s idea for a proof therefore hold.

Now set K = Q[ωp] for an arbitrary prime p. Then it can in fact be shown that hK = 1 ⇐⇒ p ≤ 19,
which was done independently by Montgomery and Uchida [7]. For the reader interested in a proof, this
can be found in Chapter 11 of [7], although it should be noted that understanding this proof requires any
things that are neither a prerequisite for understanding this paper nor covered within it. In particular, one
will need some knowledge in complex analysis, Dirichlet characters and Dirichlet L-series. Fortunately,
the latter two of the three are in fact covered in earlier chapters of [7].

6.2 Case I for p > 3

The proof for case I essentially begins like the incomplete proof proposed by Lamé but makes use of
unique ideal factorization rather than unique factorization of elements. Recall the factorization of ideals
proposed in the introduction, namely

p−1∏
0

(x+ ωky) = (z)p. (5)

For the remainder of this subsection, set ak = (x+ ωky), so that in this notation (z)p factorizes as

p−1∏
0

ak = (z)p.

Lemma 6.2. The factors ak above are relatively prime.

Proof. If p divides both ai and aj , where i < j, then it divides their greatest common divisor ai + aj and
therefore in particular the principal ideal (ωiy − ωjy) = (y − ωj−iy) contained therein. It follows from
the identities

p−1∑
0

xi =
xp − 1

x− 1
=

p−1∏
1

(x− ωk)

and by evaluating the middle and left-most expressions above at 1 that

p =

p−1∑
0

1i =

p−1∏
1

(1− ωk).
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Hence p | (1 − ωj−i)(y) in fact implies that p divides (py). In view of (5), p must then also divide
(z)p. The fact that p divides both (yp) and (z) is a contradiction, and we may conclude that the ideals
(x+ ωky) are relatively prime.

Corollary 6.2.1. For each factor ak there exists some non-zero non-unit ak of Z[ω] such that ak may
be written on the form

ak = (ak)p.

Proof. Since the ak are relatively prime the unique prime factorization forces each ak to be a pth power
of some ideal, since their product (z)p is a pth power. Now p was assumed to be regular, so the class
number of Q(ω) is not divisible by p; hence if ak = bp, we must have that b is a principal ideal, say (ak).

Now set K = Q(ω) and suppose that ak is a unit. Then so is x+ ωky and for k = 0 it follows that

±N(a0) = NK|Q(x+ y) = (x+ y)p−1 = ±1.

This forces one of x, y to be 0 and the other to be ±1, but x, y were both assumed to be non-zero so this
is a contradiction. When k > 0 is assumed we similarly get

±N(ak) = NK|Q(x+ ωky) =
xp + yp

x+ y
,

so xp + yp must be equal to ±(x + y). In case of − this is equivalent to xp + x = yp + y and since
f(t) = tp+ t is injective as a function defined on R it follows that x = y. These numbers may be assumed
to be relatively prime, for if they are not then their greatest common divisor, say d, must also divide z
and so dividing the equation xp + yp = zp by d gives a new equation where they are indeed relatively
prime. Thus we have forced x = y = ±1 when xp + yp = −(x+ y), but neither 2 nor −2 is a pth power
of an integer, so xp + yp 6= zp, contrary to hypothesis.

Consider now instead the possibility

xp + yp = x+ y.

If we can show that it has no solutions such that both x and y are non-zero, we are done. We may
assume without loss of generality that x > 0, for if this is not the case multiply both sides by −1 to get
an equation where this is the case. Now if y is of the same sign as x, we may set x = es, y = et for some
pair of real numbers s and t. Substituting this into the equation we get

eps + ept = es + et

⇐⇒ (es + et)(ep − 1) = 0,

but there do not exist any real numbers s and t that satisfy equivalent equation. Finally, if x and y are
of opposite sign, then setting x = es and y = −et similarly gives the equation

(es − et)(ep − 1) = 0,

which is satisfied if and only if s = t and therefore equivalently x = −y, but if this is the case then we
may reach a contradiction by either noting that this implies that

zp = xp + yp = xp + (−x)p = 0,

which contradict the fact that x, y and z were all assumed to be non-zero, or by noticing that x = −y
contradicts that x and y are relatively prime. Hence x + ωky cannot be a unit, since we assumed from
the beginning that (x, y, z) ∈ (Z \ {0})3, and then neither can ak.

The isomorphism Z[ω] ∼= Z[x]/(φp) induced by mapping f(x) ∈ Z[x] to f(ω) ∈ Z[ω] tells us that each
element a of Z[ω] is uniquely representable on the form a =

∑p−2
0 aiω

i in the sense that the coefficients
ai are unique; furthermore, the identity

φp(ω) =

p−1∑
0

ωi = 0

is a direct consequence.
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Theorem 6.3. A rational integer m divides a in Z[ω] if and only if the coefficients ai in the sum
a =

∑p−1
0 aiω

i are congruent to one another mod m.

Proof. If the coefficients satisfy the congruence condition, adding a suitable multiple of φp(ω) will clearly
give a cyclotomic integer divisible by m. Conversely, if m divides a, consider the fact that we may find
a polynomial f with integral coeffients of degree at most p − 2 such that a = f(ω); in terms of ideals,
this may be stated as f(ω) ∈ (m), which in turn implies that f(x) ∈ (m,φp(x)) in the ring Z[x]. It is
now quite clear that the coefficients of f are congruent mod m.

It is a well-known fact that in rings of characteristic p it holds that(
n∑
1

xi

)p
=

n∑
1

xi
p.

In view of this, we have that ap ≡
(∑p−2

0 aiωi

)p
≡
∑p−2

0 (aiω)p ≡
∑p−2

0 ai
p mod pZ[ω], which in

particular shows that the image of ap under the canonical projection Z[ω] � Fp[ω] can be represented
with just an element of Fp. Now the ideal factorization we did earlier tells us that x+ ωy = εap, with ε
a unit of Z[ω]. Let ε denote the complex conjugate of ε. We now prove a lemma that is due to Kummer
[4].

Lemma 6.4 (Kummer). In Z[ω], the quotient of units u = ε/ε is a power of ω.

Proof. The element ε is a unit, for ω = ωp−1, so that ε is a conjugate of ε and therefore has the same
norm. Another property ε and ε share is that they have the same modulus as complex numbers, so that
their quotient has a modulus of 1, which means that it is of the form e

2πi
x , for some real x.

Now consider what algebraic integers could possibly have a modulus of 1. All of these occur as roots
of monic polynomials with coefficients in Z, so suppose p(x) is such a polynomial of degree n. In view
of the triangle inequality, each coefficient ai of p, which is simply a sum of products of roots, must be
bounded by some constant ci, in such a way that ai ∈ [−ci, ci]. We therefore see that there can only
exist a finite amount of such polynomials for each degree n and therefore also only a finite amount of
algebraic integers of modulus 1 whose minimal polynomial is of degree less than or equal to some fixed n.
Now Z[ω] is a field extension of degree p− 1 over Q and can therefore not contain any algebraic integer
whose minimal polynomial is of a higher degree. In particular, this means that x must be rational, as
otherwise we would get an infinite amount of algebraic integers of modulus 1 by taking integral powers
of u. This further shows that u must be a root of unity, leaving only the possibilities u = ±ωk.

Suppose for now that the sign is negative, so that u = −ωk, and consider what this leads to in the
ring Z[ω]/(p). Then ε = −εωk implies that εp = −εp, and in particular εp ≡ −εp mod pZ[ω]. Complex
conjugation does not change the real part of any number and εp mod p is simply the sum of pth powers
of its integral coefficients when written out as a cycltomic integer, mod p. Hence it must be equal to its
complex conjugate in Z[ω]/(p) and so we must in fact have that p divides εp, which is a unit of Z[ω],
despite not being a unit itself.

Corollary 6.4.1. Suppose that p is a regular prime strictly greater than 3. For the element x+ ω from
the factorization of xp + yp = zp, it holds that

x+ ωy ≡ ωx+ y mod pZ[ω].

Proof. The above lemma due to Kummer and our knowledge of binomial expansion in Fp[ω] lets us
conclude that for some integer k

x+ ωy ≡ εap

≡ ωkεap

≡ ωkεap

≡ ωk(x+ ωy)

≡ ωk(x+ ωp−1y) mod pZ[ω].

But then we must have that x + ωy − ωk(x + ωp−1y) ≡ 0 mod pZ[ω], which implies that the set
{1, ω, ωk, ωk+p−1} ⊂ Fp[ω] is linearly dependent. But {1, ω, . . . , ωp−1} is a basis of Fp[ω] as a vector
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space over Fp. Thus the linear dependence is only possible if k is either congruent to 0, 1 or 2 mod p, if
p ≥ 5, which is the case by hypothesis.

Out of the possibilites 0, 1 and 2 for the congruence class of k, let us first consider the former. If
k ≡ 0 mod p, then x+ωy ≡ x+ωp−1y mod pZ[ω] and therefore p must divide the difference ω(1−ωp−2)y
so the norm pp−1 of p must divide the norm pyp−1 of ω(1 − ωp−2)y, but y was relatively prime to p so
this cannot be. If k ≡ 2 mod p we get a contradiction in the same way by observing that this implies
that p then divides (1− ω2)x. Hence k must be congruent to 1 mod p and we arrive at

x+ ωy ≡ ωx+ y mod pZ[ω],

as was desired.

With the above corollary established we are now in position to prove case I for regular primes other
than 3.

Theorem 6.5. Case I of Fermat’s last theorem holds for all regular primes.

Proof. Since p = 3 has already been dealt with in full generality, we focus on the situation where p ≥ 5, in
which case Corollary 6.4.1 gives that x+ωy ≡ ωx+y mod pZ[ω], or equivalently that p | (x−y)+(y−x)ω
in Z[ω], This is in turn is equivalent to x ≡ y mod p as rational integers. It follows from symmetry that
also x ≡ −z mod p by considering instead the equality xp + (−z)p = (−y)p and so we have from the
original equality xp + yp = zp that

0 ≡ xp + yp − zp ≡ 3xp mod p,

which is a clear contradiction since p was assumed to be greater than 3.

6.3 Case II
Case II for regular primes is a deeper result than that of the corresponding case I, as it requires the
following lemma, which we state but do not prove.

Lemma 6.6 (Kummer’s Lemma). Let p be a regular prime and suppose that ε is a unit of Z[ω] such
that

ε ≡ n mod pZ[ωp]

for some rational integer n. The unit ε is then a pth power of some unit of Z[ω].

This lemma is deeper than anything required to settle case I for regular primes in the sense that its
proof involves concepts that this paper neither mentions nor assumes that its reader should know. The
interested reader may find a proof near the end of Chapter 5 of [7].

Once again, consider the factorization (5) of (z)p into ideals and set ak = (x+ ωky). It is possible to
find an integer z0 coprime to p such that (z) = (1− ω)`(z0), by which we may rewrite (5) on the form

p−1∏
0

ak = (1− ω)p`(z0)p. (6)

We begin the proof of the second case by proving an analogue to Lemma 6.2.

Lemma 6.7. The factors ak are each divisible by (1 − ω) and only a0 is divisible by (1 − ω)2. In
particular, the ideals ak(1− ω)−1 are pair-wise coprime.

Proof. Following the arguments of Lemma 6.2 we again find that any prime ideal p dividing two distinct
factors ai and aj must also divide the ideal (1 − ω)(y). Since p | z we may no longer conclude that
p - (1− ω); in fact, this must be the case for at least one factor, say ak. But

x+ ωky − ωk(1− ω)y = x+ ωk+1y,

which in terms of ideals translates into

(1− ω) = ak + (1− ω) ⊃ ak+1,

which shows that ak+1, is also divisible by (1−ω). Hence by repeating this argument for each successive
index, it follows in a finite amount of steps that (1− ω) | ak for every index k.
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Let us now prove that at least one factor is divisible by (1 − ω)2. Our first step towards this is
to assume the contrary. Since all factors are divisible by (1 − ω), this would mean that we can find p
elements ak ∈ Z[ω] such that ak(1− ω) = x+ ωky such that 1− ω divides none of the ak. But we have
previously shown that (1− ω) is a prime lying over p of inertia degree 1, so that Z[ω]/(1− ω) ∼= Z/pZ,
which in particular tells us that there can only be p− 1 non-zero congruence classes mod (1−ω). Hence
ai − aj ≡ 0 mod (1− ω), for some pair of distinct indices i and j, which would in turn imply that
(1− ω)2 | (1− ω)(y), or equivalently that (1− ω) | (y) and we have thus reached a contradiction.

If there were two distinct factors ai and aj such that (1−ω)2 divides both we would then have again
(1−ω)2 | (1−ω)(y) as an immediate consequence. There therefore exists only one factor ak divisible by
(1− ω)2. This factor must be a0 = (x + y), as x + y is an integer and so the ideal a0 must be divisible
by (1− ω)p−1 whenever it is divisible by (1− ω).

In view of what has been proven so far, it is now an immediate consequence that the ideals ak(1−ω)−1

are pair-wise relatively prime; the ideals ak(1−ω)−1 are coprime by arguing mutatis mutandis as we did
for the factors ak in Lemma 6.2, since we have by dividing out factors (1 − ω) from each ak forced all
but one of them to be relatively prime to p.

The above lemma essentially lets us instead consider the factorization

p−1∏
0

ak(1− ω)−1 = (z)p(1− ω)−p.

Arguing as in case I, we find that
x+ ωky

1− ω
= εkt

p
k,

for some unit εk and some cyclotomic integer tk, for each index k > 0. For k = 0 we similarly find

x+ y

(1− ω)p`−(p−1)
= ε0t

p
0,

where the exponent in the denominator is found by considering the amount and distribution of factors
1−ω in the product

∏p−1
0 (x+ωky). Multiplying by the denominator of the left-hand side on both sides

of each equation and setting s = (1 − ω)`−1t0 gives rise to p equations, out of which we focus on the
three in the system of equations below.

x+ y = (1− ω)ε0s
p

x+ ωy = (1− ω)ε1t
p
1

x+ ωp−1y = (1− ω)εp−1t
p
p−1

The variable x may be eliminated by subtracting the second equation from the first and the first from
the third, which results in the new system below.{

(1− ω)y = (1− ω) (ε0s
p − ε1tp1)

(ωp−1 − 1)y = (1− ω)
(
εp−1t

p
p−1 − ε0sp

)
The variable y may be eliminated in a similar fashion by subtracting the first equation from the second
multiplied by ω in the above system, which after division by (1− ω) yields the equation

0 = ω
(
ε0s

p − εp−1tpp−1
)
− (ε1t

p
1 − ε0sp) .

The above equation may then quite easily be algebraically manipulated to instead read

0 = (1 + ω)ε0s
p + (−ε1)tp1 + (−ωεp−1)tpp−1.

Now 1 + ω = (1 − ω2)(1 − ω)−1 and 1 + ω is therefore a cyclotomic unit. Hence the above equation
may be written on an equivalent and simpler form by setting E0 = (1 + ω)ε0E

−1
1 , E1 = −ε1 and lastly

Ep−1 = −ωεp−1E−11 . After substituting back from s to t0 this gives us the much less cluttered equation

0 = E0

(
(1− ω)p(`−1)t0

)p
+ tp1 + Ep−1t

p
p−1
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to work with. Now if ` > 1, considering where the canonical projection π : Z[ω] � Z[ω]/pZ[ω] sends
each side of the above equation gives rise to the congruence relation

0 ≡ m1 + Ep−1mp−1 mod pZ[ω],

with both m1 and mp−1 being integers relatively prime to p. The unit Ep−1 must therefore be congruent
to an integer m such that m ≡ −m1m

−1
p−1 mod pZ, so that Ep−1 = ep for some unit e of Z[ω] by

Kummer’s lemma. We may therefore further simplify our equation, by setting u = etp−1, yielding

0 = E0

(
(1− ω)`−1

)p
tp0 + tp1 + up.

This motivates the consideration of solutions of the more general equation

0 = xp + yp + ε
(
(1− ω)`z

)p
,

where x, y and z are pair-wise coprime cyclotomic integers relatively prime to 1− ω such that xyz 6= 0
and ` a positive rational integer. If we can show that this more general equation has no such solutions
then the special case where x, y, (1−ω)`z and ε are rational integers will give us exactly what we want.
We are now ready to put the final nail in the coffin.

Theorem 6.8. Let ε be a cyclotomic unit and ` a positive rational integer. Furthermore, suppose that
x, y and z are cyclotomic integers such that xyz 6= 0 and that x, y, z and 1− ω are pair-wise relatively
prime. Then the equation

0 = xp + yp + ε
(
(1− ω)`z

)p
is impossible.

Proof. An ideal factorization analogous to (6) is still applicable, namely

p−1∏
0

ak :=

p−1∏
0

(x+ ωky) = (1− ω)pl(z)p

and Lemma 6.7 still holds, although with the restriction that we can’t necessarily argue that a0 is the
precise factor divisble by (1− ω)2 in the same way. This is due to us no longer being able to guarantee
that x+ y is rational integer. However, if (1−ω)2 divides some other factor, say am, then multiplying y
by a factor ωp−k in the original equation gives a new equation which gives rise to an ideal factorization

p−1∏
0

bk :=

p−1∏
k=0

ap+k−m

where indeed (1− ω) | b0. Hence we may assume without loss of generality that in fact (1− ω)2 divides
a0. Repeating the arguments made after the proof of Lemma 6.7, we get an equation of the form

Xp + Y p = E(1− ω)(`−1)pZp,

with X, Y and Z cyclotomoic integers relatively prime to each other and 1− ω such that their product
is non-zero and E a cyclotomic unit. Hence we can, starting out with any possible value for ` in the
original equation and eventually reach an equation which is of the same type but with ` = 1. But if we
were to actually have ` = 1, then each factor would be divisible by (1− ω) only once, since they are all
divisble by (1 − ω). However, we have also shown that there is always exactly one factor divisible by
(1−ω)2, so ` = 1 is impossible. In view of the reduction possible for any ` > 1, it is therefore impossible
for there to exist any value of ` such that the original equation holds.
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