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Abstract 
Urban areas are responsible for a significant part of greenhouse gas emissions. Megacities, 
especially, have cumulative impacts due to different anthropogenic heat sources and urban 
heat island phenomena. It is therefore vital to replace fossil fuel burning heating sources with 
renewable sources in the current building stock. Renewable energy sources can be applied 
through building energy retrofits, which need to be technically and economically feasible. It 
is, however, always a complex matter to have a fast and reasonably accurate energy use 
prediction for the retrofit feasibility study. New York City was chosen for this research due 
to the wide variety of publicly accessible data, including high-quality metered energy and 
high-resolution geomatics data. This study proposes a reverse method to predict hourly 
building energy performance according to the total metered energy use. Buildings were 
divided into different categories based on type and vintage. A robust relation between building 
categories and hourly energy use was found. Hourly energy trend was defined to describe the 
energy use of each category. The output was separated into cooling- and heating loads to be 
used in a geothermal system design program. The geothermal system was considered as an 
appropriate system to be established in the existing buildings. The results showed that 50% 
to 100% of the heating loads of the buildings could be covered by geothermal as an alternative 
to fossil fuels. The introduced reverse method can significantly reduce the time of energy 
estimation compared to the simulation-based methods. Hence, providing a retrofit proposal to 
implement renewable energy systems such as geothermal systems would be faster, easier, and 
affordable for practitioners. 

 

 

 

 

 

 

 



ii 

 

  



iii 

 

Table of contents 
Abstract .................................................................................................................................... i 

List of figures .......................................................................................................................... v 

List of tables .......................................................................................................................... vii 

Abbreviations ......................................................................................................................... ix 

1 Introduction ..................................................................................................................... 1 

1.1 Background .................................................................................................................... 1 

1.2 Aims and Goals ............................................................................................................. 2 

1.3 Thesis disposition .......................................................................................................... 3 

2 Literature review ............................................................................................................. 5 

2.1 Energy performance prediction ..................................................................................... 5 

2.1.1 Engineering methods .............................................................................................. 5 

2.1.2 Statistical methods .................................................................................................. 6 

2.1.3 Neural network ....................................................................................................... 8 

2.1.4 Support vector machine .......................................................................................... 8 

2.2 Energy simulation software ........................................................................................... 8 

2.3 Reverse energy estimation ............................................................................................. 9 

2.4 Weather.......................................................................................................................... 9 

2.5 Urban heat island ......................................................................................................... 10 

2.6 Geothermal energy ...................................................................................................... 11 

2.7 New York City ............................................................................................................ 12 

3 Method ........................................................................................................................... 14 

3.1 Statistical analysis ....................................................................................................... 14 

3.1.1 Primitive stage: Benchmarking analysis ............................................................... 14 

3.1.2 Conclusive stage: Results analysis ....................................................................... 18 

3.2 Energy performance simulation ................................................................................... 19 

3.2.1 Building modelling ............................................................................................... 19 

3.2.2 Urban modelling ................................................................................................... 19 

3.2.3 Weather data ......................................................................................................... 20 



iv 

 

3.2.4 Energy modelling ................................................................................................. 21 

3.2.5 Energy simulation workflow ................................................................................ 23 

3.3 The reverse energy estimation approach ..................................................................... 25 

3.3.1 Backbone .............................................................................................................. 25 

3.3.2 Operation .............................................................................................................. 26 

3.4 Geothermal calculation ................................................................................................ 27 

3.5 Delimitations ............................................................................................................... 29 

4 Results analysis ............................................................................................................. 30 

4.1 Benchmarking data ...................................................................................................... 30 

4.2 Microclimate ................................................................................................................ 31 

4.3 Energy performance simulation ................................................................................... 32 

4.3.1 Actual buildings .................................................................................................... 32 

4.3.2 Hypothetical buildings .......................................................................................... 34 

4.3.3 Domestic hot water ............................................................................................... 37 

4.4 Reverse method ........................................................................................................... 38 

4.4.1 Reference models ................................................................................................. 38 

4.4.2 Subjected buildings test ........................................................................................ 39 

5 Conclusions ................................................................................................................... 54 

References ............................................................................................................................. 56 

Appendix A ........................................................................................................................... 65 

Appendix B ............................................................................................................................ 67 

Appendix C ............................................................................................................................ 69 

 

 

 

 



v 

 

List of figures 

 
Figure 1: NYC five boroughs ...................................................................................................... 12 

Figure 2: Utilized computer software for each stage of the entire process ................................. 14 

Figure 3: The variability of different building types in the dataset ............................................. 16 

Figure 4: The frequency of the different building area ............................................................... 17 

Figure 5: The frequency of building age (Year built) ................................................................. 17 

Figure 6: A sample urban model (left) and subject building (right) in the context ..................... 19 

Figure 7: Hourly outdoor temperature from measured data for the four stations for 2017 ......... 21 

Figure 8: Three main components of EPS and their parameters. ................................................ 21 

Figure 9: Energy modelling and simulation workflow ............................................................... 24 

Figure 10: The generative model to produce modular geometries .............................................. 24 

Figure 11: Reverse method workflow ......................................................................................... 27 

Figure 12: Settings for optimization in EED ............................................................................... 28 

Figure 13: Scatter plot for the normalized EUI by the floor area for each year built. ................. 30 

Figure 14: Median of EUI for Multifamily housing and Office divided by vintages .................. 31 

Figure 15: Frequency of different energy sources for the two main building types .................... 31 

Figure 16: Dry-bulb temperature for the original and microclimate TMY weather file ............. 32 

Figure 17: The comparison between simulated and measured EUI. ........................................... 32 

Figure 18: Annual hourly profile for EUI, Heating demand, and Cooling demand for 
Multifamily housing. ................................................................................................................... 33 

Figure 19: Annual hourly profile for EUI, Heating demand, and Cooling demand for Office. .. 33 

Figure 20: R2 for each pair of actual buildings in every category. .............................................. 34 

Figure 21: Sample cases for randomly generated hypothetical buildings ................................... 35 

Figure 22: R2 for each pair of hypothetical buildings in every category. .................................... 36 

Figure 23: Compactness and RC for 60 actual buildings and 200 hypothetical models ............. 37 

Figure 24: DHW heating load for Multifamily housing (top) and Office (bottom) .................... 38 

Figure 25: Generated reference models for the eight defined categories .................................... 39 

Figure 26: Predicted annual heating- and cooling load for building number 80 ......................... 41 

Figure 27: Ground loads for building number 80 after applying SPF ......................................... 41 

Figure 28: Duration diagram for heating and cooling loads for building number 80 .................. 41 



vi 

 

Figure 29: Predicted annual heating- and cooling load for Order number 29983 ....................... 43 

Figure 30: Ground loads for building number 29983 after applying SPF ................................... 43 

Figure 31: Duration diagram for heating and cooling loads for building number 29983 ............ 43 

Figure 32: Predicted annual heating- and cooling load for building number 30063 ................... 45 

Figure 33: Ground loads for building number 30063 after applying SPF ................................... 45 

Figure 34: Duration diagram for heating and cooling loads for building number 30063 ............ 45 

Figure 35: Predicted annual heating- and cooling load for building number 12080 ................... 47 

Figure 36: Ground loads for building number 12080 after applying SPF ................................... 47 

Figure 37: Duration diagram for heating and cooling loads for building number 12080 ............ 47 

Figure 38: Predicted annual heating- and cooling load for building number 26965 ................... 49 

Figure 39: Ground loads for building number 26965 after applying SPF ................................... 49 

Figure 40: Duration diagram for heating and cooling loads for building number 26965 ............ 49 

Figure 41: Predicted annual heating- and cooling load for building number 4338 ..................... 51 

Figure 42: Ground loads for building number 4338 after applying SPF ..................................... 51 

Figure 43: Duration diagram for heating and cooling loads for building number 4338 .............. 51 

 



vii 

 

List of tables 
 

Table 1: Detail information of the available data for the major parameters. ............................... 15 

Table 2: Energy end-use breakdown in Multifamily housing and Office buildings ................... 18 

Table 3: Multifamily housing buildings characteristics for EPS ................................................. 22 

Table 4: Office buildings characteristics for EPS ....................................................................... 23 

Table 5: Cooling load ratio to the EUI and average COPs ......................................................... 34 

Table 6: Results summary for Order number 80 ......................................................................... 40 

Table 7: Results summary for Order number 29983 ................................................................... 42 

Table 8: Results summary for Order number 30063 ................................................................... 44 

Table 9: Results summary for Order number 12080 ................................................................... 46 

Table 10: Results summary for Order number 26965 ................................................................. 48 

Table 11: Results summary for Order number 4338 ................................................................... 50 

 

 

 

 

 

 

 

 

 

 

  



viii 

 

 

 

 

 

 

  



ix 

 

Abbreviations 

AMY Actual Meteorological Year 

BBL Borough Block Lot 

BIN Building Identification Number 

BTES Borehole Thermal Energy Storage 

CV (RMSE) Coefficient of Variation of the Root Mean Square Error 

DHW Domestic Hot Water 

EPS Energy Performance Simulation 

EPW EnergyPlus Weather 

EUI Energy Use Intensity 

GCM General Circulation Model 

GHG Greenhouse Gas 

GIS Geomatics Information System 

GSHP Ground Source Heat Pump 

HET Hourly Energy Trend 

HVAC Heating Ventilation and Air Conditioning 

LoD Level of Detail 

NMBE Normalized Mean Bias Error 

NYC New York City 

RC Relative Compactness 

SDGs Sustainable Development Goals 

SH Space Heating 

SPF Seasonal Performance Factor 

TMY Typical Meteorological Year 

UHI Urban Heat Island 

UWG Urban weather Generator 
 

 

  



x 

 

  



1 

 

1 Introduction 
More than half of the world population live in urban areas. This number is expected to rise to 
more than two thirds by 2050 [1]. Urban areas are the primary source of greenhouse gas 
(GHG) emissions in different sectors [2]. Urban areas are responsible for more than 70% of 
CO2 emissions [3]. Buildings are responsible for more than 40% of the total energy use, of 
which around 60% corresponds to residential buildings [4, 5]. Various local and international 
policies have been implemented to control and reduce the impacts of urbanization on the 
environment. United Nations Sustainable Development Goals (SDGs) have emphasized the 
importance of urban and energy-related challenges in Target 7: Affordable and clean energy, 
Target 11: Sustainable cities and communities, and Target 13: Climate action [6]. 

More than 7% of the entire world population live in megacities [7]. By definition, cities with 
more than ten million people are counted as megacities [8]. Megacities are influenced strongly 
by Urban Heat Island (UHI) phenomena, where the temperature in the urban areas is 
considerably higher than the surrounding rural areas [9]. Several studies have been performed 
on UHI impacts in the past few decades; however, the acceleration in urbanization has caused 
complexities in understanding the real effects of various urban elements. Anthropogenic 
modifications in the natural landscape and heat production from human activities have been 
shown to be the influential parameters for UHI effects [10]. Rising temperatures, a significant 
reduction in wind speed, changes in relative humidity, and thermal comfort disturbance are 
parts of UHI consequences [11]. Moreover, studies have shown that the building sector's 
energy demands can double due to the high cooling loads [12]. The effects of UHI cannot be 
mitigated by spreading the urban area to a larger land area with lower urban elements density 
because it is strongly related to the City's land area rather than urban elements density. Thus, 
UHI consequences can be observed, not only in downtowns but also in low-density urban 
areas [13].  

1.1    Background 

New York City (NYC) is one of the top 20 megacities, with an approximate population of 20 
million in its metropolitan area. NYC is significantly involved with buildings' environmental 
impacts due to the enormous number of constructions in the 1920s and 1930s before 
introducing strict building standards and environmental regulations. Also, over 70% of GHG 
emissions in NYC are generated from the building sector [14]. Meanwhile, more than 80% of 
the properties use steam boilers for heating purposes, whereas 70% of the buildings exploit 
natural gas-driven local boilers, and 10% are connected to district steam system. At the same 
time, the share of electricity in supplied heat is not significant [15].  NYC has committed itself 
to reduce its total GHG emissions by 80%, relative to 2005 levels, by 2050. This plan is 
supported by Local Law 97 [16]. This law includes all buildings with an area of larger than 
2300 m2 (25,000 ft2). In addition, the owners of the large buildings are obliged to submit their 
measured annual energy and water use to the city database in a benchmarking process [17]. 
These data are publicly disclosed from the year 2013 and later to be used openly [18].  
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According to Clean Energy Standard (CES) [19], achieving the ambitious energy goal 
requires applying different renewable energy sources [20]. NYC energy goal is a novel 
approach because NYC aims at existing buildings. However, similar laws that have passed 
worldwide are applied primarily for new constructions [21]. Considering the effects of the 
urban area on most renewable sources, such as sun blockage, wind obstruction, shortage of 
available space, and visual disturbance, prevent them from being used. Hence, the role of heat 
pumps and geothermal as an alternative for heating systems becomes significant. Providing 
the required heating demand in buildings through heat pump technology is a possible measure 
in reducing fossil fuel consumption and their associated GHG emissions [24, 25]. 

The geothermal energy source applications are among the viable solutions to reach NYC’s 
environmental goals. Establishing a geothermal heat pump system in a building must be 
technically feasible and economically viable. Thus, having a relatively accurate prediction of 
building performance is necessary. Various uncertainties in energy use estimation influence 
the accuracy of the predictions and make it hard for clients to accept the feasibility of energy 
retrofit proposals. Generally speaking, retrofitting buildings for energy improvement is one 
of the most prevalent topics in the field of energy use in buildings. Several computational, 
statistical, and empirical methods have been developed to estimate buildings' energy 
performance after refurbishment, especially hourly load profile and peak powers. It is always 
an intricacy in feasibility studies of building retrofit to estimate energy use and potential cost 
savings. The energy bills after the retrofitting process are most likely different. Therefore, 
studies have tried to find a fast and acceptable estimation method for hourly energy demand. 

Building energy performance simulation (EPS) involves various kinds of uncertainties in 
inputs, as well as the time of the simulation procedure. Energy simulation, however, relies not 
only on building performance but also on urban morphology [26-28], user behavior [29-31] 
and operation strategies. Therefore, a comprehensive perspective is required in different 
disciplines, including building typology, urban morphology, human, society, and policies, to 
mitigate the  results' discrepancy from the actual condition. Moreover, climate change and 
global warming cause complexity in predicting future weather conditions. Consequently, 
buildings' energy performance has ambiguity in its lifetime. 

1.2    Aims and Goals 

This study aims to develop a customized data-driven method to estimate annual hourly 
heating- and cooling loads for the NYC building stock, avoiding heavy energy simulation 
methods. The main hypothesis is to find a robust relation between different building 
categories and buildings’ hourly energy use profiles. The hourly load profiles are achieved 
through EPS to investigate their characteristic corresponding to the category. Meanwhile, the 
EPS’ uncertainties are partly eliminated by the calibration with annual measured energy use, 
taking the opportunity of using publicly available data. In this research, high-resolution 
modellings were performed using GIS data to run EPS. The EPS’ hourly results are calibrated 
with the measured data to achieve accurate hourly load profiles. 



3 

 

The approach used in this thesis is based on statistical methods performing analysis on the 
publicly available data from the NYC building stock and EPS results. The statistical analysis 
results in hourly thermal loads to assess the potential of applying the geothermal system in 
the existing buildings. 

1.3    Thesis disposition 

The following chapter reviews different articles and previous studies relevant to the study 
purpose. The third chapter explains the methods and tools applied in this research, including 
modelling, statistics, software, and delimitations. The fourth chapter presents the results of 
the proposed method and their discussions. The last chapter concludes the research. 
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2 Literature review 
This chapter firstly provides a review of scholarly articles and previous studies focusing on 
estimating building energy performance. Then, energy simulation programs and reverse 
approaches for building energy estimation are presented. Thereafter, weather and climate 
data, UHI, geothermal energy, and NYC-related articles were reviewed. 

2.1    Energy performance prediction 

Estimating the energy use of buildings is one of the pivotal parts of the energy study of 
constructions. Regardless of the applied method and the purpose of simulation, all kinds of 
EPSs consist of three main components:  

(1) Physical parameters refer to the physical properties of materials. They are mostly 
identifiable as the standard input parameters in simulation and are not influenced by designers. 
Examples of physical parameters include thickness, density, thermal conductivity and heat 
capacity of walls. 

(2) Design parameters refer to the building's working conditions, which are determined 
entirely by the decision-makers/designers; for example, ventilation rate, heat dissipation rate 
by occupants, facilities, and light. 

(3) Scenario parameters refer to parameters relative to the building's operation during its 
lifetime. These parameters are not measurable and hard to control [29]. Weather conditions, 
including ambient temperature, relative humidity, solar radiation, and casual heat gain, are 
examples of scenario parameters. Likewise, occupants' density, computers and light in use, 
internal and external shading coefficients, internal and external convection transfer rate, as 
well as infiltration through the envelope and openings, are some other examples of scenario 
parameters [33, 34].  

One of the most recently adopted and comprehensive classification of building energy 
estimation introduces four approaches: (1) engineering methods, (2) statistical methods, (3) 
neural networks, and (4) support vector machine. These are discussed in the following. 

2.1.1 Engineering methods 

The calculation of thermodynamic behavior of buildings or buildings' components based on 
physical principles is considered as engineering methods. They have been developed 
extensively during the past decades [32]. In general, they can be divided into two categories: 
(1) comprehensive and (2) simplified methods [33]. In the comprehensive methods, known 
as computational techniques, all components, including outdoor and indoor condition, user 
behavior, equipment loads, and detailed construction, are involved. This method, however, 
needs more time, computation power, and a high level of expertise. The method is adequate 
for HVAC design or energy analysis [33]. The ISO has defined a standard for energy demand 
calculation for buildings [34]. A large number of programs have been developed to calculate 
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the detailed energy behavior of the buildings. They use different calculation methods and data 
library sources and provide comprehensive details [35]. 

Computational building EPS is a multidisciplinary, broad range method with temporal 
continuity and dynamic spatial features, considering the complexity of the actual situation to 
achieve more accurate results [36]. The accuracy of EPS relies upon model precision, 
building's specifications, and weather data [39, 40]. Computational methods have two crucial 
issues since they need the details of the building and its environment. Firstly, detailed data 
are not available for all buildings and places, such as envelope characteristics, room functions, 
user behavior, schedules, etc. Secondly, operating the software and handling so many inputs 
requires a high level of expertise and software skill [39].  

2.1.2 Statistical methods 

Prediction of the building energy use based on the measured data relies on a regression 
analysis of the measured and predicted values [40]. Regression analysis correlates energy use 
to the influencing parameters on the energy performance [39]. It is crucial to collect enough 
historical data to fill the statistical database or make a training dataset. In statistical methods, 
data accuracy, availability, and reliability are prominent [41]. Commonly, three kinds of data 
are available as historical data in the building sector. The first kind is real data, which includes 
data collected through intelligent energy meters, building management systems, and weather 
stations. 

Moreover, utility bills, energy surveys, and energy statistics also provide real data [42]. The 
second type is simulated data from an energy simulation software based on modelling of an 
existing or non-existing building [43]. Computational simulation tools intrinsically have 
deviations from the prototype building and cannot represent the actual condition [43]. 
Simulated data, considering the limitations, are beneficial when the real data is unavailable or 
come with shortages. The third data type is publicly available benchmark datasets available 
for some urban areas and building types. This data type can be used as an inclusive source for 
statistical analysis and calibration [50, 51]. Apart from directly predicting energy use, several 
statistical methods have been developed to predict or define a range of construction 
specifications such as U-value, G-value, internal gains, and schedules [29, 52, 53]. 

Energy modelling can be calibrated and verified with the measured values. ASHRAE 
Guideline 14 [48], FEMP [49], and IPMVP [50] has introduced modelling and verification 
guideline. Mostly, all these criteria evaluate the hourly or monthly data, using Normalized 
Mean Bias Error (NMBE), Coefficient of Variation of the Root Mean Square Error 
(CV(RMSE)), and the coefficient of determination (R2). These verification indices define the 
deviation of the simulated data from the measured values regression line and can be scale-
dependent or scale-independent. When an index is scale-dependent, it has a unit similar to the 
assessed data like RMSE. Thus, it gives an understanding of the scale of discrepancy. In 
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contrast, scale-independent indices are usually normalized by a component of the data, such 
as mean or sum. Hence they are unitless like CV(RMSE) and NMBE [51]. 

Mean Bias Error (MBE) is the average of the errors of the sample data. It presents the relation 
between simulated data and the regression line of the measured data [52]. MBE can be 
positive or negative, where positive values show under-predicted measured data and vice 
versa. Nevertheless, this index has a fundamental issue related to error cancellation since 
positive and negative values eliminate each other in the equation [51]. NMBE is the 
normalization of MBE to make it scale-independent (unitless). Equation (1) and Equation (2) 
present the corresponding formulas to calculate these values, where m is measured data, s is 
simulated data, n is the number of values, i is the index in the time series, and 𝑚𝑚�  is the mean 
value of the measured data [59, 60]. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑(𝑚𝑚𝑖𝑖 − 𝑠𝑠𝑖𝑖)

𝑛𝑛
  (1) 

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑚𝑚�
∙
∑(𝑚𝑚𝑖𝑖 − 𝑠𝑠𝑖𝑖)

𝑛𝑛
× 100 (2) 

RMSE indicates how simulated data can describe the shape of the measured data. It defines 
the deviations between simulation and measurement. CV(RMSE) is calculated by dividing 
RMSE by the mean value of the dataset (hourly or monthly energy profile) to eliminate the 
effect of scale. CV(RMSE) is commonly used among professionals and used in different 
standards [54, 59]. These two indices can be calculated from equation (3) and equation (4), 
respectively. 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 =  �
∑(𝑚𝑚𝑖𝑖 − 𝑠𝑠𝑖𝑖)2

𝑛𝑛
 (3) 

𝐶𝐶𝐶𝐶(𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀) =   
1
𝑚𝑚�
∙ �
∑(𝑚𝑚𝑖𝑖 − 𝑠𝑠𝑖𝑖)2

𝑛𝑛
× 100 (4) 

The other commonly used index for practitioners is R-square (R2). It describes how close is 
the simulation values to the regression line of the measured values. The higher index value 
means the closer simulated data to the regression line of the measured data. 𝑅𝑅2 can be 
calculated through equation (5), and the result is in the range of 0 and 1 [55, 59], where a 
value close to one is desired. 
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𝑅𝑅2 = 1 −
∑(𝑠𝑠𝑖𝑖 − 𝑚𝑚𝑖𝑖)2

∑(𝑚𝑚𝑖𝑖 − 𝑚𝑚�)2 (5) 

2.1.3 Neural networks 

One of the most widely used artificial intelligence models in building energy prediction is the 
artificial neural network [55]. This method has been developed during the past 30 years. 
Neural network algorithms can be applied to predict the building energy performance or other 
parameters like internal loads, predicted mean vote, and electricity use [35]. Artificial neural 
networks help to solve non-linear problems [56]. Several studies have shown the better 
performance of neural networks than engineering methods in predicting electricity, lighting, 
user behavior [63].  

2.1.4 Support vector machines 

Applications of Support vector machines (SVM) are growing fast and becoming common in 
the field of building energy prediction. This method has been widely applied to solve 
regression problems to estimate the underlying relationship between the non-linear inputs to 
the continuous real-valued target [40]. The SVM used for regression is called support vector 
regression (SVR), which has become an important data-driven approach for predicting 
building energy consumption [40]. 

2.2    Energy simulation software 

During the past decades, hundreds of building energy simulation programs have been 
developed. Each program provides particular capabilities based on the purpose of use. 
Different methods are applied in the programs, highly influenced by advanced computer 
technology and data availability [35]. The choice of an appropriate energy simulation software 
is based on the requirements of a particular purpose, the available expertise, and proper 
hardware [58]. 

The main principle of energy simulation programs is a simulation engine with assigned inputs 
related to building geometry, weather conditions, HVAC systems, internal loads, operating 
strategy, and simulation specific parameters [32]. All these inputs are inserted in a graphical 
user interface with different levels of capabilities. Building geometry constitutes the basic 
input for energy simulation. The geometry is different from the architecturally designed model 
and should be adopted to the simulation requirements. Internal and external loads should be 
considered to provide sufficient information for heat balance in a space. External loads are 
mainly calculated through weather data which is discussed later in this study. Internal loads 
and operating schedules are generally assumed based on the building type and use [32]. 
HVAC systems and their components are a major part of the input parameters for EPS. These 
systems can reflect the actual system if the energy simulation tool (graphical user interface 
and the engine) provides enough flexibility. Last but not least, all energy simulation tools 
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need specific parameters, for example, numeric convergence tolerances for the underlying 
mathematical model of the simulation engine. These parameters influence the numerical 
behavior of the simulation engine. 

2.3    Reverse energy estimation  

The essential demand to have a faster and accurate energy estimation have motivated 
practitioners to develop energy estimation methods based on data availability. ASHRAE 
Handbook of fundamentals [59] defines two modelling methods: forward (classic) and inverse 
(data-driven). In the forward approach, the workflow starts from the modelling and assigning 
the physical parameters, operation schedules, etc. Then it estimates the total energy use in the 
desired time increment. The inverse method uses measured or monitored energy use and other 
possible metrics as input and tries to fit them into a baseline time series [54]. Inverse models 
are used commonly in building retrofits [60]. 

Two general methods are suggested by ASHRAE Guideline 14 [48] to generate baselines. 
The first one is calibrated data-driven regression analysis, and the other is calibrated computer 
simulation tools [61]. Currently, regression techniques are the most popular inverse energy 
estimation approach. This method assumes that the nonlinear energy performance of the 
building can be appropriately captured by the regression model [54]. Calibrated simulations 
can provide more customized profiles with the target building stock. However, they are time-
consuming and need detailed simulation inputs. Choosing between the proper methods 
depends on the purpose of the study and the availability of data [72, 73].  

2.4    Weather 

As the most important boundary condition for the building, climate conditions significantly 
affect EPS. It is also a source of uncertainties in the simulation due to the complexity of the 
forecasting. Some researchers have investigated the sensitivity of the energy simulation 
results to the quality of weather data. Achieving a more reliable energy model is correlated to 
choosing the most appropriate weather dataset [74, 75]. The effects of weather dataset 
accuracy have been investigated in several different studies [38]. Accuracy of weather dataset 
has become important since extreme climate events and different climate patterns are 
becoming more common due to climate change [76, 77]. Several methods, such as stochastic 
methods, have been developed to provide better predictions using available datasets and 
measurements [78, 79]. 

Outdoor climate condition is applied in the EPS as weather data. Weather datasets can be 
generated from downscaled General Circulation Models (GCMs). GCMs are computer-driven 
models for forecasting weather, understanding climate, and projecting climate change [70]. A 
GCM aims to describe the climate behavior by integrating various fluid-dynamic, chemical, 
or biological equations derived directly from physical laws (e.g. Newton's law) or empirical 
generated methods [70]. 



10 

 

Weather data files describe a mesoclimate condition. Typical meteorological year (TMY) is 
one of the most commonly used weather data for energy simulations. TMY is a meteorological 
dataset with climatic parameters values for every hour in a year for a given geographical 
location. This data is captured from hourly data for a more extended period (usually ten years 
or more). For each month in the year, the data is selected from the year that is considered the 
most typical for that month [71]. Energy plus weather-file (EPW) is an adopted TMY file for 
EnergyPlus simulation software [72]. Other sources for weather data, such as International 
Weather for Energy Calculations (IWEC) and Weather Year for Energy Calculation 2 
(WYEC2), can be used for energy simulations in the EPW-file structure. [72]. 

Energy performance is significantly influenced by surrounding objects and elements, 
especially in urban area. Considering the effects of the urban context, surrounding buildings, 
and obstacles can enhance the accuracy of EPS results. However, capturing in totality could 
be difficult due to several involved parameters such as material, area, size, color, and height 
of adjacent buildings and roads. These parameters have different impacts on sky view, solar 
gain, solar reflectivity, and wind speed [83, 84]. One possible solution is to use a microclimate 
weather file. Urban Weather Generator (UWG) is a method to make microclimate weather 
files for a certain urban area. UWG is based on energy conservation principles and takes input 
parameters that describe urban morphology, geometry, and surface materials. UWG focuses 
more on the heat balance equation and considers different sources of heat in the urban area 
based on the buildings type, vintage, and floor area [75]. 

UWG, among all effective parameters on the microclimate scale, focuses on site coverage, 
façade to site ratio, and vegetation area. Site coverage is the ratio of the covered area by 
buildings to the total land area, which explains the density of the urban area in the desired 
zone. Façade to site ratio, calculated by the façade area divided by total land area, explains 
the ratio of climate exposed buildings' surfaces to the site area. Finally, vegetation area is the 
area of the land covered by vegetation and plants in the target area [73].  

2.5    Urban heat island 

Urban regions usually have a higher temperature than the surrounding area due to the 
anthropogenic heat released from vehicles, power plants, air conditioners and other heat 
sources. Furthermore, huge quantities of solar radiations are mainly stored and re-radiated in 
urban areas due to massive construction materials [76]. This phenomenon, called Urban Heat 
Island (UHI), has been aggravated in connection with urbanization, industrialization, and 
population growth [77]. The intensity of the UHI effect can be observed by local monitoring, 
satellite images, and numerical model simulations [78]. However, all these methods encounter 
several limitations. For instance, the chosen spot for monitoring should be representative of 
the entire area. Moreover, monitoring points should be distributed evenly in the target zone 
[79]. Satellite imagery has limitations for spatial and temporal resolution and complexity due 
to the high technology of the required equipment. Numerical model simulations depend on 
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the urban morphology and regional climate conditions, which need geographical and climate 
data, respectively [80]. 

2.6    Geothermal energy 

Geothermal energy, among other renewable sources, is predictable and reliable. Unlike fossil 
energy sources, geothermal energy is clean, sustainable, and recyclable [81]. The ground can 
be used as a heat sink or a heat source to provide cooling and heating. Moreover, compared 
to other renewable energy sources, geothermal needs less area to be established [93]. 
Geothermal energy is often exploited by ground source heat pumps [94]. 

Underground layers have a more stable temperature than the ambient. Thus, the ground 
temperature is lower than ambient air during cooling seasons and higher than ambient air 
during warming season [83]. In order to use geothermal energy more efficiently and 
sustainably, the ground can be charged by heat energy through a BTES. Most rocks have a 
relatively high volumetric heat capacity, and when it comes to underground water, it is even 
higher. The ground can be used as thermal storage or accumulator [84]. The application of 
geothermal energy in the building sector can include both the heating and cooling process. 
Removing heat from buildings, known as the cooling process, always involves rejecting the 
excess heat from the interior spaces. The cooling process happens in the warm seasons when 
the ground temperature is lower than the ambient temperature. In cooling mode, the ground 
works as a heat sink and absorbs the heat rejected from borehole heat exchangers [95]. In 
heating mode, the stored heat in the ground is extracted and used for heating purposes [96]. 

Common geothermal systems use vertical boreholes [85]. Designing the ground source heat 
pump relies upon the fluid temperature exiting from the borehole system. This temperature is 
influenced by the borehole system’s thermal response in the short-term and surrounding 
ground’s response in the long term, as well. Moreover, in multiple borehole fields, the exiting 
fluid temperature is affected by thermal interaction between boreholes [86]. Changes in the 
surrounding ground thermal response happen slowly due to the large thermal mass and 
thermal capacity. Consequently, the ground response is often studied in monthly or annual 
periods [94].  

The calculation of the thermal behavior of the ground and boreholes is a complicated process. 
To make it possible to calculate the ground thermal response, it is necessary to define the 
critical parameters and neglect the rest. For instance, the ground surface temperature is 
influenced by the ambient temperature, and it varies day to day and year to year. Hence, in 
practice, the average temperature is used instead. One of the essential factors influencing the 
ground thermal behavior is the ground thermal conductivity. Borehole thermal resistance is 
another key performance characteristic of a borehole. It is thermal resistance between the fluid 
in the tube and the borehole wall. Lower borehole thermal resistance leads to better system 
performance. Then the injected heat into the ground (or extracted heat as negative values) 
defines the temperature in the short- and long-term [85]. 
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The unitless step-response function "g", known as g-function, is defined to characterize the 
thermal response of boreholes. g-function relates the borehole's wall temperature and the 
injected heat (or extracted heat) rate to the ground thermal conductivity. Accordingly, a set of 
temperature response factors for different borehole arrangements can be generated. A 
superposition technique for heat transfer can be a beneficial approach. In this technique, the 
thermal response of a system is obtained by superimposing the thermal response of every 
phenomenon at a certain point of interest [88]. The superposition method is used in the 
computer software called EED to design the borehole system based on the hourly data of the 
heating and cooling loads of the building [100] and the corresponding g-function [101]. 

2.7    New York City 

NYC is situated on the Atlantic Coastal Plain in the northeastern United State with the 
coordinate of 40.71 N and 74.00 W. The northeast region is the most economically developed, 
culturally diverse, and densely populated in the entire country [91]. The region accounts for 
20% of the total GDP of the USA [91].  

The state of New York is bounded to the north and west by Lake Erie, the Canadian provinces 
of Ontario and Quebec and Lake Ontario; to the east by Vermont, Massachusetts, and 
Connecticut; to the southeast by the Atlantic Ocean and New Jersey; and to the south by 
Pennsylvania. Although New York State has been known as NYC, the entire state has a broad 
climate and geographical diversity. The most crucial element in the state is water. Nine major 
rivers, more than 8000 lakes, and two shorelines of 210 km by the Atlantic and 600 km by 
Lake Erie and Ontario play a significant role in its climate condition. Also, Niagara Falls is a 
huge source of hydroelectric power in the area [92]. 

NYC is built mainly on the three islands of Long Island, Manhattan, and Staten Island. 
Additionally, the City is divided into five boroughs: Brooklyn, Queens, Manhattan, the Bronx, 
and Staten Island, presented in Figure 1. The Bronx is the only contiguous to upstate New 
York [93]. 

 
Figure 1: NYC five boroughs Adapted from https://en.wikipedia.org/wiki/Boroughs_of_New_York_City# 

/media/File:5_Boroughs_Labels_New_York_City_Map.svg 

https://en.wikipedia.org/wiki/Long_Island
https://en.wikipedia.org/wiki/Brooklyn
https://en.wikipedia.org/wiki/Queens
https://en.wikipedia.org/wiki/Manhattan
https://en.wikipedia.org/wiki/The_Bronx
https://en.wikipedia.org/wiki/Staten_Island
https://en.wikipedia.org/wiki/Boroughs_of_New_York_City
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The geology of New York City is greatly varied, composed of areas directly underlain by 
bedrock with shallow overburden of unconsolidated material; for example, Manhattan and the 
Bronx. Other boroughs with hundreds of feet of unconsolidated material consist of multiple 
layers of unconfined and semi-confined aquifer systems such as Queens and Brooklyn [94]. 
The geology beneath the studied project in [94] is a bedrock geologic unit known as 
Manhattan Schist. 

Geothermal ground source systems have been used in New York City and the greater New 
York metropolitan area since the 1940s. Early systems mainly were systems located on Long 
Island (including Brooklyn and Queens), which used groundwater as a source and sink, 
supplying water to buildings from supply wells and returning water through separate return 
wells located at a distance hydraulically downgradient [94].  

The required parameters to design a geothermal system in the studied project in [94] are 
presented in the following points. 

• Soil Type: Average Rock 
• Thermal conductivity of the ground: 3.115 W/m·K (1.8 Btu/hr∙ft∙°F) 
• Volumetric heat capacity of Ground: 2.343 MJ/m3·K (34.943 Btu/°F∙ft³) 
• Undisturbed ground temperature: 15.5 ℃ (60 °F) 
• Borehole thermal resistance: 0.0303 m·K/W (0.0524 hr∙ft·°F/Btu)  
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3 Method  
This chapter will explain the methods applied in this research under four main headings. The 
first section presents the statistical methods and software used for the analysis. The second 
chapter explains EPS workflow. The third section presents the reverse energy estimation 
method identifying the details of the proposed approach. The fourth part explains the 
geothermal system design. Finally, delimitations of this research are introduced. The 
following computer programs (Figure 2) were utilized to perform this study. Rhino and 
Grasshopper were used mainly for the building modelling, whereas HoneyBee and LadyBug 
in Grasshopper were used for energy modelling. GIS data was captured from Open Street 
Map using the Gismo plugin in Grasshopper. DragonFly was utilized to generate microclimate 
weather data. The energy simulation engine was EnergyPlus with OpenStudio, while data 
analysis was done in Python using Pandas and SK-Learn.  

 
Figure 2: Utilized computer software for each stage of the entire process 

3.1    Statistical analysis 

Statistical methods in this research were applied in two main stages. The primitive stage 
worked on the benchmarking data to prepare a clean and clear dataset for the rest of the 
progress. Also, it gives a quantitative overview of the entire population. The conclusive stage 
performed to assess the results from the energy simulations. 

3.1.1 Primitive stage: Benchmarking analysis 

In the primitive stage, data from NYC Benchmarking [17] was used. For this study, the data 
from 2017 was utilized. Also, the analytical report for 2014 and 2015 benchmarking data [95], 
provided by the local authorities, were used as complement information. This benchmarking 



15 

 

data collects data for the energy and water use of buildings. The dataset includes 34,686 
records of buildings in the City. Each building in the dataset has identification information, 
including "Borough, Block, Lot" (BBL), Building Identification Number (BIN), borough, 
address, postal code, and property name. Then building features are introduced consisting of 
the primary type, largest, second and third largest type, total floor area, area of each type, year 
built, and metered area (including Whole building, part of the area or specific type). 
Afterwards, the energy use information of the buildings is given, including source EUI, site 
EUI, fossil fuel sources, district systems, and electricity use. Fossil fuels are divided into fuel 
oil (5 types), diesel, propane, and natural gas. District systems are divided into district steam, 
district hot water, and district chilled water. Outliers, zeros, and empty cells can be seen in 
the dataset.  

Table 1: Detail information of the available data for the major parameters. 

 Parameter Unit/ Description Number of values 

Identification 

Order 1 to 34,686 34,686 

BBL 10-digit number 33,956 

BIN 6-digit number 14,700 

Address Text 34,686 

Postal code 5-digit number 34,686 

B
uilding features 

Gross floor area ft2 34,686 

Primary property type Text 34,686 

Year built YYYY 34,686 

Metered area Text 31,710 
Energy use 

Site EUI kBtu/ft² 32,073 

Fuel oil (5 types) kBtu 7,917 

Diesel kBtu 49 

Propane kBtu 1 

Natural gas kBtu 13,986 

District Steam kBtu 1,575 

District hot water kBtu 8 

District chilled water kBtu 31 

Electricity (grid purchase)  kBtu 13,678 
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Table 1 presents the units, descriptions, and the number of values of the major parameters in 
the dataset. The following paragraph gives an overall view of the contents of the described 
data. The first set of data, identification, was used to define the building and find it in the GIS. 
The first data column in the dataset was "Order", which was used to identify each building 
since it was a unique parameter for each record. The second set of data, building features, 
were mainly used to define the category of the building. 

One of the essential parameters is "Primary building type". In total, 66 types of buildings exist 
in the dataset with different frequencies. A general overview of them is illustrated in Figure 
3. Accordingly, the focus in this study was on "Multifamily housing" and "Office". "K-12 
School" was not focused since most of them were located in mixed-type buildings, and the 
measured data was combined. All building types and their frequency are presented in 
Appendix A. 

 
Figure 3: The variability of different building types in the dataset 

This dataset is composed of a wide range of buildings total floor area. As illustrated in Figure 
4, half of the buildings have an area between 4,200 m2 (45,000 ft2) (25th percentile) and 11,200 
m2 (120,000 ft2) (75th percentile). Less than 1% of the records have an area of more than 
100,000 m2 (1,076,000 ft2) up to around 900,000 m2 (9,700,000 ft2) which are not included in 
the histogram. "Year built" was used to define the vintage based on the later explained 
divisions with the illustrated distribution in Figure 5. 

Hotel
2%

K-12School
8%

Multifamily
Housing

72%

Office
7%
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Figure 4: The frequency of the different building area 

 
Figure 5: The frequency of building age (Year built) 

The last set of data, energy use, denoted the amount of energy use for each available source. 
The first parameter in this set was "Site EUI", which was normalized by area. Based on the 
dataset explanation, Energy Use Intensity (EUI) is calculated from total energy use. Different 
sources of energy were presented in the dataset. Diesel, Propane, District hot water, and 
District chilled water had negligible frequency in the dataset. Thus, they were not considered 
in the statistical analysis. Except for "Electricity (grid purchase)", the rest of the sources (fossil 
fuels) were assumed to provide thermal energy for Space heating (SH) and Domestic Hot 
Water (DHW). Electricity is the provider for lighting, equipment, cooling system, pumps, 
fans, heat pumps, etc. These numbers were measured from the grid and not in the final place 
of use. Thus, the efficiency of the facilities had to be applied. 
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The dataset was filtered by removing the following items. The cleaned dataset included 
approximately 16,600 records. 

a. Records with empty Site EUI 
b. Records with the "metered area" column not equal to "Whole building" were 

removed. Meaning that the remainders had the measured energy use for the entire 
building and all energy sources. 

c. Buildings with the "primary type area" less than 90% of the total floor area were 
removed. Hence, the remainders counted as a single type of building. 

d. Items with year built before 1900 were removed because they were not an interest of 
this study, and not many specifications were available. 

e. Site EUI less than 90 kWh/m2 (30 kBtu/ft2) and larger than 800 kWh/m2 (250 
kBtu/ft2) were removed. The average was around 270 kWh/m2 (80 kBtu/ft2), then 
three times more and less were counted as outliers. 

The previous years' analytical report [95] presented more detailed energy use in the NYC 
building stock. This report included an energy end-use breakdown which indicated an average 
percentage of separated energy demands, presented in Table 2. It should be mentioned that 
this breakdown is a statistical output from the dataset and does not represent necessarily the 
entire population. For instance, based on Figure 5, a large number of buildings were built in 
the 20s and 30s. They influenced the total results and caused a skewness toward older 
buildings' averages, like a higher heating demand due to the low-quality envelope. 

Table 2: Energy end-use breakdown in Multifamily housing and Office buildings 

Building type 
Typically fossil fuel Typically electric 

Space heating DHW Space cooling 

Multifamily housing 38% 15% 8% 

Office 22% 4% 11% 

3.1.2 Conclusive stage: Results analysis 

Results of EPS were analyzed in two stages. First, the total simulated values were controlled 
by the total measured data. Regarding the deviations of the EPS results from actual values, 
the calibration of the simulation process was not done on every single building. A linear 
regression model was defined to control the relations of all simulated and measured values. 
This calibration was done with the first 20 simulations.  

The next stage was to control the hourly values of the EPS results. The hourly profile for each 
pair of buildings with the same category (explained in 3.3.1) had to be checked to assess the 
similarity of the hourly trend. To check the similarity of the hourly profiles, values were 
normalized by the sum, and then R2 was calculated for each pair of buildings. In this work, 
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hourly profiles with R2 > 0.8 were considered as a similar trend. ASHRAE recommends an 
R2 > 0.75 for a pair of time series to be counted as similar [52]. 

3.2    Energy performance simulation 

Several methods for calculating the energy performance of buildings have been developed 
during the life of construction engineering. Every EPS approach considers a part of actual 
situation parameters and necessarily ignores some of them. The used software and methods 
for modellings are explained in the following sub-chapters. 

3.2.1 Building modelling 

This research utilized the computer program Rhino and Grasshopper for the building 
modelling because of the appropriate integration with other required sources, such as GIS and 
Python, explained further in this report. Buildings were made by scripting in Grasshopper. 
The captured data from GIS, based on the building address or coordination, was converted to 
a 3D model with simple surfaces, divided into floors and 6×6 m2 (20×20 ft2) zones for 
residential and 10×10 m2 (33×33 ft2) zones for non-residential buildings. A set of native 
components in Grasshopper was used to define the windows' orientation and assign the 
percentage of the windows to the façade in Honeybee. 

3.2.2 Urban modelling 

The effects of the surrounding on the building energy performance are substantial. It becomes 
crucial when the context is a dense urban area. Open Street Map is an open-source GIS 
database that provides the ability to fetch data through API or direct export from the website. 
Gismo is a recently developed plugin for Grasshopper, which gets GIS data from Open Street 
Map, including geometries and types of places. Gismo interprets GIS data directly to 
Grasshopper objects. A sample view of a produced urban model with a subject building is 
shown in Figure 6. 

 
Figure 6: A sample urban model (left) and subject building (right) in the context 
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The identification parameters of buildings (Table 1) from benchmarking dataset were used to 
identify buildings in GIS data. By merging the location-related columns in the benchmarking 
dataset, a location string with this pattern was produced: "Address" + "postal code" + New 
York + U.S., which is readable by GIS software to identify the desired building. 

NYC has a general format for addressing the properties, called Property Address Directory 
(PAD). The five boroughs in the City have a standard one-digit code: 1= Manhattan, 2= The 
Bronx, 3= Brooklyn, 4= Queens, 5= Staten Island. Then, each lot identified with a code made 
of borough code (1-digit), tax block number (5-digit), tax lot number (4-digit), which called 
BBL. Accordingly, each lot has a unique BBL, which refers to the lot and all buildings on it. 
Thereafter, buildings on the lots are assigned a Building Identification Number (BIN) [96]. 
BBL and BIN were used to verify the address and selected building manually by the user. 

3.2.3 Weather data 

The required weather data for this study were provided from two main sources: (1) Typical 
Meteorological Year (TMY) weather file as EPW-file format from the EnergyPlus database 
[72], (2) Actual Meteorological Year (AMY) from The National Centers for Environmental 
Information [97]. The TMY files for La Guarida Airport in NYC was used as a typical 
condition to have a general hourly trend. The EPW-file had an annual average temperature of 
13.5 ℃ (56.3℉) with a maximum of 36.7 ℃ (98℉) and a minimum of -15 ℃ (5℉). This 
weather data describes the mesoclimate condition of the correlated area; thus, Urban Weather 
Generator (UWG) was used via the Dragonfly plugin in Grasshopper to generate the 
microclimate weather file. 

AMY weather file for the year 2017 was used to assess the real situation since the 
benchmarking dataset included measured data for 2017 as well. DragonFly plugin in 
Grasshopper was used to make EPW-files format from downloaded AMY data. The selected 
stations were: La Guardia Airport, The Battery, Newark Liberty International Airport, and 
Bergen Point. Not all available stations on the website were convertible to the standard EPW-
file; hence, those mentioned were selected among many. The utilized AMY hourly dry-bulb 
temperatures are presented in Figure 7. Since all four AMY weather data did not show 
significant differences in the weather parameters, La Guardia Airport was chosen following 
the TMY weather data. The maximum temperature is 37.8 ℃ (100 ℉), and the minimum is -
11.1 ℃ (12 ℉) with an average of 14.2 ℃ (58 ℉).  
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Figure 7: Hourly outdoor temperature from measured data for the four stations for 2017 

3.2.4 Energy modelling 

Energy modelling, in general, consists of the building geometry and its specifications, 
boundary conditions, and surroundings, which can be used in a simulation engine. In this 
study, three main components have been defined for the inputs of an EPS. These divisions are 
given from the needs of the simulation in this study and also inspired by ASHRAE Guideline 
14 [48]: (1) Indoor condition, (2) Outdoor condition, and (3) building specifications. Based 
on ASHRAE Guideline 14 [48], EPS parameters can be divided into transient and steady. 
Accordingly, Outdoor- and Indoor conditions have been defined as transient and Building 
specification as steady. Moreover, indoor conditions fluctuate in a daily loop, while outdoor 
conditions have a yearly frequency. Hence, their effects on the simulation results appear with 
different scale and occurrences. Figure 8 depicts the components and their parameters.  

 
Figure 8: Three main components of EPS and their parameters. 
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The simulation engine for this study was OpenStudio which is connected to Honeybee plugin 
in Grasshopper. OpenStudio exploits EnergyPlus for energy simulation while adds the 
capability of applying an HVAC system in the simulation. The energy simulation parameters 
were given from New York Standard Approach for Estimating Energy Savings from Energy 
Efficiency Programs [98]. This guideline also suggested four vintages for buildings and 
defined different characteristics for them, denoted in Table 3 and Table 4.  

Table 3: Multifamily housing buildings characteristics for EPS 

Parameter Vintage 1 Vintage 2 Vintage 3 Vintage 4 

Time period before 1940 1940-1979 1980-2006 2007-present 

Wall U-value 
[𝑊𝑊/(𝑚𝑚^2 ∙ 𝐾𝐾)] 

([𝑀𝑀𝐵𝐵𝐵𝐵/(ℎ𝑟𝑟 ∙ 𝑓𝑓𝐵𝐵^2 ∙ °𝐹𝐹)]) 
1.42 

(0.25) 
0.81 

(0.14) 
0.52 

(0.09) 
0.30 

(0.05) 

Roof U-value 
[𝑊𝑊/(𝑚𝑚^2 ∙ 𝐾𝐾)] 

([𝑀𝑀𝐵𝐵𝐵𝐵/(ℎ𝑟𝑟 ∙ 𝑓𝑓𝐵𝐵^2 ∙ °𝐹𝐹)]) 
2.84 
(0.5) 

0.52 
(0.09) 

0.30 
(0.05) 

0.15 
(0.02) 

Windows U-value 
[𝑊𝑊/(𝑚𝑚^2 ∙ 𝐾𝐾)] 

([𝑀𝑀𝐵𝐵𝐵𝐵/(ℎ𝑟𝑟 ∙ 𝑓𝑓𝐵𝐵^2 ∙ °𝐹𝐹)]) 
5.28 

(0.93) 
5.28 

(0.93) 
3.86 

(0.68) 
1.59 

(0.28) 

Windows G-value           [%] 87 87 77 49 

Infiltration                  [ACH] 1 1 0.5 0.35 

Heating setpoint      [℃] (℉) 22.8 (73) 21.1 (70) 21.1 (70) 21.1 (70) 

Heating setback      [℃] (℉) 21.1 (70) 19.4 (67) 19.4 (67) 19.4 (67) 

Cooling setpoint     [℃] (℉) 23.9 (75) 23.9 (75) 23.9 (75) 23.9 (75) 

Cooling setback      [℃] (℉) 25.5 (75) 25.5 (78) 25.5 (78) 25.5 (78) 

HVAC type PTAC + hot water boiler (20% oversizing) 
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Table 4: Office buildings characteristics for EPS 

Parameter Vintage 1 Vintage 2 Vintage 3 Vintage 4 

Time period before 1940 1940-1979 1980-2006 2007-present 

Wall U-value 
[𝑊𝑊/(𝑚𝑚^2 ∙ 𝐾𝐾)] 

([𝑀𝑀𝐵𝐵𝐵𝐵/(ℎ𝑟𝑟 ∙ 𝑓𝑓𝐵𝐵^2 ∙ °𝐹𝐹)]) 
1.42 

(0.25) 
0.81 

(0.14) 
0.52 

(0.09) 
0.30 

(0.05) 

Roof U-value 
[𝑊𝑊/(𝑚𝑚^2 ∙ 𝐾𝐾)] 

([𝑀𝑀𝐵𝐵𝐵𝐵/(ℎ𝑟𝑟 ∙ 𝑓𝑓𝐵𝐵^2 ∙ °𝐹𝐹)]) 
2.84 
(0.5) 

0.52 
(0.09) 

0.30 
(0.05) 

0.15 
(0.02) 

Windows U-value 
[𝑊𝑊/(𝑚𝑚^2 ∙ 𝐾𝐾)] 

([𝑀𝑀𝐵𝐵𝐵𝐵/(ℎ𝑟𝑟 ∙ 𝑓𝑓𝐵𝐵^2 ∙ °𝐹𝐹)]) 
5.28 

(0.93) 
5.28 

(0.93) 
3.86 

(0.68) 
1.59 

(0.28) 

Windows G-value              [%] 87 87 77 49 

Infiltration                     [ACH] 1 1 0.5 0.35 

Heating setpoint         [℃] (℉) Occupied hour: 21.1 (70) Unoccupied hour: 19.4 (67) 

Cooling setpoint        [℃] (℉) Occupied hour: 23.9 (75) Unoccupied hour: 25.5 (78) 

HVAC Fan coil + DOAS (10% over sizing) 

3.2.5 Energy simulation workflow 

Two sets of simulations were utilized to provide hourly values and loads ratio. The first one 
was called "Actual Buildings", an iterative algorithm using the selected buildings from the 
benchmark dataset. A list of buildings' addresses was exported from NYC benchmarking 
dataset according to their EUI. 25th, 50th, and 75th percentile of EUIs were captured as 
representatives of the low, normal, and high energy use buildings, respectively. The list of the 
selected buildings was used to capture data from GIS, modelling, and simulation. These 
simulations used AMY weather data. The HVAC system was assigned to "Actual Building" 
simulations to have the results of energy demands, which is the required electricity or fossil 
fuel to run the facilities. The energy simulation workflow is presented in Figure 9. 
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Figure 9: Energy modelling and simulation workflow 

The second series of simulations was a generative algorithm to model several "Hypothetical 
Buildings". These models represented general forms of the buildings in the urban area with 
similar simulation settings. Modular models provide better results for analytical purposes due 
to a broad and comprehensive variety as well as a higher process speed. Generative models 
were made randomly from developing a cubic module of 5×5×2.7 m in the different horizontal 
and vertical arrangement as presented in Figure 10. 

 
Figure 10: The generative model to produce modular geometries 

This set of simulations applied the converted TMY weather file to the microclimate. 
"Hypothetical Buildings" simulations were run with and without an HVAC system. 
Simulations without assigning an HVAC system gave results as thermal loads, which is the 
thermal energy required to be added or removed from the building to maintain the indoor 
conditions. Thereafter, comparing results of energy demands and thermal loads gave the ratio 



25 

 

of thermal loads to energy demand which showed the efficiency or COP of the HVAC system 
in an hourly profile. The share of cooling demands in EUI was calculated from the total 
cooling demand ratio to the corresponding EUI from the same simulations. The cooling 
demand ratio was used to extract cooling demand from measured EUI. The cooling load was 
calculated by applying the COP curve to the cooling demand.  

EPS in EnergyPlus includes heating and cooling demand, lighting loads, equipment loads, 
pumps, and fans electricity, which is EUI in total. Hence, to calculate closer to the measured 
data, more items needed to be added to the simulated EUI. The first one was the DHW load. 
Thus, to generate the DHW annual hourly profile, the DHW generator in Honeybee was used. 
This component worked based on the number of people per area and the number of units in 
the building, and it used a predefined library from ASHRAE 90.1 [99]. The second energy 
use to be added to the simulated EUI was the electricity demand to run elevators. According 
to ASHRAE 90.1, 7,000 kWh (24,000 kBtu) was added to the annual EUI for every 4,645 m2 
(50,000 ft2) of the total floor area for each elevator. However, the defined number in ASHRAE 
90.1 and the area per capita are just an approximation to add missed values for the total EUI 
in EPS compared to the measured EUI. 

3.3    The reverse energy estimation approach 

3.3.1 Backbone 

The primary purpose of this study is to develop a reverse method of energy estimation based 
on the availability of relevant data. Regarding this purpose, a hypothesis was defined as 
following: Does a group of similar buildings have a similar hourly energy trend? 

The following two terms should be defined to check the validity of the hypothesis. First of 
all, a group of similar buildings is a number of building with similar indoor conditions and 
building specifications. In this research, a group of similar buildings is called a category. 
Categories required identifiable characteristics. Three levels of categorizing were defined to 
separate buildings. The first level was building type, which includes 63 different types. 
However, "Multifamily housing" and "Office" were used in this study due to the high 
frequency in the dataset. The second level was vintage, divided into four groups: Pre-1940, 
1940-1979, 1980-2006, and 2007-present. Each group is related to a particular development 
in the building codes; hence, the constructed buildings in each period had a similar 
specification following the regulations. 

The third level was Compactness (C) as a representative parameter of the geometry. 
Compactness can be calculated from equation (7) [100], [101]. The ratio of the compactness 
of a building to the compactness of a cube with a similar volume called relative compactness 
(RC). Cube is the most compact geometry for a building with a specific volume. Relative 
compactness result from equation (8) [102]. Three levels of compactness were defined to 
identify buildings geometry characteristics. 0.8<RC≤1: compact, 0.5<RC≤0.8: normal, 
RC≤0.5: exposed. 
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𝐶𝐶 =
𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵 𝐶𝐶𝑉𝑉𝐵𝐵𝐵𝐵𝑚𝑚𝑉𝑉
𝑀𝑀𝑛𝑛𝐸𝐸𝑉𝑉𝐵𝐵𝑉𝑉𝐸𝐸𝑉𝑉 𝐴𝐴𝑟𝑟𝑉𝑉𝐴𝐴

  (6) 

𝑅𝑅𝐶𝐶 =
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶

  (7) 

The second term is the Hourly Energy Trend (HET). It is the normalized hourly loads by the 
sum, which is unitless and scaleless, describing the fluctuation pattern of a building's load. 
HET is a time series of coefficients giving the hourly percentage of the total load. For every 
building in different categories, HET was calculated from the simulated data. Thereafter, in 
each category, similar trends were kept, and the outliers were removed. To define the outliers 
which had significantly different HETs, R2 was used with a threshold of 0.8. Accordingly, R2 
was calculated for every pair of buildings, and the results stored for each building. Then, 
buildings with an average R2 less than 0.8 were removed. This process was performed in the 
"Analytic Kernel". 

The remaining HETs were used to make an average HET for the category called "Reference 
Model". Each reference model represents the corresponding category and all buildings in it. 
This process was performed in "Reference Model Generator", where reference models were 
generated for the space heating (SH) load, cooling load and DHW load separately as 2-
dimensional arrays of 8760×3. 

The stored reference models were used in "Reverse Method Kernel" to estimate the total 
hourly loads of a building. This calculation can be done by the multiplication of the imported 
total loads by the reference model. The result is a time series of the hourly loads. 

3.3.2 Operation 

The subject building should be defined with a unique code from identification information 
(Table 1) to choose the building from benchmarking dataset and import it to the reverse 
method. Then, corresponding building features and energy use (Table 1) will be captured from 
the relevant columns in the benchmarking dataset. Based on the building features, the category 
of the building can be defined. After that, a matching reference model will be fetched from 
the reference model generator. Energy use information will be used to calculate separated 
loads based on the following points and multiply them by the correlated reference model. 

a. Cooling load: �∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙�8760
1

∑ 𝐸𝐸𝐸𝐸𝐸𝐸�8760
1

 � ∙ 𝑀𝑀𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐ℎ𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚 

b. Heating load: (𝐵𝐵𝐵𝐵𝑠𝑠𝐵𝐵𝑟𝑟𝐵𝐵𝑑𝑑𝐵𝐵 𝑠𝑠𝐵𝐵𝑉𝑉𝐴𝐴𝑚𝑚 + 𝑛𝑛𝐴𝐴𝐵𝐵𝐵𝐵𝑟𝑟𝐴𝐴𝐵𝐵 𝐵𝐵𝐴𝐴𝑠𝑠 + 𝑓𝑓𝐵𝐵𝑉𝑉𝐵𝐵 𝑉𝑉𝐵𝐵𝐵𝐵𝑠𝑠) ∙  𝜀𝜀 

c. SH load: ℎ𝑉𝑉𝐴𝐴𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵 𝐵𝐵𝑉𝑉𝐴𝐴𝐵𝐵 ∙ 𝑚𝑚 

d. DHW: ℎ𝑉𝑉𝐴𝐴𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵 𝐵𝐵𝑉𝑉𝐴𝐴𝐵𝐵 ∙ (1 −𝑚𝑚) 
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Parameters with a hat ( � ) are simulated data. 𝐶𝐶𝑉𝑉𝑉𝑉𝐵𝐵𝐶𝐶𝑛𝑛𝐵𝐵 𝐵𝐵𝑉𝑉𝐴𝐴𝐵𝐵�  is from simulations without 
HVAC and 𝑀𝑀𝐸𝐸𝐸𝐸�  is derived from simulations with an HVAC system. 𝜀𝜀 is the heating 
facilities efficiency which is considered 0.75 according to [98]. 𝑚𝑚 is the ratio of SH load to 
the entire heating load from Table 2 which is 0.72 and 0.84 for Multifamily housing and 
Office, respectively. The remaining part counted as DHW load (0.28 and 0.16) [95]. The 
reverse method workflow is demonstrated in Figure 11. The first two boxes on the left 
provide data to make HET. Then Analytic kernel performs statistical analysis on HET and 
removes outliers. In the next stage, the Reference Model Generator calculate the median 
value of the remaining HETs from the previous stage. The Reverse Method Kernel allows 
the user to input the building and get the results based on the aforementioned process. The 
Python code to perform this progress is presented in Appendix B. 

 
Figure 11: Reverse method workflow 

3.4    Geothermal calculation 

According to the research goal and the appropriate condition of establishing geothermal 
energy in the urban area, a rough estimation of the BTES system was performed. Geothermal 
energy was selected due to the advantages compared to the other renewable sources, such as 
no visual disturbance, not influenced by the surrounding obstacles, and provide both heating 
and cooling. However, the same process as explained here can be performed for other 
software like System Advisor Model (SAM) from the National Renewable Energy Laboratory 
(NREL) to design the solar collectors and P.V. systems. These sample cases will show the 
validation of the outputs to be used in the EED program. Moreover, the geothermal system 
implementation was evaluated. Local regulations concerning drilling and excavation [103] 
explicitly define the drilling condition in different zones in the City. Hence, to have an overall 
value, a depth of 140 m (460 ft) was determined as a benchmark. Since the main target is the 
existing buildings, the system should be implemented in the basements or yards. As a result, 
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the limitation of the available area, operation restrictions such as extracted rocks, noise, and 
shaking will define the main arrangement and method of drilling the boreholes.  

The objective of designing boreholes was to maximize the coverage of the heating load. To 
keep the ground balance in the long term, and avoid increasing boreholes depth, rejected heat 
from the cooling process was injected into the boreholes, equal to the extracted heat. Thus, a 
constraint was set for the cooling load to be equal to or smaller with the heating load. The 
excess rejected heat was assumed to be taken out by an auxiliary system. An adjustment 
coefficient was defined for the heating load to tune the heating peak load (system size) based 
on the limitations of the land. The capacity of the property to cover the thermal loads from 
the ground can be calculated roughly from the ratio of the possible boreholes in the property 
(based on the lot geometry and area) to the required boreholes (based on the calculation) for 
the entire loads. Thereafter, this ratio can be used to adjust the BTES system's size to cover a 
part of the required heating loads. The exceeded part must be covered by an auxiliary system. 

Calculations in EED was performed through "Hourly Calculation", using separated hourly 
values for heating, cooling, and DHW. The fluid temperature was adjusted to 32℃ (90℉) and 
2℃ (35℉), and the thermal conductivity of the ground was set to 3.08 W/m·k (1.78 
Btu/h·ft·℉). The borehole thermal resistance set to 0.03 m·k/W (0.05 h·ft·℉/Btu). The 
volumetric ground heat capacity equals 2.5 MJ/m3·k (37.1 Btu/ft3·℉) with a ground surface 
temperature of 16.5 ℃ (62 ℉). To consider the influenced ground loads by the heat pump, 
the Seasonal Performance Factor (SPF) was set to 4 and 3 for heating and cooling, 
respectively. The optimization tool in EED was used to calculate the required number of 
boreholes for the imported loads. Borehole spacing was fixed at 6 m (20 ft), and borehole 
depth was defined as 140 m (460 ft), based on the obtained information from a geothermal 
consultant in NYC. The land area and the number of boreholes were defined as limitless. Then 
the lowest number of required boreholes was achieved. Optimization settings are shown in 
Figure 12. 

 
Figure 12: Settings for optimization in EED    

The actual bore field was defined according to the land dimensions with the same spacing and 
depth. Thereafter, the plausible number of boreholes was compared to the required amount 
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from the calculation. This comparison acquires the capacity of the land to provide the thermal 
load from the ground. 

3.5    Delimitations 

Due to the comprehensive coverage of the research subject, this study encounters several 
limitations. First of all, the researcher was unable to obtain high-quality temporal and spatial 
measured data to calibrate and verify the simulations on an hourly scale because the data was 
not disclosed by the authorities. Secondly, the simulation engine and the generative algorithm 
required a high computational hardware capacity and time. However, this study had a 
restricted timeframe. Adding more simulated data to the reference models can enhance the 
predictions, requiring more time for more simulations. Third, using the reverse method to 
evaluate the geothermal system needed ground characteristics that were not accessible. 
Finally, the applied GIS data showed a considerable number of failures to capture data in the 
dense urban area where the buildings density cause complexity in determining their boundary 
line in GIS; thus, around 20% of simulations were failed. 
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4 Results analysis 
The results of the applied method and their corresponding analysis are presented in this 
chapter in four parts: (1) benchmarking data shows the analysis of the NYC benchmarking 
dataset contents, (2) generated microclimate weather data, (3) EPS results for actual and 
hypothetical buildings and DHW, and (4) results from the reverse method and sample cases.  

4.1    Benchmarking data 

The statistical analysis of the NYC benchmarking dataset based on the defined categories is 
discussed in this section. 

A general overview of the buildings' construction year and the total energy use are outlined 
in Figure 13. The scatter plot shows a slight reduction in EUI for newer buildings. The mean 
value and median are close to each other, around 270 kWh/m2 (85 kBtu/ft2). The scatter plot 
also gives an understanding of the number of constructions over time. The densely scattered 
point around the 20s shows a large number of constructions in those years. Also, it says the 
older buildings with a lower construction quality have a high frequency in the City. 

 
Figure 13: Scatter plot for the normalized EUI by the floor area for each year built. The solid line and dashed 

line show the mean and median of the EUI, respectively. This figure also visualizes the frequency of 
constructions every year. 

The median values of the EUI for each category are illustrated in Figure 14. A decline for 
multifamily houses can be seen from 270 kWh/m2 (86 kBtu/ft2) in the first vintage to 210 
kWh/m2 (67 kBtu/ft2) in the last vintage. This reduction can result from better building 
performances and applying newer building codes, especially after the global oil crisis in the 
70s. Office buildings do not show a strong trend for the EUI, and they just fluctuate around 
250 kWh/m2 (80 kBtu/ft2) over different periods.  
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Figure 14: Median of EUI for Multifamily housing and Office divided by vintages 

The frequency of the different energy sources in the dataset is illustrated in Figure 15. 
Electricity and natural gas are by far the largest source of energy in NYC following by fuel 
oils. This ratio is similar in both types over different vintages. 

 
Figure 15: Frequency of different energy sources for the two main building types, overall data (left) and 

categorized data (right). 

4.2    Microclimate 

Outdoor dry-bulb temperature for the utilized EPW-file from La Guardia Airport is shown in 
Figure 16. The microclimate EPW-file had an annual average temperature of 14.5 ℃ (58.1℉) 
with a maximum of 37 ℃ (98.6℉) and a minimum yearly temperature of -14 ℃ (6.8℉). 
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Figure 16: Dry-bulb temperature for the original and microclimate TMY weather file 

4.3    Energy performance simulation 

4.3.1 Actual buildings 

The results for the energy simulations regarding twenty selected buildings were compared to 
the actual measured EUI. Simulated EUI showed a deviation of 70% to 130% from the 
measured one. This deviation can be a result of the different building performances since 
simulations used average values for the setting. Also, user behavior and operation strategies 
could not be considered precisely similar to the actual buildings. However, the regression line 
of the twenty values (blue dots in Figure 17) showed that simulated and measured values 
follow the regression model. In the regression line equation, the coefficient of the x-axis 
(Measured EUI) was almost 1, meaning that y=x+β. Hence, simulations’ results could 
generally represent the measured data.  

 
Figure 17: The comparison between simulated and measured EUI.  
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Randomly selected results for “Multifamily housing” with the “Order” number of 33212, 
33380, 29630, and 30342 are presented in Figure 18. 

 
Figure 18: Annual hourly profile for EUI, Heating demand, and Cooling demand for Multifamily housing. 

Vintage: Pre-1940 (top) and 1940-1979 (bottom) 

 
Figure 19: Annual hourly profile for EUI, Heating demand, and Cooling demand for Office. 

1980-2006 (top) and 2007-present (bottom) 



34 

 

Results for four randomly selected offices with the “Order” numbers of 885, 1989, 11642, 
11543 are also illustrated in Figure 19. The annual profile for office buildings showed an 
apparent weekly pattern, influenced by the indoor condition. It can be seen in the graphs as 
the weekends' low energy use. In comparison, residential buildings showed more variation 
based on the outdoor conditions in summer and winter. The results for R2 for each pair of 
actual buildings with the same category are presented with boxplots in Figure 20. 

 
Figure 20: R2 for each pair of actual buildings in every category. 

Numbers for each box represents the number of buildings in the box. 

Calculated R2 showed that the majority of the buildings are fitted with other buildings in the 
category. In the graph, the number of buildings in each box is presented. In total, 160 actual 
buildings were simulated, which 141 of them remained in the dataset, which means that 19 
buildings showed an average R2 < 0.8 and were removed from the process. A part of the 
calculated R2 for the actual buildings is presented in Appendix C. 

4.3.2 Hypothetical buildings 

A few sample cases of randomly generated hypothetical buildings are presented in Figure 21 
to show the variety of the modelling. COPs for the cooling systems were calculated as an 
hourly curve. The annual average of each curve is presented in Table 5, divided into different 
categories.  

Table 5: Cooling load ratio to the EUI and average COPs 

Type Multifamily Housing Office 

Vintage pre-
1940 

1940-
1979 

1980-
2006 

2007-
present 

pre-
1940 

1940-
1979 

1980-
2006 

2007-
present 

Average 
COP 1.9 2 2 1.9 3 3.2 3.2 3 
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5 × 4 × 12 RC: 98% 13 × 4 × 6 RC: 85% 17 × 7 × 9 RC: 88% 

   

2 × 9 × 5 RC: 83% 9 × 8 × 19 RC: 99% 20 × 9 × 3 RC: 58% 

   

9 × 8 × 2 RC: 60% 16 × 6 × 8 RC: 87% 8 × 7 × 18 RC: 99% 

Figure 21: Sample cases for randomly generated hypothetical buildings 
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The hourly trends were checked with R2 in pairs to control their fitness. Figure 22 shows the 
R2 for “Multifamily housing” and “Office” for heating and cooling load in each vintage. These 
R2 were calculated in each category, and to simplify the graph, both heating and cooling loads 
are presented in one box. Each box contains values for 200 buildings from the cooling- and 
heating load for both types. Each box includes 2002×2 values since each building was 
compared to all others (2002) for heating and cooling loads (×2). R2 is above 94% for all 
vintages, and as it was expected, the last vintage has higher values due to the better envelope 
quality and less sensitivity to the outdoor condition. Moreover, lower ranges of R2 in office 
buildings means higher fitness of their hourly trend. It can be a result of less sensitivity of 
office buildings to the outdoor climate since office spaces are internal heat dominant. 

 
Figure 22: R2 for each pair of hypothetical buildings in every category. 

Numbers for each box represents the number of buildings in the box. 

In this research, no clear relation between compactness and energy trend was found. Figure 
23 shows a set of RCs for iterated actual buildings (60 cases) and hypothetical models (200 
cases). In different ranges of compactness from normal to compact, R2 showed a relatively 
small deviation from perfect fitness (R2 = 1). As explained before, compactness and geometry 
as a building specification have a scaling effect on the entire hourly energy trend. Changes in 
geometry cause scaling in the entire data, which is eliminated in normalizing by sum. Some 
minor impacts on the hourly trend from the geometry of the building caused a reduction in R2 
from 1. The entire effects of the geometry were taken into account when the hourly energy 
trends were scaled up to the total measured energy use, which means that changing the energy 
use of building results in changing the total energy use with the same trend.  
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Figure 23: Compactness and RC for 60 actual buildings and 200 hypothetical models 

As a result, compactness was not considered a category level because: (1) a proper 
classification for geometry needs a closer look and further investigation. (2) defining different 
geometrical parameters (e.g. orientation, exposure to the sun, neighbors blockage) in practice 
needs more input and collecting data which can be time-consuming and complicated contrary 
to the purpose of the research. (3) the current two levels of categories showed enough 
similarities in the hourly trend, which means more parameters cannot considerably enhance 
the categorization. Thus, it would be better to maintain the method with these two levels, 
which has an acceptable fitness in each category. Accordingly, in this research and on this 
level, compactness was not applied. However, it is discussed to keep the way open for further 
research on it, if it is required. 

4.3.3 Domestic hot water 

The hourly percentage of heating load for DHW is presented in Figure 24. The results are 
normalized by the total amount of the load. Hence, the curve shows the trend, regardless of 
the amount of energy. The total required heating loads for DHW were calculated based on the 
energy breakdown in Table 2, and the results were multiplied by the presented coefficient 
time series.  
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Figure 24: DHW heating load for Multifamily housing (top) and Office (bottom) 

4.4    Reverse method 

This section will present the generated reference models for the remaining building in the 
dataset based on the R2 larger than 0.8. After that, the outputs of six sample cases are 
presented.  

4.4.1 Reference models 

The generated reference models are demonstrated in Figure 25. The presented time series 
shows the percentage of energy use for every single hour, and the sum of the time series is 
equal to one. In these graphs, a few points are vital to be considered. Heating- and cooling 
load are not related and not proportionally changed, and they are both defined by the total 
measured load. For instance, “Multifamily housing” in the “2007-present” vintage shows a 
high percentage of hourly heating loads (heating power); However, this percentage will be 
multiplied by the total measured heating load and then it is comparable to the cooling load. 
When the percentage of loads in the time series is zero, no loads are required. Accordingly, 
newer buildings show fewer hours for required loads. For example, for “Office” buildings, in 
“pre-1940”, heating demand is zero from almost the middle of May to late September: While 
in “2007-present”, it is zero from almost the middle of April to the middle of October. This 
difference can be a result of better building performance. As a result, the hourly energy trend 
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(reference model) can describe the energy performance of the building according to its 
category.  

 Multifamily housing Office 
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Figure 25: Generated reference models for the eight defined categories 

4.4.2 Subjected buildings test 

Six sample buildings are chosen from benchmarking dataset to present the results. The first 
part is the following text report (the grey box) in the Python interface and exported as a text 
file. It shows the building information to control if the correct building is picked from the 
dataset. Then the total demands are denoted to give a general overview of energy demands. 
The selected buildings are chosen among the most frequencies of the area between 5000 m2 
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(54,000 ft2) and 10,000 m2 (108,000 ft2). The energy use of the selected buildings is around 
the average of the entire data to present an overall view to the entire population. 

This case shows a “Multifamily housing” for “pre-1940”. Primitive information for energy 
use and demands are presented in the following text box, and a summary of calculations are 
shown in Table 6. Annual hourly loads for the building are presented in Figure 26, and the 
annual ground loads after applying SPF are illustrated in Figure 27. The duration diagram for 
ground loads and the adjusted peak powers are shown in Figure 28. 

150-74th Street Brooklyn 11209 New York 

--------------------------------------- 

building type: multifamily 

BBL: 3059270024.0 

BIN: 3148192 

Area [m2]: 5298 

--------------------------------------- 

EUI [kWh]: 1465957 

Heating load [kWh]: 1062466 - 72.5% 

Space heating [kWh]: 764975 

Domestic hot water [kWh]: 297490 

Cooling load [kWh]: 542404 

--------------------------------------- 

vintage: pre-1940 

reference model: multifamily_v1 

Table 6: Results summary for Order number 80 

Building footprint 
[m2] ([ft2]) 

Possible number of 
boreholes 

Required number of 
boreholes 

Required boreholes 
coverage 

22×40 (72×131) 4×7 6×10 45% 

Annual heating load 
coverage 

Peak heating power 
coverage 

Annual cooling load 
coverage 

Peak cooling power 
coverage 

87% 40% 67% 41% 
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Figure 26: Predicted annual heating- and cooling load for building number 80 

 
Figure 27: Ground loads for building number 80 after applying SPF 

 
Figure 28: Duration diagram for heating and cooling loads for building number 80. The coverage percentage of 

loads and powers are mentioned in the graph. 
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The second sample building shows an “Office” for “1980-2006”. Primitive information for 
energy use and demands are presented in the following text box, and a summary of 
calculations are shown in Table 7. Annual hourly building loads are presented in Figure 29, 
and the annual ground loads after applying SPF are illustrated in Figure 30. The duration 
diagram for ground loads and the adjusted peak powers are shown in Figure 31. 

110 East 55th street Manhattan 10022 New York 

--------------------------------------------- 

building type: office 

BBL: 1013090066.0 

BIN: 1036493 

Area [m2]: 6689 

--------------------------------------------- 

EUI[kWh]: 1749282 

Heating load [kWh]: 286594 - 16.4% 

Space heating [kWh]: 243604 

Domestic hot water [kWh]: 42989 

Cooling load [kWh]: 822162 

--------------------------------------------- 

vintage: 1980-2006 

reference model: office_v3 

Table 7: Results summary for Order number 29983 

Building footprint 
[m2] ([ft2]) 

Possible number of 
boreholes 

Required number of 
boreholes 

Required boreholes 
coverage 

16×37 (52×121) 3×7 4×10 50% 

Annual heating load 
coverage 

Peak heating power 
coverage 

Annual cooling load 
coverage 

Peak cooling power 
coverage 

93% 45% 14% 5% 
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Figure 29: Predicted annual heating- and cooling load for Order number 29983 

 

Figure 30: Ground loads for building number 29983 after applying SPF 

 

Figure 31: Duration diagram for heating and cooling loads for building number 29983. The coverage 
percentage of loads and powers are mentioned in the graph. 
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The third case is a “Multifamily housing” for “2007-present”. Primitive information for 
energy use and demands are presented in the following text box, and a summary of 
calculations are shown in Table 8. Annual hourly building loads are presented in Figure 32, 
and the annual ground loads after applying SPF are illustrated in Figure 33. The duration 
diagram for ground loads and the adjusted peak powers are shown in Figure 34. 

545 Washington Avenue Brooklyn 11238 New York 

--------------------------------------------- 

building type: multifamily 

BBL: 3020137503.0 

BIN: 3397606 

Area [m2]: 7369 

--------------------------------------------- 

EUI [kWh]: 1845879 

Heating load [kWh]: 874463 - 47.4% 

Space heating [kWh]: 629613 

Domestic hot water [kWh]: 244849 

Cooling load [kWh]: 719893 

--------------------------------------------- 

vintage: 2007-pres 

reference model: multifamily_v4 

Table 8: Results summary for Order number 30063 

Building footprint 
[m2] ([ft2]) 

Possible number of 
boreholes 

Required number of 
boreholes 

Required boreholes 
coverage 

21×43 (69×141) 4×7 6×17 27% 

Annual heating load 
coverage 

Peak heating power 
coverage 

Annual cooling load 
coverage 

Peak cooling power 
coverage 

68% 30% 32% 17% 
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Figure 32: Predicted annual heating- and cooling load for building number 30063 

 
Figure 33: Ground loads for building number 30063 after applying SPF 

 
Figure 34: Duration diagram for heating and cooling loads for building number 30063. The coverage 

percentage of loads and powers are mentioned in the graph. 
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The fourth sample introduces an “Office” for “2007-present”. Primitive information for 
energy use and demands are presented in the following text box, and a summary of 
calculations are shown in Table 9. Annual hourly building loads are presented in Figure 35, 
and the annual ground loads after applying SPF are illustrated in Figure 36. The duration 
diagram for ground loads and the adjusted peak powers are shown in Figure 37. 

4055 10th Ave Manhattan 10034 New York 

-------------------------------------- 

building type: office 

BBL: 1022130001.0 

BIN: 1064513 

Area [m2]: 5642 

-------------------------------------- 

EUI [kWh]: 1835085 

Heating load [kWh]: 387557 - 21.1% 

Space heating [kWh]: 329423 

Domestic hot water [kWh]: 58133 

Cooling load [kWh]: 770735 

-------------------------------------- 

vintage: 2007-pres 

reference model: office_v4 

Table 9: Results summary for Order number 12080 

Building footprint 
[m2] ([ft2]) 

Possible number of 
boreholes 

Required number of 
boreholes 

Required boreholes 
coverage 

38×147* (125×480) 6×14 7×7 100% 

Annual heating load 
coverage 

Peak heating power 
coverage 

Annual cooling load 
coverage 

Peak cooling power 
coverage 

100% 100% 21% 8% 

* This land is a triangle with a base and height of 38×147 m2 (125×480 ft2). The possible grid 
of boreholes is considered a rectangular field. Other configurations can be used; however, the 
rectangular field can cover the required heating load. Thus, no more borehole is considered. 
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Figure 35: Predicted annual heating- and cooling load for building number 12080 

 
Figure 36: Ground loads for building number 12080 after applying SPF 

 
Figure 37: Duration diagram for heating and cooling loads for building number 12080. The coverage 

percentage of loads and powers are mentioned in the graph. 
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The fifth case shows an “Office” for “2007-present”. Primitive information for energy use 
and demands are presented in the following text box, and a summary of calculations are shown 
in Table 10. Annual hourly building loads are presented in Figure 38, and the annual ground 
loads after applying SPF are illustrated in Figure 39. The duration diagram for ground loads 
and the adjusted peak powers are shown in Figure 40. 

16-16 Whitestone Expressway Queens 11357 New York 

------------------------------------------------- 

building type: office 

BBL: 4041480065.0 

BIN: 4099028 

Area [m2]: 6489 

------------------------------------------------- 

EUI [kWh]: 2088042 

Heating load [kWh]: 930568 - 44.6% 

Space heating [kWh]: 790982 

Domestic hot water [kWh]: 139585 

Cooling load [kWh]: 876978 

------------------------------------------------- 

vintage: 2007-pres 

reference model: office_v4 

Table 10: Results summary for Order number 26965 

Building footprint 
[m2] ([ft2]) 

Possible number of 
boreholes 

Required number of 
boreholes 

Required boreholes 
coverage 

37×68 (118×223) 7×11 6×19 65% 

Annual heating load 
coverage 

Peak heating power 
coverage 

Annual cooling load 
coverage 

Peak cooling power 
coverage 

97% 55% 47% 20% 
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Figure 38: Predicted annual heating- and cooling load for building number 26965 

 
Figure 39: Ground loads for building number 26965 after applying SPF 

 
Figure 40: Duration diagram for heating and cooling loads for building number 26965. The coverage 

percentage of loads and powers are mentioned in the graph. 
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Sample case number six presents a “Multifamily housing” for “2007-present”. Primitive 
information for energy use and demands are presented in the following text box, and a 
summary of calculations are shown in Table 11. Annual hourly building loads are presented 
in Figure 41, and the annual ground loads after applying SPF are illustrated in Figure 42. The 
duration diagram for ground loads and the adjusted peak powers are shown in Figure 43. 

300 West 128th Street Manhattan 10027 New York 

---------------------------------------------- 

building type: multifamily 

BBL: 1019540036.0 

BIN: 1089108 

Area [m2]: 7026 

---------------------------------------------- 

EUI [kWh]: 1839861 

Heating load [kWh]: 941683 - 51.2% 

Space heating [kWh]: 678011 

Domestic hot water [kWh]: 263671 

Cooling load [kWh]: 717546 

---------------------------------------------- 

vintage: 2007-pres 

reference model: multifamily_v4 

Table 11: Results summary for Order number 4338 

Building footprint 
[m2] ([ft2]) 

Possible number of 
boreholes 

Required number of 
boreholes 

Required boreholes 
coverage 

20×40 (65×131) 4×7 6×19 25% 

Annual heating load 
coverage 

Peak heating power 
coverage 

Annual cooling load 
coverage 

Peak cooling power 
coverage 

52% 18% 27% 14% 
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Figure 41: Predicted annual heating- and cooling load for building number 4338 

 
Figure 42: Ground loads for building number 4338 after applying SPF 

 
Figure 43: Duration diagram for heating and cooling loads for building number 4338. The coverage percentage 

of loads and powers are mentioned in the graph. 
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The presented samples outputs, firstly, showed the capabilities of the method in calculating 
the BTES system. Secondly, results showed that the BTES system could provide a 
considerable share of the required thermal loads of the buildings. The following text will 
explain the process in practice, then discuss the results. 

The categorization system with two levels, consisting of the building type and vintage, does 
not need to collect extra input data. Both type and vintage of the buildings are provided in the 
NYC benchmarking dataset. Hence, having an identification number was enough to capture 
the building data from benchmarking dataset as the primitive information (the grey box). In 
the primitive information, the building category was defined, and the corresponding reference 
model was called from the method database. The required data was exported as CSV and TXT 
file with a suitable format for EED. From the input of the identification number to export the 
results, this process took less than a minute. 

Thereafter, the process was continued in EED to design the boreholes field. The total loads 
were imported to EED’s “hourly calculation” tool to calculate the total number of boreholes 
by the “optimization” tool. The possible number of boreholes in the land area was calculated 
based on the building footprint geometry captured from GIS. The ratio of the possible 
boreholes to the total required boreholes from EED showed the required boreholes coverage 
by land. Then the defined adjustment variable for the heating load was set to a percentage to 
calculate the thermal load coverage based on the possible number of boreholes in the available 
area in the building. The results of the adjusted heating loads were imported again to EED to 
check if the possible boreholes can provide the adjusted loads. The duration diagrams show 
the loads coverage for each case and their excess powers. 

The results showed that establishing the geothermal system in the buildings can cover around 
50% up to 100% heating loads. It is, however, depends mainly on the operation strategy and 
optimization of the system sizing, ratio of the extracted and injected heat, and peak load 
adjustment. For instance, in case number five, a reduction in heating peak load by 45% cover 
96% of the entire annual heating load. The excess load happens in around 150 hours in the 
year. According to Figure 4, half of the buildings in the NYC benchmarking dataset have an 
area between 4,000 m2 (43,000 ft2) and 11,000 m2 (118,500 ft2). Establishing geothermal 
systems can cover a major part of their need for fossil fuels for heating purposes. 
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5 Conclusions 
This study explored the effective parameters for building energy performance in NYC, 
including outdoor conditions, indoor conditions, and building specifications. The research 
was inspired by the publicly available metered energy data to perform a data-driven method. 
Thereafter, a reverse data-driven method was adopted to predict the annual hourly heating 
and cooling load from total measured use. The usual energy estimation methods are time-
consuming but deviated from actual performance. Two sorts of data were used in this study, 
including benchmarking and simulated data. 

NYC benchmarking database provides metered energy use data that can be used to calibrate 
energy estimations. This data characterizes the building stock based on the energy use, energy 
source, vintage, and type. Accordingly, combining the effective parameters on EPS and 
buildings characteristic from the benchmarking data divided buildings based on the type and 
vintage. Two sets of energy simulations were run to achieve the hourly load profile called the 
hourly energy trend (HET) in this research. The first one was performed on actual buildings, 
using GIS data, and calibrated by the annual energy use from benchmarking data. The second 
series of simulations were done on randomly generated hypothetical buildings with the same 
characteristics as the actual buildings. Outdoor condition, indoor condition, and building 
specifications are defined as the main components of the EPS. The outdoor condition was 
assigned to simulations as the weather file. While actual buildings used measured data for 
2017, hypothetical models deployed TMY weather file. The rest of the settings were similar 
for both. 

The coefficient of determination (R2) was used to calculate how much hourly trend of 
buildings in each type-vintage category are similar. The results showed that buildings in each 
category have a similar hourly trend of thermal load. This similarity is partly related to the 
energy simulation settings: Indoor condition and building specifications were defined based 
on the standards and for different type and vintage. Hence in each category, buildings had 
similar settings. However, in reality, this similarity happens but to a lower degree.  

The effects of geometry on the EPS were studied to assess their applicability in categorising 
buildings. Compactness and relative compactness were used to define the geometrical features 
of the buildings. Nevertheless, an investigation showed that several factors such as 
orientation, neighbors blockage, and horizontal or vertical compactness are involved. Thus, 
no clear relation was found between compactness and annual loads. The effects of the 
geometry are applied through calibration with the measured energy use. Defining all required 
inputs to identify the geometry parameters will make the process complicated and time-
consuming for the user, in contrast with the research goal. Also, having complex inputs needs 
specific expertise, which should be avoided. 

The HET of the buildings with an R2 of larger than 0.8 on average were kept in the process.  
A reference model for each category was made from the median of the HET. These reference 



55 

 

models were created for the heating load (SH and DHW) and cooling load. Thereafter, the 
total measured data were multiplied by the percentage time series to generate the scaled hourly 
loads. These hourly loads are used for the primitive design of renewable systems such as 
geothermal and solar, mainly for feasibility studies.  

The application of the method was tested on designing the BTES systems. The results showed 
that more than half of the heating loads of the buildings could be covered by the BTES system. 
This energy source replacement would significantly affect fossil fuel consumption as the main 
source of heating in NYC. This method's high speed and accuracy will help practitioners 
provide accurate feasibility studies for retrofit projects to establish BTES systems. 

The entire workflow was processed in Python, which implied that there would be a high 
potential to integrate the workflow with other Python-based tools like pySAM or pyg-
function. This method can be enhanced by updating reference models with more simulated- 
and measured data. Especially, it can be fed by energy simulations with generative or iterative 
algorithms. The most important limitation in this study was to access the measured data for 
calibrating and verifying the reference models. The required time for the simulations was also 
a severe problem due to the limited timeframe of this research. Future research can improve 
the accuracy of the predictions. More study about the geometry characteristics of the 
buildings, such as the compactness and orientation, can enhance the quality of the results if 
required. 

Lastly, high-quality energy estimation is an essential step towards the implementations of 
renewable energy systems. Hourly energy estimation for the existing buildings is more 
complex than the design stage due to the complexity of building specifications measurements. 
In contrast, buildings under operation have metered energy data which can be helpful to 
estimate their energy performance on an hourly scale. BTES system as a renewable energy 
system shows potential in reducing fossil fuel burning as a noticeable source of GHG 
emissions considering the large share of fossil fuels for heating purposes in NYC.  
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Appendix A 
Building types in the dataset and their frequencies 

 Property Type Count  Property Type Count 

1 Multifamily housing 12,579 34 Refrigerated Warehouse 28 

2 Office 1,859 35 Museum 26 

3 K-12School 1,386 36 Other-Recreation 26 

4 College/University 426 37 Movie Theater 25 

5 Hotel 385 38 Court house 22 

6 Residence Hall/Dormitory 329 39 Strip Mall 20 

7 Non-Refrigerated Warehouse 295 40 Prison/Incarceration 19 

8 Other 152 41 Residential Care Facility 19 

9 Senior Care Community 148 42 Automobile Dealership 17 

10 Retail Store 144 43 Laboratory 17 

11 Manufacturing/Industrial Plant 126 44 Social/Meeting Hall 17 

12 Pre-school/Daycare 119 45 Adult Education 13 

13 Repair Services 117 46 Financial Office 12 

14 Self-Storage Facility 111 47 Wastewater Treatment Plant 11 

15 Library 107 48 Food Service 9 

16 Distribution Center 97 49 Bank Branch 8 

17 Parking 95 50 OutpatientRehabilitation/PhysicalTherapy 8 

18 Police Station 80 51 Wholesale Club/Super center 8 

19 Hospital (General Medical & Surgical) 72 52 Data Center 7 

20 Worship Facility 72 53 Enclosed Mall 6 

21 Other-Lodging/Residential 69 54 Transportation Terminal/Station 6 

22 Other-Education 60 55 Convention Center 5 

23 Medical Office 58 56 Other-Services 5 

24 Fire Station 55 57 Other-Utility 4 

25 Supermarket/Grocery Store 52 58 Ambulatory Surgical Center 3 

26 Urgent Care/Clinic/Other Outpatient 50 59 Ice/Curling Rink 2 

27 Mixed Use Property 47 60 Stadium (Open) 2 

28 Fitness Center/Health Club/Gym 41 61 Veterinary Office 2 

29 Other-Specialty Hospital 40 62 Zoo 2 

30 Other-Public Services 37 63 Convenience Store without GasStation 1 

31 Other-Entertainment/Public Assembly 34 64 Mailing Center/Post Office 1 

32 Other-Mall 29 65 Other-Technology/Science 1 

33 Performing Arts 28 66 Restaurant 1 
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Appendix B 
Office energy simulation settings 

#Define variables 
req_data = ['Year Built', 'Primary Property Type - Self Selected', 'Self-Reported Gross Floor Area (ft²)', 
            'Site EUI (kBtu/ft²)', 'BBL - 10 digits', 'NYC Building Identification Number (BIN)', 'Borough', 
            'Address 1 (self-reported)', 'Postal Code'] 
heating_energy = ['Fuel Oil #1 Use (kBtu)', 'Fuel Oil #2 Use (kBtu)', 'Fuel Oil #4 Use (kBtu)', 
                  'Fuel Oil #5 & 6 Use (kBtu)', 'Diesel #2 Use (kBtu)', 'Propane Use (kBtu)', 
                  'District Steam Use (kBtu)', 'District Hot Water Use (kBtu)', 'Natural Gas Use (kBtu)'] 
clg_ratio = [0.37, 0.45, 0.45, 0.39, 0.44, 0.47, 0.47, 0.42] #clg/EUI simulated 
vintages = ['1:pre_war', '2:prior_1979', '3:1980-2006', '4:2007-pres'] 
 
#Input desired building via Order 
order = int(input('Please input order:')) 
 
#Capture coresponding data from benchmarking dataset 
ind = [benchmark[benchmark['Order']==order].index][0][0] 
yearbuilt = benchmark[req_data].iloc[ind][0] 
building_type = benchmark[req_data].iloc[ind][1].lower().split(' ')[0] 
area = benchmark[req_data].iloc[ind][2] 
EUI_ft2 = benchmark[req_data].iloc[ind][3] 
EUI_mes = EUI_ft2 * area 
#Heating load 
htg_load = int(benchmark[heating_energy].iloc[ind].sum())*.75 
htg_ratio = round((htg_load/EUI_mes),3)*100 
#DHW 
if building_type=='office': dhw_load=(dhw_of*(htg_load*.15)) 
else: dhw_load=(dhw_mf*(htg_load*.28)) 
#Space heating 
spc_htg = (htg_load - dhw_load.sum().sum()) 
#Vintage 
if yearbuilt<1941: vintage = vintages[0] 
elif yearbuilt<1980: vintage = vintages[1] 
elif yearbuilt<2007: vintage = vintages[2] 
else: vintage = vintages[3] 
address = benchmark[req_data].iloc[ind][7]+' '+benchmark[req_data].iloc[ind][6]+\ 
                        ' '+str(benchmark[req_data].iloc[ind][8])+' New York' 
BBL = int(benchmark[req_data].iloc[ind][4]) 
BIN = int(benchmark[req_data].iloc[ind][5]) 
reg_mod = building_type+'_v'+vintage[0] 
#Cooling load 
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if building_type=='office': clg_load=clg_ratio[4:][int(vintage[0])-1]*EUI_mes 
else: clg_load=clg_ratio[:4][int(vintage[0])-1]*EUI_mes 
 
#Output 
output = address+'\n'+'-'*len(address)+'\nbuilding type: '+building_type+'\nBBL: '+str(BBL)+'\nBIN: 
'+str(BIN)+\ 
       '\n'+'-'*len(address)+'\nEUI[kBtu]: '+str(int(EUI_mes))+'\nHeating demand[kBtu]: '+str(htg_load)+' 
- '+\ 
        str(htg_ratio)+'%\nSpace heating[kBtu]: '+str(int(spc_htg))+'\nDomestic hot water[kBtu]: '+\ 
        str(int(dhw_load.sum().sum()))+'\nCooling load[kBtu]: '+str(int(clg_load))+'\n'+'-'*len(address)+\ 
       '\nvintage: '+vintage+'\nregression model: '+reg_mod 
print (output) 
with open('fig\\test\\'+str(order)+'.txt', 'w') as txt: 
    txt.write(output) 
 
#Call regression model 
regression = pd.read_csv('reg_models\\reg_mod_'+reg_mod+'.csv').set_index('Unnamed: 
0').set_index(arange(8760)) 
predict = regression.copy() 
h = regression.columns 
predict.rename(columns={h[0]:'HL', h[1]:'CL'}, inplace=True) 
predict['HL'] = regression.iloc[:,0] * spc_htg + dhw_load[0] 
predict['CL'] = regression.iloc[:,1] * clg_load 
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Appendix C 
R2 

Multifamily housing 

Pre-1940 

Orders 

22765 

14660 

33380 

23651 

14873 

9280 

9380 

7115 

13570 

27594 

5410 

14164 

18151 

9541 

15332 

22765 1 0.87 0.89 0.99 0.87 0.96 0.95 0.97 0.91 0.89 0.93 0.98 0.78 0.97 0.93 

14660 0.91 1 0.99 0.91 0.99 0.88 0.98 0.94 1 0.98 0.99 0.96 0.53 0.86 0.98 

33380 0.92 0.99 1 0.92 0.99 0.87 0.97 0.96 0.99 1 0.98 0.97 0.56 0.86 0.96 

23651 0.99 0.88 0.88 1 0.88 0.97 0.96 0.96 0.91 0.88 0.94 0.98 0.77 0.98 0.94 

14873 0.91 0.99 0.99 0.91 1 0.88 0.98 0.96 0.99 0.98 0.99 0.97 0.54 0.86 0.97 

9280 0.95 0.82 0.79 0.96 0.81 1 0.94 0.91 0.86 0.78 0.9 0.94 0.77 0.99 0.92 

9380 0.96 0.97 0.96 0.97 0.97 0.95 1 0.98 0.98 0.95 1 0.99 0.64 0.94 0.99 

7115 0.97 0.93 0.96 0.97 0.95 0.93 0.98 1 0.95 0.96 0.97 0.99 0.68 0.93 0.94 

13570 0.93 1 0.99 0.93 0.99 0.91 0.99 0.96 1 0.97 0.99 0.97 0.56 0.88 0.99 

27594 0.92 0.98 1 0.92 0.98 0.86 0.96 0.97 0.98 1 0.97 0.96 0.57 0.85 0.95 

5410 0.95 0.99 0.98 0.95 0.99 0.93 1 0.97 0.99 0.97 1 0.99 0.61 0.91 0.99 

14164 0.98 0.95 0.96 0.98 0.96 0.95 0.99 0.99 0.97 0.95 0.99 1 0.69 0.95 0.98 

18151 0.73 0.22 0.24 0.72 0.23 0.75 0.5 0.57 0.31 0.26 0.41 0.58 1 0.82 0.43 

9541 0.97 0.78 0.77 0.97 0.78 0.99 0.92 0.91 0.83 0.76 0.88 0.94 0.83 1 0.88 

15332 0.94 0.98 0.96 0.95 0.96 0.94 0.99 0.95 0.99 0.94 0.99 0.98 0.6 0.92 1 

1940-1979 

Orders 

9185 

4429 

5983 

4006 

20668 

7298 

9879 

2095 

4357 

18581 

8973 

9185 1 0.71 0.8 0.87 0.67 0.96 0.56 0.73 0.52 0.8 0.64 

4429 0.8 1 0.43 0.56 0.33 0.86 0.21 0.99 0.17 0.42 0.29 

5983 0.76 0 1 0.98 0.94 0.72 0.87 0 0.86 0.98 0.92 

4006 0.84 0.22 0.98 1 0.93 0.82 0.85 0.21 0.83 0.97 0.9 

20668 0.58 0 0.94 0.93 1 0.54 0.98 0 0.98 0.96 0.99 

7298 0.97 0.81 0.77 0.86 0.65 1 0.52 0.81 0.49 0.74 0.6 

9879 0.47 0 0.87 0.85 0.98 0.41 1 0 1 0.92 0.99 

2095 0.82 0.99 0.46 0.58 0.34 0.87 0.23 1 0.19 0.45 0.3 

4357 0.42 0 0.87 0.84 0.98 0.37 1 0 1 0.9 0.99 

18581 0.75 0 0.98 0.97 0.96 0.68 0.92 0 0.9 1 0.95 

8973 0.56 0 0.92 0.9 0.99 0.5 0.99 0 0.99 0.95 1 
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1980-2006 

Orders 

8685 

21240 

1587 

14417 

9888 

6400 

27705 

6528 

5127 

1783 

8685 1 0.95 0.66 0.99 0.96 0.91 0.86 0.99 0.75 0.98 

21240 0.95 1 0.78 0.94 0.99 0.97 0.97 0.96 0.9 0.97 

1587 0.58 0.76 1 0.54 0.7 0.82 0.79 0.59 0.92 0.63 

14417 0.99 0.95 0.61 1 0.97 0.91 0.87 1 0.73 0.99 

9888 0.95 0.99 0.73 0.96 1 0.97 0.96 0.97 0.86 0.97 

6400 0.88 0.97 0.82 0.89 0.96 1 0.96 0.92 0.91 0.92 

27705 0.84 0.97 0.8 0.85 0.96 0.97 1 0.87 0.95 0.89 

6528 0.99 0.96 0.64 1 0.97 0.93 0.88 1 0.75 0.99 

5127 0.71 0.9 0.93 0.7 0.85 0.92 0.95 0.73 1 0.77 

1783 0.98 0.97 0.67 0.99 0.97 0.93 0.9 0.99 0.78 1 

2007-present 

Orders 

18771 

30342 

16904 

25654 

29630 
18771 1 0.95 0.16 0.99 0.95 

30342 0.96 1 0 0.97 0.96 

16904 0.23 0 1 0.21 0.18 

25654 0.99 0.97 0.14 1 0.98 

29630 0.96 0.96 0.19 0.98 1 

Office 

1980-2006 

Orders 

10707 

2805 

1989 

11966 

20074 

2177 

7309 

15776 

6416 

3275 

28403 

5754 

885 

17145 

10707 1 0.93 0.99 0.96 0.96 0.66 0 0.95 0.96 0.97 0.99 0.99 0.97 0.99 

2805 0.93 1 0.9 0.83 0.81 0.84 0 0.98 0.92 0.83 0.9 0.91 0.85 0.96 

1989 0.99 0.9 1 0.99 0.98 0.59 0 0.92 0.94 0.99 0.99 1 0.99 0.98 

11966 0.97 0.84 0.99 1 1 0.49 0 0.86 0.9 1 0.98 0.98 1 0.94 

20074 0.96 0.83 0.98 1 1 0.48 0 0.85 0.9 1 0.98 0.98 1 0.94 

2177 0.64 0.83 0.56 0.44 0.41 1 0.35 0.83 0.74 0.44 0.6 0.58 0.49 0.7 

7309 0 0.08 0 0 0 0.56 1 0.1 0.07 0 0 0 0 0 

15776 0.95 0.98 0.91 0.85 0.83 0.83 0 1 0.96 0.85 0.92 0.92 0.87 0.97 

6416 0.96 0.91 0.94 0.89 0.89 0.73 0 0.96 1 0.89 0.95 0.94 0.92 0.96 

3275 0.97 0.85 0.99 1 1 0.5 0 0.87 0.91 1 0.98 0.99 1 0.95 

28403 0.99 0.9 0.99 0.98 0.97 0.61 0 0.92 0.96 0.98 1 0.99 0.98 0.98 

5754 0.99 0.91 1 0.98 0.98 0.6 0 0.93 0.95 0.99 0.99 1 0.99 0.98 

885 0.98 0.86 0.99 1 1 0.54 0 0.88 0.93 1 0.99 0.99 1 0.95 

17145 0.99 0.96 0.98 0.94 0.93 0.71 0 0.97 0.96 0.95 0.98 0.98 0.95 1 

 



71 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Dept of Architecture and Built Environment: Division of Energy and Building Design 

Dept of Building and Environmental Technology: Divisions of Building Physics and Building Services 

 


	Abstract
	List of figures
	List of tables
	Abbreviations
	1 Introduction
	1.1    Background
	1.2    Aims and Goals
	1.3    Thesis disposition

	2 Literature review
	2.1    Energy performance prediction
	2.1.1 Engineering methods
	2.1.2 Statistical methods
	2.1.3 Neural networks
	2.1.4 Support vector machines

	2.2    Energy simulation software
	2.3    Reverse energy estimation
	2.4    Weather
	2.5    Urban heat island
	2.6    Geothermal energy
	2.7    New York City

	3 Method
	3.1    Statistical analysis
	3.1.1 Primitive stage: Benchmarking analysis
	3.1.2 Conclusive stage: Results analysis

	3.2    Energy performance simulation
	3.2.1 Building modelling
	3.2.2 Urban modelling
	3.2.3 Weather data
	3.2.4 Energy modelling
	3.2.5 Energy simulation workflow

	3.3    The reverse energy estimation approach
	3.3.1 Backbone
	3.3.2 Operation

	3.4    Geothermal calculation
	3.5    Delimitations

	4 Results analysis
	4.1    Benchmarking data
	4.2    Microclimate
	4.3    Energy performance simulation
	4.3.1 Actual buildings
	4.3.2 Hypothetical buildings
	4.3.3 Domestic hot water

	4.4    Reverse method
	4.4.1 Reference models
	4.4.2 Subjected buildings test


	5 Conclusions
	References
	Appendix A
	Appendix B
	Appendix C

