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Abstract

The framework for isogeometric analysis (IGA) is presented, especially the construc-
tion and use of non-uniform rational B-splines (NURBS) to represent geometry, and a
method utilizing IGA for structural optimization both for linear elastic and non-linear
elastic deformations is implemented. Topology optimization of a linear elastic can-
tilever is performed, showing that IGA is inefficient for topology optimization. Shape
optimization of the same cantilever, as well as two non-linear hyperelastic brackets,
is performed producing promising results. IGA is found to be efficient in represent-
ing geometries using fewer parameters than classic finite elements, allowing for shape
optimization with considerably fewer design variables. A pseudo-contact formulation
is implemented, and one of the brackets is optimized using this formulation, the re-
sults of which indicate that IGA shows promise for use with contact problems as well.
Some downsides to IGA are also found, resulting from the more complex geometry
representation that NURBS entail.
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1 Introduction

Structural optimization is the method by which the optimal size, shape, and topology
of a structure is found, given certain constraints in order to maximize desirable traits.
This is generally done through the use of finite element analysis (FEA), commonly
with triangular or rectangular elements. An alternative to theses polygonal elements
was suggested by Hughes et. al. in 2005 [1]. Their idea was to represent the geometry
using isogeometric elements based on non-uniform rational B-splines (NURBS), calling
this concept isogeometric analysis (IGA). A method for shape optimization using IGA
was developed by Wall et. al in 2008, but only considering small deformations [2].

The idea of using NURBS for representing complex geometries was suggested by
Versprille already in 1975 [3], built upon by Tiller in 1983 [4], and the theory was more
or less finalized by Piegl and Tiller in 1987 [5]. The benefit of using NURBS is its
ability to represent most geometries exactly, including circles and other conic sections,
thus eliminating the approximations necessary when constructing geometries from
polygons. A further motivation for the choice of using NURBS is that CAD software
already uses it for constructing geometries, and IGA would allow one to perform
optimization using output from CAD software with no changes to the geometry, and
the optimized structure could just as easily be transferred back into the CAD program.

An application where there is a need for exact geometry representation is for example
when modeling wave propagation, as can be seen in an 2018 article by Alberdi et. al.
dealing with phononic crystals [6]. In order to accurately model the wave propagation
the boundaries of the periodic structure in the crystal needs to be very smooth, and
IGA offers the ability to model this boundary very accurately while using substantially
fewer degrees of freedom than classic FEA.

This thesis aims to investigate what benefits and drawbacks IGA has compared to
classic FEA, with the main focus being on its usefulness for large deformation shape
optimization. Is it possible to achieve accurate results while keeping system matrices
small? What changes in computational cost are there when using IGA over classic
FEA? Does the use of NURBS for geometry representation present any new difficul-
ties?

The thesis will open with a fairly detailed description of NURBS, highlighting certain
strengths and weaknesses, in order to give a good basis for understanding the effects
the geometry representation has on the optimization process. A continuum description
of the governing equations will then be presented, both for linear and non-linear
elasticity. The NURBS based finite element formulation will be presented, once again
both for the case of linear and non-linear elasticity. To motivate the focus on shape
optimization, a short section where topology optimization of a cantilever is performed
is included where some drawbacks to IGA become apparent. As proof of concept a
simple shape optimization of a linear elastic cantilever is first done, before moving on
to the main focus of the thesis which is the shape optimization of large deformation
structures. This is done for two different geometries: a square bracket and a semi-
circular bracket. Finally, to demonstrate the strength of the geometry representation
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shape optimization of the same square bracket will be performed using a pseudo-
contact model.

2 Geometry representation using NURBS

Non-uniform rational B-splines (NURBS) are, as the names implies, based on ba-
sis splines (B-splines) which are polynomial functions that can be used to represent
curves, surfaces, and solids in physical space. Unlike with the classic FEM, geometries
can be represented exactly with NURBS and for most geometries NURBS allows for
substantially fewer elements to be used. Before moving on to NURBS, an introduction
of B-splines is necessary. A table of the nomenclature used in section 2 can be found
in appendix A.

2.1 B-splines

In one dimensional parameter space, B-splines are defined on a knot vector, which is a
set of non-decreasing coordinates, e.g. Ξ = [ξ1, ξ2, . . . ξn+p+1]. Here ξi is the ith knot,
i is the index, n is the number of basis functions, and p is the polynomial order of the
basis functions. The knot vector determines the shape of the basis functions, as well
as the number of elements that the represented curve (usually referred to as a patch)
is partitioned into. If the knots are all equally spaced then the knot vector is called
uniform.

The basis functions are defined recursively, starting with polynomials of degree zero.
The lowest order basis functions are thus constant functions that are non-zero only
over an interval [ξi, ξi+1), which is referred to as a knot span, according to

Ni,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise.
(2.1)

These are then used to create basis functions of higher order according to

Ni,p(ξ) =
(ξ − ξi)Ni,p−1(ξ)

ξi+p − ξi
+

(ξi+p+1 − ξ)Ni+1,p−1(ξ)

ξi+p+1 − ξi+1

, (2.2)

which is called the Cox-de Boor formula [7][8]. Using (2.2) directly becomes cumber-
some as the polynomial order increases, and more efficient algorithms, which are still
based on the Cox-De Boor formula, are available for computing the basis functions.
These algorithms will not be covered here but the ones that will be used have been
adapted from algorithms in The NURBS book [9].
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Figure 2.1: B-spline basis functions of order a) 0, b) 1, c) 2, defined on a uniform knot
vector Ξ = [0, 1, 2, 3, 4, . . . ].

Figure 2.1 shows the first three basis functions of order 0-2 defined on a uniform knot
vector Ξ = [0, 1, 2, 3, 4, . . . ]. A few observations should be made in this figure. First,
it is clear that increasing the order of the basis function by one also increases the
number of knot spans in which it has support by one. This can also be realized by
looking at (2.2) since each Ni,p(ξ) will be non-zero on the intervals where Ni,p−1(ξ)
and Ni+1,p−1(ξ) are non-zero. Secondly, each individual basis function is pointwise
non-negative everywhere. Thirdly, the basis is a partition of unity, that is, the sum of
all base functions at each point in the interval [ξp+1, ξn+1) is equal to one. The final
observation is that each basis function of order p has p−1 continuous derivatives across
knots, which means that the derivatives will be continuous across element boundaries
when used for analysis.

It is possible, and often useful, to define a non-uniform knot vector which will govern
the properties of the basis functions, and especially interesting are knot vectors where
certain knots appear more than once. An example of this is shown in figure 2.2
where the quadratic basis functions have been calculated for the knot vector Ξ =
[0, 0, 0, 1, 2, 3, 3, 4, 5, 5, 5]. A knot vector where the first and last knot is repeated p+1
times is called an open knot vector. An observation here is that while the quadratic
basis functions are generally C1-continuous, at ξ = 3 where we have the repeated knot
the curve is C0-continuous. It is a general rule when repeating knots that the basis
functions at that point will be Cp−mi-continuous, where mi is the multiplicity of the
knot. A result of the open knot vector is that the basis functions at the first and last
knot are C−1-continuous, i.e. discontinuous, which creates a natural boundary for the
patch.
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Figure 2.2: Quadratic B-spline basis functions defined on the knot vector Ξ =
[0, 0, 0, 1, 2, 3, 3, 4, 5, 5, 5].

Now that the basis functions have been properly introduced, it is possible to use them
to construct various geometries, starting with a simple curve. A B-spline curve C(ξ)
is given by

C(ξ) =
n∑
i=1

Ni,p(ξ)Bi (2.3)

where Bi ∈ Rd, i = 1, 2 . . . , n are the control points for the curve. An example of a
curve is shown in figure 2.3 using the basis functions from figure 2.2.

Figure 2.3: A B-spline curve (in black) constructed using quadratic base functions.
a) Red dots indicate control points. b) Red squares indicate knots which segment the
curve into elements.
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The control points are given in vector form as

Bi =
[
(1, 1) (2, 3) (3, 2) (5, 4) (4, 7) (3, 5) (1, 6) (1, 3)

]
.

In a) the curve is shown with the control points, and a result of the repeated knot
at ξ = 3 is visible here, namely that the curve becomes interpolatory at this point,
assuming the exact value of the corresponding control point. This is also true at
the beginning and end of the curve, as a result of the open knot vector. In b) the
knots have been marked instead, and the resulting segmentation produces elements
analogous to classic finite elements. The smoothness of the curve depends entirely on
the basis functions, and the benefit of repeating a knot and having C0-continuity is
shown here, in that sharp corners can be achieved.

Once the B-spline curve is constructed it is straightforward to create B-spline surfaces,
and by extension also solids which will however not be covered here. A B-spline surface
is defined in much the same way as a B-spline curve, but using two knot vectors to
create a two-dimensional parameter space. Control points are now connected in a
control net Bij, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and the two knot vectors are given by
Ξ = [ξ1, ξ2, . . . , ξn+p+1] and H = [η1, η2, . . . , ηm+q+1] with polynomial degrees p and q.
This then gives the B-spline surface as

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bij. (2.4)

An example using the knot vectors Ξ = [0, 0, 0, 0.5, 0.5, 1, 1, 1] and H = [0, 0, 0, 1, 1, 1]
is shown in figure 2.4: a) The control net, b) The patch in physical space and the two
resulting elements, c) The patch in parameter space, with the basis functions from
the two knot vectors. The control net is given in matrix form as

Bij =


(0, 0) (−1, 0) (−2, 0)
(0, 1) (−1, 1) (−2, 1)

(0.5, 1.5) (−1, 3) (−2, 4)
(1, 2) (1, 3) (1, 4)
(2, 2) (2, 3) (2, 4)


Like before, the repeated knot at ξ = 0.5, together with the open knot vector in the
η-direction, makes the surface interpolatory at all corresponding control points, which
are the two control points on the diagonal line in figure 2.4a) that lie on the edge of
the design.
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Figure 2.4: A B-spline surface constructed using quadratic base functions. a) The
control net. b) The patch in physical space and the two resulting elements. c) The
patch in parameter space, with the basis functions from the two knot vectors.

2.2 Knot insertion

One of the defining tools when working with NURBS is so called knot insertion. This
simply means adding knots to the knot vector, and calculating new basis functions and
control points in such a way that the geometry remains unchanged. This allows the
solution space to be refined as desired without having to rebuild the whole geometry
from scratch each time. From the definition of the knot vector we have that the
number of knots, N , can be written as

N = n+ p+ 1 ⇐⇒ n = N − p− 1 (2.5)
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which shows that adding a knot also adds one new basis function. Since the number of
control points is equal to the number of basis functions, a new control point must be
inserted. The new basis functions are simply calculated as before, using the Cox-de
Boor formula, but the new control points must be calculated from the old control
points so as to not disrupt the geometry. This is done similarly to the Cox-de Boor
formula according to

B̄ = T pB (2.6)

where B̄ are the updated control points, and the matrix T p is calculated according
to

T 0
ij =

{
1 ξj ≤ ξ̄i < ξj+1

0 otherwise.
(2.7)

and

T k+1
ij =

ξ̄i+k − ξj
ξj+k − ξj

T kij +
ξj+k+1 − ξ̄i+k
ξj+k+1 − ξj+1

T kij+1 (2.8)

where ξ̄i are the knots in the now expanded knot vector, and ξj are the knots in the
old knot vector. This is known as Boehm’s algorithm [10]. This algorithm only allows
for insertion of one knot at a time, but can of course be repeated for as many knots
as one wants. An example of knot insertion is shown in figure 2.5, where the curve
from figure 2.3 is unchanged after inserting one additional knot at ξ = 2.5.

Figure 2.5: The same geometry as shown in figure 2.3, with one additional knot
inserted at ξ = 2.5. a) The affected control points are shown in green. b) The
inserted knot is shown in green.
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The new control points are

Bi =
[
(1, 1) (2, 3) (3, 2) (4.5, 3.5) (4.5, 5.5) (3, 5) (1, 6) (1, 3)

]
.

and we see that most of the control points remain unchanged. This is of course because
the inserted knot only affects the basis functions which have support in that point,
while the rest remain the same. It can also be seen that the insertion of a new unique
knot results in the addition of a new element. A two dimensional example is shown in
figure 2.6, which uses the geometry from figure 2.4, with an additional knot inserted
at ξ = 0.25.

Figure 2.6: The same geometry as shown in figure 2.4, with one additional knot
inserted at ξ = 0.25. a) The new control net. b) The patch in physical space and the
three resulting elements. c) The patch in parameter space, with the basis functions
from the two knot vectors.
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2.3 NURBS

NURBS are an extension of the regular B-splines, which implies that B-splines are
a special case of NURBS. The basis functions used are defined from B-spline basis
functions, in conjunction with weighted control points. Similarly to (2.3) the param-
eterization of a curve is given by

C(ξ) =
n∑
i=1

Ni,p(ξ)wi
W (ξ)

Bi =
n∑
i=1

Rp
i (ξ)Bi (2.9)

where Rp
i is the NURBS basis function, wi is the weight of the ith control point, and

W (ξ) is the weighting function, defined as

W (ξ) =
n∑
i=1

Ni,p(ξ)wi. (2.10)

From a geometric point of view, (2.9) is equivalent to performing a perspective pro-
jection of a B-spline curve in Rd+1 to Rd. An example of this, resulting in a two
dimensional NURBS curve, is shown in figure 2.7.

Figure 2.7: A B-spline curve (blue) with corresponding control points (green), and
the projective transformation of the curve (orange) with corresponding control points
(red).
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The control point coordinates (marked in red in figure 2.7) are given by

Bi =
[
(2, 0) (2, 2) (0, 2) (−2, 2) (−2, 0) (−2, 2) (0,−2) (2,−2) (2, 0)

]
and the associated weights by

wi =
[
1 1√

2
1 1√

2
1 1√

2
1 1√

2
1
]
.

A B-spline curve (blue) is constructed using nine control points (in green). The first
and last control point coincide so as to create a closed curve. Both control points and
curve should then be projected onto the plane z = 1, which is done along a line from
each point towards the origin. This is accomplished by dividing all coordinates of a
point with its height, that is (x, y, z) −→ (x

z
, y
z
, 1). The projected curve (orange) is here

a circle, and the projected control points (red) form a square. From (2.9) it is now
possible to connect this geometrical interpretation to the expression of the NURBS
curve. Bi contains the x- and y-coordinates of the projected control points, and the
weights wi are set equal to the height of the B-spline control points. The product
wiBi then gives the x- and y-coordinates of the green B-spline control points. Thus
the parameterization of the x- and y-coordinates of the B-spline curve is given by

(x(ξ), y(ξ)) =
n∑
i=1

Ni,p(ξ)wiBi. (2.11)

and the height by

z(ξ) =
n∑
i=1

Ni,p(ξ)wi. (2.12)

Hence the projection of the B-spline curve onto the plane z = 1 is

(
x(ξ)

z(ξ)
,
y(ξ)

z(ξ)

)
=

∑n
i=1Ni,p(ξ)wiBi∑n
i=1Ni,p(ξ)wi

=
n∑
i=1

Ni,p(ξ)wi
W (ξ)

Bi (2.13)

and we have obtained the expression for the NURBS curve. The extension of this to
surfaces is equally straightforward as in the case of B-splines and gives the expression

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)wij
W (ξ, η)

Bij =
n∑
i=1

m∑
j=1

Rpq
ij (ξ, η)Bij (2.14)

where the new weighting function is given by
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W (ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)wij. (2.15)

A major benefit of NURBS over the standard non-rational B-splines is that circles,
ellipses, and all other conic sections can be exactly represented. This is because B-
splines consist of linear combinations of piecewise polynomial functions, which can
only be used to approximate circles. They can however exactly represent parabolas,
and with the following definition [11]

A conic section in two space is the perspective projection of a parabola in
Euclidian three space into a plane

clearly NURBS are capable of representing all conic sections as a NURBS curve is
simply a perspective projection of a B-spline curve. The above definition clearly
also implies that spheres, ellipsoids, and other three dimensional extensions of conic
sections can be represented through rotation of the two dimensional objects.

There are, however, some drawbacks to the use of perspective projection to create
these shapes. Figure 2.8 shows a NURBS surface in the shape of a ring, where the
parameterization in the tangential direction is done using quadratic NURBS, and in
the radial direction using linear NURBS.

Figure 2.8: A NURBS surface in the shape of a ring, and the control grid used.
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The outer ring, and the outermost control points, are the same ones shown in figure 2.7.
The knot vector used in the tangential direction is Ξ = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4],
where the repeated internal knots are necessary to produce the four separate 90° arcs of
the circle. As a result of these repeated knots the B-spline curve is only C0-continuous
at these points, and the NURBS curve inherits this property as well. This reduced
continuity is obvious when looking at the B-spline curve, but after the projection to
create the NURBS curve there is no indication of it. For the case of a circle there is
no reasonable way to avoid C0-continuity in some knots, and generally the continuity
of any NURBS object is restricted by the shape of its associated B-spline object [12].

3 Continuum description

3.1 Linear elasticity

Before any kind of finite element analysis can be performed, a continuum descrip-
tion of the boundary value problem must be obtained. Starting by introducing the
infinitesimal strain tensor as

εij = u(i,j) =
ui,j + uj,i

2
(3.1)

where ui is the displacement in the ith direction, and ui,j is the partial derivative of
ui with respect to the jth direction, and applying Hooke’s law, gives the stress tensor
as

σij = cijklεkl (3.2)

where cijkl is the constitutive tensor, which in this case is the tensor for homogeneous
elastic materials. The strong form of the boundary value problem is then given by

σij,j + fi = 0 in Ω (3.3a)

ui = gi on ΓD (3.3b)

σijnj = hi on ΓN (3.3c)

where fi is the body force, gi is the prescribed displacement on the boundary ΓD, hi
is the traction prescribed on the boundary ΓN , and nj represents the normal of the
same boundary. The weak form of the problem is obtained by multiplying (3.3a) with
a weight function wi and integrating by parts, resulting in

∫
Ω

w(i,j)cijklu(k,l)dΩ =

∫
Ω

wifidΩ +

∫
ΓN

wihidΓ (3.4)
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where (3.1) and (3.2) has been used in the first integral, and (3.3c) has been used for
the boundary integral.

3.2 Non-linear hyperelasticity

For simplicity a Saint Venant–Kirchhoff model is used for the constitutive relation.
Thus a linear constitutive relation is still be used between the strain and stress mea-
surements. These are in this case the Green strain, and the second Piola-Kirchoff
stress. For clarity the tensors used here are shown in their matrix representation
rather than using index notation. The Green strain is defined as

E =
1

2

(
F TF − I

)
(3.5)

where F is the deformation tensor

F =

[
1 0
0 1

]
+

[
∂ux
∂x

∂ux
∂y

∂uy
∂x

∂uy
∂y

]
(3.6)

.

The Green strain can be written in Voigt notation as

E =

[
Exx Exy
Exy Eyy

]
=⇒ E =

 ExxEyy
2Exy

 (3.7)

which allows the constitutive relation to be written as

S = DE (3.8)

where D is the same constitutive tensor as in the linear elastic case, and the second
Piola-Kirchoff stress is also in Voigt notation. At some points it will be advantageous
to write the stress as a square matrix, reversing the process in (3.7), in which case the
stress tensor will be denoted S, without the bar underneath.

The equilibrium equations are derived by starting again from (3.3a), which can be
expressed in matrix notation as

div(F · S) + b = 0. (3.9)

Multiplying this by a virtual displacement field δu, and integrating over the entire
domain gives the virtual work as

∫
Ω

δu · div(F · S)dΩ +

∫
Ω

δu · bdΩ = 0 (3.10)
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which can be rewritten using the Green-Gauss theorem as

∫
Ω

δE : SdΩ−
∫

Γ

δu · tdΓ−
∫

Ω

δu · bdΩ = 0 (3.11)

where t are the traction forces acting on the boundary Γ. This can be split into the
external and internal virtual work as

Vint =

∫
Ω

δE : SdΩ, Vext =

∫
Γ

δu · tdΓ +

∫
Ω

ρδu · bdΩ. (3.12)

Using (3.7) the variation of the Green strain becomes

δE =


∂δux
∂x
∂δuy
∂y

∂δux
∂y

+ ∂δuy
∂x

+


∂ux
∂x

∂δux
∂x

+ ∂uy
∂x

∂δuy
∂x

∂ux
∂y

∂δux
∂y

+ ∂uy
∂y

∂δuy
∂y

∂δux
∂x

∂ux
∂y

+ ∂ux
∂x

∂δux
∂y

+ ∂δuy
∂x

∂uy
∂y

+ ∂uy
∂x

∂δuy
∂y

 (3.13)

4 Finite element formulation

Deriving the finite element formulation for IGA is very similar to classic FEA and
should be straight forward for anyone who has previous experience with it. The
meshing is done slightly differently however. All meshes that will be generated are
initially constructed using the minimum number of knots and control points required
to obtain the desired shape, and knot insertion is then used to refine the mesh to
the desired resolution. This makes meshing very simple and allows one to modify the
mesh as required.

In constructing the finite element formulation four connectivity matrices (the INC-,
IEN-, ID-, and LM-matrix) are used to keep track of global and local shape function
numbers, degrees of freedom, element numbers etc. The system used here is the one
developed by Hughes, and an explanation of how these matrices are constructed can
be found in appendix B [12].

4.1 Linear elasticity

A finite dimensional approximation of the displacement ui is introduced according to

ui ≈
Amax∑
A=1

RAdiA = Rdi (4.1)

where the summation is performed over all global shape function numbers, RA is the
shape function with global shape function number A, diA is the corresponding control
points displacement in the ith spatial direction, and R and di are the corresponding
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matrix representations. This can be seen as a slightly modified version of (2.14), where
the indexation has been changed. In accordance with Galerkin’s method, the weight
function wi is approximated in an analogous way according to

wi ≈
Amax∑
A=1

RAciA = Rci (4.2)

where ciA are arbitrary weighting coefficients, and ci is once again the corresponding
matrix representation. For the constitutive relation between stress and strain Voigt
notation is again adopted according to

σ = Dε(u) (4.3)

where D is the constitutive matrix, which assuming plane stress is given by

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (4.4)

where E is the Young’s modulus, and ν is the Poisson’s ratio, and

σ =

σ11

σ22

σ12

 , ε(u) =

 u1,1

u2,2

u1,2 + u2,1

 , u =

[
u1

u2

]
. (4.5)

This allows rewriting the left hand side of (3.4) in matrix form as

∫
Ω

ε(w)TDε(u)dΩ = cT
∫

Ω

BTDBdΩd = cTKd (4.6)

where the matrix B has been introduced according to

B =

∂R1

∂x
0 ∂R2

∂x
0 . . .

0 ∂R1

∂y
0 ∂R2

∂y
. . .

∂R1

∂y
∂R1

∂x
∂R2

∂y
∂R2

∂x
. . .

 . (4.7)

The matrix formulation of the right hand side of (3.4) is given by

cT
∫

Ω

RTfidΩ + cT
∫

ΓN

RThidΓN = cTF . (4.8)

This gives the matrix equation
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cTKd = cTF ⇐⇒ Kd = F (4.9)

where the equivalence holds since the entries of cT are arbitrary. The stiffness matrix
K is calculated element wise by Gaussian quadrature according to

ke =

∫
Ωe

tBTDB|J |dΩ (4.10)

where t is the element thickness, |J | is the determinant of the mapping from parent
element coordinates to physical coordinates, and B is now reduced to contain only
the partial derivatives of the local shape functions. Since the shape functions are
functions of the parametric coordinates and we need the derivatives with respect to
the physical coordinates we need to apply the chain rule, for example

dR1

dx
=
dR1

dξ

dξ

dx
(4.11)

where x = (x, y) and ξ = (ξ, η). The derivatives of the shape functions with respect
to the parametric coordinates are given simply by applying the quotient rule to the
expression for the NURBS basis functions as (compare with (2.14))

∂RA

∂ξ
=

dNA

dξ
MAW − ∂W

∂ξ
NAMA

W 2
wA (4.12)

and similarly for ∂RA

∂η
. The notation here has been changed from Rij to RA, and the

connection between these two notations is given by the INC matrix. The derivatives
of the weighting function is given by

∂W

∂ξ
=

n∑
i=1

m∑
j=1

Ni

dξ
Mjwij (4.13)

where we keep the i, j- notation for summation purposes, and similarly for ∂W
∂η

. The

derivatives of the B-spline basis functions N and M can be calculated using (2.2),
but much like when generating the basis functions themselves there are more efficient
algorithms for calculating the derivatives which are used. Several such algorithms
exist, but the one used here is once again based on the method from The NURBS book
[9]. The gradient of the mapping from physical coordinates to parametric coordinates
is obtained by calculating the inverse first. The mapping from parametric coordinates
to physical coordinates is given by (2.14), and taking the derivative of this gives

dx

dξ
=

Amax∑
A=1

dRA

dξ
BA. (4.14)
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This is then inverted to obtain dξ
dx

.

Once the element stiffness matrix has been calculated, the LM matrix can be used to
remove the components that correspond to a degree of freedom with prescribed zero
displacement. The force vector is calculated element wise as

f e =

∫
Ωe

tRfe|J |dΩ +

∫
∂Ωe

tRte|J |dΩ (4.15)

where R contains the local shape functions for the element. The first integral repre-
sents body forces fe acting on the element, and the second integral represents surface
forces from the traction te acting on the boundary of the element. In this thesis body
forces will not be considered, and in practice the traction forces are applied as point
forces and the surface integral rarely needs to be evaluated.

Since the degrees of freedom are the x- and y-positions of the control points, both
external forces and boundary conditions are applied at control points, the position
of which do not necessarily correspond exactly to the physical boundary. Taking the
ring from figure 2.8 and plotting it so that the individual elements are visible gives
figure 4.1.

Figure 4.1: A NURBS surface in the shape of a ring, with the resulting elements. The
boundary marked in green corresponds to the control points marked in yellow..
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The boundary marked in green corresponds to the control points marked in yellow, and
in order to prescribe zero displacement along this boundary the six degrees of freedom
corresponding to the three control points must be prescribed zero displacement. If a
displacement is to be prescribed that is non-zero then the corresponding displacement
of the control points must be found first, and this will then be applied while solving
the system of equations. This can make prescribing boundary conditions when using
IGA slightly more complicated than when using classic FEA, but adding more knots
to the knot vector, thus increasing the resolution of the mesh, can make this easier
while sacrificing some of the simplicity of a coarser mesh.

The assembly of the global stiffness matrix and force vector is done by extracting the
indexation of the local components from the ID or LM matrix and inserting them into
the correct position in the global matrices.

As mentioned before all integration is done by Gaussian quadrature, which is per-
formed in a parent element that is identical for all elements. The parent element is a
square with side length two and its center at the origin, shown in figure 4.2.

Figure 4.2: The parent element in which Gaussian quadrature is performed.

When performing integration, the Gauss points are provided and the shape functions
are evaluated by calculating their value in the corresponding parametric coordinates.
Going from the parent element coordinates to parametric coordinates amounts to a
linear mapping as the parent element is a square, and all elements in parameter space
are rectangular. This mapping, in one dimension, can be written as

ξ =
ξi + ξi+1

2
+
ξi+1 − ξi

2
ξ̄ (4.16)

where ξi and ξi+1 are the two adjacent knot values that define the element, and ξ̄ is
the parent element coordinate. After the integration has been performed in the parent
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element the Jacobian determinant of the mapping from parent element coordinates to
physical coordinates must be calculated. This is given by

|J | = det

(
dx

dξ̄

)
= det

(
dx

dξ

dξ

dξ̄

)
(4.17)

where we now have the parent element coordinates ξ̄ = (ξ̄, η̄), and the two gradients
need to be calculated. The gradient of the mapping from parent element coordinates
to parametric coordinates is acquired simply from (4.16), and the gradient of the
mapping from parameter space to physical space has already been calculated in (4.14).

4.2 Non-linear hyperelasticity

Introducing the NURBS-approximation as before as well as using Galerkin’s method
for approximating the virtual displacements

u ≈ Rd, δu ≈ Rδd (4.18)

allows us to rewrite the Green strain and it’s variation as

E =

(
Bl
o +

1

2
A(d)Ho

)
d =⇒ δE =

(
Bl
o +A(d)Ho

)
δd = Boδd (4.19)

with Bl
o from 4.7, Ho as

Ho =


∂R1

∂x
0 ∂R2

∂x
0 . . .

∂R1

∂y
0 ∂R2

∂y
0 . . .

0 ∂R1

∂x
0 ∂R2

∂x
. . .

0 ∂R1

∂y
0 ∂R2

∂y
. . .

 . (4.20)

and

A(d) =


∂dx
∂x

0 ∂dy
∂x

0

0 ∂dx
∂y

0 ∂dy
∂y

∂dx
∂y

∂dx
∂x

∂dy
∂y

∂dy
∂x

 (4.21)

where the components are calculated from

Hod =
[
∂dx
∂x

∂dx
∂y

∂dy
∂x

∂dy
∂y

]T
. (4.22)

The equilibrium equations can then be rewritten in a discrete form as
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δdT
(∫

Ω

BT
o SdΩ−

∫
Γ

RT tdΓ−
∫

Ω

RT bdΩ

)
= 0 (4.23)

or with

F int =

∫
Ω

BT
o SdΩ, F ext =

∫
Γ

RT tdΓ +

∫
Ω

RT bdΩ (4.24)

as

F ext − F int = r (4.25)

where the residual r has also been introduced. At equilibrium we require the residual
to be equal to zero, and to this end a Newton-Rhapson method is used. Considering
a Taylor expansion of the residual, dropping terms of higher than linear order, gives

r(d+ ∆d) = r(d) +
∂r

∂d
(d)∆d. (4.26)

Since the external forces are constant, the derivative required can be calculated from
(3.12) as

∂Vint
∂d

=

∫
Ω

∂δE

∂d
: SdΩ+

∫
Ω

δE :
∂S

∂d
dΩ =

∫
Ω

(
∂2E

∂d2 δd

)
: SdΩ+

∫
Ω

(
∂E

∂d
δd

)
: D :

(
∂E

∂d

)
dΩ

(4.27)

and then

∂Vint
∂d

= δdT
∂F int

∂d
= δdT

∂r

∂d
= δdT

(∫
Ω

(
∂2E

∂d2

)T
: SdΩ +

∫
Ω

(
∂E

∂d

)T
: D :

(
∂E

∂d

)
dΩ

)
(4.28)

at which point the residual equation can be solved iteratively through

Ki
t∆d

i = −r(di), di+1 = di + ∆di (4.29)

where Kt is the tangential stiffness matrix found from (4.28) in matrix form as

Kt =

∫
Ω

BT
oDBodΩ +

∫
Ω

HT
oRoHodΩ (4.30)

with the matrix Ro defined as
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Ro =

[
S 0
0 S

]
(4.31)

5 Topology optimization

The focus of this thesis is on shape optimization, but for the purpose of illustrating
some strengths and weaknesses of IGA a simple topology optimization will be per-
formed of a linear elastic cantilever. The geometry is shown in figure 5.1. 385 elements
were used for two different choices of the order of the basis functions: p = q = 2 and
p = q = 4. The mesh corresponding to p = q = 2 is shown in figure. 5.2.

Figure 5.1: The geometry of the cantilever with an applied force.

Figure 5.2: The mesh used for optimizing the cantilever with quadratic basis functions.

The objective is to minimize the compliance of the cantilever under a volume con-
straint. The problem formulation is as follows:
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P1



min
ρ

c = F Td(ρ)

s.t.


Kd = F

g1 =
nelm∑
e=1

teAe − Vmax ≤ 0

ε ≤ ρi ≤ 1, i = 1...k

(5.1)

where c is the compliance, ρi are the design variables, nelm is the number of elements,
te and Ae are element thickness and area respectively, Vmax is the maximum allowed
volume, ε > 0 is a minimum allowed value for the design variables to avoid singular-
ities, and k is the number of design variables. The design variables will be z-values
assigned to each control point used to define the geometry.

The stiffness matrix is modified with a penalization factor applied to the thickness
[13] according to

ke =

∫
Ωe

t3eB
TDB|J |dΩ (5.2)

When performing the optimization the thickness is assumed to be constant in each
element and is calculated as an average according to

te =
V̄e
4

=

∫
Ω̄e

∑amax

a=1 Raρa
4

dΩ̄ (5.3)

where V̄e is the element volume calculated in the parent element which is then divided
by the parent element area of four. The summation inside the integral is done for the
elements local shape function numbers a.

5.1 Sensitivities

The sensitivity of the stiffness matrix with respect to the design variables is then
calculated element wise according to

∂ke
∂ρi

=
∂ke
∂te

∂te
∂ρi

=

∫
Ωe

3t2eB
TDB|J |dΩ

∫
Ω̄e

Ri

4
dΩ̄ (5.4)

where it should be noted that while both integrals are evaluated in the parent element,
the Jacobian of the mapping to physical coordinates is only applied on the first integral
as the thickness is calculated directly in the parent element. From (5.3) we also obtain
an expression for the element volume which is used to calculate the structures total
volume for the constraint function as
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Vtot =
nelm∑
e=1

teAe =
nelm∑
e=1

JeV̄e (5.5)

where Je is the determinant of the Jacobian of the mapping from the parent element
coordinates to physical coordinates averaged over the element, and this gives the
sensitivity of the constraint function as

∂g1

∂ρi
=

nelm∑
e=1

Je
∂V̄e
∂ρi

=
nelm∑
e=1

Je

∫
Ω̄e

RidΩ̄. (5.6)

6 Shape optimization

6.1 Linear elasticity

As one of the main benefits of IGA is its ability to accurately represent geometries
using much fewer elements than classic FEA, it seems that shape optimization is a very
natural application for it. A simple example consisting of the shape optimization of the
same cantilever as before will be used as a proof of concept before moving on to more
complex problems. The problem formulation is the same as given for the topology
optimization in (5.1), except the design variables are no longer the z-coordinates of the
control points, but rather parameters controlling the y-coordinates, and the thickness
is constant, t = 1, in the design domain. Only the top row of control points are
directly affected by the optimization process, the bottom row being completely fixed,
and the middle row is connected to the top row so that the y-coordinate values are
half of that of the control point directly above it. This means that there are only six
design variables, one parameter for each of the y-coordinates of the control points in
the top row.

P2



min
α

c = F Td(α)

s.t.


Kd = F

g1 =
nelm∑
e=1

Ve − Vmax ≤ 0

ε ≤ αi ≤ 1, i = 1...k

(6.1)

The y-coordinates of the control points are parameterized on the form

y = c+ αL, 0 ≤ α ≤ 1 (6.2)

where c is some minimum constant value, α is the design variable, and L is the
maximum allowed movement of the control point. The mesh used is shown in figure
6.1 a), along with an illustration of the parameterization in b). Quadratic basis
functions are used in both directions.
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Figure 6.1: a) The element mesh and control points for shape optimization of the
cantilever. b) Showing one degree of freedom with the parameterization of the y-
coordinate of the control point.

6.1.1 Sensitivities

The sensitivities of the objective function and constraint function with respect to the
design variables must be calculated, which is once again done element wise. Starting
from (4.10) we have

∂ke

∂αi
=

∫
Ωe

∂BT

∂αi
DB|J |+BTD

∂B

∂αi
|J |+BTDBT ∂|J |

∂αi
dΩ (6.3)

and from (5.5)

∂Vtot
∂αi

=
nelm∑
e=1

∂Je
∂αi

V̄e = 4
nelm∑
e=1

∂Je
∂αi

(6.4)

where the last equality comes from the fact that the parent element volume is now
constant V̄e = 4 as the thickness is constant t = 1. The next step is to derive analytical
expressions for ∂B

∂αi
and ∂|J |

∂αi
which will be done by the method developed by Haslinger

and Mäkinen [14]. From (4.17) we see that the Jacobian used is a product of two other
Jacobians, only the first of which is affected by the control points since the mapping
from parent element space to parametric space remains unchanged, therefore

|J | =
∣∣∣∣dxdξ

∣∣∣∣ ∣∣∣∣dξdξ̄
∣∣∣∣ = |J1||J2| =⇒ ∂|J |

∂αi
=
∂|J1|
∂αi
|J2| = |J1|′|J2| (6.5)

where for convenience the partial derivative ∂
∂αi

is denoted by a prime, as it will be
from here on out. Now, define two matrices as follows
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G =

[
∂R1

∂x
∂R2

∂x
. . . ∂Rn

∂x
∂R1

∂y
∂R2

∂y
. . . ∂Rn

∂y

]

Ĝ =

[
∂R1

∂ξ
∂R2

∂ξ
. . . ∂Rn

∂ξ
∂R1

∂η
∂R2

∂η
. . . ∂Rn

∂η

]

where n is the number of local basis functions in each element. The chain rule gives

Ĝ = J1G (6.6)

and rewriting the control point matrix for the element as follows

X =


B1x B1y

B2x B2y
...

...
Bnx Bny


where the index is once again local basis functions numbers, and the naming of X
instead of Bij is so as to avoid confusion with the B-matrix, gives

J1 = ĜX. (6.7)

Clearly, Ĝ is not dependent on the control point coordinates as it only contains
functions of the parameters ξ and η, and therefore

0 = Ĝ
′
= J ′1G+ J1G

′ (6.8)

and (6.7) gives

J ′1 = ĜX ′ (6.9)

Putting (6.6), (6.8), and (6.9) together gives

G′ = −J−1
1 J

′
1G = −J−1

1 ĜX
′G = −GX ′G. (6.10)

The components of X ′ are simply calculated as the L-values from (6.2), and once G′

is calculated it is straightforward to extract the individual terms and assemble them
into their correct positions to obtain B′. For the derivative of the Jacobian a result
from linear algebra is used:

|J1|′ = |J1|tr
(
J−1

1 J
′
1

)
(6.11)
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where tr denotes the trace of the matrix, and using (6.9) and (6.6) gives

|J1|′ = |J1|tr
(
J−1

1 ĜX
′
)

= |J1|tr
(
J−1

1 J1GX
′) = |J1|tr (GX ′) . (6.12)

6.2 Non-linear hyperelasticity

The problem formulation is unchanged from the linear case, only the equilibrium
equation has changed.

P3



min
α

c = F Td(α)

s.t.


r = 0

g1 =
nelm∑
e=1

Ve − Vmax ≤ 0

ε ≤ αi ≤ 1, i = 1...k

(6.13)

Two different geometries will be considered: a rectangular bracket, as well as a semi-
circular bracket. Both structures are optimized using four different choices of basis
function orders of p = 2, 3, 4, 5, where p is the order of basis functions running along
the length of the structure (the tangential direction for the semi-circular bracket). The
basis functions running along the width of the structure (the radial direction for the
semi-circular bracket) is fixed to q = 2. The geometries and meshes for p = q = 2 for
the rectangular and semi-circular brackets are shown in figures 6.2 and 6.3 respectively.
The control point grid is kept identical for all choices of basis function orders so as
to keep the same number of design variables. It should be noted that this increase in
order is balanced out by a decrease in number of elements, in accordance with (2.5).

For the square bracket the force is applied downwards at the very center of the top
boundary. As for the cantilever only the y-coordinates of the control points at the top
boundary are directly affected by the optimization. The middle row of control points
are updated so as to be exactly halfway between the corresponding control points at
the top and bottom row.

For the semi-circular bracket the force is applied upwards at the very top of the
bracket. Both the x- and y-coordinates of the outer row of control points are directly
affected by the optimization, and as before the middle row of control points are up-
dated so as to be exactly halfway between the corresponding control points at the
inner and outer row.
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Figure 6.2: a) The geometry for the square bracket b) The mesh when p = q = 2.

Figure 6.3: a) The geometry for the semi-circular bracket b) The mesh when p = q = 2.

6.2.1 Sensitivities

The compliance in the deformed configuration is chosen as objective function, and to
calculate the sensitivity of the objective function a modification is made as

g0 = F Td = F Td+ λTr (6.14)

where the addition of the Lagrangian multipliers λ multiplied by the residual does not
change the value of the objective function since at equilibrium r = 0. Then, assuming
design independent loads,
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dg0

dαi
= F T ∂d

∂αi
+ λT

(
∂r

∂d

dd

dαi
+
∂r

∂αi

)
(6.15)

and introducing the adjoint equation

(
F T − λTKt

) dd
dαi

= 0 ⇐⇒ Ktλ = F (6.16)

the solution of which is inserted into (6.15) resulting in

dg0

dαi
= λT

∂r

∂αi
(6.17)

The sensitivity is then calculated by differentiation of (4.25)

∂r

∂αi
= −∂F int

∂αi
= − ∂

∂αi

(∫
Ω

BT
o SdΩ

)
(6.18)

which is done element wise in practice, so we need to calculate

−∂F
e
int

∂αi
= − ∂

∂αi

(∫
Ωe

BT
o S|J |dΩ

)
= −

∫
Ωe

∂BT
o

∂αi
S|J |+BT

o

∂S

∂αi
|J |+BT

o S
∂|J |
∂αi

dΩ.

(6.19)

The partial derivative of the jacobian has already been calculated in (6.12) so there
are only two new terms to consider. From (4.19) we get

∂Bo

∂αi
=
∂Bl

o

∂αi
+
∂A(d)

∂αi
Ho +A(d)

∂Ho

∂αi
(6.20)

with the terms in ∂Bl
o

∂αi
and ∂Ho

∂αi
being calculated in the same way as in the linear case

from (6.10) , and the terms in ∂A(d)
∂αi

being calculated from (4.22) as

∂Ho

∂αi
d =

[
∂2dx
∂x∂αi

∂2dx
∂y∂αi

∂2dy
∂x∂αi

∂2dy
∂y∂αi

]T
. (6.21)

From (3.8) and (4.19) we have

S = DE = D

(
Bl
o +

1

2
A(d)Ho

)
d (6.22)

which gives
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∂S

∂αi
= D

(
∂Bl

o

∂αi
+

1

2

(
∂A(d)

∂αi
Ho +A(d)

∂Ho

∂αi

))
d (6.23)

where all the individual terms have already been derived. The sensitivity of the
objective function can then be calculated, and the sensitivity of the volume constraint
is unchanged from the linear case.

7 Pseudo-contact formulation

A true formulation involving calculating contact forces between two IGA-objects is
outside the scope of this thesis, but a simple formulation using pseudo-springs will
be implemented to demonstrate how using IGA can be beneficial when dealing with
contact problems. The method is an adaptation of the method developed for FEA by
Kang et. al. [15]. It should be noted that this does not constitute a proper contact
formulation, but rather tries to emulate one for demonstration purposes.

The geometry used is the same bracket as in figure 6.2, with basis function orders
p = q = 2, but instead of applying a fixed force at one of the control points, a cylinder
of radius 4 m is placed above the structure with its center at (10, 27) and moved
downwards until its center is at (10, 17) as shown in figure 7.1.

Figure 7.1: The square bracket with the cylinder to be moved downwards to displace
the bracket.
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The cylinder is not modeled with any kind of FEA or IGA, but is rather a completely
analytical object and will therefore not contribute to the stiffness matrix. The top
boundary of the bracket is connected to the center of the cylinder through pseudo-
springs, each one of which will exert a force in its axial direction when the length of
the spring becomes smaller than the radius of the cylinder. The contact points on
the bracket are defined for each of the elements along the top boundary in the parent
element coordinates

(ξ̄, η̄) = (−0.8, 1), (−0.4, 1), (0, 1), (0.4, 1), (0.8, 1) (7.1)

which corresponds to five equidistant points in each element along the top boundary
in the undeformed structure. The location of these points in physical space is then
given by (2.14) together with (4.16), and since the location of the center of the cylinder
is controlled, the length of each pseudo-spring can easily be calculated. The force of
each spring is given by a smoothed step function

N =
Fs

1 + e5+m(l−r) (7.2)

which will quickly go from 0 to Fs as the length of the spring l becomes smaller
than the radius of the cylinder r. The parameter m determines how steep the step
should be, and should be chosen as high as possible while maintaining stability of
the solution. The parameter Fs should be chosen so that penetration of the bracket
into the cylinder is small. Choosing m and Fs when dealing with large deformations
becomes slightly difficult, as the response of the structure depends on the current
deformation. In order to maintain accuracy in this case, smaller values of both m and
Fs can be used, while allowing the contact force to be applied several times. That is,
the contact force is applied in small steps, solving for equilibrium at each step, and
repeating until the structure is no longer in contact with the cylinder. This makes
solving very slow, but allows for more accurate results.

Once the spring force has been calculated, it is split into its x- and y- components and
divided over the two control points adjacent to the point of contact. This division is
done so that the force at each of the control points is inversely proportional to the
distance from the control point to the point of contact.

8 Results

The optimization was performed in MATLAB using the method of moving asymptotes
(MMA) [16]. The program was created entirely from scratch, except the actual MMA-
solver which is open source code. Convergence is achieved when the norm of the
difference in compliance from one iteration to the next falls below the tolerance of
τopt = 10−3. In the Newton-Rhapson iterations for the non-linear cases convergence
is achieved when the norm of the residual is below the tolerance of τnr = 10−2. For
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the linear elastic results the Young’s modulus E is set to 210 GPa, and for the non-
linear hyperelastic results to 21 kPa. The choice of Young’s modulus here is simply
to scale forces and displacements to appropriate sizes, and does not affect the results
qualitatively. The Poisson’s ratio ν is set to 0.3 for all cases. The applied force F is
10 kN for the cantilever in both cases, 1.6 kN for the square bracket, and 5 kN for the
semi-circular bracket. Body forces are neglected in all cases. These parameters are
gathered in table 8.1.

Table 8.1: Material parameters and applied force for the different structures.

Structure E ν F τopt τnr
Cantilever 210 GPa 0.3 10 kN 10−3 -

Square bracket 21 kPa 0.3 1.6 kN 10−3 10−2

semi-circular bracket 21 kPa 0.3 5 kN 10−3 10−2

8.1 Topology optimization of a linear elastic cantilever

The dimensions of the cantilever are set to L = 30 m, and h = 10 m. The maximum
volume is set to 35 % of the completely filled domain, that is Vmax = 0.35∗30∗10m3 =
105m3.

The optimized structure is shown in figure 8.1 for both choices of basis function orders,
and the evolutionary histories of the objective and constraint functions in figure 8.2.
The case p = q = 2 converged in 27 iterations to a minimum compliance of c = 19.8
Nm, and the case p = q = 4 converged in 25 iterations to a minimum compliance of
c = 22.6 Nm.

Figure 8.1: The optimized structure using 385 elements for two different choices of
order of basis functions. a) p = q = 2 b) p = q = 4.
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Figure 8.2: Evolutionary histories of a) The objective function b) The constraint
function.

8.2 Shape optimization

8.2.1 Linear elastic cantilever

The parameters of (6.2) are set to c = 1.5 and L = 8.5, and initially all design variables
are set to αi = 0.5. The maximum allowed volume Vmax is set to 70 % of the design
domain, i.e. Vmax = 0.7 ∗ 30 ∗ 10 = 210 m3.

The optimized structure is shown in figure 8.3 with the resulting control points, and
the evolutionar histories of the objective and constraint functions in figure 8.4. The
program converged in 26 iterations to a minimum compliance of c = 9.09 Nm. The
results are as expected, and a smooth boundary has been obtained.

Figure 8.3: The optimized cantilever, with the resulting control points in red.
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Figure 8.4: Evolutionary histories of a) The objective function b) The constraint
function.

8.2.2 Non-linear hyperelastic square bracket

The inside height hi is fixed at 18 m, the width w is 20 m, and the thickness of the
’legs’ T is 2 m. The parameters of (6.2) are set to c = 19 m and L = 4 m, and initially
all design variables are set to αi = 0.5. The maximum allowed volume Vmax is set to
the volume of the initial structure.

The optimized bracket is shown in figure 8.5 for the different choices of order of basis
functions. The deformed initial and optimized structures are shown in figures 8.6
and 8.7 respectively, and the evolutionary histories of the objective and constraint
functions are shown in figure 8.9 a) and b) respectively.

In figure 8.9 c) a compliance cp calculated with an alternative method is presented.
The compliance in the objective function is calculated as the scalar product of the
applied force and the displacement of the control points, but since the control points
do not correspond exactly to the position of the boundary, an alternative compliance
can be calculated where the physical coordinates of the point of the applied force
is calculated and the displacement of this point is multiplied by the applied force.
This compliance is slightly more consistent for the different cases, but it should be
noted that this is not the objective function that was minimized. To illustrate this the
undeformed and deformed optimized structure when p = 5 is shown in figure 8.8, with
the control point where the force is applied marked in yellow. Clearly the displacement
of the control point is greater than that of the actual boundary, motivating why two
different compliances can be calculated.

All results are also gathered in table 8.2.
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Table 8.2: Iterations for convergence, minimized objective function value, and mini-
mized compliance from physical coordinates for the different choices of basis functions

p iterations c (Nm) cp (Nm)
2 23 5536 5364
3 74 6266 5597
4 63 6326 5026
5 38 7715 5512

Figure 8.5: The optimized square bracket with resulting control points for a) p = 2,
b) p = 3, c) p = 4, d) p = 5.
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Figure 8.6: The deformed initial square bracket for a) p = 2, b) p = 3, c) p = 4,
d) p = 5.
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Figure 8.7: The deformed optimized square bracket for a) p = 2, b) p = 3, c) p = 4,
d) p = 5.

Figure 8.8: The undeformed, a), and deformed, b), optimized structure for p = 5,
with control points. The control point marked in yellow is where the force is applied,
and one can see that the displacement of the control point is greater than that of
the physical boundary, motivating that a compliance can be calculated using the
displacement of the control point or using the displacement of the corresponding point
on the physical boundary.
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Figure 8.9: Evolutionary histories of a) The objective function, b) The constraint
function, c) The compliance calculated from physical coordinates

8.2.3 Non-linear hyperelastic semi-circular bracket

The inner radius is fixed at ri = 8 and the outer radius at the wall is fixed at ro = 10.
The freedom of movement is set to L = 3 m for all control points in both the x- and
y-direction, and all design variables are initially set to αi = 0.5. The constants of
the control points c are set so that the initial configuration produces a semi-circle of
radius 10. The maximum allowed volume Vmax is once again set to the volume of the
initial structure.

The optimized bracket is shown in figure 8.10 for the different choices of order of basis
functions. The deformed initial and optimized structures are shown in figures 8.11
and 8.12 respectively, and the evolutionary histories of the objective and constraint
functions are shown in figure 8.13 a) and b) respectively.
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Table 8.3: Iterations for convergence, and minimized objective function value for the
different choices of basis functions.

p iterations c (Nm)
2 49 8577
3 15 8917
4 71 8830
5 29 10157

Figure 8.10: The optimized semi-circular bracket with resulting control points for a)
p = 2,
b) p = 3, c) p = 4, d) p = 5.
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Figure 8.11: The deformed initial semi-circular bracket for a) p = 2, b) p = 3, c)
p = 4,
d) p = 5.
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Figure 8.12: The deformed optimized semi-circular bracket for a) p = 2, b) p = 3, c)
p = 4,
d) p = 5.

Figure 8.13: Evolutionary histories of a) The objective function, b) The constraint
function.
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8.2.4 Non-linear hyperelastic square bracket with contact

The geometry and volume constraint is exactly the same as before, and p = q = 2.
The center of the cylinder is moved down from (10, 27) to (10, 17) in 0.4 m incre-
ments. Figure 8.14 shows the deformed initial structure, the optimized structure, the
deformed optimized structure, and the evolutionary history of the objective function.
The compliance is still chosen as objective function, but because the displacement
of the circle is fixed the compliance is maximized rather than minimized since this
corresponds to a greater force being required to obtain the same displacement.

The program converged after 27 iterations, and the maximized compliance was c =
23855 Nm.

Figure 8.14: a) The deformed initial bracket, b) The optimized bracket, c) The de-
formed optimized bracket, d) The evolutionary history of the objective function.

9 Discussions and conclusions

The cantilevers topology was optimized successfully, reaching a design that is a famil-
iar results in structural optimization. The design achieved using higher order basis
functions provides a smoother optimized structure, which is to be expected as this
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results in more basis functions having support in each element which works to smooth
out the density distribution. This does however slow down the optimization as the
basis functions are calculated recursively from lower order basis functions. No filtering
techniques need to be applied, as the continuous density representation works as a
filter in and of itself and provides natural designs as long as the resolution is high
enough.

To speed up the process it would be possible to pre-calculate and store the values of
the basis functions in all evaluation points, but this requires quite a bit of storage
and the storage needed grows with the order of the basis functions as well. The
requirement of a resolution which is comparable to that of classic FEA becomes a
considerable drawback when using IGA as calculating the stiffness matrix, constraint
function values, and sensitivities, are all more demanding processes.

The shape optimization of the same cantilever was also carried out successfully and
while this is a very simple problem it demonstrates the strength of being able to
represent smooth geometries with very few degrees of freedom.

The results are equally promising when considering large deformations, as both the
square and semi-circular bracket converge nicely to fairly consistent designs. The
exception being the sudden sharp increases in compliance and decreases in constraint
function value that happen for p = 4 and p = 5 when optimizing the square bracket.
These are however due to numerical errors in the optimization process, combined
with the fact that this particular geometry is very sensitive to asymmetric loading.
At certain points during the optimization, numerical inaccuracies would result in slight
asymmetries appearing in the structure. These would increase, while still remaining
small, until the response of the structure became asymmetric to the point that it would
bend and snap. This seems to occur more easily with higher order basis functions,
as this seems to generally lead to the structures being more compliant as can also be
seen in the increase of the minimized compliance as the basis functions order increases.
The program was however able to correct this and would always quickly return to a
stable position.

The semi-circular bracket shows none of these issues, most likely due to the force
being tensile rather than compressive as this will not cause any kind of snapping.
The deformed structures, both initial and optimized, when p = 5 do however show
a different problem: the very sharp point right where the force is applied. This
highlights exactly the issue of continuity when using NURBS, as mentioned at the
end of section 2.3. The boundary is actually C0-continuous at the point where the
force is applied, but this is not apparent when looking at the initial geometry. This
sharp point is actually visible for all choices of basis order function, but it becomes
most prominent when the basis order increases as this, once again, seems to result in
the structures being more compliant. This problem could be solved by setting up the
geometry in a slightly different way, so that the force is not applied right at the point
of discontinuity, but this does require the discontinuous point to be moved somewhere
else which could also cause issues. A more realistic solution is probably to increase
the resolution of the mesh, which should serve to smooth out the boundary.
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The number of iterations required for convergence is seemingly very unpredictable,
as it varies significantly for the different choices of basis function order. It is also
not consistent when comparing the results from the two different brackets, as for
the square bracket p = 2 is by far the fastest and p = 4 is the second slowest,
and for the semi-circular bracket this is reversed. It should once again be noted
that using higher order basis functions does significantly slow down the solving due
to the increased computational cost of calculating basis function values. Unlike in
the topology optimization, this could realistically be avoided by pre-calculating and
storing shape function values, as the system is generally very small. For the square
bracket the dimensions of the stiffness matrix is only 126x126! To achieve similar
results with the classic FEM would require substantially larger systems.

The square bracket with the simplified contact formulation results in an optimized
structure that is quite similar to that of figure 8.5a) as one would expect. The top of
the structure is slightly flatter as a result of the contact forces being a distributed force
rather than a point force. While the model used is overly simplistic, it still highlights
the ability of the bracket to follow the shape of an object in contact due to the nature
of the geometry representation. Furthermore it shows that the use of IGA allows one
to evaluate contacts in any point along the boundary very easily, which means that a
more sophisticated method could handle contacts over a continuous surface and does
not necessarily even require having predetermined points for contact evaluation.

Overall the results are promising, though IGA certainly presents its own problems
that need to be tackled. Two main benefits moving forward will most likely be the
ability to exactly represent geometries for applications where high levels of precision
is needed, as well as the ability to keep system matrices small which could lead to
substantially decreased computational costs.
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Appendix A

Nomenclature for NURBS and B-splines used.

A Global shape function number
a Local shape function number
Bij Control points
n,m Number of basis function is the ξ- and η-directions
ni, nj Index space coordinates

Ni,p(ξ), Mj,q(η) B-spline basis functions
mi Multiplicity of the ith knot
p, q Polynomial degree of basis functions in ξ- and η-directions

Rpq
ij (ξ, η) NURBS basis functions

T p Boehm’s algorithm matrix for calculating control points
wij Control point weights
W Weighting function

x, y, z Physical coordinates
Ξ, H Knot vectors
ξi, ηj Knots
ξ, η Parametric coordinates
ξ̄, η̄ Parent element coordinates
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Appendix B

A system for numbering shape functions and degrees of freedom is introduced, adopt-
ing the convention that is used in [12]. Defining two knot vectors Ξ = [0, 0, 0, 0.5, 1, 1, 1]
and H = [0, 0, 0, 1, 1, 1], the parameter space representation of these are shown in fig-
ure 9.1a), and the index space representation in b). In the index space representation
all knots are at equal distance from each other, and no consideration is taken for
repeated knot values. Using basis functions of order two in both directions result
in the two-dimensional shape functions having support in a 3x3 square in the index
space, two examples of this are shown in figure 9.1b). A number system for the shape
functions is introduced as: the global shape function number A is 1 for the shape
function that has its lower left corner at index space coordinates (ξ1, η1), and then
increases by one for each step to the right. Once each shape function in the row has
been numbered, the numbering is continued by moving back to the leftmost part of
the grid and moving up one row. This means that in figure 9.1b) the shape function
marked in blue has A = 1, and the one marked in red has A = 11. Combining all
global shape function numbers with the corresponding index space coordinates of the
lower left corner of the shape function results in the INC matrix, which is shown for
the current example in table 9.1.

Figure 9.1: The two resulting elements from knot vectors Ξ = [0, 0, 0, 0.5, 1, 1, 1]
and H = [0, 0, 0, 1, 1, 1]. a) The parameter space representation. b) The index space
representation, with two of the basis functions, R1,1 (blue) and R3,3 (red), and elements
marked with E1 and E2.

Next, looking at the individual elements formed from the two knot vectors, which are
marked with E1 and E2 in figure 9.1, we can define local shape function numbers a
for each element. The numbering is such that a=1 for the shape function that has
its lower left corner at the elements lower left corner, and then a increases by one for
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A 1 2 3 4 5 6 7 8 9 10 11 12
ni 1 2 3 4 1 2 3 4 1 2 3 4
nj 1 1 1 1 2 2 2 2 3 3 3 3

Table 9.1: The INC matrix, that connects a global shape function number A to the
corresponding coordinates in index space ni and nj.

a 1 2 3 4 5 6 7 8 9
A1 11 10 9 7 6 5 3 2 1
A2 12 11 10 8 7 6 4 3 2

Table 9.2: The IEN matrix, that connects the local shape function numbers a of an
element i to its corresponding global shape function numbers Ai.

each step to the left, and now moving down a row once the end of the row is reached.
Essentially the same as for the global shape function but in reverse. Connecting the
local shape function numbers to the global ones for each element results in the IEN
matrix, which is shown in table 9.2.

Since IGA does not use nodes in the same way as classic FEA, the degrees of freedom
are not determined by a node number, but rather each shape function takes the place
of a node in the assembly of the system. For the two-dimensional example here this
would mean that each shape function contributes two degrees of freedom, in the x-
and y-direction respectively. A numbering of the degrees of freedom is necessary and
this is done by simply letting the shape function with A=1 be associated with degrees
of freedom 1 and 2, A=2 gives degrees of freedom 3 and 4, and so forth. However,
certain degrees of freedom will be fixed by Dirichlet boundary conditions and do not
need to be part of the solving process. These degrees of freedom should be numbered
0 and the remaining numbers should be truncated so as to not leave any gaps in the
numbering. If for example the left boundary in figure 9.1 is fixed in both x- and y-
direction, that means that the shape functions with support at that boundary should
have their corresponding degree of freedom numbers set to 0. Connecting global shape
function numbers with degrees of freedom results in the ID matrix, which is shown
in table 9.3. It is important to notice here that the degrees of freedom are still with
respect to physical coordinates, not parametric coordinates, and so one must be aware
of the mapping from physical space to parameter space so that the right global shape
functions are used.

The final connectivity matrix to be introduced is the LM matrix, which is really a
combination of the ID and IEN matrices. The LM matrix simply connects local shape
functions numbers for each element and a direction of freedom to the corresponding
degree of freedom number. The LM matrix for the example is shown in table 9.4.
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A 1 2 3 4 5 6 7 8 9 10 11 12
dofx 0 1 3 5 0 7 9 11 0 13 15 17
dofy 0 2 4 6 0 8 10 12 0 14 16 18

Table 9.3: The ID matrix, which connects a global shape function number A to its
corresponding degrees of freedom dofx and dofy in the x- and y-direction respectively.

ai 1x 1y 2x 2y 3x 3y 4x 4y 5x 5y 6x 6y 7x 7y 8x 8y 9x 9y
dof1 15 16 13 14 0 0 9 10 7 8 0 0 3 4 1 2 0 0
dof2 17 18 15 16 13 14 11 12 9 10 7 8 5 6 3 4 1 2

Table 9.4: The LM matrix, which connects the local shape function numbers a and a
direction x or y of an element i to its corresponding degrees of freedom dofi
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