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Abstract

This thesis investigates the quantization of field theories using the functional integral for-
malism. Gauge invariance necessitates a gauge-fixing procedure that chooses a unique field
configuration from each gauge orbit. Faddeev and Popov suggested an adjustment to the
action that implements gauge fixing in this framework, however it has been found that
this procedure fails to uniquely fix the gauge of non-Abelian gauge theories. This problem
is known as the Gribov ambiguity. This thesis reproduces and discusses the work of Gri-
bov, and it is illustrated how the Gribov horizons divide the functional space into regions
Cn. Then, the Coulomb gauge of SU(2) is considered as an explicit example of Gribov
ambiguities. The equation of the Gribov pendulum is derived, and the properties of its
solutions are discussed. The thesis concludes with a short review of the consequences of
the Gribov ambiguity, and of the possible restrictions to the integration range that have
been proposed as a resolution to the problem.



Popular-science description

The quantum world has often been described as a bizarre place full of obscure phenomena,
and rightly so. Particles can exist in multiple places simultaneously, or tunnel through
walls to spontaneously show up on the other side—not to mention Schrödinger’s famous
cat, which is both alive and dead at the same time. The quantum world appears very
different from our own, and one would be forgiven for asking what impact quantum physics,
and its subdiscipline quantum field theory, has on our daily lives.

Quantum field theory studies the fundamental particles in nature and how they interact
with each other. It is crucial for our understanding of nuclear physics, where it helps
describe the forces that hold atomic nuclei together or cause radioactive decay. Further,
experiments in quantum field theory demanded the development of large-scale supercon-
ducting magnets, which later allowed for the invention of the MRI scanners found at
hospitals all around the world. It is in this way that the pursuit of quantum field theory
leaves behind ideas and technologies that can be used by other disciplines of science or
medicine, like a kind family who plow the snow off their neighbour’s driveway. These are
just a few examples of how discoveries in quantum field theory can have a positive impact
on our everyday life.

The modern description of quantum field theory dates back to the 1960’s, when it was
discovered that protons and neutrons are not indivisible as was previously thought. Rather,
they have constituent particles called quarks, which bind together in groups of three. The
strong force is what binds these quarks together, just like glue that holds objects together.
The particles which are responsible for this type of interaction are aptly named gluons,
and their behaviour is described by quantum field theory. Without the presence of the
strong force, quarks would not come together to form the protons and neutrons that make
up everything we see around us. These miniature glue particles are necessary to our entire
existence.

Making calculations in quantum field theory is very cumbersome, so particle collisions are
often studied using computer simulations. Like a busy traffic intersection at rush hour, the
insides of protons and neutrons are messy and chaotic. Quarks whiz around at velocities
close to the speed of light, while virtual particles pop in and out of existence, all held
together by an overflowing amount of gluons. Like cars, gluons have to be aware of their
surroundings on the way to their destination. And as traffic congests, the strength of
the interaction between gluons and quarks increases drastically. The aim of this thesis
is to address this subatomic traffic jam that arises in quantum field theory by reviewing
the Gribov Ambiguity. In particular, it investigates an over-counting problem that arises
because quarks and gluons can rotate in strange ways that other particles cannot, which
makes these kinds of particle collisions more complex than electromagnetic interactions.
The calculations in this thesis can, for instance, be used to modify the description of how
slow-moving gluons are transmitted through space and time. Hopefully, this could help
facilitate future computer simulations of particle collisions.
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1 Introduction

Gauge invariance is a property of physical theories that contain redundant degrees of
freedom that have no direct impact on observable quantities. Traditional examples include
shifts of the zero level of the electrostatic potential, which may be set arbitrarily without
affecting the electric field, or complex rotations of quantum mechanical wave functions
ψ → eiθψ, which leave the squared amplitude unchanged. These gauge transformations
have no resulting consequence on the equations of motion of the theory. Gauge invariance
is a key building block in the construction of quantum field theory (QFT). It is the property
that allows for the definition of force-carrying gauge fields, and describes how these fields
interact with the fundamental particles of the Standard Model.

Gauge theories are classified as Abelian or non-Abelian, depending on whether the gauge
transformations are commutative or not. Physically, this is manifested in a self-interaction
in the force-carrying field. Quantum electrodynamics (QED) is an Abelian theory, so
photons carry no electric charge and do not mutually scatter. Conversely, quantum chro-
modynamics (QCD) is a non-Abelian gauge theory, and consequently gluons interact with
each other in the gauge field. This property adds a significant degree of complexity to
non-Abelian gauge theories.

Another considerable difference between Abelian and non-Abelian gauge theories is re-
vealed during quantization of field theories. This is canonically implemented using the
formalism of creation and annihilation operators, however it can also be performed by
means of the functional integral formulation of QFT. While this approach is in many ways
rather convenient, it is unfortunately spoiled by gauge invariance. The gauge transfor-
mations of the field theory introduce extraneous degrees of freedom into the functional
integrals that cause them to diverge. In 1967, Faddeev and Popov [1] presented a gauge-
fixing procedure that was thought to cure the problem. However, ten years later Gribov [2]
showed that in a non-Abelian theory such as QCD, the Faddeev-Popov procedure fails to
completely fix the gauge. In essence this is an over-counting problem, and one must make
further restrictions to the functional integral in order to satisfactorily quantize the theory.
The only region which is free from Gribov ambiguities is a region called the fundamental
modular region Λ, however it is notoriously hard to specify and it remains unknown how
to implement this restriction into the functional integral [3]. The problem of the Gribov
ambiguities still remains unresolved.

This thesis will aim to reproduce the work by Gribov in a Minkowski spacetime. First,
section 2.2 will present the formalism of Abelian and non-Abelian gauge theories. Section
2.3 will then give an introduction to the path integral formulation of quantum mechanics.
In section 3.1, this formalism will be extended to functional integrals of field configurations,
with the aim to construct the generating functional of QED. This section will describe the
Faddeev-Popov gauge-fixing procedure, which shall remain the primary framework of the
thesis. Section 3.2 will further demonstrate the importance of the gauge-fixing procedures
in this framework, and it will be shown that gauge fixing is essential for the existence of
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a propagator. Section 4.1 will explain the Gribov problem in non-Abelian gauge theories.
Then, section 4.2 will give an explicit example of Gribov ambiguities in the Coulomb gauge
of SU(2), which will further serve as a proof that Gribov ambiguities are a general feature
of non-Abelian gauge theories. Section 5 will briefly discuss the relevance of these Gribov
copies for lattice simulations of QCD, and give a short overview of the restrictions to the
integration range that have been proposed to improve the gauge fixing.

2 Theoretical background

2.1 Conventions

This thesis adheres to the use of natural units, where c = ~ = 1. Further, it uses the
gµν = diag(1,−1,−1,−1) metric, and covariant/contravariant tensor notation.

xµ = (x0, x1, x2, x3)T ; xµ = (x0,−x1,−x2,−x3)

Finally, summation is implied on repeating indices according to Einstein’s convention,

aibi ≡
∑
i

aibi.

The Fourier transform in n dimensions is defined as

f̃(k) =

∫
eikxf(x) dnx,

f(x) =

∫
1

(2π)n
e−ikxf̃(k) dnk.

2.2 Gauge theories

2.2.1 Quantum electrodynamics

The Lagrangian (density) for electromagnetism is the square of the field strength tensor
(note that the current four-vector Jµ is set to zero),

LQED = −1

4
FµνF

µν , (2.1)

where F µν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor. It is apparent that
this Lagrangian (and consequently the equations of motion) are invariant under the gauge
transformation

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x), (2.2)

5



where α(x) is a sufficiently differentiable function that decays faster than 1/r as r → ∞.
Fermion fields are described by the Lagrangian [4]

Lf = ψ̄f (iγ
µDµ −m)ψf , (2.3)

where γµ are the Dirac matrices, and Dµ = ∂µ−igeAµ is the covariant derivative that arises
due to interaction with the gauge field. The strength of this interaction is determined
by the coupling constant ge. The fermion field ψf transforms under local U(1) gauge
transformations, which are recovered from α(x) by the exponential map

ψf → Uψf = eigeα(x)ψf . (2.4)

The field Aµ simultaneously transforms according to equation (2.2), leaving the fermion
Lagrangian invariant. The transformations U form a compact Lie group, which is said to
be Abelian since any two group elements commute.

2.2.2 Non-Abelian gauge theories

For Yang-Mills gauge theories the symmetry group is the non-Abelian SU(N). The weak
force has an SU(2) symmetry, while the strong force has an SU(3) symmetry. The pure
Yang-Mills Lagrangian is once again defined by the field strength tensor

LYM = −1

4
F a
µνF

µν,a, (2.5)

where F a
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν is the non-Abelian field strength tensor.a It can

also be written in terms of the commutator Fµν = i
gs

[Dµ, Dν ], where Dµ = ∂µ − igsAµ is
the non-Abelian covariant derivative. The gauge field Aµ is now a vector in the Lie algebra
of the group,b which is spanned by the traceless and Hermitian generators T a such that
Aµ = AaµT

a. The structure constants of the Lie group, denoted fabc, are defined by the
commutation relation between the generators according to

[T a, T b] = ifabcT c. (2.6)

The gauge transformations (Lie group elements) S are recovered from the Lie algebra by
the exponential map. Just like in the Abelian case, they act as gauge transformations on
fermions according to

ψf → Sψf = eigsα
a(x)Ta

ψf . (2.7)

Gauge invariance of the Lagrangian requires that the Aµ-field must simultaneously trans-
form according to

Aµ → A′µ = SAµS
† +

i

gs
S(∂µS

†). (2.8)

aThe subscript of gs is present simply as a reminder that this coupling constant is different from ge. It
could in principle be the coupling strength of any non-Abelian gauge theory, and it must not necessarily
be associated with the strong force.

bWhen acting in the Lie algebra, the covariant derivative acts according to Dab
µ = ∂aµδ

ab − gsfabcAcµ.
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It can be shown that the field strength tensor Fµν = F a
µνT

a consequently transforms as
follows

Fµν → F ′µν = SFµνS
†. (2.9)

2.3 Path integral formulation of quantum mechanics

This section introduces the path integral formalism to the unfamiliar reader, and it con-
cludes with the derivation of the propagator of a free particle in one dimension. We shall
see that this formalism recovers the same result as can be obtained with the canonical
quantization of quantum mechanics.

The path integral formalism can be thought of as a generalization of the double slit ex-
periment, where a screen with two thin slits restricts the path of a particle travelling from
a point xa in front of the screen to some point xb behind it. An interference pattern is
created behind the screen, due to the superposition of the complex phases of the two paths.
By introducing more slits, one can gradually lift the restriction on the path of the particle.
One can consider the limiting case where the number of slits tends to infinity, and the
particle can travel freely along any path xa → xb. This limit resembles the case where the
screen is removed entirely, so the propagation of a free particle can be found by integrating
over all possible paths. We note that no path is more important than any other, so the
total propagator G is a sum of the phases of the individual paths,a

G(xa, xb;T ) =
∑

all paths

ei·(phase) =

∫
Dx(t) ei·(phase). (2.10)

The expression
∫
Dx(t) is an integral over all possible paths from xa to xb. The integrand

ei·(phase) is called a functional, as it depends on the path x(t).

The phase is associated with the action from classical mechanics, S =
∫
L dt.b This can

be seen by considering the classical path, where the classical action is stationary under a
small variation of this path, by construction. Similarly, the phase should also be stationary
under the small variation from this path, so one can equate these two quantities [5].

Path integrals of this kind are evaluated by discretizing the time T into a sequence of time
intervals of duration ε. At each time-slice, the particle has some position xk (see figure 1).
The path integral thus becomes a product of integrals of position,∫

Dx(t) =
1

C(ε)

∫
dx1

C(ε)

∫
dx2

C(ε)

∫
dx3

C(ε)
...

∫
dxN−1

C(ε)
=

1

C(ε)

N−1∏
k=1

∫
dxk
C(ε)

, (2.11)

where the constant is C(ε) =
√

2πε
−im [5]. The continuum limit is recovered when N →∞,

or equivalently, ε→ 0.

aWe further note that the propagator can be written in bra-ket notation as G(xa, xb;T ) =

〈xb|e−iĤT |xa〉.
bThere is conventionally a factor of 1/~ included here. However, in our set of units ~ = 1 is omitted.
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Figure 1: The functional integral is discretized into time slices. At each slice, the particle
has some position xk.

Note that this procedure integrates over all imaginable paths, even those that are unphys-
ical. However, when the action is sufficiently large (S >> 1) the functional eiS is rapidly
oscillating. For any such path there is a neighbouring path with the opposite phase, so
these paths give on average zero contribution to the path integral [5]. The only paths which
are not compensated for are those that lie sufficiently close to the classical path. That is,
only the paths where xk+1 ≈ xk will have a non-vanishing contribution to the integral.

As an example of how to evaluate a path integral, we consider a free particle travelling
along one dimension from point xa to point xb in time T . The action is similarly discretized
in slices of time ε,

S =

∫
mẋ2

2
dt −→

N−1∑
k=0

m

2

(xk+1 − xk)2

ε
. (2.12)

The path integral can then be calculated by performing the integrals over xk independently,

G(xa, xb;T ) =

∫
Dx(t) eiS[x(t)] =

1

C(ε)N

N−1∏
k=1

∫
dxk e

∑N−1
k=0

im
2ε

(xk+1−xk)2 . (2.13)

We perform the integrals inductively, first considering the integral over x1,∫
dx1 e

im
2ε

(x1−xa)2+ im
2ε

(x2−x1)2 =

√
πε

im
e

im
4ε

(x2−xa)2 , (2.14)

where we have used the identity (C.2) and completed the square in the exponent. The
same steps are taken when performing the integrals over the other coordinates xk. The
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process is rather arduous, but for a general coordinate xn we find that∫
dxn e

im
2nε

(xn−xa)2+ im
2ε

(xn+1−xn)2 =

√
2πε

im

√
n

n+ 1
e

im
2(n+1)ε

(xn+1−xa)2 . (2.15)

Performing all of the integrals in succession thus yields

G(xa, xb;T ) =
1

C(ε)N
1√
N

√
2πε

−im

N−1

e
im
2Nε

(xb−xa)2 . (2.16)

Evidently, the initial and final positions x0 and xN are not integrated over, as they are the

fixed endpoints xa and xb. We can simplify the answer by recalling that C(ε) =
√

2πε
−im .

Finally, the continuum limit is recovered by letting N →∞, keeping in mind that Nε = T ,

G(xa, xb;T ) =

√
−im
2πT

e
im
2T

(xb−xa)2 . (2.17)

This is the standard result for the propagator of a free particle. The canonical derivation
of the same result can be found in Sakurai section 2.6 [6].

The result of this calculation agrees with the claim that the path integral formulation of
quantum mechanics is equivalent to the canonical formulation. This is further justified
in appendix A, where it is shown that the path integral satisfies the Schrödinger equa-
tion, even for a general potential. However, as demonstrated by this example, the path
integral formulation is typically more laborious than canonical methods when solving un-
complicated problems like a free particle. On the contrary, one of the main benefits of
this formalism is in QFT, where it yields an easy route to quantization, as shown in the
following section.

3 Functional integral methods in quantum electrody-

namics

The following two subsections will describe the quantization of electrodynamics using the
functional integral formalism introduced in the previous section. In order to construct
QED, we must describe the time evolution of the gauge field. The important quantity
then is the propagator, which is conveniently calculated using functional integrals. We will
derive the photon propagator in Feynman gauge in section 3.2, but we shall see that gauge
invariance spoils the equation of motion. Therefore, the gauge-fixing procedure introduced
by Faddeev and Popov must first be demonstrated.

3.1 Faddeev-Popov procedure in QED

In QFT, the functional integral formalism does not integrate over paths x(t); rather, it
integrates over all possible field configurations Aµ(x). The four components are considered
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as separate scalar fields, so the integration measure reads DA = DA0DA1DA2DA3. In the
previous section, it was shown how the path integral formalism adds the complex phases
of all paths. By analogy, one could naively attempt evaluate a functional integral over all
field configurations by defining the generating functional W as follows

W =

∫
DAeiS[A]. (3.1)

However, this approach does not work because the integral is badly divergent. To show
this, consider the action S =

∫
L d4x, which can be expressed as

S = −1

4

∫
FµνF

µν d4x

= −1

4

∫
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ) d4x

=
1

4

∫ (
Aν∂µ∂

µAν + Aµ∂ν∂
νAµ − Aµ∂ν∂µAν − Aν∂µ∂νAµ

)
d4x

=
1

2

∫
Aν(x)

(
∂2gµν − ∂ν∂µ

)
Aµ(x) d4x,

(3.2)

where the third step uses integration by parts. Clearly, the action vanishes for any field
that satisfies Aµ = ∂µα(x).a Comparing to equation (2.2), we see that these fields are
related to each other by a gauge transformation, and are all physically equivalent to the
field Aµ = 0. These fields form an equivalence class called a gauge orbit, along which
the Lagrangian is constant. The functional integral in equation (3.1) considers all fields
in the gauge orbit that intersects Aµ = 0, and as a result there are an infinite number of
field configurations for which the functional in equation (3.1) is unity. Consequently, the
functional integral diverges. The significance of this is further discussed in section 3.2.

A remedy to this problem was first proposed by Faddeev and Popov in 1967 [1]. Their
procedure restricted the functional integral to only consider one representative from each
gauge orbit by a gauge-fixing procedure. A conventional choice is the Lorenz gauge, where
the four-divergence of Aµ is zero at every point in spacetime. It is customary to introduce
a function G(A) = ∂µAµ. The gauge-fixing condition δ(G(A′)) = δ(∂µAµ+∂2α) constrains
the functional integral to only consider fields in the Lorenz gauge, which removes the
redundant degrees of freedom. One can do so by making use of the identityb

1 ≡
∫
Dα(x) δ(G(A′)) det

(
δG(A′)

δα

)
. (3.3)

The determinant is called the Faddeev-Popov determinant, which in the Lorenz gauge
reduces to det(∂2). The operator ∂2 is similarly called the Faddeev-Popov operator, and

aThis fact is already evident on the first line of equation (3.2), since Fµν is gauge invariant in an Abelian
theory. The subsequent calculations in equation (3.2) are included for later reference.

bThis identity is discussed in Appendix B.
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it will be encountered again in section 4.1. For the present discussion, it suffices to remark
that this determinant is independent of α, so it can be treated as a constant in the functional
integral.

The gauge-fixing condition is employed by inserting the identity (3.3) into the functional
integral from equation (3.1),

W = det
(
∂2
) ∫
Dα

∫
DA eiS[A]δ(G(A′)). (3.4)

This integral can be simplified by gauge transforming all of the fields Aµ → A′µ.a The
transformed field A′ subsequently becomes a dummy variable which is integrated over, so
it may be renamed back to A. We arrive at

W = det
(
∂2
) ∫
Dα

∫
DA eiS[A]δ(G(A)). (3.5)

To progress further, we generalize the gauge-fixing condition to δ(∂µAµ − ω(x)), where
ω(x) is an arbitrary scalar function. Since observable quantities are gauge invariant, we
can integrate over all functions ω(x) with a Gaussian weight factor as the functional [4],

W = det
(
∂2
) ∫
Dα

∫
DA eiS[A] N(ξ)

∫
Dω exp

(
−i
∫
d4x

ω2

2ξ

)
δ
(
G(A)− ω(x)

)
= N(ξ) det(∂2)

∫
Dα

∫
DA eiS[A] exp

(
−i
∫

(∂µAµ)2

2ξ
d4x

)
.

(3.6)

The parameter ξ determines the gauge, and the factor N(ξ) is present in order to normalize
the Gaussian distribution. Conventional gauge choices include Landau gauge ξ → 0+

(which is equivalent to Lorenz gauge) or Feynman gauge ξ = 1.

This concludes the derivation of the Faddeev-Popov procedure of quantization of the elec-
tromagnetic field. Effectively, the Faddeev-Popov procedure has added a gauge fixing term
to the Lagrangian,

L = −1

4
FµνF

µν −→ Lconstrained = −1

4
FµνF

µν − (∂µAµ)2

2ξ
. (3.7)

It must also be mentioned that the normalization of the integral in equation (3.6) remains
unexplored. The properties of the prefactors N(ξ) and det(∂2) have not been discussed,
and the divergent integral over α(x) lingers as an infinite multiplicative constant. How-
ever, when calculating expectation values of gauge invariant operators the prefactors are
unimportant—they appear both in the numerator and the denominator when calculating

vacuum expectation values of the kind 〈Â〉 = 〈Ω|Â|Ω〉
〈Ω|Ω〉 . This is further discussed in Peskin

and Schröder [4].

aThe gauge transformations form a group, so this transformation must have an inverse. It is clear,
then, that this reproduces the integration measure, so DAµ = DA′µ is a simple shift of variables.
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Finally, it is pertinent to mention that the Lorenz gauge condition ∂µAµ = 0 does not
completely fix the gauge. It appears there is still room for gauge transformations Aµ → A′µ,
so long as the gauge parameter α(x) satisfies the Laplace equation ∂2α = 0. However, as
pointed out by Gribov, this gauge freedom is eliminated by the requirement that α(x) must
vanish appropriately at infinity [2].

3.2 The photon propagator

Section 2.3 ended with a derivation of the propagator of a free particle in quantum me-
chanics. It would therefore be appropriate to derive the photon propagator in the Feynman
gauge, as a conclusion to the discussion on QED. This section will also serve to demon-
strate how imperative the Faddeev-Popov procedure is to quantization, for without it the
theory would not have a well-defined propagator. This final discussion in particular will
lay the foundation for the treatment of non-Abelian gauge fixing in section 4.

The equations of motion of the Aµ-field can be calculated using the Euler-Lagrange equa-
tion. We first consider the unrestricted Lagrangian L = −1

4
FµνF

µν , for which the equations
of motion read ∂µFµν = 0. Expanding the field strength tensor yields(

∂2gµν − ∂µ∂ν
)
Aµ = 0. (3.8)

We define the linear operator L = (∂2gµν − ∂µ∂ν), which appeared before in equation (3.2).
The equations of motion can be solved if one finds a propagator Dνρ

F , that is, a Green’s
function of this operator. It must satisfy(

∂2gµν − ∂µ∂ν
)
Dνρ
F (x− y) = iδρµδ

(4)(x− y), (3.9)

or by Fourier transformation (
−k2gµν + kµkν

)
D̃νρ
F (k) = iδρµ. (3.10)

However, the operator L is not invertible, and thus it has no Green’s function. This comes
as a direct consequence of the fact that the equations of motion are underdetermined.
If Aµ satisfies equation (3.8) then so does any gauge transformed field A′µ = Aµ + ∂µα.
These are the same troublesome fields that caused the action in equation (3.2) to vanish.
The unphysical degrees of freedom caused by gauge invariance mean that the equations of
motion do not uniquely specify the time evolution of the system. This is, in fact, the very
definition of gauge invariance.

By contrast, when the gauge fixing term is added to the Lagrangian, the equations of
motion instead read (

∂2gµν − (1− 1

ξ
)∂µ∂ν

)
Aµ = 0. (3.11)

This leads to a modification of equation (3.10), so the propagator must now satisfy(
−k2gµν + (1− 1

ξ
)kµkν

)
D̃νρ
F (k) = iδρµ. (3.12)
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In the Feynman gauge ξ = 1, the solution to this equation is

D̃νρ
F (k) =

−igνρ

k2 + iε
, (3.13)

where the term iε in the denominator is present as a choice of contour. This is the standard
result for the photon propagator in Feynman gauge, and it can also be found in Weinberg
section 8.5 [7].

We have thus demonstrated the importance of gauge fixing in QED. We note that the
particular gauge-fixing condition is not important for the existence of a propagator; it
is evident in equation (3.11) that the propagator exists for any choice of ξ. While the
choice of the gauge parameter certainly modifies the Feynman rules, observable quantities
ultimately remain unaffected. The important requirement is that the gauge condition must
intersect each gauge orbit exactly once. However, as we shall see in the next section, it is
not possible do to so in non-Abelian gauge theories.

4 Functional integral methods in non-Abelian gauge

theories

4.1 The Gribov ambiguity

We have seen that the Faddeev-Popov procedure has been successful in quantizing the
photon field. One would like to carry out the quantization of non-Abelian fields using the
same procedure. The analogous gauge-fixing condition ∂µAµ = 0 is known as the Landau
gauge. We consider a functional integral similar to equation (3.5),

W =

∫
Dα

∫
DA exp

(
− i

4

∫
FµνF

µν d4x

)
δ(∂µA

µ) det
(
Mab(A)

)
. (4.1)

where M(A) = −∂µDµ = −∂2 · + igs[Aµ, ∂
µ · ] is the non-Abelian generalization of the

Faddeev-Popov operator.a We note that the determinant has been left inside the integral
as it depends on A.

However, as pointed out by Gribov [2], this procedure does not uniquely fix the gauge.
In non-Abelian gauge theories there exist multiple fields in the same gauge orbit that sat-
isfy the same gauge-fixing condition. Figure 2 below shows the possible ways in which a
gauge-fixing condition can intersect some gauge orbits L, L′ and L′′. Each gauge orbit
is constructed by acting on a particular field configuration with all of the gauge transfor-
mations, such that the Lagrangian is constant along a given orbit. The Faddeev-Popov
procedure should select one representative from each gauge orbit, so only orbits of the type
L are desired. However, in non-Abelian gauge theories there also exist orbits of the type

a In component form, the operator reads Mab = (∂2δab − ∂µgsfabcAcµ)
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L′. There are no orbits of the type L′′. Figure 2 shows that the field Aµ has a Gribov copy
A′µ, and the Faddeev-Popov procedure integrates over both configurations.

Figure 2: Schematic drawing of the functional space, where the axes show the longitudinal
and transverse components of the field. The gauge-fixing condition ∂µAµ = f should
intersect each gauge orbit exactly once, however the orbit L′ is intersected at two distinct
fields Aµ and A′µ.

To show this, let Aµ satisfy the Landau gauge condition ∂µAµ = 0 and consider a gauge
transformation A′µ = SAµS

† + i
gs
S(∂µS

†). The divergence of the transformed field is

∂µA′µ = ∂µ
(
SAµS

† +
i

gs
S(∂µS

†)

)
= (∂µS)AµS

† + SAµ(∂µS†) +
i

gs
(∂µS)(∂µS†) +

i

gs
S(∂2S†).

(4.2)

Therefore, if S satisfies the equation

(∂µS)AµS
† + SAµ(∂µS†) +

i

gs
(∂µS)(∂µS†) +

i

gs
S(∂2S†) = 0, (4.3)

then ∂µA′µ = 0, and the gauge transformed field is a Gribov copy of Aµ. We investigate
this condition by linearizing S ≈ 1 + igsα and discarding terms proportional to α2. The
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expression reduces toa

0 = igs(∂
µα)Aµ − igsAµ(∂µα) + ∂2α

= ∂2α− igs[Aµ, ∂µα]

= −M(A)α.

(4.4)

So, for gauge transformations close to unity, it appears that the existence of Gribov copies
is governed by the solutions to the equation −M(A)α = 0. This is an eigenvalue equation
for the Faddeev-Popov operator

− ∂2α + igs[Aµ, ∂
µα] = ε(A)α. (4.5)

As pointed out in a paper by Sobreiro and Sorella [8], this eigenvalue equation can be
thought to resemble the Schrödinger equation, where the gauge field Aµ plays the role
of a potential. Therefore, we can use what is known about solutions to the Schrödinger
equation to discuss properties of equation (4.5).

We first note that the potential term could be attractive or repulsive, depending on the
direction of Aµ. For Aµ-fields with a particular direction and a particular magnitude,
equation (4.5) can have solutions with eigenvalue ε1(A) = 0, which can be thought of as a
bound state of a potential well. These fields lie on the first Gribov horizon, denoted l1 in
figure 3 on the next page. For even larger magnitude gauge fields Aµ the eigenvalue becomes
increasingly negative, until a second bound state appears with eigenvalue ε2(A) = 0. This
set of fields lie on the second horizon l2. These horizons divide the functional space into
regions denoted C0, C1, ..., Cn where the Faddeev-Popov operator has 0, 1, ..., n negative
eigenvalues, respectively. The Gribov regions and horizons are sketched in figure 3.

Finally, many authors point out that Gribov ambiguities are present in all non-Abelian
gauge theories [2, 3, 8]. This fact shall be formally proven in the next section, where
the example of Gribov copies in SU(2) is worked out in detail. Hall [9] writes that every
compact, non-Abelian Lie group has an SU(2) subgroup, so the problem must persist in all
non-Abelian gauge theories. Furthermore, Singer [10] showed that the existence of Gribov
ambiguities is independent of the choice of gauge-fixing condition. The example in the
next section will be worked out in the Coulomb gauge for convenience, however there is
thus no other choice of gauge-fixing condition that would remove the Gribov copies.

aNote that we also discard terms proportional to (∂µα)2 and α(∂µα).
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Figure 3: The Gribov regions Cn, divided by the Gribov horizons ln. At each horizon the
operator has a zero eigenvalue, and consequently the Faddeev-Popov determinant vanishes.

4.2 The Gribov pendulum

This section will explore the properties of the simplest examples of Gribov copies. As
mentioned, we consider a three-dimensional gauge field in the Coulomb gauge (∂iAi = 0),
for the gauge group SU(2). As the time-like component of Aµ has been disregarded, the
metric is for this section taken to be Euclidean, gij = δij.

The generators of SU(2) are the Pauli matrices σi (divided by two),

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.6)

The Pauli matrices satisfy the relation

σiσj = δij + iεijkσk, (4.7)

where εijk is the Levi-Civita tensor.

This section will contain a significant amount of algebra. To simplify the calculations, the
gauge field is assumed to be spherically symmetric, Ai = Ai(r). We define the unit vector
ni = xi/r, and the corresponding Lie algebra vector n̂ = injσj. Identity (4.7) allows us to
calculate

(~n · ~σ)2 = niσinjσj = 1, n̂2 = −niσinjσj = −1. (4.8)
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We consider a Gribov copy A′i(r), which must lie in the same gauge orbit and also satisfy
the same gauge condition,

A′i = SAiS
† +

i

gs
S(∂iS

†), (4.9)

∂iA
′
i = ∂iAi. (4.10)

Since Ai is a three-dimensional gauge field, it is described by three independent parameters.
As it is spherically symmetric, we can employ Gribov’s parametrization [2] as an ansatz,

Ai(r) = if1(r)(∂in̂) + if2(r)n̂(∂in̂) + if3(r)n̂ni, (4.11)

where ∂in̂ = ∂n̂
∂xi

. Note that a factor of i has been included, to ensure that the parameters
f1,2,3(r) are real-valued. A′i is similarly parametrized by

A′i(r) = if ′1(r)(∂in̂) + if ′2(r)n̂(∂in̂) + if ′3(r)n̂ni (4.12)

We recover a gauge transformation from α(r) by the exponentiation S = eigsα(r)(~n·~σ/2),

S = eigsα(r)(~n·~σ/2) = cos
gsα

2
+ n̂ sin

gsα

2

S† = e−igsα(r)(~n·~σ/2) = cos
gsα

2
− n̂ sin

gsα

2
.

(4.13)

The gauge transformation from equation (4.9) can thus be expanded using equations (4.11)
and (4.13).

A′i = SAiS
† +

i

gs
S(∂iS

†)

=

(
cos

gsα

2
+ n̂ sin

gsα

2

)(
if1(r)(∂in̂) + if2(r)n̂(∂in̂) + if3(r)n̂ni

)(
cos

gsα

2
− n̂ sin

gsα

2

)
+

i

gs

(
cos

gsα

2
+ n̂ sin

gsα

2

)((
− sin

gsα

2
− n̂ cos

gsα

2

)gs
2

(∂iα)− (∂in̂) sin
gsα

2

)
(4.14)

We perform the multiplication, and simplify the expression with the help of the identities
(C.3), (C.4) and (C.9) in the Appendix. We obtain

A′i =

(
if1 cos(gsα)−

(
if2 +

i

2gs

)
sin(gsα)

)
(∂in̂)

+

((
if2 +

i

2gs

)
cos(gsα) + if1 sin(gsα)− i

2gs

)
n̂(∂in̂)

+

(
if3 −

i

2

∂α

∂r

)
n̂ni.

(4.15)
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We can therefore identify

f ′1 = f1 cos(gsα)−
(
f2 +

1

2gs

)
sin(gsα)

f ′2 =
(
f2 +

1

2gs

)
cos(gsα) + f1 sin(gsα)− 1

2gs

f ′3 = f3 −
1

2

∂α

∂r

(4.16)

We have thus found a description of how the parameters f(r) transform under a gauge
transformation. Next, the divergence of Ai can be addressed. Using the identities (C.3),
(C.5), (C.6), (C.7) and (C.8) we find that the divergence reduces to

∂iAi = i
∂f3

∂r
n̂+

2i

r
f3n̂−

2i

r2
f1n̂ (4.17)

and equivalently

∂iA
′
i = i

∂f ′3
∂r

n̂+
2i

r
f ′3n̂−

2i

r2
f ′1n̂. (4.18)

We demand that Gribov copies must have the same divergence, ∂iAi = ∂iA
′
i. By inserting

the transformation law of the parameters from equation (4.16), we find the differential
equation

∂2α(r)

∂r2
+

2

r

∂α(r)

∂r
− 4

r2

[(
f2 +

1

2gs

)
sin(gsα)− f1

(
cos(gsα)− 1

)]
= 0. (4.19)

Finally, we can multiply both sides by gs, and get rid of the unfortunate prefactors by
substitution of variables τ = log(r),

∂2
(
gsα
)

∂τ 2
+
∂
(
geα
)

∂τ
−
[(

4gsf2 + 2
)

sin(gsα)− 4gsf1

(
cos(gsα)− 1

)]
= 0. (4.20)

This is the equation of a damped pendulum, and consequently it is known as the Gribov
pendulum. The parameters f1, f2 in the gauge field can be viewed as external agents
acting on the pendulum as driving forces. In addition, there is a constant force acting
”downwards” on the pendulum, as shown in figure 4. As it is the equations of motion of
a pendulum, we know that it must always have solutions even for arbitrary parameters
f1, f2. The variable τ can be seen as a time coordinate that describes the evolution of the
pendulum.
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Figure 4: Equation (4.20) describes a damped pendulum, whose angle gsα evolves as a
function of the time coordinate τ .

4.3 Dynamics of the Gribov pendulum

We shall now discuss the properties of the solutions gsα(eτ ), which in turn will give insight
into the nature of the Gribov copies A′i. While it is not possible to solve the differential
equation (4.20) analytically, we shall turn our attention to a discussion on the boundary
conditions of the gauge field as τ → ±∞.

We require that the gauge field Ai must be regular on the domain, meaning that it must
be differentiable and cannot contain singularities. We note that the quantity ∂in̂ = ∂n̂

∂xi
diverges close to the origin, because the unit vector n̂ is very sensitive to displacements in
xi. Looking at the parametrization of the field from equation (4.11), we thus demand that
the parameters f1, f2 → 0 as τ → −∞, for any other values of these parameters would
introduce a singularity into the gauge field at the origin. Then, we introduce two kinds of
boundary conditions at τ →∞,

Weak boundary condition (WBC): Ai decays as 1/eτ as τ →∞,
Strong boundary condition (SBC): Ai decays faster than 1/eτ as τ →∞.

(4.21)

We note that ∂in̂ ∼ 1/eτ as τ →∞, and hence the demands on the parameters f1, f2 are
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as follows

WBC demands that f(eτ )→ C as τ →∞,
SBC demands that f(eτ )→ 0 as τ →∞.

(4.22)

We first investigate the vacuum field where f1 = f2 = f3 = 0. The equation of the Gribov
pendulum (4.20) simplifies to

∂2
(
gsα
)

∂τ 2
+
∂
(
gsα
)

∂τ
− 2 sin(gsα) = 0, (4.23)

and the parametrization of A′i reduces to

A′i(e
τ ) = − i

2gs
sin(gsα)(∂in̂) +

i

2gs
(cos(gsα)− 1) n̂(∂in̂)− i

2r

∂α

∂τ
n̂ni (4.24)

The regularity condition on the Gribov copy A′i at the origin implies that sin(gsα) and(
cos(gsα) − 1

)
must vanish as τ → −∞, to remove the contribution from the diverging

quantity ∂in̂. This implies that the power series expansion of (gsα) in terms of eτ must
satisfy

gsα(eτ ) ∼ 2πn+ γeτ +O
(
(eτ )2

)
as τ → −∞, (4.25)

for some integer n and a real number γ. Hence, the pendulum must start at the unstable
equilibrium position at the top of figure 4. The angular velocity at the start is

∂

∂τ

(
gsα(eτ )

)
∼ γeτ +O

(
(eτ )2

)
as τ → −∞. (4.26)

Neglecting higher order terms, we note that the value of γ determines the initial conditions
of the pendulum. We first consider γ > 0, in which case the initial angular velocity γeτ

must point to the right in figure 4. As a consequence, the pendulum will leave the unstable
equilibrium and perform some number of oscillations in the field. The damping term
eventually brings the pendulum to a stop at the stable equilibrium at the bottom of figure
4. Therefore, at the boundary τ →∞ the solution must behave according to

gsα(eτ ) ∼ (2m+ 1)π as τ →∞. (4.27)

Next, we note that the case γ < 0 will describe the motion of a pendulum that instead falls
to the left in figure 4. Although the sign of the solution gsα changes, the behaviour of the
pendulum will otherwise be the same. This is a manifestation of the fact that whenever
gsα is a solution to equation (4.23), then −gsα must also solve the same equation. Thus,
the case where γ is negative only reproduces the same solutions as when γ was taken to be
positive. Finally, if γ = 0 the pendulum will remain at rest at the top of figure 4, and the
solution gsα(eτ ) = 2πn corresponds to the trivial transformations S = ±1. These gauge
transformation simply map Ai to itself. It therefore suffices to only consider the case γ > 0.
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Plugging equation (4.27) into equation (4.24), we see that the Gribov copy A′i must behave
like

A′i(e
τ ) ∼

(
cos
(
(2m+ 1)π

)
− 1
)
n̂(∂in̂) ∼ 1

eτ
as τ →∞. (4.28)

So, even though Ai = 0 satisfies the SBC, the Gribov copy A′i only satisfies the WBC.
As discussed previously, in this approach to quantization we demand that the gauge field
must obey the SBC. We have thus shown that the vacuum field Ai = 0 has no Gribov copy,
given this restriction.

However, there are circumstances which can create Gribov copies that satisfy the SBC.
Consider the field Ai parametrized by f1 = f3 = 0 and f2 = f2(eτ ). In this case, the
condition ∂iA

′
i = 0 instead reads

∂2
(
gsα
)

∂τ 2
+
∂
(
gsα
)

∂τ
−
(

4gsf2 + 2

)
sin(gsα) = 0, (4.29)

Just like before, we demand that f2 → 0 as τ → −∞, so the pendulum must start at the
unstable equilibrium position at the top of figure 4. It may then perform some oscillations
in the field. However, if f2 < − 1

2gs
for a significant interval of time τ , then this force acts

to asymptotically restore the pendulum to the unstable equilibrium position at the top of
the figure. The damping term helps ensure that the displacement of the pendulum decays
exponentially. As a result, the pendulum will remain at the unstable equilibrium even as
τ →∞, in which case

gsα(eτ ) = 2πn as τ →∞. (4.30)

Putting this back into the parametrization of A′i, we see that it now satisfies the SBC,
as required. We conclude that any field Ai for which

∫
f2(eτ ) dτ is sufficiently large (and

negative) will have a Gribov copy. This proves that Gribov ambiguities are present in
the Coulomb gauge of SU(2). Together with the results from Hall [9] and Singer [10], the
preceding derivation completes a formal proof that Gribov ambiguities exist in all gauges
of all compact, non-Abelian gauge theories.

5 Discussion

We turn our attention to a discussion on the consequences of the Gribov ambiguity. We
have shown in section 4 that Gribov ambiguities exist in all non-Abelian gauge theories,
however it turns out that they are more consequential in some gauge theories than in others.
It is evident in equation (4.5) that the magnitude of the coupling constant gs determines
the strength of the interaction between Aµ and ∂µα. The coupling affects what particular
magnitude Aµ must have in order to create zero-modes for the Faddeev-Popov operator,
so Gribov ambiguities will be particularly significant in strongly interacting theories. For
instance, Gribov ambiguities are of little relevance when simulating weak interactions,
because the Gribov horizons are far away from the origin in configuration space. Conversely,
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they are perhaps a more important consideration when simulating strong interactions,
particularly in the infrared due to the running coupling of the theory.

The Gribov problem is of particular significance in lattice gauge theory, where spacetime
is discretized in order to allow for simulations. When implementing functional integrals in
these theories, it may be important to consider the effects of Gribov ambiguities to prevent
some physical fields from appearing multiple times in the simulations. For instance, a paper
by Silva and Oliveira [11] investigates a modification to the gluon propagator that arises
due to the presence of Gribov ambiguities. In particular, they used lattice simulations to
study the gluon propagator in the Landau gauge. Their results show that the existence of
Gribov copies modifies the lowest momenta components of the gluon propagator (q < 2.6
GeV), but that the effect is small (. 10%).

In section 3.2, it was established that a photon propagator could only be defined once a
gauge-fixing procedure had been implemented. This followed because gauge transforma-
tions could be made arbitrarily small, and consequently there were equivalent fields A′µ in
the neighbourhood of Aµ that satisfied the same equations of motion. As a result, no prop-
agator could uniquely describe the time evolution of the field, and it was necessary first to
eliminate the equivalent fields A′µ. One may wonder if the Gribov copies that appear in
QCD lead to a the same problem for the gluon propagator. However, that turns out not to
be the case, because every field will have a discrete number of Gribov copies. As is pointed
out in Gribov’s paper [2], the copies will likely be situated in an entirely different region
of configuration space, far away from Aµ (particularly in a weakly interacting theory, for
the reasons pointed out above). They then have little or no significance for the propaga-
tor,a which is a perturbative quantity. More generally, we can say that Gribov copies are
unimportant when treating QFT perturbatively.

Finally, we must discuss the possible resolutions to the Gribov problem. This serves to
give a bit more historical context to the study of Gribov ambiguities and the progress that
has been made in recent decades, but the details of these results are beyond the scope of
this project.

Gribov [2] attempted to resolve the problem of Gribov copies by restricting the integral
to only consider field configurations inside the first Gribov region C0 in figure 3. In this
region, the Faddeev-Popov operator has only positive eigenvalues,b so it can be defined as
the set of field configurations Aµ that satisfy

C0 =
{
Aµ : ∂µAµ = 0 and− ∂2 · +igs∂

µ[Aµ, · ] > 0
}
. (5.1)

It has been found that the region C0 is convex and bounded in every direction [12], such that
no arbitrarily large field configuration is present. In addition, it was shown by Dell’Antonio
and Zwanziger [13] that every gauge orbit intersects the Gribov region, so no physical

aBeyond, of course, the adjustment of the propagator that was observed in the infrared, where the
interaction was very strong.

bReturning to the analogy with the Schrödinger equation, we note that the fields in C0 correspond to
potential wells which are too shallow to have bound state solutions.
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configuration would be left out of the functional integral. Finally, while Gribov was aware
that fields Aµ ∈ C0 close to the boundary l1 had Gribov copies, he demonstrated that these
copies must lie in the region C1. For these reasons, restricting to the integration range to
C0 appeared an attractive option to resolve the Gribov ambiguity [2]. However, it turned
out that this restriction failed, because there are fields which have Gribov copies inside C0.
While Gribov himself was aware of this possibility, the conclusive proof of this fact was
first presented by Semenov-Tyan-Shanskii and Franke [14].

At present, it instead appears that a more appropriate endeavour to improve the gauge
fixing instead involves restricting the integration even further, to the fundamental modular
region Λ. From each gauge orbit, this region selects the configuration Aµ which lies closest

to the origin (i.e. the configuration that minimizes
∣∣∣∣Aaµ∣∣∣∣2 =

∣∣Tr
∫
d4xAaµA

µ,a
∣∣). The

region Λ is a proper subset of C0, so it inherits many of the important properties this
region has. Further, it has be shown [3] that the interior of the fundamental modular
region is intersected by every gauge orbit, as desired. Zwanziger also writes that every
gauge orbit has a unique global minimum in the interior of this region, which makes it free
from Gribov copies. However, it turns out that the boundary of Λ contains degenerate
minima, which give rise to Gribov copies on the boundary [3]. The boundary of Λ is hard
to specify exactly, and it is not yet known how to eliminate these Gribov copies [8].

6 Conclusion

This thesis has introduced the path integral formalism of quantum mechanics, and made
a connection to the canonical formulation. This formalism was subsequently expanded to
QFT, and the significance of the Faddeev-Popov gauge-fixing procedure was presented.
Then, the Gribov ambiguity was demonstrated, using SU(2) Yang-Mills theory as an ex-
plicit example. Subsequently, it was in short discussed that this problem results in a
modification of the gluon propagator at low energy scales. Finally, while the resolution to
the Gribov ambiguity remains a conundrum, current research suggests that it is possible
to define a region in the functional space which is free from Gribov copies.

A possible extension to this study would be to more thoroughly examine the properties
of the fundamental modular region Λ, and how one can restrict the functional integral
to this domain. A more detailed analysis could be based on the results from Zwanziger
[3, 12, 13, 15], who covers this topic comprehensively. In addition, it remains to be studied
in more detail what implications the Gribov ambiguity has for the gluon propagator. It
would be appropriate to verify that the modification found in the paper by Silva and
Oliveira [11] agrees with the theoretical calculation produced in the paper by Sobreiro and
Sorella [8].

Finally, it would be pertinent to investigate how gauge fixing of non-Abelian gauge theories
is performed. As we introduced in section 3.1, the restriction to the path integral is
implemented by adding a gauge fixing term to the action. However, gauge fixing of non-
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Abelian gauge theories necessitates the definition of Faddeev-Popov ghosts c and c̄, a topic
which has been left beyond the scope of this thesis. Studying these ghost fields would
perhaps give further insight into the properties of Gribov ambiguities.
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A Path integrals and the Schrödinger equation

In section 2.3 the propagator of a free particle was derived using the path integral formalism.
It can be straightforwardly shown that this propagator satisfies the Schrödinger equation.

i
∂

∂T

(√
−im
2πT

e
im
2T

(xa−xb)2

)
= − 1

2m

∂2

∂x2
a

(√
−im
2πT

e
im
2T

(xa−xb)2

)
(A.1)

We will now show that this is a general result. The path integral formulation satisfies the
Schrödinger equation even for a general potential V (x).

As demonstrated in section 2.3, functional integrals
∫
Dx(t) can be evaluated as a product

of position integrals
∏

j

∫
dxj. We consider the final integral over dx′ = dxN−1.

G(xa, xb;T ) =

∫
dx′

C(ε)
exp

[
im

2ε
(x′ − xb)2 − iεV

(
x′ + xb

2

)]
G(xa, x

′, T − ε) (A.2)

As discussed, we only consider paths for which x′ ≈ xb. It is therefore justified to Taylor
expand the final two terms around xb.

G(xa, xb;T ) =

∫
dx′

C(ε)
exp

(
im

2ε
(x′ − xb)2

)[
1− iεV (xb) +O(ε2)

]
×
[
1 + (x′ − xb)

∂

∂xb
+

1

2
(x′ − xb)2 ∂

2

∂x2
b

+O
(
(x′ − xb)3

)]
G(xa, xb, T − ε)

(A.3)

Using the Gaussian integral identities in equation (C.1), we obtain

G(xa, xb;T ) =

(
1− iεV (xb) +

iε

2m

∂2

∂x2
b

+ ...

)
G(xa, xb, T − ε) (A.4)

Rearranging and multiplying by i/ε yields

i
G(xa, xb;T )−G(xa, xb;T − ε)

ε
= V (xb)G(xa, xb;T )− 1

2m

∂2

∂x2
b

G(xa, xb;T ) (A.5)
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Taking the continuum limit ε→ 0 and restoring powers of ~, one obtains the Schrödinger
equation.

i~
∂

∂T
G(ax, xb;T ) =

[
−~2

2m

∂2

∂x2
b

+ V (xb)

]
G(xa, xb;T ). (A.6)

This justifies the statement that the path integral formulation is equivalent to other for-
malisms of non-relativistic quantum mechanics.

B Delta function identity

Consider a differentiable function f which vanishes at exactly one point x0 of the domain.
As discussed in section 13.1 of Riley [16], delta functions satisfy∣∣∣∣df(x)

dx

∣∣∣∣
x=x0

δ(f(x)) = δ(x− x0). (B.1)

Integrating over x on both sides yields∣∣∣∣df(x)

dx

∣∣∣∣
x=x0

∫
dx δ(f(x)) = 1 (B.2)

This result can be generalized to a vector field g(x) of n discrete variables. Let g(x0) = 0
and consider the first order Taylor expansion around x0

gi(x) = gi(x0)︸ ︷︷ ︸
=0

+
∑
j

Jij(x
j − xj0) + ... (B.3)

where Jij is the Jacobian matrix evaluated at x0. If the Jacobian is diagonalized and has
positive determinant, then

∑
j Jij(x

j − xj0) = Jii(x
i − xi0) and

∏
i |Jii| = det J . Thus

δ(n)(g(x)) =
∏
i

δ(gi(x)) =
∏
i

δ(Jii(a
i − ai0)) =

∏
i

δ(ai − ai0)

|Jii|
=
δ(n)(a− a0)

det J
(B.4)

Moving the determinant to the left side and integrating over all the variables dxj yields
the identity (∏

j

∫
dxj

)
δ(n)(g(x)) det

(
∂gi

∂xj

)
= 1 (B.5)

The identity (3.3) is the generalization of this identity for a continuous vector field.
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C General identities

Gaussian identities

The standard Gaussian integrals are [4]∫
e−ax

2

dx =

√
π

a
,

∫
xe−ax

2

dx = 0,

∫
x2e−ax

2

dx =
1

2a

√
π

a
. (C.1)

The first identity in equation (C.1) also implies that∫
e−ax

2+bx+cdx =

∫
e−a(x− b

2a
)2+ b2

4a
+c

=

(∫
e−ax

2

dx

)
e

b2

4a
+c

=

√
π

a
e

b2

4a
+c,

(C.2)

where the second line moves the constant exp
(
b2

4a
+ c
)

out from the integral, and changes

variables x→ x− b
2a

.

Gribov pendulum identities

First, we find that differentiating a radial function g(r) gives

∂ig(r) =
∂g(r)

∂xi
=
∂g(r)

∂r

∂r

∂xi
= g′(r)ni. (C.3)

We also note that
(∂in̂)n̂+ n̂(∂in̂) = ∂in̂

2 = 0,

and consequently
(∂in̂)n̂ = −n̂(∂in̂), n̂(∂in̂)n̂ = ∂in̂. (C.4)

We also need the following four identities for the normal vector in the Lie algebra.

∂ini = ∂i

(xi
r

)
=

(∂ixi)r − xi(∂ir)
r2

=
3r − xini

r2
=

3− n2
i

r
=

2

r
. (C.5)

(∂in̂)ni = i(∂inj)niσj = i
(∂ixj)r − xj(∂ir)

r2
niσj =

iδijniσj − injn2
iσj

r
= 0. (C.6)

(∂in̂)(∂in̂) = i2
(
δij

r
− ninj

r

)(
δik

r
− nink

r

)
σjσk =

−σiσi
r2

+
n̂2

r2
− n̂2

r2
− n̂2

r2
=
−2

r2
. (C.7)
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∂2n̂ = i∂i

(
δij

r
− ninj

r

)
σj = i

(
−δ

ijni
r2
− 2nj + 0− ninjni

r2

)
σj =

−2n̂

r2
. (C.8)

Finally, we recall the trigonometric identities

2 cos(x) sin(x) = sin(2x)

cos2(x)− sin2(x) = cos(2x)

1− 2 sin2(x) = cos(2x).

(C.9)
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