
DrumGAN
Adversarial synthesis of drum sounds - DCGAN with dilated convolutions

Victor Falini

Spring 2021

15 ECTS

STAN40: M.Sc in Statistics

Department of Statistics - Lund University

Supervised by Peter Gustafsson



Abstract

This paper faces the problem of audio synthesis with Generative Adversarial Net-

works (GAN), with an attempt to create novel, original high-quality samples of drums

that could be used within the realm of music production. My results show that it is

possible to create high-quality drum samples with architecture such as DCGAN (Deep

Convolutional GAN) and that using causal and dilated convolutions is a viable ap-

proach, while not making clear if this approach is significantly better than the one

of using standard convolutions. It also shows that 1-d transpose convolutions can be

substituted with nearest neighbour upsampling followed by regular 1-d convolutions for

GANs that generate one-dimensional data. In the final discussion the idea of initializ-

ing generator weights in a strategic way in order to increase GAN training stability is

introduced.
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1 Introduction

Being able to synthesize new, original sounds is something with a large amount of practical

applications within the sound design field and can be used both for movies, music production

and even possibly for video games. An example of this is Deep Adaptive Music (DAM) which

has as a goal of producing music in real-time to fit and dynamically adapt to the current

emotional state present in a video game (Velardo 2019). Another example is Jukebox by

Dhariwal et al. (2020) that can generate full length songs if just given a primer with amazing

results. Altough the quality of the audio is not sufficient for Jukebox to be used for creat-

ing new records, it could be very useful for musicians looking for inspiration or creative ideas.

Recently developed state of the art generative models such as WaveNet by Oord et al. (2016)

and the previously mentioned Jukebox are both autoregressive generative models. They

therefore require long times to generate audio, since every output has to be reinserted into

the network each time to make the next prediction in the time series. For an audio file with

CD quality, this means that each second of generated audio is the result of 44100 predic-

tions that cannot be done in parallel. Another kind of popular type of generative network

known as Generative Adversarial Network (GAN) has the advantage of being able to produce

the entire waveform directly, meaning that audio generation can be performed in real time.

While GANs are very popular and successful within the field of image generation, there are

few publications that tackle the problem of generating audio with GANs.

In this paper I focus on the production of drum samples with a GAN. My work is much in-

spired by the WaveGAN model developed by Donahue, McAuley, and Puckette (2019) which

was claimed by its authors to be, at the time of its publication, the ”[...]first application of

GANs to unsupervised audio generation.”(ibid, p.9). My approach is different and focuses

more on creating high-quality audio samples that can be used in practical applications with

a more rapid training phase when compared to WaveGAN. My results show that, with cer-

tain small adjustments, audio artefacts present in WaveGAN model can be avoided and it is

possible to create drum audio samples that are useable in practice, within the field of music

production. The technique of dilated 1d-convolutions is also used for the GAN models in

this paper.

Many audio generation models use spectral image representations of the audio, obtained

through a Short-time Fourier transform, that are used to train a generative model that pro-

duces new spectrograms, which are then transformed back into audio. The main reasons for

the popularity of this spectrogram-based approach are that image generation is a much more

3



developed field than the one of one-dimensional timseries generation and that this trans-

formation can save processing power since the image representation of the audio is often

”smaller” than the original data.

I decided to directly use the raw wave data for my model, since the audio samples used for

this type of data (drum sounds) are small enough for processing power problems to be no

real issue. The original, unmodified data contains all information and creating a spectral

image will always be an approximation. Donahue, McAuley, and Puckette (2019) also show

that the spectral approach is inferior to using the waveform directly.

2 Method

To generate this novel audio I will be using Artificial Neural Networks and more specifically

I will be using a Deep Convolutional Generative Adversarial Network. The purpose of this

paper is not to explain all these methods in detail but for anyone wanting to learn more about

these interesting methods I recommend reading Deep Learning by Goodfellow, Bengio, and

Courville (2016), Generative Adversarial Nets by Goodfellow, Pouget-Abadie, et al. (2014)

and other literature referenced in the method part below. All of the ideas presented below

regarding neural networks and convolutional neural networks are based on knowledge taken

from Deep Learning by Goodfellow, Bengio, and Courville (2016).

2.1 Artificial Neural Networks

Artificial Neural Networks are a type of machine learning method that is inspired by biological

neural networks.

A example of a basic neural network structure is illustrated in Figure 1 below.
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Figure 1: Illustration of a basic neural network with one hidden layer

This image has been created by LearnDataSci (www.learndatasci.com) and is licensed under CC BY-SA 4.0

We have a input layer and an output layer. We want the network to learn the parameters

of a function that will be able to map each input to a certain desired output. The layers

inbetween must therefore learn this mapping. Each circle in this network is called a neuron.

Each neuron takes as input all of the values of the previous layer neurons that are feeding

into it and applies the following linear function where xi is the value contained in the i:th

input neuron and wi is the weight between the i:th input neuron and the neuron in question

while b is the bias term.
m∑
i=1

wi · xi + b (1)

It is difficult to approximate any function simply using linear tranformations of this kind and

therefore a non-linear ”activation function” is usually applied to the result of the previous

equation. Any function could be chosen but choosing a continuous and differentiable func-

tion is preferable since this is the prerequisite for the network learning. The most common

activation functions for hidden layers are currently ReLU (Rectified Linear Unit) and Leaky

ReLU, shown in the equations below and illustrated in figure 2.

f(x) = max(0, x) (2)

f(x) = max(αx, x) (0 ≤ α < 1)
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Figure 2: ReLU activation function and Leaky ReLU activation function.

Combining (1) and (2) gives us the following output that we would have from a hidden layer

in a neural network with ReLU activation function.

max(0,
m∑
i=1

wi · xi + b) (3)

According to the universal approximation theorem (Hornik, Stinchcombe, and White 1989)

a neural network of arbitrary length or arbitrary depth with the right kind of activation

function (such as ReLU, TanH or Sigmoid) can approximate any continuous Borel measurable

function. This means that the only problem left is to find these optimal parameters (or

weights) that will lead our network to learn an approximation of the desired function. The

current way to doing this is the following:
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1. Initialize the network parameters with values sampled from a distribution of choice.

2. Decide on a loss function to use. (An example for the regression case is to take the

MSE)

3. Run a input through the network and calculate the loss for this input. If the loss

function is MSE then this would be:

Loss = MSE = (ŷ − y)2

where y is the real value and ŷ is the value predicted by the Neural Network.

4. Calculate the gradient which is the multi-variable derivative of the loss function in

respect to the network parameters. This is known as backpropagation. This gradient

gives us a vector that indicates where the loss increases fastest. Since we want to de-

crease our loss we will move in the opposite direction to adjust our parameters (weights

and biases). In simple terms we need to calculate the adjustments to the parameters

(at the same time) that we need to make in order to minimize the loss as much as

possible.

5. Update the weights and biases through the following expression, where W is the weight

vector, ∆C(W ) is the gradient vector and α is the learning rate:

W − (∆C(W )) ∗ α.

The learning rate α is a value most often between 0.0 and 1.0 ensuring that we don’t

move too far in the gradient direction at once, which can lead the model converging to

a suboptimal solution.

6. Repeat 3-5 until this has been done for all data. This is usually done in randomly

selected batches in order to reduce training bias. It can then be repeated for several

epochs, where one epoch is a whole training round where the model is trained on the

entire dataset. In order to know when to stop training, we can evaluate the loss on

test data that the model has not been trained on. If this loss stops decreasing or

starts increasing, training should be stopped. This is only possible in cases where an

objective evaluation of model performance is possible, so in the GAN case it cannot be

done. I have instead evaluated the model myself at a certain number of epochs during

the training phase and have stopped training when I deemed it to having stopped

improving.
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2.2 CNN

A Convolutional Neural Network or CNN is a class of neural network that is most commonly

used for classification of images. The CNN is once again inspired by how biological brains

are connected in the visual cortex in order to process visual information that is entering the

brain. The CNN still consists of an input and output layer and the hidden layers inbetween.

The hidden layers in this case differ by not being fully connected: local connectivity is used

instead meaning that each neuron is connected to a local subset of the input image.

The filter values are learned automatically in the same way that regular weights and bi-

ases are learnt for a hidden layer.

Figure 3: Illustration of a single 3x3 filter in a Two-Dimensional Convolutional Neural Network. The blue

squares are the input image while the cyan one is the output.Stride is equal to two.

Dumoulin and Visin 2016

2.2.1 Dilated Convolutions

I have used dilated convolutions (illustrated in Figure 5), that simply mean that the connec-

tions are offset with a certain timestep in order to expand the receptive field. Expanding the

receptive field is important for capturing long-term temporal dependencies in the data, but

can be very costly in processing power, so using dilations is a great solution. As put by Yu

and Koltun (2016) dilated convolutions support exponential expansion of the receptive field

without loss of resolution or coverage. In some of my experiments I have also used dilated

causal convolutions, a technique proposed by Oord et al. (2016). The causal convolutions

have no clear theoretical reason to be applied in GANs of this type so this should not be seen

as a focus. Causal convolutions are used in autoregressive models in order to ensure that

only past timesteps can influence the future value. The idea is is illustrated in Figure 6.
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Figure 4: Standard one-dimensional convolution.The blue circles represent a small part of the entire input

while the orange circles represent the outputs.

Figure 5: Convolutions but with dilation in order to increase the receptive field while saving processing

power, thus increasing speed. Dilations are increased exponentially: dilation is 2 in the fist layer and 4 in

the second.
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Figure 6: Causal convolution where future timesteps only depend on previous inputs

2.3 Generative Adversarial Network

Generative Adversarial Networks or GANs are a type of Generative Neural Network pro-

posed by Goodfellow, Pouget-Abadie, et al. (2014). Since then, together with Variational

Autoencoders, they have become one of the most popular generative models (Karpathy et al.

2016).

In essence, all generative models are simply an attempt to learn a real statistical distribution

from which our data originate from, which can be denoted by Px. We use our method to

find an approximation to the real distribution, denoted as Pθ, where θ are the parameters of

this learnt distribution (Irpan 2017). Then, in order to generate new data, we simply take

samples from this distribution. A GAN is a neural network, itself composed by two neural

networks. One of the networks is the Generator and the other is the Discriminator. It can

be seen as a two player game where the generator is trying to fool the discriminator into

thinking that the generated data is from Px while the discriminator is trying to find the best

way to differentiate between the data coming from these two distinct distributions.

A common metaphor used is the one of the art forger (generator) trying to create art in

the style of a certain artist in order to trick the art critic (discriminator). As the critic gets

better as spotting the fakes, the forger also gets better since it learns from its mistakes and

its successes until, ideally, it will create art that the discriminator cannot distinguish from

the originals. In practice, traditional DCGAN networks have many problems converging to

this ideal state, and instead tend to be known for problems such as Mode Collapse, Vanish-

ing Gradients and a subsequent failure to converge (Arjovsky, Chintala, and Bottou 2017).

These problems and techniques to adress them will be discussed later in the paper.

The structure of a GAN is illustrated in Figure 7 below.
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Figure 7: Illustration of the structure of a GAN.

2.3.1 Discriminator

The discriminator is the network that teaches the generator, through its calculation of the

loss and by becoming better at classifying inputs, about the real distribution of the data.

Depending on the type of architecture, the discriminator can give a score that is bounded

between 0 and 1 indicating the probability of the input being real or it can instead give a

score that has no lower and upper bound. I decided to use a score bounded between 0 and 1.

2.3.2 Generator

The generator, as shown in Figure 7, takes a random input z and upscales and tranforms

this with convolutions in order to reach the desired size for the audio. The parameters in the

convolutional layers will then be used to try to approximate the px during training so that

each z will be a seed that produces a different sounding audio file.

The original WaveGAN paper (Donahue, McAuley, and Puckette 2019) uses transpose con-

volutions in order to upsample the generated white noise (z) into data with same length as

the original data. These transpose convolutions are known in images to produce checker-

board artifacts, something that is not present in the original data and that therefore could

be exploited by the classifer in order to spot the generated images easily. These checkerboard

artifacts will also be present in the audio data. They solve this problem with a technique

called Phase Shuffle. I won’t do this since, while it solves the problem with the discriminator

spotting the generated images, it still leads to the generator creating these artifacts. I solve
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this in the way proposed by Odena, Dumoulin, and Olah (2016) instead: upscale the images

and then use convolutions. Their solution is for 2d images but based on my results it works

perfectly even in the case of 1-d time series data. This gives the same output size as with

the transpose convolutions but does not generate artifacts.

2.3.3 GAN Training

Both the generator and the discriminator learn the parameters needed to model the probabil-

ity distribution of the data in the way described previously in section 2.1, but since the loss

of the generator depends on the discriminator output, the backpropagation must start from

the discriminator and then continue backpropagating in the generator in order to calculate

the gradient, but only the generator parameters are updated in this stage (GoogleDevelop-

ers 2019). The discriminator is updated at a different stage with its own loss that is only

backpropagated through itself. The generator learns through unsupervised learning since the

generator can never directly observe the real data.

2.3.4 Loss Functions

Loss functions used depend on the architecture. Deep Convolutional GANs or DCGANs are

known for faster training but are prone to more of the problems discussed in the next section.

Wasserstein Generative Adversarial Networks or WGANs with Gradient Penalty, are the ar-

chitecture with most stable training at the moment. I have myself used a simpler DCGAN

since writing the code for the Wasserstein GAN was outside of the scope of this paper. DC-

GANs are also known for producing higher quality samples and for faster training(Arjovsky,

Chintala, and Bottou 2017), when problems do not arise. This was also positive for me due

to the lack of processing power and time.

In our case the chosen loss function used is binary cross-entropy. The equation for cal-

culating the loss for one single example can be seen below where y is the label of the image

that is being classified (generated=0 or real=1) and p is the output of the discriminator and

is also the probability , evaluated by the discriminator, of the input being real.

L(p, y) = −(y log(p) + (1− y) log(1− p)) (4)

Both the discriminator and the generator share this loss, only that the generator will solely

recieve loss for its own generated examples while the discriminator also has to calculate and

use loss for all examples, both real or generated, that it is presented.
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2.3.5 Known Problems

The most well known problems when training GANs are Mode Collapse ,Vanishing Gradients

and Failure to Converge. All the information below is from GoogleDevelopers (2019).

• Danger of Mode collapse or just memorization. There is little risk of the generator

copying the original data, since it is never shown directly to the generator, but it is

very common that mode collapse will happen, leading the generator to find a data point

(or a small collection of these) that will always fool the generator, leading all generated

data to sound incredibly similar. This happens when the discriminator gets stuck in a

local minima while training.

• Vanishing Gradients : It is possible that the generator will stop learning in the early

stages of training when the generator is still outputting random noise; this is due

to the generated data distribution and the real data distribution initially

having little or no overlap making the job for the discriminator very easy and

leading to gradients that are close to zero (Weng 2019). It has been suggested

that this can be solved with Wasserstein loss, which is discussed later in this paper.

• Failure to converge : Attempts to solve this problem are using normalization techniques

such as adding noise to the inputs of the discriminator and by penalizing discriminator

weights.

3 Data Processing

3.1 Different Sample Rates

When faced with the problem of storing an analog signal such as sound into a digital memory

such as the one of a computer, we are forced to create a discrete representation of the

continuous sound. In order to do this, we take a certain amount of samples per second and

record the amplitude at these sample points. If enough samples per second are taken, the

human ear will not be able to hear the difference between the digital approximation and the

original signal. I therefore choose not to resample the audio to 16khz since this would lead

to all sound above the Nyquist frequency (In this case 8kHz) to be affected by a distortion

known as aliasing (Zawistowski and Shah 2005). Since the human range of hearing is from

20Hz to 20kHz (Purves et al. 2001), I choose a sample rate of 44.1kHz, which will ensure that

the data is free of distortion for the entire range of human hearing. Some of the files in the

dataset had different sample rates, but due to this being a very small percentage (less than
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1%), I decided to simply remove them. This is a difference in my approach to the problem

when compared to WaveGAN, where they take data with 16kHz as sample rate. Due to

the anti-aliasing filter removing the distortion, all information above 8kHz is lost and means

that most sounds will sound less ”bright”, having lost a lot of high frequency energy. The

sharp nature of high frequencies is often a desirable characteristic in snare drum sounds and

especially in hihats, two of the drums sounds my model will be creating.

3.2 Stereo to Mono

In the original dataset, most of the audio files are in stereo format, meaning that there are

two different waves, one for the left channel and one for the right channel. This is done so

that they can differ between each other and create the illusion of a multi-directional sound

when reproduced by a system with two speakers. This is complicated to process for me and

would basically more than double the time needed to train and create the files so my first

step is to take the average of both channels in order to have one single, simple wave signal.

In essence, I go from a stereo signal to a mono signal.

3.3 Data normalization

For all of the original data, the amplitude (the strength of signal at each sample point) when

recorded, was represented in different formats as shown in the table below. I decided to

convert all of my data to assume 32-bit floating-point values between -1 and +1 so as to have

everything in the same scale.

WAV format Min Max

32-bit floating-point -1.0 +1.0

32-bit integer PCM -2147483648 +2147483647

24-bit integer PCM -2147483648 +2147483392

16-bit integer PCM -32768 +32767

8-bit integer PCM 0 255

3.4 Length of signal

In order for me to be able to input my original data into the discriminator network, it was

necessary that both the original data and the output from the generative networks had the

same length - sample size. A shorter length would reduce training time but would also mean

losing a large part of the training data. Another problem I had was that some of the files had
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a large gap of silence at the beginning and the end so I decided to eliminate the beginning

silence and the end silence of each file, which also helps in aligning the files so that the peak

amplitudes for each sound file align better with each other. An example of the effects of this

data processing are represented in Figure 8 below.

Figure 8: The effects of conversion from stereo to mono going from two audio channels, one for left(blue)

and one for right(orange), to a single mono channel (shown in blue) can be clearly seen. The plot also shows

the effect of data normalization with the scale changing while the waveform remains the same, which should

make learning easier for the model. It also shows the effect of removing the silence from the beginning and

end of the file in order to create files of equal length and that all begin at the same point.

4 Architecture and Training

The architecture is similar to the one for WaveGAN. The specific neural network structure

of the final model can be seen in the appendix. I decide to compare some different models by

using a DCGAN with and without causal colvolutions and also with and without dilations.

Batch normalization, a technique that normalizes the values of the inputs to a neural layer

based on batches of training data, is used for each upscale/convolution block in the gener-

ator. Batch normalization transforms the input of a layer of neurons so that the resulting

normalized activation has zero mean and unit variance (equation 5,6,7). This activation is

then scaled and shifted by two parameters as shown in (equation 8), the two of which are

also learnt by the network during the training process. In these equations xi is the original

input to the layer and ŷ
(k)
i is the final, batch normalized input. Batch normalization is used

to avoid the problem with internal covariate shift (Ioffe and Szegedy 2015) and in order to
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avoid vanishing gradient problem by smoothing the optimization landcape (Santurkar et al.

2018).

µb =
1

m

m∑
i

xi (5) compute mean of input xi for batch of size m

σ2
b =

1

m

m∑
i

(xi − µb)2 (6) compute variance of input xi for batch of size m

x̂
(k)
i =

x
(k)
i − µ

(k)
b√

σ
(k)2

b + ε
(7) normalize xi so that it is N (0, 1) in respect to batches of data

ŷ
(k)
i = γ(k)x̂

(k)
i + β(k) (8) linear transform with learned parameters γ and β

Dropout is used instead of batch normalization after each convolution block in the discrimi-

nator (see appendix). Dropout is used to avoid overfitting, and works by randomly dropping

neurons out of the net during each training phase (Srivastava et al. 2014). Every neuron

has a probability p of being dropped out at each training phase. This probability p is set to

0.3 in our discriminator, meaning that each neuron has a 30% chance of being disconnected.

Dropout is illustrated in figure 9.

Figure 9: Graphical representation of a network before and after applying dropout. Figure from Srivastava

et al. 2014

ReLU is used as an activation function for the generator and LeakyReLU is used for the

discriminator. Stride is 4 for all 1D convolutional layers and Batch Normalization is always
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performed prior to LeakyReLU layers due to recommendations about this from previous re-

search (Chen et al. 2019). All LeakyReLU layers have α set to 0.2.

I train the GANs on the drum data, with each drum type having around 800-1000 training

examples. Each network is trained on one drum type at a time, since I want the generator

to learn a representation of that specific data type. Training all the different drums at once

will both require more time and also lead to the creation of hybrids between different sounds

that may be interesting but that may also lack in quality. This is something that could be

done in a future study.

I have also performed the same test to the one done by Donahue, McAuley, and Puckette

(2019) , using the google Speech Commands Dataset in order to see if my model can correctly

synthesize human speech. Due to limitations in time I haven’t used the entire dataset , only

using recordings of the word yes. This Yes-GAN model had to be adapted, with a different

depth in order to generate and accept input of length 16000 instead of 7500. The purpose of

this test is making the results of the model easier to judge, since humans are very good at

judging the quality of generated speech.

5 Results

The generated sounds are difficult to evaluate objectively. It is my subjective opinion that

many of the drum sounds are of excellent quality, altough having a weakness with mode

collapse in a certain amount of the runs. In order to verify the viability of using these sounds

I arranged a couple of short tracks using some of the produced drum sounds. These are

available, along with several examples of generated drum sounds, by clicking here. The dif-

ferent DCGAN models were difficult to compare since each run can give completely different

results due to the problems with GAN and especially DCGAN training stability. This made

it very difficult to evaluate the effect of changes in model and the conclusion is simply that

it is difficult to establish whether the addition of causal and-or dilated convolutions in the

generator and-or the discriminator have a positive effect. What we are able to state is that

a GAN model with both causal and-or dilated convolutions is able to perform very well in

generating this kind of data if training doesn’t get stuck.

Another important result is that the type of data that needs to be generated, has a large

influence on the results. While it seems more difficult to generate speech (although i didn’t

have enough time for training as Donahue, McAuley, and Puckette (2019), which converged
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within four days whilst i stopped training after 12 hours), short drum stabs seem to be easy

for the model to produce, with almost every training instance giving good results and requir-

ing very little training time to achieve this. One of the reasons for this difference in training

time may be due to the difference in dimensions, comparatively IR7500 and IR16000. But this

would not explain why training on certain drum sounds always gives training stability while

others do not. This may be due to the fact that certain sounds, such as a snare drum, are

mostly composed by broadband noise (ModeAudio 2014). Since the model without train-

ing creates noise, due to the weights being initialized at random, this might mean that the

starting distribution, when the weights are initialized, is much closer to the real distribution,

making training easier and more stable even when we don’t use Wasserstein GANs. In fact,

in all of the different models, both the generation of snares and hihat sound always went well

and gave great results, while producing other kinds of sounds like kick drums has not given

equally consistent results.

A bizarre result which occured was when the generator created snare sounds when it was

trained on only hihat data. This may either be due to the fact that they share the same

data generating distribution, or a more likely explanation would simply be because some of

the data been incorrectly labeled. A superficial search within the data to find an example of

incorrectly labeled data was performed but no such example was found.

In order to make sure that the algorithm wasn’t simply learning or memorizing certain

data points, I identified the most similar sounds from the dataset using the lowest MSE as

criterium. The results cannot be presented here due to it being audio, but performing this

test with a small number of randomly selected generated files showed that the generated

sounds are clearly quite different from the most similar data in the training dataset which

seems to show that the GAN is able to generate novel audio, although the result may also

simply indicate that MSE is a bad evaluation metric for similarity in audio.

Result of human voice synthesis by my Yes-GAN is that the algorithm is not equally quick

in converging and giving convincing results. The results are worse, but still comparable to,

those achieved by Donahue et al. (2019) when the algorithm is trained for around 800 epochs

with a batch size of 5. Some of my results are similar, compared to what has been observed

previously in GAN generation of animal images, where GANs create animals with several

faces (Goodfellow 2017). In my case, the algorithm has often generated audio where yes is

said more than once.
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6 Discussion and Conclusions

My results show that it is possible to create high-quality drum samples with architectures

such as DCGAN and that using causal and dilated convolutions is a viable approach, but

not making it clear if it is significantly better. It also shows that 1-d transpose convolutions

can be substituted with nearest neighbour upsampling followed by regular 1-d convolutions

in GANs that generate one-dimensional data.

The obtained results of certain sounds being easier to generate, possibly due to them sharing

similarities with the output of the untrained generator (in this case hihat sounds being similar

to white noise), means that it might be interesting to investigate whether initializing generator

weights in a strategic way might make training easier for the generator and therefore stabilize

the training process.
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7 Appendix

Table 1: Final Generator Network Architecture

Layer (type) Kernel Size Output Shape

z ∼Normal(0,1) (n, 120)

Dense 120*256 (n, 30720)

Reshape + Batch Normalization + ReLU (n, 120, 256)

Upsampling1D (16x) (n, 120*16, 256)

Conv1D + Batch Normalization + ReLU (25,128) (n, 474, 128)

Upsampling1D (n, 3792, 128)

Conv1D + Batch Normalization + ReLU (25,64) (n, 942, 64)

Upsampling1D (n, 7536, 64)

Conv1D + Batch Normalization + ReLU (25,32) (n, 1878, 32)

Upsampling1D (n, 15024, 32)

Conv1D + Batch Normalization + ReLU (25,16) (n, 3750, 16)

Upsampling1D (n, 30000,16)

Conv1D + TanH (25,1) (n,7500,1)

Table 2: Final Discriminator Network Architecture

Layer (type) Kernel Size Output Shape

Input x or G(z) (n, 7500)

Conv1D + LeakyReLU + Dropout (25,128) (n, 1869, 128)

Conv1D + LeakyReLU + Dropout (25,64) (n,1821,64)

Conv1D + LeakyReLU + Dropout (25,64) (None, 1725, 64)

Conv1D + LeakyReLU + Dropout (25,64) 1533

Flatten (None, 98112)

Dense + Sigmoid (98112,1) 1

Adam optimizer, the as of date most popular optimization algorithm for gradient descent, is

used with learning rate being set to 1e-4, while all other optimizer parameters are set to the

default value in keras.
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