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Abstract

We propose and implement a beyond Gross-Pitaevskii approach based on Many-Body
Perturbation theory (MBPT) for the study of Bose-Einstein Condensate (BECs) ground
states. Two partitions of the system Hamiltonian are considered. Firstly, a bosonic ana-
logue to Møller-Plesset simply dubbed RSPT, and secondly an approach based on the
Epstein-Nesbet partitioning scheme labeled ENPT. We consider one-dimensional BECs
and work in the Harmonic Oscillator (HO) basis. Both third order RSPT and ENPT
show overall good agreement with Full Configuration Interaction (FCI) in the low-particle
number regime for a harmonically trapped BEC. For the same system, fast convergence
is also seen towards the GP energy in the mean-field limit, as expected. Moreover, third
order ENPT is seen to consistently produce lower ground state energies with better accu-
racy, compared to RSPT. Finally, we explore more complicated systems. Firstly, a BEC
trapped in a double-well potential, where the mean-field ground state exhibits symmetry
breaking. For low enough particle counts, when far away from the mean-field limit, we
found that third order ENPT applied to a symmetric mean-field state results in lower en-
ergies compared to starting from the asymmetric mean-field ground state. Further studies
examining the perturbed wave functions are necessary to determine whether or not this
ground state is symmetric. Lastly, we study self-bound BEC droplet states, and although
our methods are not able to correctly reproduce the characteristic energy minima they
do hold promise in the study of self-bound states. Future studies exploring other starting
points such as the extended GP equation are proposed.
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Chapter 1

Introduction

This thesis is primarily concerned with the study of perturbation theory based com-
putational methods, applied to finding the ground state energies of non-uniform dilute
Bose-Einstein Condensates (BECs). However, before turning to the motivation of this
thesis, some background is required.

A BEC refers to the state of matter where a bosonic gas condenses into a single quan-
tum state at ultra-cold temperatures, made possible due to the ability of multiple bosons
to reside in the same one-body state (in contrast to fermions). Theoretical predictions
on the existence of BECs dates back to papers published in the 1920s by A. Einstein and
S. N. Bose, where a statistical model of a non-interacting Bose-gas showed condensation
into the ground state at ultra-cold temperatures [1]. Experimental verification followed
in 1995 where condensation was achieved in trapped atomic gases of rubidium-87 and
sodium [2, 3]. Since then, in addition to atomic gases, condensation has been found in
trapped bosonic gases consisting of molecules [4, 5, 6], quasi-particles [7, 8], and photons
[9, 10].

Describing interacting many-body systems theoretically is notoriously difficult and the
Hamiltonians for such systems are often highly coupled, making analytical approaches
unfeasible at the present [11]. Considering a system of N particles labeled by their
position x1, x2, . . . , xN the difficulty arises from the interaction terms V (xi, xj), i 6= j
in the many-body Hamiltonian which couple the movement of particles xi and xj. A
common technique for dealing with the coupled nature of the many-body Hamiltonian is
the mean-field approximation which attempts to describe the interactions of particle xi
with all others in the condensate

∑N
j=1 V (xi, xj), i 6= j by an effective potential uMF(xi)

[11]. Consequently, the highly coupled many-body Hamiltonian is reduced to the sum of
N one-body Hamiltonians, greatly reducing the complexity of the problem [11].

In the mean-field treatment of BECs, assuming all N particles occupy the ground
state |φ0〉, one arrives at the one-body Hamiltonian known as the Gross-Pitaevskii (GP)
equation [1, 12]. More precisely, this equation is a Non-Linear-Schrödinger Equation
(NLSE) describing the multiply occupied one-body state |φ0〉 [1, 12]. Importantly, the
GP equation (and modifications thereof) have been successfully applied in describing
various properties of trapped weakly interacting dilute BECs, under the assumption that
the particle count is large. For instance, the GP equation has not only correctly produced
the ground state density of the experimentally verified rubidium-87 BEC [3, 13], but
also frequencies of collective excitation modes [14, 15, 16], as well as the formation and
dynamics of vortices [17, 18, 19, 20, 21, 22]. Despite this success, with the recent discovery
of self-bound BECs through the inclusion of beyond mean-field corrections [23], and its
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even more recent experimental verification [24], interest is on the rise for beyond mean-field
descriptions. In addition, for larger attractive interaction strengths and certain potentials,
a so called Best Mean-Field (BeMF) description that allows for two different one-body
states |φ0〉, |φ1〉 to be occupied have provided lower energies than the GP equation [25].
From the theory of calculus of variations we expect the ground state to be the state that
minimizes the energy functional of the system, and as such BeMF sometimes constitutes
a better description of the condensate [26].

If we consider a BEC of N particles, how might one go beyond the mean-field descrip-
tion? A common approach is to solve the GP equation in a basis of size M , after which
one obtains the GP ground state along with a set ofM−1 virtual excited one-body states.
By then considering various configurations of the N particles in these M states we can
arrive at a more accurate description of the BEC ground state. One such method that
has seen extensive use over the years in the field of quantum chemistry is Configuration
Interaction (CI), where the full BEC ground state is expanded in a basis of these con-
figurations [27]. From this one can construct a matrix representation of the full system
Hamiltonian and the ground state energy and expansion coefficients are obtained from
the associated eigenvalue problem. If all possible configurations are included in the basis
expansion, the method is called Full CI (FCI) and the energies and states obtained are
exact in that they are optimal for a given particle count N and set of one-body states [27].
However, the usefulness of FCI is limited to low particle numbers as the matrix sizes and
thus computational costs grows too rapidly with increasing N . This problem can partially
be remedied, at the cost of accuracy, by considering only a subspace of the configuration
space. It is then common to place all particles in the one-body ground state save one or
two. The method resulting from this type of truncation is referred to as CI with Single
and Double substitutions (CISD) [27]. On the other hand, these approximations are not
without drawbacks, and CISD (or any truncated CI method) is not size-extensive meaning
the energy of the system does not scale linearly with N as one would expect [27]. There
is also the closely related property of size-consistency which concerns the consistency of
the method across chemical reactions, for instance for the dissociation AB → A+B, the
numerical method is size-consistent if it the energy of AB is the same as the combined
energy of A and B [27]; Size-consistency will not be a problem in this thesis as no such
systems are considered. Note, there are many variants of CI and only a fraction of them
were brought up here.

The use of truncated CI methods eventually faded in favor of truncations of more
efficient methods such as Many-Body Perturbation theory (MBPT) and later Coupled
Cluster (CC). Both MBPT and CC, including their truncated variants, are size-extensive
[27, 28]. In the last decade however, interest in truncated MBPT based methods is
again on the rise due to its improved scaling with particle count and often better time-
complexity, compared to CC. Additionally the MBPT methods (as most of the methods
mentioned) exist in many variations and are often tailored to the specific problem at hand.
For instance, in the study of open-shell nuclei in nuclear structure theory a particular Bo-
goliubov based MBPT method has recently shown much promise, reproducing the results
from non-perturbative methods such as CI and CC at a fraction of the computation time
[29, 30, 31]. Similarly, in the study of electronic systems the common time-independent
second order Møller-Plesset perturbation theory was in the early 2010s extended to use
optimized virtual orbitals, resulting in both increased accuracy of computed molecular
properties but also making the method more competitive compared to non-perturbative
approaches [32, 33]. This method was recently made time-dependent and applied in the
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numerical study of atoms in strong laser fields, specifically high harmonic generation, with
great results [34].

The goal of this thesis may then be stated as: Firstly, to go beyond the mean-field
description via MBPT, where the virtual one-body states obtained in solving the GP equa-
tion self-consistently will be incorporated to include higher order corrections to ground
state energy; Secondly, to verify our MBPT approach against FCI and the GP equation
in their respect regimes, where they are accurate; Lastly, to study more complicated sys-
tems where the normal GP approach is insufficient and FCI is computationally infeasible.
Here we consider a one-component BEC in a double well where the GP equation shows
symmetry breaking [35], and a two-component self-bound BEC which is not able to be
described via the GP equation [23].

Motivations for this thesis are manyfold: Firstly, the implementation of such a method
serves as a stepping stone in implementing more involved bosonic beyond mean-field
methods such as Quadratic CISD (QCISD), correcting the size-inconsistency of CISD
[36], CC, and possibly more complicated MBPT variants [27]; Secondly, it allows for the
efficient and novel theoretical study of BECs in the intermediate particle number regime
where not much is known for larger interaction strengths. We restrict ourselves to the
study of one-dimensional BECs with contact interaction as a suitable starting point.

Let us now briefly outline the rest of this thesis. In chapter 2 the prerequisite knowledge
in many-body theory is covered, it also presents the mean-field approximation along with
the GP and BeMF equations. Additionally, this chapter covers the Self-Consistent Field
(SCF) method and the used approaches to MBPT. Chapter 3 contains all derivations
pertaining to the perturbative energy shifts of the GP ground state. Moving on, the main
results of this thesis is presented in Chapter 4 where a one-component BEC in a harmonic
trap is firstly studied to determine the convergence behavior of the perturbative methods.
Followed by the study of a one-component BEC in a double well and a two-component
self-bound BEC. Lastly, the main results are summarized in Chapter 5 and an outlook is
provided in Chapter 6.
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Chapter 2

Theoretical background

This chapter starts out with an overview of many-body theory using second quantization
in Sec. 2.1, particularly as applied to systems with contact interaction. Next, the mean-
field approximation is presented in Sec. 2.2 along with its use in deriving the one- and
two-component GP and one-component BeMF equations. In order to solve these non-
linear one-body equations, the numerical SCF method is put forth in Sec. 2.3 along with
techniques to aid in convergence. Finally the necessary foundations in MBPT are provided
in Sec. 2.4 where two different approaches to Hamiltonian partitioning are considered.

2.1 Many-body theory with contact interaction
As a suitable starting point, consider a particle of mass m in an external potential û. The
Hamiltonian of this system is then given by

ĥ =
p̂2

2m
+ û, (2.1)

where p̂ is the momentum operator [37]. Further, the stationary energy spectrum {εn}
and eigenstates {|φn〉} of ĥ are given by the one-body Schrödinger equation

ĥ|φn〉 = εn|φn〉, |φn〉 ∈ H, (2.2)

where solutions |φn〉 live in the one-body Hilbert space H. From this point onwards all
equations will be presented in natural units, setting ~ = c = m = 1.

We will also work in the position basis where φn(x) = 〈x|φn〉, and ĥ(x) = −1
2
∂2

∂x2
+u(x).

A system of N non-interacting bosons labeled by their position x1, x2, . . . , xN may be
described by the many-body Hamiltonian [11]

Ĥ =
N∑
i=1

ĥ(xi). (2.3)

However, if inter-particle interactions are to be included, terms linking different xi will
have to be added. The most basic form of which is contact interaction, which between
particles of sufficiently low energies and momenta takes the form a of a delta function
gδ(xi − xj) [12]. Here g = 4π~2a/m refers to the interaction strength consisting of the
scattering length a and particle mass m [12]. This approximation is reasonable as BECs
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are dilute gases at ultra-cold temperatures [12].
Including contact interactions, the Hamiltonian in Eq. (2.3) now becomes

Ĥ =
N∑
i=1

ĥi(xi) + g

N∑
i<j

δ(xi − xj), (2.4)

where
∑N

i<j denotes a double sum over indices i, j ∈ [1, N ] such that i < j. This type
of sum is required to avoid double counting interactions. Working with the Hamiltonian
in Eq. (2.4) is easiest in the formalism of second quantization (see Appendix A for an
overview) where it reads

Ĥ =
∑
ij

hij â
†
i âj +

1

2
g
∑
ijkl

vijklâ
†
i â
†
j âlâk, (2.5)

with hij =
∫

dxφ∗i (x)ĥ(x)φj(x) and vijkl =
∫

dxφ∗i (x)φ∗j(x)φk(x)φl(x). The sums above∑
ij and

∑
ijkl run over all one-body states. Note also that the integrals have the implicit

bounds (−∞,∞). In the second quantization formalism, many-body states are elements
of the symmetric Fock space Fs(H) over the one-body Hilbert space H introduced earlier.
Elements of this space are symmetric with respect to particle interchange. As such, this
space contains all possible bosonic many-body states constructed from elements ofH. It is
common to reference elements of the Fock space using the occupation number notation. In
this notation, a many-body state of N particles inM different orthogonal one-body states
is labeled by |n0, n1, . . . , nM−1〉 ∈ Fs(H) which corresponds to n0 particles in |φ0〉, n1 in
|φ1〉, and so on. Additionally the inner product between two many-body states is only
non-zero when they both contain the same one-body states with the same occupancies.

Including another species of bosons and making sure that the particle count of each
species is conserved, we arrive at a system consisting of two chemically independent
components, one component per species. Each component may be labeled A, B with their
respective particle counts NA, NB, and intra- and inter-component interactions strengths
gAA, gBB and gAB respectively. The Hamiltonian of the two-component system may now
be constructed from Hamiltonians ĤA and ĤB taking the form of Eq. (2.4) covering the
intra-component interactions, along with a separate term accounting for inter-component
interactions. This yields

Ĥ = ĤA + ĤB +

NA∑
i=1

NB∑
j=1

gABδ(xAi
− xBj

)

=

(
NA∑
i=1

ĥA(xAi
) +

NA∑
i<j

gAAδ(xAi
− xAj

)

)

+

(
NB∑
i=1

ĥB(xBi
) +

NB∑
i<j

gBBδ(xBi
− xBj

)

)

+

NA∑
i=1

NB∑
j=1

gABδ(xAi
− xBj

).

(2.6)

Note the relabeling of indices such as i→ Ai to better separate the components. Express-
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ing Eq. (2.6) in second quantization now results in

Ĥ =
∑
ij

h
(A)
ij â

†
Ai
âAj

+
1

2
gAA

∑
ijkl

v
(AA)
ijkl â

†
Ai
â†Aj

âAl
âAk

+
∑
ij

h
(B)
ij â†Bi

âBj
+

1

2
gBB

∑
ijkl

v
(BB)
ijkl â

†
Bi
â†Bj

âBl
âBk

+ gAB
∑
ijkl

v
(AB)
ijkl â

†
Ai
â†Bj

âBl
âAk

,

(2.7)

where (with "P" and "Q" as placeholders),

h
(P )
ij =

∫
dxφ∗Pi

(x)ĥP (x)φPj
(x), (2.8)

and

v
(PQ)
ijkl =

∫
dxφ∗Pi

(x)φ∗Qj
(x)φPk

(x)φQl
(x). (2.9)

Furthermore, the space of many-body two-component states is the combination of the one-
component Fock spaces F (AB)

s (H) := F (A)
s (H) ⊗ F (B)

s (H) where "⊗" denotes the tensor
product. Elements of this space take the form |nA0 , nA1 , . . .〉 ⊗ |nB0 , nB1 , . . .〉 ∈ F

(AB)
s (H)

and contains nA0 particles in |φA0〉, nB0 in |φB0〉 and so on. Similarly to the one-component
case, the inner product in this space is only non-zero between many-body states containing
the same components, one-body states and occupancies of those states. More information
regarding the mathematical construction of the Fock spaces is provided in Appendix A.

Note, that in the strictest sense the one- and two-component Hamiltonians presented in
Eq. (2.5) and (2.7) are not actually Hamiltonians as they have a non-linear dependence on
the one-body states {|φPi

〉}. Rather they should be considered as Hamiltonian-generators
which for a given set {|φPi

〉} produces a linear Hamiltonian. We will however only be
dealing with these Hamiltonian-generators in the context of a given set of one-body states,
meaning the distinction is not necessary.

All in all, the stationary bosonic many-body problem can be phrased as the time-
independent many-body Schrödinger equation

Ĥ|Ψn〉 = En|Ψn〉, |Ψn〉 ∈ Fs(H), (2.10)

where solutions |Ψn〉 are sought after in the bosonic Fock space Fs(H), instead of the
usual one-body Hilbert space H in the one-body Schrödinger equation (2.2).

Notation-wise, uppercase symbols will refer to many-body quantities. For instance,
the many-body state |Ψn〉, Hamiltonian Ĥ, and eigenvalue En. Similarly, lowercase sym-
bols refer to one-body quantities, such as the one-body state |φn〉, Hamiltonian ĥ, and
eigenvalue εn.

2.2 The mean-field approximation
As previously mentioned, the mean-field approximation is a powerful tool in dealing with
highly coupled interacting systems such as the full many-body one- and two-component
Hamiltonians Ĥ given by Eq. (2.4) and (2.6). By assuming all inter-particle interactions
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may be approximated by an effective mean-field potential ûMF(x), the full one-component
Hamiltonian Ĥ of a N particle system can be estimated by

ĤMF =
N∑
i=1

(ĥ(xi) + ûMF(xi)), (2.11)

where ĥ(x) is the linear Hamiltonian in Eq. (2.1) [11]. The problem has now been reduced
to studying N identical one-body Hamiltonians, however the problem of finding ûMF(x)
still remains. Fortunately, for a given many-body state |Ψ〉 ∈ Fs(H) the optimal mean-
field Hamiltonian

ĥMF = ĥ+ ûMF (2.12)

can be found by minimizing the energy functional E = 〈Ψ|Ĥ|Ψ〉 with respect to the
one-body states in |Ψ〉 [11]. A few such mean-field Hamiltonians resulting from different
many-body states |Ψ〉 will be presented in the following sections.

2.2.1 One- and two-component Gross-Pitaevskii equations

The derivation of the one- and two-component GP equations presented here uses a vari-
ational approach, another common method is to use field operators and the Bogoliubov
approximation, see Ref. [1] for more information on the topic.

The full energy of a N particle many-body state |Ψ〉 ∈ Fs(H) in a one-component
system with contact interaction is given by E = 〈Ψ|Ĥ|Ψ〉, where Ĥ is given by Eq. (2.5).
Clearly, E depends on the choice of |Ψ〉, and in a BEC at ultra-cold temperatures it
is reasonable to assume that only the lowest energy one-body state |φ0〉 is occupied.
Therefore |Ψ〉 = |N, 0, . . .〉 and the energy functional E becomes

E[φ0] = 〈Ψ|Ĥ|Ψ〉 = N

∫
dx

(
φ∗0(x)ĥ(x)φ0(x) +

1

2
g(N − 1)|φ0(x)|4

)
. (2.13)

Minimization of Eq. (2.13) with respect to φ0(x), using the Lagrange multiplier µ0, we
find the one-component GP equation(

ĥ(x) + g(N − 1)|φ0(x)|2
)
φ0(x) = µ0φ0(x), (2.14)

as an equivalency to the Euler-Lagrange equation [12, 26]. Equation (2.14) must be
satisfied for φ0(x) to be an extremal of the energy functional [12, 26]. Note, this form
of the GP equation differs from that commonly presented in the literature, where the
interaction term is given by gN |φ0(x)|2. Usually, Eq. (2.14) is shown in terms of the order
parameter φord(x) =

√
Nφ0(x) and N � 1 is assumed such that g(N − 1) ≈ gN . The

order parameter also takes degenerate ground states into account which we do not consider
here. Furthermore, φ0(x) satisfying Eq. (2.14) does not guarantee that it minimizes E[φ0],
but only that it is an extremal of E[φ0], and relying on the theory of variational calculus
to ensure a minimum of E[φ0] is possible only in the special cases where Eq. (2.14) is
analytically solvable [26]. Therefore, it is often necessary to try multiple φ0(x) to ensure
a minimum. Additionally, the eigenvalues µ0 in Eq. (2.14) are not energies as one might
expect, but chemical potentials as they can be shown to satisfy E[φ0, N ]−E[φ0, N−1] = µ0

(treating Eq. (2.13) as a function of N) [12].
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Similarly to the one-component case, the ground state of a BEC with components A
and B can be described by a many-body state |Ψ〉 ∈ F (AB)

s (H). Assuming NA particles
in the ground state |φA0〉 of component A and NB in the ground state |φB0〉 of B, then
the BEC ground state becomes |Ψ〉 = |NA, 0, . . .〉 ⊗ |NB, 0, . . .〉. Consequently the energy
functional E = 〈Ψ|Ĥ|Ψ〉 can be calculated as

E[φA0 , φB0 ] = NA

∫
dx

(
φ∗A0

(x)ĥ(x)φA0(x) +
1

2
gAA(NA − 1)|φA0(x)|4

)
+NB

∫
dx

(
φ∗B0

(x)ĥ(x)φB0(x) +
1

2
gBB(NB − 1)|φB0(x)|4

)
+ gABNANB

∫
dx |φA0(x)|2|φB0(x)|2,

(2.15)

when using the two-component Hamiltonian Eq. (2.7) in second quantization. Minimiza-
tion of Eq. (2.15) with respect to φA0(x) and φB0(x), using Lagrange multipliers µA0 and
µB0 , then results in the two-component GP equation

(
ĥ(x) + gAA(NA − 1)|φA0(x)|2 + gABNB|φB0(x)|2

)
φA0(x) = µA0φA0(x)(

ĥ(x) + gBB(NB − 1)|φB0(x)|2 + gABNA|φA0(x)|2
)
φB0(x) = µB0φB0(x)

, (2.16)

as a pair of coupled eigenvalue equations.
Lastly, a few words have to be said about the validity of the GP equations presented.

These mean-field equations are known to be valid in the mean-field limit where the in-
teraction strength scales as g = 1/(N − 1) as N →∞, keeping the non-linear parameter
λ = g(N − 1) constant [38]. In this limit it has been shown that the mean-field energy
E[φ0] correctly approaches the minimum energy eigenvalue of Ĥ [38].

2.2.2 One-component best mean-field equation

By extending the mean-field description to allow for two occupied one-body states a lower
mean-field energy may be achieved - specifically in the case of strongly attractive inter-
particle interactions [25]. However, consider a condensate in a trap with N = n0 + n1

particles where n0 reside in |φ0〉 and n1 in |φ1〉 corresponding to the many-body state
|Ψ〉 = |n0, n1, 0, . . .〉 ∈ Fs(H). Then theoretically, so called fragmentation can occur where
both |φ0〉 and |φ1〉 have large occupations n0 and n1, and the condensate has effectively
split in two, each with ground state |φ0〉 and |φ1〉 respectively [1, 39]. Fragmentation is
something to be mindful of, since it is possible in this model [25, 40].

Proceeding with the derivation of the mean-field equations, using the |Ψ〉 above, the
energy functional reads

E[φ0, φ1, n0, n1] = n0

∫
dx

(
φ∗0(x)ĥ(x)φ0(x) +

1

2
g(n0 − 1)|φ0(x)|4

)
+ n1

∫
dx

(
φ∗1(x)ĥ(x)φ1(x) +

1

2
g(n1 − 1)|φ1(x)|4

)
+ 2gn0n1

∫
dx |φ0(x)|2|φ1(x)|2,

(2.17)
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which is to be minimized with respect to φ0(x), φ1(x), n0 and n1 [25]. Note that the
BeMF energy functional above looks remarkably similar to the two-component GP energy
functional in Eq. (2.15), the major difference however is in the factor 2 in the last term.
This factor 2 is not present in the two-component case where we require the conservation
of particle counts in each component, cutting the number of possible interactions in half.
From the energy functional in Eq. (2.17) it also becomes clear that fragmentation is not
a favorable process. This is because we are dealing with attractive interactions g < 0
and as such the exchange integral in Eq. (2.17) is minimized when the overlap between
|φ0(x)|2 and |φ1(x)|2 is at a maximum.

Next, carrying out the minimization with respect to φ0(x) and φ1(x), using Lagrange
multipliers µ00, µ01, µ11, µ10, yields the system of equations

(
ĥ(x) + g(n0 − 1)|φ0(x)|2 + 2gn1|φ1(x)|2

)
φ0(x) = µ00φ0(x) + µ01φ1(x)(

ĥ(x) + g(n1 − 1)|φ1(x)|2 + 2gn0|φ0(x)|2
)
φ1(x) = µ10φ0(x) + µ11φ1(x)

, (2.18)

which notably are not eigenvalue equations [25]. However, at optimal n0 and n1 it can be
shown what µ = µ00 = µ11, and further assuming n0 � 1, n1 � 1, introducing the new
orbitals ψ0(x) =

√
n0

N
φ0(x) +

√
n1

N
φ1(x)

ψ1(x) =
√

n1

N
φ1(x)−

√
n0

N
φ0(x)

, (2.19)

transforms Eq. (2.18) to an eigenvalue problem more akin to the two-component GP
equation (2.16)

(
ĥ+ 3

4
g(N − 1)|ψ0(x)|2 + 1

4
g(N − 1)|ψ1(x)|2

)
ψ0(x) = (µ+ µ̄)ψ0(x)(

ĥ+ 3
4
g(N − 1)|ψ1(x)|2 + 1

4
g(N − 1)|ψ0(x)|2

)
ψ1(x) = (µ− µ̄)ψ1(x)

(2.20)

where µ̄ =
√
n0/n1µ01 =

√
n1/n0µ10 [25]. Additionally |ψ0〉 and |ψ1〉 are non-orthogonal

with the inner product 〈ψ0|ψ1〉 = (n1− n0)/N which may be used to retrieve the optimal
occupations n0 and n1.

Importantly, even though Eq. (2.20) was derived on the premise that n0 � 1, n1 � 1
and thus N = n0 + n1 � 1, it is not required to solve for the correct states |ψ0〉 and |ψ1〉.
The problem can be rescaled, for instance if λ = g(N − 1) = 1 then N = 1000, g = 1/999
will yield the same solution as N = 4, g = 1/3 despite N � 1 not being satisfied.
Furthermore, the size of N is only important when solving 〈ψ0|ψ1〉 = (n1 − n0)/N for
the optimal n0 and n1 and when computing the energy E[φ0, φ1, n0, n1], where a large
N will yield more accurate results. However if all we are interested in are the fractional
occupations n0/N and n1/N , then the size of N is not an issue. Note here that if n0 = 0
or n1 = 0 then ψ0(x) = ψ1(x), and µ̄ = 0 and Eq. (2.20) reproduces the one-component
GP equation.
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2.3 Solving non-linear Schrödinger-like equations via
the self-consistent field method

The goal of this section is to present the Self-Consistent Field (SCF) method as an ap-
proach to solve one-body eigenvalue problems with a non-linear dependence on the one-
body states, such as those posed by the GP and BeMF equations (2.14), (2.16) and (2.20).
The method itself has proved an invaluable tool in solving these eigenvalue problems ever
since its first application in the 1950s where it allowed for the numerical study of atomic
and molecular orbitals [41, 42].

We are interested in finding eigenstates of the mean-field Hamiltonian ĥMF = ĥ+ ûMF,
where ĥ is given by Eq. (2.1) and ûMF is the mean-field effective potential which depends
on the sought-after eigenstate |φ〉. Remember here that ĥMF is actually a Hamiltonian-
generator with non-linear dependence on the eigenstate |φ〉. However for a given |φ〉
the generated Hamiltonian is linear. The SCF algorithm is summarized in Fig. 2.1 and
steps (1-4) will be referenced in following explanation, note steps (2.a, 3.a) are not
part of the core algorithm and will be discussed shortly. To find the solution |φ〉 that
satisfies ĥMF|φ〉 = µ|φ〉 the SCF method starts from an initial guess |φ(0)〉 (step (1)) and
assumes ĥMF acts as a contraction map. The state |φ〉 can then be approximated through
the process of fixed point iteration. Concretely, this means using |φ(0)〉 to construct the
Hamiltonian ĥ

(0)
MF (step (2)) and then pick an eigenstate |φ(1)〉 of this Hamiltonian as

a starting point of the next iteration (steps (3, 4)). The choice of eigenstate depends
on the desired qualities of the final eigenstate. For instance, choosing |φ(n+1)〉 as the
eigenstate of ĥ(n)MF with lowest eigenvalue, as we do in this thesis, is great when looking
for the ground state of ĥMF. If on the other hand, one is interested in excited states of
ĥMF, the eigenstate |φ(n+1)〉 of ĥ(n)MF that maximises the overlap 〈φ(n+1)|φ(n)〉 is commonly
chosen [43]. Iteration is thus carried out according to the recursive scheme

ĥ
(n)
MF|φ

(n+1)〉 = µ(n+1)|φ(n+1)〉 (2.21)

until convergence is achieved with respect to some criterion, commonly measured in terms
of the eigenstates |φ(n)〉 or eigenvalues µ(n).
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Start
(1) Input
guess |φ(0)〉

(2) Construct
Hamiltonian ĥ(n)MF

(2.a)Apply
Ham. mix.?ĥ

(n)
MF → (1− α)ĥ

(n)
MF + αĥ

(n−1)
MF

(3) Solve for ground state
|φ(n+1)〉 of ĥ(n)MF

(3.a) Apply
orb. mix.?

|φ(n+1)〉 → (1− β)|φ(n+1)〉+ β|φ(n)〉

(4) Converged?

Stop

n := 0

yes

no

yes

no

yes

no

n→ n+ 1

Figure 2.1: Schematic representation of the SCF method, including
Hamiltonian and orbital mixing.

Practically, SCF encounters problems of slow convergence and sometimes stability
issues such as getting stuck oscillating between two or more states [44]. Methods at-
tempting to rectify these problems are plentiful and appear in most Hartree-Fock based
quantum chemistry software packages. One of the most effective remedies that also ap-
plies to bosonic systems is Hamiltonian mixing (step (2.a)) where the Hamiltonian of the
(n+ 1):th iteration is refined by taking the weighted average with n:th Hamiltonian, that
is

ĥ
(n+1)
MF → (1− α)ĥ

(n+1)
MF + αĥ

(n)
MF, (2.22)

where α ∈ [0, 1) is the mixing parameter [44]. A similar approach is orbital mixing (step
(3.a)) where the eigenstates are mixed according to the same scheme

|φ(n+1)〉 → (1− β)|φ(n+1)〉+ β|φ(n)〉, (2.23)

with the mixing parameter β ∈ [0, 1) [44]. Note that the extension to two-component GP
or BeMF is straight forward.

Finally, how does one go about finding the eigenstates of ĥ(n)MF? Practically, ĥ(n)MF is
expressed as a finite-dimensional matrix h(n)

MF using either a basis- or grid-based approach.
Grid based methods rely on either finite difference schemes or spectral methods to compute
the spatial derivatives in ĥ

(n)
MF. Finite difference schemes are accurate assuming very

fine grids, but result in large matrices to diagonalize every iteration [45]. On the other
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hand, spectral methods gets away with better accuracy for coarser grids and thus smaller
matrices, however this is not necessarily the case for non-periodic problems [45]. Using
basis sets, which is the favored approach in this thesis, allows for easy computation of
derivatives resulting in small matrices. This however requires the choice of an appropriate
set of basis functions for the problem at hand to get accurate results.

2.4 Many-body perturbation theory

2.4.1 Rayleigh-Schrödinger perturbation theory

Rayleigh-Schrödinger Perturbation Theory (RSPT) arose as a way to approach the time-
independent Schrödinger equation (2.2) for complicated Hamiltonians which makes the
problem analytically intractable [11, 37]. We consider the many-body Schrödinger equa-
tion (2.10) for a Hamiltonian partitionable as

Ĥ = Ĥ0 + λV̂ , λ ∈ R, (2.24)

where eigenstates {|Ψ(0)
n 〉} of Ĥ0|Ψ(0)

n 〉 = E
(0)
n |Ψ(0)

n 〉 are known [11, 37]. Here Ĥ0 commonly
denotes the unperturbed Hamiltonian whilst V̂ is the perturbation whose strength is tuned
by the real parameter λ.

The goal is to approximate the eigenstates {|Ψn〉} and eigenvalues {En} of the full
Hamiltonian in Eq. (2.24) in terms of the known unperturbed {|Ψ(0)

n 〉} and {E(0)
n }. The

full energy of the state |Ψn〉 may be written as En = E
(0)
n + ∆En, where ∆En = En−E(0)

n

is the energy shift incurred from the presence of the perturbation V̂ . Next, the energy
shift ∆En is expanded in a power series about the perturbation strength λ giving

∆En = λ∆E(1)
n + λ2∆E(2)

n + λ3∆E(3)
n + . . . (2.25)

where the first-, second-, and third order perturbation to the energy, ∆E
(1)
n ,∆E

(2)
n , and

∆E
(3)
n respectively can be shown to be (see Refs. [11, 37] for a detailed derivation)

∆E(1)
n = 〈Ψ(0)

n |V̂ |Ψ(0)
n 〉, (2.26)

∆E(2)
n =

∞∑
k 6=n

|〈Ψ(0)
k |V̂ |Ψ

(0)
n 〉|2

E
(0)
n − E(0)

k

, (2.27)

∆E(3)
n =

∞∑
k 6=n

∞∑
l 6=n

〈Ψ(0)
n |V̂ |Ψ(0)

l 〉〈Ψ
(0)
l |V̂ |Ψ

(0)
k 〉〈Ψ

(0)
k |V̂ |Ψ

(0)
n 〉

(E
(0)
n − E(0)

k )(E
(0)
n − E(0)

l )

− 〈Ψ(0)
n |V̂ |Ψ(0)

n 〉
∞∑
k 6=n

|〈Ψ(0)
k |V̂ |Ψ

(0)
n 〉|2

(E
(0)
n − E(0)

k )2
.

(2.28)

Importantly, for the energy shifts to be meaningful, the infinite sums above must converge
meaning the matrix elements 〈·|V̂ |·〉 must be small and the unperturbed state with energy
E

(0)
n above must be non-degenerate [37].
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2.4.2 Epstein-Nesbet partitioning

Another approach to perturbation theory emanating from quantum chemistry, is that
of Epstein and Nesbet [46, 47], where the full Hamiltonian Eq. (2.24) in RSPT is par-
titioned differently. This approach will be referred to as Epstein-Nesbet Perturbation
Theory (ENPT). Note that the Fock space Fs(H) which the unperturbed many-body
states {|Ψ(0)

n 〉} inhabits is complete and |Ψ(0)
n 〉 is a basis in this space. Consequently,

1 =
∑∞

k |Ψ
(0)
k 〉〈Ψ

(0)
k |, where |Ψ

(0)
k 〉 ∈ Fs(H), and the Hamiltonian Ĥ can represented as

Ĥ =
∞∑
k,k′

|Ψ(0)
k 〉〈Ψ

(0)
k |Ĥ|Ψ

(0)
k′ 〉〈Ψ

(0)
k′ |, (2.29)

which may be interpreted as an infinite-dimensional matrix acting in the Fs(H) Hilbert
space. Then, label by Ĥ0 the diagonal elements of this matrix

Ĥ0 =
∞∑
k

|Ψ(0)
k 〉〈Ψ

(0)
k |Ĥ|Ψ

(0)
k 〉〈Ψ

(0)
k |, (2.30)

and importantly Ĥ0|Ψ(0)
k 〉 = 〈Ψ(0)

k |Ĥ|Ψ
(0)
k 〉|Ψ

(0)
k 〉, ∀|Ψ(0)

k 〉 ∈ Fs(H). In other words, all
|Ψ(0)

k 〉 ∈ Fs(H) are eigenstates of Ĥ0 with eigenvalues 〈Ψ(0)
k |Ĥ|Ψ

(0)
k 〉, which are com-

putable, therefore choosing Ĥ0 as the unperturbed Hamiltonian is sensible. Continuing
on this track, the perturbation may be identified as

V̂ = Ĥ − Ĥ0 =
∑
k′,k′′

|Ψ(0)
k′ 〉〈Ψ

(0)
k′ |

(
Ĥ −

∑
k

|Ψ(0)
k 〉〈Ψ

(0)
k |Ĥ|Ψ

(0)
k 〉〈Ψ

(0)
k |

)
|Ψ(0)

k′′ 〉〈Ψ
(0)
k′′ |

=
∑
k′,k′′

|Ψ(0)
k′ 〉〈Ψ

(0)
k′ |Ĥ|Ψ

(0)
k′′ 〉〈Ψ

(0)
k′′ |

−
∑
k,k′,k′′

|Ψ(0)
k′ 〉〈Ψ

(0)
k′ |Ψ

(0)
k 〉〈Ψ

(0)
k |Ĥ|Ψ

(0)
k 〉〈Ψ

(0)
k |Ψ

(0)
k′′ 〉〈Ψ

(0)
k′′ |

=
∑
k′,k′′

|Ψ(0)
k′ 〉〈Ψ

(0)
k′ |Ĥ|Ψ

(0)
k′′ 〉〈Ψ

(0)
k′′ | −

∑
k

|Ψ(0)
k 〉〈Ψ

(0)
k |Ĥ|Ψ

(0)
k 〉〈Ψ

(0)
k |

=
∑
k,k′

k 6=k′

|Ψ(0)
k′ 〉〈Ψ

(0)
k′ |Ĥ|Ψ

(0)
k 〉〈Ψ

(0)
k |,

(2.31)

corresponding to the off-diagonal elements of the matrix Ĥ. With this perturbation in
hand the theory proceeds along the same line as RSPT above, however with a differ-
ent perturbation and the restrictions that only matrix elements between differing states
〈Ψ(0)

k |V̂ |Ψ
(0)
k′ 〉 are allowed.
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Chapter 3

Applying many-body
perturbation theory to the
Gross-Pitaevskii equation

We start by self-consistently solving the two-component GP equation (2.16) in a basis
{|χn〉}, n = 0, 1, . . . ,M − 1 of size M to obtain the eigenstates {|φAn〉} ∈ F

(A)
s (H),

{|φBn〉} ∈ F
(B)
s (H) and eigenvalues {µAn}, {µBn} of each component. Here |φA0〉 and |φB0〉

are the ground states of each components, and the goal is now to use the remainingM−1
eigenstates of each component to perturbatively go beyond the mean-field description.
Note, that in principle one could use different bases for {|φAn〉} and {|φBn〉} with different
basis sizes, however this will not be necessary for the systems we consider later on.

Only the two-component case is covered in this chapter as it also encompasses the
one-component case. Further extension to additional components is straight forward.

3.1 Rayleigh-Schrödinger perturbation theory
Starting with the Rayleigh-Schrödinger approach where the many-body mean-field Hamil-
tonian is taken as the unperturbed system. This unperturbed Hamiltonian is constructed
as in Eq. (2.11) by summing over the one-body Hamiltonians in the GP equation (2.16)
resulting in

ĤMF =

NA∑
i=1

(
ĥ+ gAA(NA − 1)|φA0(x

(A)
i )|2 + gABNB|φB0(x

(A)
i )|2

)

+

NB∑
i=1

(
ĥ+ gBB(NB − 1)|φB0(x

(B)
i )|2 + gABNA|φA0(x

(B)
i )|2

)
.

(3.1)

Note that this approach to perturbation theory is equivalent to the well known Møller-
Plesset perturbation theory, except for bosons instead of fermions [32]. The unperturbed
many-body states may then be taken as

|Ψ(0)
n 〉 = |nA0 , nA1 , . . .〉 ⊗ |nB0 , nB1 , . . .〉 ∈ F (AB)

s (H), (3.2)
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with eigenvalues

ĤMF|Ψ(0)
n 〉 =

M∑
i=1

(µAi
nAi

+ µBi
nBi

) |Ψ(0)
n 〉. (3.3)

Using the full many-body Hamiltonian Ĥ given by Eq. (2.6), the perturbation V̂RS satis-
fying Ĥ = ĤMF + V̂RS can be identified as

V̂RS =

NA∑
i<j

gAAδ(x
(A)
i − x

(A)
j )−

NA∑
i

gAA(NA − 1)|φA0(x
(A)
i )|2

+

NB∑
i<j

gBBδ(x
(B)
i − x(B)

j )−
NB∑
i

gBB(NB − 1)|φB0(x
(B)
i )|2

+

NA∑
i

NB∑
j

gABδ(x
(A)
i − x

(B)
j )−

NA∑
i

gABNB|φB0(x
(A)
i )|2

−
NB∑
i

gABNA|φA0(x
(B)
j )|2.

(3.4)

Next, Eq. (3.4) may be expressed in second quantization as

V̂RS =
1

2
gAA

∑
ijkl

v
(AA)
ijkl â

†
Ai
â†Aj

âAl
âAk
− gAA(NA − 1)

∑
ij

v
(AA)
i0j0 â

†
Ai
âAj

+
1

2
gBB

∑
ijkl

v
(BB)
ijkl â

†
Bi
â†Bj

âBl
âBk
− gBB(NB − 1)

∑
ij

v
(BB)
i0j0 â

†
Bi
âBj

+ gAB
∑
ijkl

v
(AB)
ijkl â

†
Ai
â†Bj

âBl
âAk
− gABNB

∑
ij

v
(AB)
i0j0 â

†
Ai
âAj

− gABNA

∑
ij

v
(BA)
i0j0 â

†
Bi
âBj

(3.5)

where the integral v(PQ)
ijkl is given by Eq. (2.9). Note that the integral v(PQ)

ijkl has some useful
symmetry properties in the intra-component case where P = Q. Namely v(PP )

ijkl = v
(PP )
jikl =

v
(PP )
jilk = v

(PP )
ijlk which as it happens, is the same symmetry as the creation and annihilation

operators â†Pi
â†Qj

âQl
âPk

. This allows for the reduction of terms in the sums
∑

ijkl(. . .) and∑
ij(. . .) above, greatly aiding future computational efforts.
If we now consider the matrix elements 〈Ψ(0)

k |V̂ |Ψ
(0)
k′ 〉 for |Ψ

(0)
k 〉, |Ψ

(0)
k′ 〉 ∈ F

(AB)
s (H),

needed for calculating the perturbative energy shifts ∆E, a few things can be noted.
Firstly, we arrive at expressions of the form∑

ijkl

〈Ψ(0)
k |â

†
Ai
â†Aj

âAl
âAk
|Ψ(0)

k′ 〉,
∑
ij

〈Ψ(0)
k |â

†
Ai
âAj
|Ψ(0)

k′ 〉,∑
ijkl

〈Ψ(0)
k |â

†
Ai
â†Bj

âBl
âAk
|Ψ(0)

k′ 〉,
(3.6)
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and similarly for the B component. These sums are only non-zero when |Ψ(0)
k 〉 and |Ψ

(0)
k′ 〉

differ in at most two occupations. Secondly, if we take |Ψ(0)
0 〉 = |NA, 0, . . .〉 ⊗ |NB, 0, . . .〉

as our unperturbed many-body ground state, then 〈Ψ(0)
k |V̂ |Ψ

(0)
0 〉 is only non-zero when

|Ψ(0)
k 〉 is a double substitution. Single substitutions will be shown to be zero shortly.
We may now begin computing the perturbative energy shifts with respect to the un-

perturbed many-body ground state |Ψ(0)
0 〉 we just introduced. The unperturbed energy is

simply given by the eigenvalue of |Ψ(0)
0 〉, see Eq. (3.3), as

E
(0)
0 = 〈Ψ(0)

0 |ĤMF|Ψ(0)
0 〉 = NAµA0 +NBµB0 . (3.7)

Likewise, using Eq. (2.26) the first order energy shift is quickly obtained as

∆E
(1)
0 = 〈Ψ(0)

0 |V̂ |Ψ
(0)
0 〉 = −1

2
gAANA(NA − 1)v

(AA)
0000 −

1

2
gBBNB(NB − 1)v

(BB)
0000

− gABNANBv
(AB)
0000 .

(3.8)

Next, in computing the second order energy shift ∆E
(2)
0 , terms of the form 〈Ψ(0)

k |V̂ |Ψ
(0)
0 〉

appear, and as previously mentioned |Ψ(0)
k 〉 must then be a double substitution. As single

substitutions are expected to be zero, analogous to Brillouin’s Theorem for fermions [11].
To confirm this, we label single substitutions in the A component by,

|Am〉 =
1√
NA

â†Am
âA0|Ψ

(0)
0 〉 (3.9)

by moving a particle from |φA0〉 to |φAm〉. The only possible single substitution that can
appear in component A is

〈Am|V̂ |Ψ(0)
0 〉 = gAA

√
NA(NA − 1)v

(AA)
m000 − gAA

√
NA(NA − 1)v

(AA)
m000 = 0, (3.10)

and likewise for the B component, confirming that the matrix elements between single
substitutions and the ground state are zero for bosons as well. In a similar manner as
previously, double substitutions may be labeled by

|AmAn〉 =
1√

NA(NA − 1)
â†Am

â†An
âA0 âA0|Ψ

(0)
0 〉, (3.11)

|AmAm〉 =
1√
2

1√
NA(NA − 1)

â†Am
â†Am

âA0 âA0 |Ψ
(0)
0 〉, (3.12)

|AmBn〉 =
1√

NANB

â†Am
â†Bn

âB0 âA0 |Ψ
(0)
0 〉, (3.13)

for the cases where two bosons reside in different one-body states |φAm〉, |φAn〉, the same
state |φAm〉, |φAm〉, and lastly different components |φAm〉, |φBn〉. The matrix elements
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〈Ψ(0)
k |V̂ |Ψ

(0)
0 〉 where |Ψ

(0)
k 〉 is a double substitution may then be calculated resulting in

〈AmAm|V̂ |Ψ(0)
0 〉 =

1√
2
gAA
√
NA(NA − 1)v

(AA)
mm00, (3.14)

〈AmAn|V̂ |Ψ(0)
0 〉 = gAA

√
NA(NA − 1)v

(AA)
mn00, (3.15)

〈AmBn|V̂ |Ψ(0)
0 〉 = gAB

√
NANBv

(AB)
mn00, (3.16)

where matrix elements with respect to only the B component take the same form as
Eq. (3.16) and (3.15) due to their symmetry with the A. Applying the above notation,
the second order energy shift ∆E

(2)
0 with respect to the unperturbed many-body ground

state |Ψ(0)
0 〉, given by Eq. (2.27), can be written as

∆E
(2)
0 =

∑
m≤n

|〈AmAn|V̂ |Ψ(0)
0 〉|2

2µA0 − µAm − µAn

+
∑
m≤n

|〈BmBn|V̂ |Ψ(0)
0 〉|2

2µB0 − µBm − µBn

+
∑
m,n

|〈AmBn|V̂ |Ψ(0)
0 〉|2

µA0 + µB0 − µAm − µBn

,

(3.17)

where the sums run over all permissible indices in the range [1,M − 1].
Lastly, from Eq. (2.28) we see that the matrix elements required for the third order

energy shift ∆E
(3)
0 take the form 〈Ψ(0)

0 |V̂ |Ψ
(0)
k 〉〈Ψ

(0)
k |V̂ |Ψ

(0)
k′ 〉〈Ψ

(0)
k′ |V̂ |Ψ

(0)
0 〉,〈Ψ

(0)
0 |V̂ |Ψ

(0)
0 〉,

and 〈Ψ(0)
k |V̂ |Ψ

(0)
0 〉. The latter two matrix elements have already been evaluated. For the

former, we know that 〈Ψ(0)
k |V̂ |Ψ

(0)
0 〉 = 0 for single substitutions and as such only the

case where |Ψ(0)
k 〉 and |Ψ

(0)
k′ 〉 are double substitutions needs to be considered. This is

done in detail in Appendix B since there are a lot of permutations to consider, and the
computations become quite lengthy.

In terms of actually computing the third order energy shift, Eq. (2.28) is suboptimal
as it requires us to evaluate the costly matrix elements for each term in the sum. This is
especially problematic as a lot of our matrix elements will be equal due to the symmetry of
v
(PQ)
ijkl . We therefore restructure Eq. (2.28) into a form more suitable for high performance
computing which makes more efficient use of the matrix elements. In the one-component
case the energy shift for component A takes to form

∆E
(3),(AA)
0 = gAAv

(AA)
0000

∑
m≤n

[t(AA)mn ]2

+ gAA(NA − 3)
∑
m,n

v
(AA)
m0n0

∑
p

t(AA)mp t(AA)np

×
{

1 + (
√

2− 1)(δm,p + δn,p) + (3− 2
√

2)δm,pδn,p

}
+ gAA

∑
m≤n
p≤q

v(AA)mnpqt
(AA)
mn t(AA)pq

×
{

2 + (
√

2− 2)(δm,n + δp,q) + (3− 2
√

2)δm,nδp,q

}
,

(3.18)

with sums running over integrals v(PQ)
ijkl instead of permutations of states as in Eq. (2.28).
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In the above

t
(PQ)
ij =

〈PiQj|V̂ |Ψ(0)
0 〉

µP0 + µQ0 − µPi
− µQj

(3.19)

was introduced to simplify calculations. Additionally, the matrix element 〈PiQj|V̂ |Ψ(0)
0 〉

in t
(PQ)
ij may be reused from the calculations of the second order energy shift, greatly

reducing computation time. Similarly, in the two-component case, contributions from
inter-component terms may be added resulting in

∆E
(3)
0 = ∆E

(3),(AA)
0 + ∆E

(3),(BB)
0

+ gABv
(AB)
0000

∑
m,n

[t(AB)
mn ]2

+
∑
m,n

(
gAA(NA − 1)v

(AA)
m0n0 − gABv

(AB)
m0n0

)∑
p

t(AB)
mp t(AB)

np

+
∑
m,n

(
gBB(NB − 1)v

(BB)
m0n0 − gABv

(AB)
0m0n

)∑
p

t(AB)
pm t(AB)

pn

+ gAB
∑
m,n,p,q

v(AB)
mnpqt

(AB)
mn t(AB)

pq

(3.20)

for two-components.

3.2 Epstein-Nesbet perturbation theory
If we instead use the Epstein-Nesbet partitioning as covered in Sec. 2.4.2 and start from
the same full many-body Hamiltonian Ĥ given by Eq. (2.7) in second quantization, the
perturbation V̂EN is given by (2.31). Now adding 0 = ĤMF − ĤMF to Ĥ, where ĤMF is
the many-body mean-field Hamiltonian Eq. (3.1), one gets

V̂EN =
∑
k,k′

k 6=k′

|Ψ(0)
k′ 〉〈Ψ

(0)
k′ |Ĥ|Ψ

(0)
k 〉〈Ψ

(0)
k |

=
∑
k,k′

k 6=k′

|Ψ(0)
k′ 〉〈Ψ

(0)
k′ |Ĥ + ĤMF − ĤMF|Ψ(0)

k 〉〈Ψ
(0)
k |

=
∑
k,k′

k 6=k′

|Ψ(0)
k′ 〉〈Ψ

(0)
k′ |V̂RS + ĤMF|Ψ(0)

k 〉〈Ψ
(0)
k |

=
∑
k,k′

k 6=k′

|Ψ(0)
k′ 〉〈Ψ

(0)
k′ |V̂RS|Ψ(0)

k 〉〈Ψ
(0)
k |,

(3.21)

where V̂RS = Ĥ − ĤMF is the Rayleigh-Schrödinger perturbation given by Eq. (3.5).
In the last equality the fact that |Ψ(0)

k 〉 is an eigenstate of ĤMF was used, meaning
〈Ψ(0)

k′ |ĤMF|Ψ(0)
k 〉 = 0 when k 6= k′. All in all, this means that the matrix elements

〈Ψ(0)
k′ |V̂EN|Ψ

(0)
k 〉 are equal to 〈Ψ(0)

k′ |V̂RS|Ψ(0)
k 〉 when |Ψ

(0)
k′ 〉 6= |Ψ

(0)
k 〉, and all previous calcu-
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lations of these matrix elements may be used, simplifying calculations considerably. We
may then use Eq. (3.7), (3.8), (3.17), and (3.20) to also calculate the ENPT energy shifts,
as long as we remember to change the unperturbed energies in the denominator, and
exclude matrix elements between the same states.

All that now remains in ENPT, is the calculation of the new unperturbed eigenvalues
〈Ψ(0)

k |Ĥ|Ψ
(0)
k 〉. As the perturbation is the same as in RSPT the only states |Ψ(0)

k 〉 that
need to be considered are the unperturbed ground state |Ψ(0)

0 〉 = |NA, 0, . . .〉⊗|NB, 0, . . .〉,
and the double substitutions |AmAm〉, |AmAn〉, |AmBn〉. Starting with the ground state

〈Ψ(0)
0 |Ĥ|Ψ

(0)
0 〉 = NAh

(A)
00 +

1

2
gAANA(NA − 1)v

(AA)
0000

+NBh
(B)
00 +

1

2
gBBNB(NB − 1)v

(BB)
0000

+ gABNANBv
(AB)
0000 ,

(3.22)

and next the double substitutions within one component

〈AmAn|Ĥ|AmAn〉 = h(A)mm + h(A)nn + (NA − 2)h
(A)
00

+
1

2
gAA

(
4v(AA)mnmn + 4(NA − 2)v

(AA)
m0m0

+4(NA − 2)v
(AA)
n0n0 + (NA − 2)(NA − 3)v

(AA)
0000

)
+NBh

(B)
00 +

1

2
gBBNB(NB − 1)v

(BB)
0000

+ gABNB

(
v
(AB)
m0m0 + v

(AB)
n0n0 + (NA − 2)v

(AB)
0000

)
.

(3.23)

Likewise, if m = n we get

〈AmAm|Ĥ|AmAm〉 = 2h(A)mm + (NA − 2)h
(A)
00

+
1

2
gAA

(
2v(AA)mmmm + 8(NA − 2)v

(AA)
m0m0

+(NA − 2)(NA − 3)v
(AA)
0000

)
+NBh

(B)
00 +

1

2
gBBNB(NB − 1)v

(BB)
0000

+ gABNB

(
2v

(AB)
m0m0 + (NA − 2)v

(AB)
0000

)
.

(3.24)

Note that setting NB = 0 yields the one-component case. Moving on, if a single substitu-
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tion occurs in each component, the energy becomes

〈AmBn|Ĥ|AmBn〉 = h(A)mm + (NA − 1)h
(A)
00

+
1

2
gAA

(
4(NA − 1)v

(AA)
m0m0 + (NA − 1)(NA − 2)v

(AA)
0000

)
+ h(B)

nn + (NB − 1)h
(B)
00

+
1

2
gBB

(
4(NB − 1)v

(BB)
n0n0 + (NB − 1)(NB − 2)v

(BB)
0000

)
+ gAB

(
(NB − 1)v

(AB)
m0m0 + (NA − 1)v

(AB)
0n0n + v(AB)

mnmn

+(NA − 1)(NB − 1)v
(AB)
0000

)
.

(3.25)

With the above energies calculated, the energy difference appearing in the denominator
of the perturbative energy shifts is given by

〈Ψ(0)
0 |Ĥ|Ψ

(0)
0 〉−〈AmAn|Ĥ|AmAn〉

= 2h
(A)
00 − h(A)mm − h(A)nn

− gAA
(

(2− δm,n)v(AA)mnmn + 2(NA − 2)(v
(AA)
m0m0 + v

(AA)
n0n0 )

−(2NA − 3)v
(AA)
0000

)
− gABNB

(
v
(AB)
m0m0 + v

(AB)
n0n0 − 2v

(AB)
0000

)
(3.26)

in the case where both excitations occur within one component, and

〈Ψ(0)
0 |Ĥ|Ψ

(0)
0 〉−〈AmBn|Ĥ|AmBn〉

= h
(A)
00 − h(A)mm − gAA

(
2(NA − 1)v

(AA)
m0m0 − (NA − 1)v

(AA)
0000

)
+ h

(B)
00 − h(B)

nn − gBB
(

2(NB − 1)v
(BB)
n0n0 − (NB − 1)v

(BB)
0000

)
− gAB

(
v(AB)
mnmn + (NB − 1)v

(AB)
m0m0 + (NA − 1)v

(AB)
0n0n

−(NA +NB − 1)v
(AB)
0000

)
(3.27)

if an excitation occurs within each component.
Lastly, we motivate the reason to study ENPT in the first place. For RSPT we obtain

the GP energy if we include corrections up to first order

E
(RSPT0)
0 + ∆E

(RSPT1)
0 = 〈Ψ(0)

0 |ĤMF|Ψ(0)
0 〉+ 〈Ψ(0)

0 |V̂RS|Ψ(0)
0 〉

= 〈Ψ(0)
0 |ĤMF + V̂RS|Ψ(0)

0 〉
= EGP

, (3.28)
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whereas for ENPT we get

E
(ENPT0)
0 = 〈Ψ(0)

0 |Ĥ − V̂EN|Ψ
(0)
0 〉 = 〈Ψ(0)

0 |Ĥ|Ψ
(0)
0 〉 − 〈Ψ

(0)
0 |V̂EN|Ψ

(0)
0 〉

= 〈Ψ(0)
0 |Ĥ|Ψ

(0)
0 〉

= EGP

(3.29)

by only including zeroth order terms. We therefore expect ENPT to scale better with
perturbative order, and as the unperturbed eigenvalues are more accurate we moreover
expect a more accurate weighting of the terms in the ENPT perturbative series.
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Chapter 4

Evaluation of beyond mean-field
methods

This chapter starts out by discussing particular details relevant to the implementation
of the SCF and MBPT methods in Sec. 4.1, before moving on to verify the accuracy
of the SCF method in Sec. 4.2. Similarly, in Secs. 4.3 and 4.4 the MBPT methods are
verified against the FCI method and mean-field energies in the low- and high particle-
number regimes respectively. Sec. 4.5 concludes the examination of the MBPT methods
by looking at their scaling behavior with respect to increasing interaction strengths for a
fixed particle count. Finally, a case study of more complicated systems is conducted in
Sec. 4.6.

4.1 Implementation details
All computations in this thesis, be that SCF or MBPT, are performed in the basis of
Harmonic Oscillator (HO) eigenfunctions, motivated by the experimental relevance of
working in a harmonic potential u(x) = 1

2
ωx2. The n:th HO basis function χn(x) is

analytically known as

χn(x) =
1√
2nn!

(ω
π

)1/4
exp(−ωx2/2)Hn(

√
ωx), (4.1)

where the Hermite polynomials Hn(x) are most easily computed via the iterative scheme

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (4.2)

with H0(x) = 1, H1(x) = 2x as a starting point. Numerically speaking, this iterative
approach is favored over the explicit form of Hn(x) with its many factorials, which are
time-consuming to compute.

Both the SCF and MBPT methods necessitate the computation of matrix elements
between states of the form

〈φm|ô|φn〉 =

∫
dxφ∗m(x)ô(x)φn(x), (4.3)

for some operator ô. Most integrals were computed numerically using an adaptive Gauss-
Kronod quadrature of order 20 [48], with the exception of the integrals v(MN)

ijkl given by
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Eq. (2.9) which were most efficiently computed in the HO basis using the analytical
expression derived in Appendix D. The drawback in the latter case is a loss of generality
with respect to the choice of basis functions. Another important numerical aspect of this
implementation, is the efficient solving of eigenvalue problems which were carried out by
either the Arpack package or OpenBLAS which implement the Lapack and BLAS
APIs [49, 50, 51]. Parallelization was performed using either OpenMP or in more critical
regions CUDA [52, 53].

All code is open source and available at https://github.com/AntonJohansson/sbmf.
However as most of the interesting functions implementing the MBPT methods are heavily
optimized and quite terse, Appendix C contains a pseudo code implementation of the third
order RSPT computations, and briefly discusses some optimization opportunities.

4.1.1 Determining convergence

Lastly, some details regarding convergence: The implemented SCF method relies on an
absolute error criterion whilst the numerical integration method uses both an absolute and
relative error criterion. These criteria are specified in the following way: If xi is the value
produced by the i:th iteration (xi could also be vector valued as for SCF) then the absolute
error criteria is ||xi+1 − xi|| < εabs and the relative criterion by ||xi+1 − xi||/||xi|| < εrel,
where εabs, εrel are the desired error tolerances. Including both criterion allows for faster
convergence since the relative error is more efficient for larger xi but struggles when xi
is close to 0, which is why the absolute error is included. For this reason εabs < εrel
was chosen such that the absolute error is used for small whilst the relative error is used
for larger values. Convergence of the SCF method was then determined by the absolute
criterion ||c(i+1)−c(i)|| < 10−14, where the vector c(i) denotes the expansion coefficients of
the estimated eigenstate |φ(i)〉 =

∑
n c

(i)
n |χn〉 at the i:th iteration. A relative error criterion

is however not applicable as the states are normalized meaning ||c(i)|| = 1. Lastly, for
numerical integration both an absolute εabs = 10−15 and relative εrel = 10−8 criterion was
used, calculated from the estimated integral at each iteration.

4.2 Convergence and correctness of the implemented
self-consistent field method

An important aspect of the SCF method is the choice of an initial guess to the system
eigenstate |φ(0)〉 =

∑M−1
i=0 c

(0)
i |χi〉, that is the choice of the initial coefficient vector c(0). All

SCF computations in this thesis were performed for two different initial guesses. Firstly,
choosing |φ(0)〉 = |χ0〉 as the lowest eigenvalue basis state, and secondly, picking c(0) as the
lowest eigenvalue eigenvector of a random real-symmetric matrix of size M ×M . In the
two-component case, two initial guesses were required, one for each component, and here
either the two lowest eigenvalue basis states |χ0〉, |χ1〉 were chosen or two random initial
states in the manner described previously. All systems studied in this thesis consider
both options of initial guesses, and if not explicitly stated as such, both methods can be
assumed to have produced the same final eigenstate.

A natural starting point in verifying the numerical implementation of our SCF method
outlined in Sec. 2.3, is the investigation of a relatively simple system. To this end, a one-
component BEC in a harmonic trap u(x) = 1

2
x2 modeled by the GP equation (2.14)

is studied. We consider N = 4 particles with an interaction strength of g = 1/3. In
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solving the above system self-consistently, convergence is rapidly achieved with respect
to basis size for the various initial guesses outlined above. If 16 HO basis functions are
used, the ground state chemical potential is found to be µ = 0.86994386 (a. u.) whilst
the choice of 64 basis functions yields µ = 0.86994384 (a. u.), agreement up to 7 decimal
places. Moreover, overall agreement is good for all tested systems in comparison to results
obtained from colleagues using a different software based on a B-spline basis, and to
computations made in the GPELab Matlab toolbox [54].

We note, however, that the convergence behavior for systems with larger coupling
constants λ = g(N − 1), may become an issue. For instance, consider the above system
but with an interaction strength g = 4/3 (λ = 4), still using 16 basis functions. Figure
4.1 shows the computed eigenvalue at each SCF iteration for this system, for multiple
values of the Hamiltonian mixing parameter α and orbital mixing parameter β. See
Eq. (2.22) and (2.23) for the definitions of Hamiltonian and orbital mixing. The left
panel of Fig. 4.1 shows the pure SCF method without any mixing α = β = 0, and a clear
oscillatory behavior is seen where the method jumps between two states. As such the
pure SCF method fails to converge. Note that only the first 35 iterations are shown but
computations were done up to iteration 1000 without giving any different results. Next,
the center panel shows results of the SCF method with non-zero Hamiltonian mixing for
various values of α. Finally, the right most panel presents the SCF method with non-zero
orbital mixing for various values of β. Lines ending indicate convergence, and a maximum
of 1000 iterations were considered.
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Figure 4.1: Convergence behaviour of the pure SCF method (left)
with the addition of Hamiltonian mixing (center) and orbital mixing
(right) for strongly interacting bosons where λ = 4 . The eigenvalue
µ of the ground state is shown as a function of SCF iterations.
Results are also shown for multiple value of the Hamiltonian and
orbital mixing parameters α and β respectively.

From the above figure, it is clear that Hamiltonian mixing improves the convergence of
the SCF method, however another problem surfaces, that is Hamiltonian mixing appears
to cause convergence to different chemical potentials depending on α. If α is small and we
alter the Hamiltonian too much each iteration it is possible to end up with a Hamiltonian
that is no longer representative of our original system. As such the state we converge
towards (if we converge) is not an eigenstate of our unmixed Hamiltonian. In other
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words, the resulting mixed Hamiltonian is not self-consistent with our original problem.
For this system α ≥ 0.5 was sufficient to converge towards an eigenstate of our original
Hamiltonian. In fact, all tested α ∈ [0.5, 1) result in the same state and chemical potential,
only with different convergence rates. This corresponds to the stable region of the method
and an optimal convergence rate of 40 iterations was found for α = 0.6. On the other
hand, orbital mixing appears unstable, even for very large mixing parameters β. The
SCF method instead hovers above the correct µ for lower iterations but does not manage
to converge and eventually becomes unstable. To answer why this is the case is difficult,
as no closed form expression mapping |φ(n)〉 7→ |φ(n+1)〉 exists and convergence analysis is
thus no easy feat. In any case, Hamiltonian mixing is the clear favorite for dealing with
unstable behaviour moving forward.

More sophisticated methods to aid in convergence such as Direct Inversion in the
Iterative Subspace were also explored although not thoroughly enough to do the method
justice, see Ref. [55] for further information.

4.3 Comparison of many-body perturbation theory to
full configuration interaction

We again study the harmonically trapped one-component BEC encountered in the pre-
vious section, this time however for interaction strengths g = ±1/6,±1/3 corresponding
to a weakly attractive/repulsive and strongly attractive/repulsive BEC respectively. The
motivation for this is twofold, firstly to see how well MBPT captures the physics of these
different regimes, and secondly to investigate the convergence of the MBPT methods
themselves with respect to basis size and perturbative order. To accomplish this task
comparisons are made with FCI calculations which necessitates a small particle count
N = 4.

Figure 4.2 then presents the absolute value of the relative energy difference between
the ground state energy calculated from MBPT methods (EMBPT) and the FCI method
(EFCI) as a function of basis size. The term "MBPT methods" is here used as a catchall
for the implemented RSPT2, RSPT3 and ENPT2, ENPT3 methods, where the suf-
fixed number denotes the order of the method. As an example ERSPT3 is calculated
as ERSPT3 = E

(RSPT0)
0 +∆E

(RSPT1)
0 +∆E

(RSPT2)
0 +∆E

(RSPT3)
0 , where the terms correspond

to the unperturbed energy, and first-, second-, and third order energy shifts respectively,
calculated using RSPT. Finally, four different systems are shown for interaction strengths
g = ±1/6,±1/3 corresponding to values of the non-linear parameter λ = ±0.5,±1 where
λ = g(N − 1). Systems are expressed in terms of λ as this factor scales the overall size
of the interaction term in the mean-field Hamiltonian, and is therefore more relevant in
the discussion of the perturbative methods. Note that as MBPT is non-variational, in
contrast to FCI, it is possible to obtain energies lower than the correct ground state en-
ergy. This is particularly prevalent for repulsive interactions and is also the reason we are
interested in the absolute rather than the signed energy difference.
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Figure 4.2: Ground state energies of a one-dimensional one-
component BEC in a harmonic trap computed via the RSPT and
ENPT methods to order two and three, shown as a function of basis
size. Four different systems are presented for different non-linear
parameters λ = ±0.5,±1 with N = 4 particles. Energies are shown
relative to the exact FCI energy.

From the systems studied in the above figure, we are firstly interested in when the relative
error between the MBPT and FCI methods becomes basis size independent. This occurs
when occurs when the error "flattens out" which appears to be the case for our third order
methods forM ≥ 64 basis functions, which we will soon confirm quantitatively. Secondly,
we note generally good agreement between RSPT3, ENPT3 and FCI, the relative energy
difference remains less than 1.5 ‰ even in the worst case when λ = −1. It also becomes
clear that the agreement between RSPT3 and ENPT3 appears to worsen with increasing
non-linear parameter |λ| and moreover appears worse for negative compared to positive
λ. For λ = 0.5,−0.5, the energies of RSPT3 and ENPT3 remain within 0.05 ‰ and
0.1 ‰ of the FCI energy respectively, compared to 0.75 ‰ and 1.5 ‰ for λ = 1,−1. The
accuracy is expected to worsen with increasing |λ| as a larger λ corresponds to a larger
perturbation relative to the unperturbed Hamiltonian. As to why a negative non-linear
parameter seems to worsen the accuracy, λ < 0 corresponds to attractive inter-particle
interactions and the resulting unperturbed system will be more tightly bound with a
lower energy. Consequently, the relative size of the perturbation is larger, resulting in
worsened accuracy. Furthermore, ENPT both second- and third order appears to agree
better with FCI compared to RSPT, for all λ. This is in line with what we expect from
ENPT with its more accurate unperturbed energies and thus better weighting of terms
in the perturbative series, as discussed in Sec. 3.2.
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We thirdly want to note a few peculiarities in Fig. 4.2 which is that the relative error
appears to grow with increasing basis size. An intuitive explanation of this is: because
the basis size and therefore also Hilbert space of solutions is so small, there simply is not
enough room for the methods to differentiate themselves. In other words, MBPT and
FCI may be close in energy for smaller basis sizes, but they both constitute equally bad
descriptions of the actual systems.

Lastly, we return to the question of convergence, and demonstrate that a basis consist-
ing of 64 HO basis functions is sufficient for the considered problem. Table 4.1 presents the
absolute difference in relative energy for 64 and 80 basis functions for both the RSPT3 and
ENPT3 methods, using data from Fig. 4.2. As an example, if the exponent "(bf = m)"
refers to computations made using m basis functions, then for RSPT3 the quantity of
interest is ∣∣∣∣∣E(bf=80)

RSPT3 − E
(bf=80)
FCI

E
(bf=80)
FCI

− E
(bf=64)
RSPT3 − E

(bf=64)
FCI

E
(bf=64)
FCI

∣∣∣∣∣ . (4.4)

This particular quantity is considered such that results from the table are directly com-
parable to the results of Fig. 4.2.

Table 4.1: Absolute difference between ground state energies rela-
tive to EFCI for 64 and 80 basis functions. Computations are made
using either RSPT3 or ENPT3 and the quantities presented for
each method are calculated via Eq. (4.4).

λ RSPT3 (‰) ENPT3 (‰)
-0.5 0.00111 0.000807
0.5 0.000657 0.000439
-1.0 0.0279 0.0207
1.0 0.00875 0.00557

Both RSPT3 and ENPT3 shows satisfactory convergence with respect to basis size for 64
HO basis functions. The errors between using 64 and 80 basis functions in the table above
are clearly small in comparison to the energy scales in Fig. 4.2. For reference ENPT3 has
a relative error of about ≈ 0.2 ‰ for λ = 1 and 80 basis functions. Moreover, convergence
appears to worsen for systems where beyond mean-field effects are particularly important,
meaning convergence is worse for increasing |λ| and especially for λ < 0.

4.4 Scaling of many-body perturbation theory with par-
ticle number

After having examined the MBPTmethods forN = 4 particles and an interaction strength
of λ = ±0.5,±1, a natural progression is varying these parameters to get an idea of how
the method fairs for more complicated systems. In particular to systems consisting of
more particles. We are still considering a harmonically trapped one-component BEC.
Unfortunately, FCI calculations are not computationally feasible in this regime, so we
have no exact result to compare against. To provide some sense of correctness, the BeMF
equation (2.20) was solved self-consistently and the fractional occupation of the BeMF
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ground state n0/N was subsequently computed. If n0/N = 1 then the GP ground state
is accurate and our perturbative methods start from a correct unperturbed state.

When increasing the particle count N , an interesting question is whether or not the
perturbative energies approach the GP energy EGP, computed from Eq. (2.13), in the
mean-field limit (see Sec. 2.2.1). In this limit, λ = g(N − 1) is kept constant whilst
N →∞. This scaling is investigated in Fig. 4.3 where the energy of the ENPT3 method
is shown relative to EGP, for particle counts N ∈ [4, 160]. Note that only ENPT3 is shown
for clarity, RSPT3 performs similarly. Moreover, all computations were performed using
64 HO basis functions and for all values of N , the BeMF solution yielded a fractional
occupation of n0/N = 1, meaning the GP ground state is accurate.
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Figure 4.3: Relative energy difference of the ENPT3 method to
the mean-field energy EGP, for increasing particle counts N . The
particle count is scaled in the mean-field limit where λ = g(N − 1)
is kept constant, in this case at either ±0.5,±1.0.

A clear convergence of the ENPT3 method to the mean-field energy EGP is seen in Fig. 4.3,
as is expected in the mean-field limit. For all values of λ, ENPT3 converged to a relative
energy difference less than 1 ‰ within N ≥ 160. Here we have run calculations up to
10000 particles and observed that the relative error continues to decrease, as expected.
The speed of convergence with respect to λ is clearly related to the size of the perturbation
relative to the unperturbed Hamiltonian, in exactly the same manner as discussed in
Sec. 4.3.

The last part of this section will focus on the convergence of the RSPT3 and ENPT3
methods with respect to both perturbative order and basis size. Starting with perturbative
order, Fig. 4.4 shows the absolute energy difference between the first- and second order,
and second- and third order methods. These energy differences are again shown as a
function of particle count N . The RSPT2,1 notation refers to both the RSPT2 and
RSPT1 methods, and in particular the difference in energy between these methods. From
Fig. 4.4 it becomes immediately clear that the energy difference between the first- and
second order RSPT and ENPT methods behaves very similarly. Therefore, as ENPT
exhibits a lower energy difference between the second and third order we can conclude
that it has converged more with respect to perturbative order. Moreover, as the absolute
error flattens out with increasing N in all cases, and the mean-field energy grows roughly
linearly in N , we can conclude that the relative size of the perturbative error decreases as
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we approach the mean-field limit. This is expected as we are dealing with an increasingly
weakly interacting system.
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Figure 4.4: Absolute energy difference between first- and second
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RSPT of second and first order.

Secondly, to investigate convergence with respect to basis size, Tab. 4.2 presents the
relative energy difference between 80 and 64 HO basis functions computed for RSPT3
and ENPT3. Using the same notation as previously, this table shows the quantity∣∣∣E(bf=80)

RSPT3 − E
(bf=64)
RSPT3

∣∣∣ , (4.5)

for RSPT3. This particular quantity is considered since it is directly comparable to the
results of Fig. 4.4. Only a few select particle counts N are considered as computations
in 80 HO basis functions are considerably slower. All in all, the convergence error due to
basis size can be seen to be roughly one quarter of the error between the second and third
order methods in Fig. 4.4. This indicates that not only is it necessary to go to higher
perturbative orders to get more accurate results, but also to increase the basis size used.
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Table 4.2: Absolute energy difference between 64 and 80 HO basis
functions, computed using RSPT3 and ENPT3. See Eq. 4.5 for
a definition of the quantity presented. Shown for particle counts
N = 4, 30, 100.

Abs. energy diff. (a. u. ×10−3)
λ Method N = 4 N = 30 N = 100

−0.5
RSPT3 0.241 0.178 0.173
ENPT3 0.241 0.178 0.173

0.5
RSPT3 0.187 0.155 0.152
ENPT3 0.188 0.155 0.152

−1.0
RSPT3 1.08 0.772 0.748
ENPT3 1.09 0.772 0.748

1.0
RSPT3 0.651 0.581 0.573
ENPT3 0.660 0.581 0.573

4.5 Scaling of many-body perturbation theory with in-
teraction strength

Before wrapping up our analysis of the one-component GP equation, it is of interest to
keep the particle count N fixed whilst the interaction strength g is varied. This aims to
further explore the stability of the method and examine the behaviour of the perturbative
methods as the size of the perturbation is increased. A few words of caution are in order
as increasing the size of the perturbation obviously goes against the assumption that the
perturbation is small, however what constitutes small is still up for debate and the goal
of this exploration.

The left panel of Fig. 4.5 presents the relative energy difference between ENPT3
and the mean-field energy EGP along with a zoomed in view to capture the behaviour
at smaller energy scales. This time for a fixed particle count N = 100 and non-linear
parameter in the range λ = g(N − 1) ∈ [−2, 2] as g is varied. In the same figure, the
right panel shows the absolute energy difference between the first- and second order, and
second- and third order perturbative methods. The left panel captures the importance of
the MBPT methods and their impact on the total energy of the system, whilst the right
panel shows the convergence of the individual MBPT methods with respect to order.
Again, for all values of λ the BeMF system was solved self-consistently and the fractional
occupation was computed to n0/N = 1, meaning the GP ground state is accurate. As
previously, 64 HO basis functions were used in the SCF and MBPT calculations.
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rameter λ = g(N − 1) for a fixed particle count N = 100.

Immediately noteworthy in the left panel of Fig. 4.5 is the impact of the MBPT meth-
ods on BECs with attractive interactions λ < 0 compared to repulsive ones λ > 0. The
overall size of the energy correction is roughly symmetric with respect to λ, but the lower
mean-field energy in the attractive case results in a larger relative contribution from the
corrections. From the right panel it is interesting to note the surprisingly good conver-
gence behaviour of the MBPT methods with respect to perturbative order. Especially
as the perturbation is by no means small, λ = 1 effectively equates the perturbation
to the unperturbed Hamiltonian. Similarly to the previous section, we again see better
convergence behaviour for ENPT with respect to perturbative order compared to RSPT.

Lastly, the convergence of the RSPT3 and ENPT3 methods is examined with respect
to the basis size. Table 4.3 shows the absolute energy difference between 64 and 80 HO
basis functions for each of the methods, and for a few select values of λ. See Eq. (4.5) for
how to calculate this quantity. The presented errors have been rounded to three significant
digits, and are not exactly equal between the methods if more digits were to be included.
Yet again the error due to basis size is small compared to the error between the second-
and third order methods in Fig. 4.5. Convergence with respect to basis size is also seen
to worsen for larger |λ| and particularly for λ < 0 corresponding to systems where beyond
mean-field effects dominate.
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Table 4.3: Absolute energy difference between 64 and 80 HO basis
functions, computed using RSPT3 and ENPT3. See Eq. 4.5 for a
definition of the quantity presented.

Abs. energy diff. (a. u. ×10−2)
λ RSPT3 ENPT3
-2 0.359 0.359
-1 0.0748 0.0748
1 0.0573 0.0573
2 0.208 0.208

4.6 Case studies of more complicated systems
With a thorough analysis of a one-component BEC in a harmonic trap completed, interest
shifts towards systems that diverge from this path in some manner. This effort will be
explored in two ways: firstly perturbing the harmonic potential via the introduction of a
centered Gaussian, creating a double well, and secondly by studying a system where the
beyond mean-field effects play a crucial role, the self-bound BEC droplet.

4.6.1 One-component Bose-Einstein condensate in a double well

Firstly, a quick motivation of the choice to study a BEC in a double well. Previous
studies, both experimental and theoretical, on the dynamics of a BEC in a double well
have concluded that for particle counts N < Nc where Nc is some critical particle count,
so called Josephson Oscillations occur where the BEC tunnels back and forth between the
wells [56, 57]. Additionally for N > Nc the BEC self-traps in one of the wells due to the
strength of the inter-particle interactions [56, 57]. For these dynamically unstable states,
the GP equation, which is a stationary equation, is known to break down and result in a
ground state with broken symmetry compared to the Hamiltonian [35]. The question is
then whether or not MBPT can restore the correct symmetry of the ground state.

We consider a one-component BEC modeled by the GP equation (2.14) with the
trapping potential

u(x) =
1

2
x2 +

2

σ
√

2π
exp

(
− x2

2σ2

)
, σ = 1/10, (4.6)

consisting of a harmonic trap with a centered Gaussian. After solving this system self-
consistently using λ = −1, two different ground states emerge depending on the initial
guess. This is illustrated in Fig. 4.6 where the density per particle is plotted over space
for a symmetric and asymmetric ground state, resulting from an initial guess with the
same respective symmetry. Note that an asymmetric ground state focused on the right
well may also be achieved by using an initial guess that shares this property. The energy
for the two asymmetric states are the same and as such only one of them is shown for
clarity. All computations were performed using 64 HO basis functions.
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Figure 4.6: Density per particle over space for the two mean-field
ground states of an attractive BEC (λ = −1) in a double well, the
two states results from a symmetric and asymmetric guess respec-
tively.

Before moving on to perturbation calculations, a few things will be said about why this
sensitive dependence on initial guess occurs to begin with, since this behaviour was not
seen when a purely harmonic trap was used. Looking at the mean-field energies per
particle for the symmetric Esym ≈ 0.9987 a. u. and asymmetric Easym ≈ 0.9820 a. u.
states reveals that they are almost degenerate and that the asymmetric state is the mean-
field ground state. As to why a symmetric guess would converge to a state that is not
the ground state comes down to the fact that if the initial guess |φ(0)〉 is symmetric then
the contribution to the GP Hamiltonian λ|φ(0)|2 will share this symmetry as will lowest
energy state the next SCF iteration, and so on. This results in a final state that shares
the symmetry of the initial guess.

Moving on to MBPT methods, Fig. 4.7 shows the mean-field and MBPT energies per
particle as a function of particle count N in the mean-field limit (keeping λ = −1) for both
the symmetric and asymmetric ground states. Both RSPT3 and ENPT3 are shown along
with a shaded region around each line which represents the distance between the second-
and third order methods. The BeMF calculations were also performed and the fractional
occupations were calculated for multiple asymmetric and symmetric initial guesses, and
no improvement upon the GP ground states were found. Computations were yet again
performed using 64 HO basis functions.
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Interestingly, when far away from the mean-field limit, that is for lower 4 ≤ N ≤ 8,
starting from the symmetric state yields lower energy ground states compared to starting
from the asymmetric one. However, to actually ensure that the resulting ground states are
symmetric for lower N , would require access to the perturbed wave functions, and is the
topic of future studies. We can on the other hand hypothesize that if the perturbed state
was asymmetric, then starting from an asymmetric mean-field state should have given a
lower energy. As the particle count N is increased in the mean-field limit, RSPT3 and
ENPT3 quickly converges towards their starting mean-field states, as expected, resulting
in a ground state with broken symmetry once again.

Similarly to previous systems, ENPT3 yet again provides both a lower energy and
presumably better accuracy compared to RSPT3. Qualitatively, it is safe to assume that
RSPT has not converged with respect to perturbative order, and it seems necessary to go
up to a higher order to get agreement between RSPT and ENPT. Lastly, regarding the
convergence with respect to basis size, computations were made using 48 basis functions
which resulted in slightly larger energies across the board, but the overall shape of Fig. 4.7
remained the same. We therefore assume that going to even higher basis sizes, although
it will slightly improve the energies, will not change the large scale behaviour seen in the
figure.
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4.6.2 Self-bound two-component Bose-Einstein condensate in a
weak harmonic trap

We start from a two-component BEC with contact interaction modeled by the GP equa-
tion (2.16) with symmetric intra-component interaction strengths g = gAA = gBB and
particle counts N = NA = NB, for each component. Specifically in the one-dimensional
case, self-bound states have been found to form whenever intra-component interactions
are repulsive g > 0 and inter-component interactions are attractive gAB < 0, such that
g2AB < g2 is satisfied [23, 58]. This inequality corresponds to the stable regime in the
mean-field description where attractive beyond mean-field corrections were found to re-
sult in the formation of a self-bound droplet phase [23, 58]. Note that the GP equation by
itself cannot model these self-bound states [23]. The ground state energy density E = E/L
over a length L has analytically been found to be

E = δgη2 − 4
√

2

3π
(gη)3/2, (4.7)

where δg = gAB +
√
gAAgBB = gAB + g, and η is the number density η = N/L in the

volume V of a single component [58]. In particular we chose gAB = γg for γ ∈ [−1, 0]
resulting in δg = (1 + γ)g.

Unfortunately, problems immediately arise in trying to replicate the above with our
perturbative methods. In studying self-bound systems we want a trapping potential
u(x) = 0, however the resultant system is not solvable self-consistently in the HO basis
and our numerical integrals will fail to converge. Therefore we instead consider a weakly
trapped condensate with u(x) = 1

2
ωx2 for a small oscillator strength ω. Note that the

same ω is used in the definition of the HO eigenfunctions χn(x) in Eq. (4.1). Another
problem that crops up is that a smaller ω corresponds to a wider potential well where
the one-body eigenstates are much close in energy; Because of this, the SCF method will
run into convergence issues for small enough ω. To figure out the smallest possible ω for
which the SCF method converges, a two-component BEC was studied self-consistently
with N = 4 particles and 48 HO basis functions for each component, safely within the
stable regime with g = 0.5/99 and gAB = γg with γ = −0.90. For this system, a smallest
value of ω = 0.005 was found to be stable, which will be used moving forward.

Next, the same system was studied for multiple γ = −0.90,−0.95,−0.99 and for parti-
cle counts N ∈ [4, 60]. Note that keeping g, gAB fixed whilst increasing the particle count
N will correspond to increasing the particle density η, as all particles in the condensate
will interact will all other with the same interaction strength, which is only possible in a
high density regime. Contrast this to the GP limit where the interaction strength between
particles is decreased as the particle number increases, resulting in a very dilute conden-
sate. The results are presented in Fig. 4.8 where the ground state energy per particle is
shown for third order RSPT and ENPT, as a function of η. The shaded regions around
each line again represents the energy difference between the second and third order for a
given method. We estimated the number density via the mean-field wave wave function
η = N |φ0(0)|2. This estimate is reasonable as the resulting droplet state is expected to
have a constant number density in the interior of the droplet. Also included in the figure
are the analytical results calculated via Eq. (4.7), these values have been translated in
energy by ≈ 2.44× 10−3 a. u. to allow for easier comparison to our MBPT results.
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Figure 4.8: Ground state energy per particle of a two-component
BEC, computed using third order RSPT and ENPT, all as a func-
tion of number density η. An intra-component interaction strength
of g = 0.5/99 is considered for multiple inter-component interaction
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the energy difference between the second and third order for a given
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and are translated in energy to match our MBPT methods.
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Firstly, the overall shape of energy with respect to number density η in Fig. 4.8 appears
to match what is expected for each γ. Unfortunately, our MBPT methods were either not
able to correctly reproduce the analytically expected energy minima for γ = −0.90,−0.95,
or they produced minima at the wrong number density η. To expand on the latter, for
γ = −0.99, RSPT found a minimum at η ≈ 1.2 and ENPT and at η ≈ 2.3 whereas the
expected minimum occurs for η ≈ 4.5. This can partly be explained by our estimate of
η from the mean-field wave function, and it would be interesting to see whether or not
the situation could be improved with access to the perturbed wave function. Another
reason for the discrepancy in the size and shape of the minima could be the presence of
the external potential, the impact of which is hard to predict. For γ = −0.90,−0.95 the
minima occur for very low η and might be visible if we extend the MBPT methods to
account for N < 4, or rescale our system parameters such that the minima would occur
for higher η. To the next question, why are our MBPT energies shifted by ≈ 2.45 a. u. ?
Analytically one would expect E = 0 for η = 0, remember the analytical values were
shifted for easier comparison. This shift is assumed to originate from to the presence of
the weak trapping potential with ω = 0.005 which lifts our ground state to higher energies.
This is yet another reason as to why it would interesting to explore weaker potentials.

In comparing the MBPT methods we observe a similar behavior to the previously
studied systems. That is ENPT3 produces lower energies with better accuracy compared
to RSPT3. Additionally, the absolute energy difference between the second- and third
order methods increase with N , which corresponds to a larger perturbation size as g, gAB
are kept fixed, which was also seen previously.

We lastly want to emphasize that these computations have been done in a relatively
small basis of 48 HO basis functions, which is especially small considering ω = 0.005
which corresponds to lots of energetically close mean-field states. The small basis was
necessary to achieve reasonable computation times for the SCF method which required
Hamiltonian mixing of α = 0.97 for accurate results. We performed computations for 64
basis functions for γ = −0.99 and select values of η ≈ 0.16, 1.18, 2.228 and found absolute
errors in ENPT3 of size 0.0013 × 10−3, 0.083 × 10−3, and 0.37 × 10−3 a. u. respectively.
For reference the absolute error between second- and third order ENPT for the same η
was found to be 0.00057× 10−3, 0.33× 10−3, and 2.2× 10−3 a. u. respectively. From this
we can conclude that larger basis sizes are of primary interest for lower η whereas errors
in the perturbative methods appears to dominate for larger η.
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Chapter 5

Conclusion

To summarize, we have developed, implemented, and verified a perturbative approach
to go beyond the mean-field description of a Bose-Einstein Condensate (BEC) provided
by the Gross-Pitaevskii (GP) equation. This firstly required the implementation and
verification of a Self-Consistent Field (SCF) method to find the one-body eigenstates
and eigenvalues of the GP equation upon which the perturbation calculations could be
made. Moreover, a so-called Best Mean-Field (BeMF) approach, where a fraction of
the particles in the condensate were allowed in a state other than the ground state, was
employed to ensure the accuracy of the GP ground state in cases where comparison to
Full Configuration Interaction (FCI) were unfeasible. We considered one-dimensional
condensates and worked in the Harmonic Oscillator (HO) basis.

The implemented SCF method correctly solved the non-linear GP and BeMF equa-
tions, and in cases where instabilities occur, Hamiltonian and orbital mixing were ex-
plored as potential remedies. Hamiltonian mixing proved fruitful in improving convergence
for larger interaction strengths whilst orbital mixing remained unstable. Next, building
upon the one-body states produced by the SCF method, two approaches to Many-Body
Perturbation Theory (MBPT) were explored. The first method, a bosonic analogue to
Møller-Plesset, here labeled Rayleigh-Schrödinger Perturbation Theory (RSPT) treating
the many-body mean-field Hamiltonian ĤMF =

∑N
i=1 ĥMF(x) for N particles as the unper-

turbed system. Meanwhile the second method relied on the partitioning of Epstein-Nesbet
and was labeled ENPT.

The first system to be explored perturbatively was a one-component BEC in a har-
monic trap. In the low particle number regime, calculated ground state energies could
be compared to exact FCI energies for a given basis size. Both the third order RSPT
and ENPT methods showed promising results, agreeing with FCI within a relative error
of 1.5 ‰. However third order ENPT was found to consistently provide lower energies
compared to third order RSPT. This was explained by the more accurate weighting of
the matrix elements in the perturbative series of ENPT compared to RSPT. That being
said, both methods showed a relatively large discrepancy between their second- and third
order, indicating that higher order corrections may be of significance.

For the same system, scaling of the particle count N was explored in the mean-field
limit, and agreement with the mean-field energy was found in the high particle number
regime, as expected. Furthermore, scaling was also studied with respect to λ = g(N − 1)
for a fixed particle count N . The MBPT methods were found to play an increasingly
important role for λ < 0 compared to λ > 0, since the size of the beyond mean-field
corrections is roughly symmetric with respect to the sign of λ, but the overall mean-field
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energy is lower in the attractive case. Additionally, convergence of the RSPT and ENPT
methods with respect to both perturbative order and basis size was explored in the above
cases. The estimated error of the methods with respect to perturbative order (for a fixed
basis size) was found to decrease with N and increase with λ = g(N − 1). The ENPT
method consistently showed lower convergence errors with respect to order compared to
the RSPT method. On the other hand, convergence with basis size did not differ between
the methods. Both convergence types worsened for systems where beyond mean-field
effects played a larger role, meaning for small N , larger λ and particularly λ < 0. An
important take-away from this is that going to higher perturbative orders to improve the
accuracy of the methods also necessitates larger basis sizes.

Next, we applied the MBPT methods to more complicated systems, albeit with mod-
erate success. Firstly, a one-component BEC in a double well, and secondly a self-bound
two-component BEC droplet were investigated. For the BEC in a double well, the mean-
field ground state is known to exhibit breaking of symmetry with respect to the symmetry
of the underlying potential. ENPT starting from a symmetric state mean-field ground
state resulted in lower energies for small enough particle counts. Whether or not this
state is symmetric was left unknown since we did not have access to the perturbed wave
functions. It is however reasonable to expect that if the perturbed state was asymmet-
ric, then starting from an asymmetric mean-field state should have given a lower energy,
which it did not. Lastly, the possibility of describing self-bound two-component BEC
droplets which rely heavily on beyond mean-field effects to stabilize, was explored. Our
methods managed to capture the overall shape of the condensate energy with respect to
number density. They, however, failed to describe the characteristic energy minima one
would analytically expect. Reasons for this are hypothesized to be many, including too
small of a basis set, wrong type of basis set, or the presence of an external potential. This
external potential, albeit weak, was required for the SCF method to converge in the HO
basis. The effects of this potential on the ground state energy, could however drown out
the delicate interactions necessary for the formation of a self-bound state. Our results
are a good indicator that perturbative methods could indeed describe these self-bound
states; further studies are necessary. For both the double well and self-bound systems
ENPT performed better compared to RSPT, resulting both in lower energies but also
better convergence with respect to perturbative order. This is in agreement with our
observations of the simpler harmonically trapped condensates.
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Chapter 6

Outlook

With the perturbative beyond mean-field methods developed and verified, the question of
how to proceed naturally arises, and the answers are many. Extensions could be made of
the method itself to allow for higher order perturbations to better verify the accuracy of
the methods. It would then be interesting to see whether or not the agreement between
RSPT and ENPT could be improved, particularly for larger interaction strengths and non-
linear parameters. This would in turn require larger basis sizes and thus requires further
optimizations on the implementation side. On the topic of perturbation theory, having
access to the perturbed wave functions in addition to the energies would be important
when studying the physics of all of these systems.

Moreover, other avenues of extensions include increasing the dimensionality to two or
three dimensions which primarily involves swapping out the numerical integration routines
and restructuring the code to work on vectors. Concerning a restructuring of the code, the
computation of perturbations as it stands are ripe for further parallelization and porting
more of the code to run on a GPU for instance would not be too much trouble. This
could then in turn allow for the efficient study of systems with larger basis sizes, which
would be necessary for higher order perturbation theory. This work serves as an excellent
benchmarking tool in the further implementation and exploration of more complicated
beyond mean-field methods for bosonic systems.

Since this thesis has been focused primarily on systems with contact interaction, it
would be interesting to apply these MBPT methods to systems with long range dipolar
interactions, which would allow for the study of one-component self-bound dipolar droplets
as well. Further exploration of these methods in the study of two-component droplets
with contact interaction is also possible. It would be particularly interesting to apply
perturbation theory to the extended GP equation, which already takes some beyond mean-
field effects into account, and would thus constitute a better starting point in the study
of droplets [23]. Moreover, to explore weaker trapping potentials it would be a good idea
to use a more appropriate basis, such as the Fourier basis consisting of sines and cosines,
or possibly even B-splines. We note however that the study of three-dimensional droplets
is not possible with the present approach as we require a stable mean-field solution as a
starting point, and the three-dimensional droplet is known to form only in the unstable
regime (see Refs. [23] & [58]). Two-dimensional droplets on the other hand also form in
the stable regime and might therefore be of interest for future studies [23, 58].
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Appendix A

The mathematics of second
quantization

We start from the time-independent one-body Schrödinger equation (2.2), where solutions
are sought after in the Hilbert space |φn〉 ∈ H with inner product 〈·|·〉H. Then the many-
body Hilbert space containing a system of N particles may be constructed as

H⊗N = H⊗H⊗ · · · ⊗ H︸ ︷︷ ︸
N products

, (A.1)

where "⊗" denotes the tensor product, and the inner product in H⊗N is inherited from
H as

〈·|·〉H⊗N =
N∏
i=1

〈·|·〉H. (A.2)

An example of an element in this space is |φiφj〉 = |φi〉 ⊗ |φj〉 ∈ H⊗2 where one particle
resides in |φi〉 and one in |φj〉, note that particles in this space are distinguishable as the
inner product between |φiφj〉 and |φjφi〉 is 〈φiφj|φjφi〉H⊗2 = 0, i 6= j, which is not suitable
for describing bosonic or fermionic systems. To solve this one considers the symmetric
or antisymmetric subspace of H⊗N with respect to particle interchange often denoted via
the symmetrization (antisymmetrization) operator Ŝ (Â) as ŜH⊗N (ÂH⊗N) [59, 60]. For
instance ŜH⊗2 then contains states |φiφj〉 = 1√

2
(|φiφj〉 + |φjφi〉), i 6= j and the expected

the inner product is restored 〈φiφj|φjφi〉ŜH⊗2 = 1. Moreover, if N = 0 the empty space is
defined as some field H⊗0 = C, most commonly the complex numbers [59].

The many-body spaces H⊗N may be used to construct the so called Fock space F(H)
which encompasses all many-body spaces of differing particle counts N . The construction
of the Fock space is a formal sum over all many-body spaces

F(H) =
∞⊕
n=0

H⊗n, (A.3)

and its structure may intuitively be understood as an infinite non-commutative polynomial
with H as a formal variable, for instance C ⊕ H ⊕ (H ⊗ H) ∈ F(H) and is vaguely
analogous to a polynomial f(x) = k + x+ x2, k ∈ C [59, 60]. Similarly, the symmetric
and antisymmetric Fock spaces Fs(H) and Fa(H) are constructed by instead summing
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over ŜH⊗N and ÂH⊗N .
A particularly important element of F(H) is the vacuum state |0〉 = 1 ∈ C containing

no particles. Yet again it is possible to define an inner product on F(H) as

〈·|·〉F(H) =
∞∑
n=0

〈·|·〉H⊗n . (A.4)

For the proof of completeness of F(H) see Ref. [59]. Focusing on the bosonic Fock space
Fs(H) moving forward, an example of an inner product in this space between |φ0φ0〉 and
|φ0φ1〉 is calculated as

〈φ0φ0|φ0φ1〉Fs(H) = 〈φ0φ0|φ0φ1〉ŜH⊗2 = 〈φ0|φ0〉H
1√
2

(〈φ0|φ1〉H + 〈φ1|φ0〉H) = 0. (A.5)

Similarly the inner product is also zero if the states contain a different amount of particles
since the many-body spaces of differentN are orthogonal [59]. In general the inner product
between two elements of Fs(H) is only non-zero if they both contain the same elements
of H with the same occupations. Usually the occupation number notation is preferred
where for example a many-body state consisting of one-body states |φ0〉, |φ1〉, |φ2〉 where
two particles reside in |φ1〉, and one in |φ2〉, is written as |0, 2, 1〉.

Equipped with the notion of a bosonic Fock space Fs(H) linking together all different
many-body spaces ŜH⊗N it is possible to define the bosonic creation and annihilation
operators â† and â linking spaces of N to spaces of N ± 1 particles

â† : ŜH⊗N → ŜH⊗N+1 (A.6)

â : ŜH⊗N → ŜH⊗N−1 (A.7)

with the action that â†i creates and âi destroys a particle in state φi. As an example
consider |. . . , ni−1, ni, ni+1, . . .〉 with ni particles in state φi, then

â†i |. . . , ni−1, ni, ni+1, . . .〉 =
√
ni + 1|. . . , ni−1, ni + 1, ni+1, . . .〉 (A.8)

âi|. . . , ni−1, ni, ni+1, . . .〉 =
√
ni|. . . , ni−1, ni − 1, ni+1, . . .〉. (A.9)

Moreover, acting on the vacuum state with a annihilation operator destroys the state,
that is â|0〉 = 0|0〉 = 0 [11]. It is also important to mention the commutation relations of
the bosonic creation and annihilation operators[

âi, âj

]
= 0,

[
â†i , â

†
j

]
= 0,

[
âi, â

†
j

]
= δij, (A.10)

where δij is the Kronecker delta [11].
Building on the creation and annihilation operators, it is now possible to construct

any symmetric many-body state in Fs(H) by acting on |0〉. If a system consists of M
different states labeled by {|φi〉}, i = 0, . . . ,M − 1 with ni bosons in each state, then
the full many-body state may be comfortably constructed as [11]

|Ψ〉 = |n1, n2, . . .〉 =
M−1∏
i=0

(â†i )
ni

√
ni!
|0〉. (A.11)
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It is then possible to express many-body operators Ĥ =
∑N

i=1 ĥ(xi) constructed from
a single-particle operator ĥ(x) in terms of the creation and annihilation operators â† and
â [11]. The operator becomes

Ĥ =
∑
ij

hij â
†
i âj, (A.12)

where the sum runs over i, j = 0, 1, . . . ,∞ and [11]

hij =

∫
dxφ∗i (x)ĥ(x)φj(x). (A.13)

Similarly, for many-body two-particle operators V̂ =
∑N

i<j v̂(xi, xj) one gets

V̂ =
1

2

∑
ijkl

vijklâ
†
i â
†
j âlâk, (A.14)

where the sum runs over i, j, k, l = 0, 1, . . . ,∞ and [11]

vijkl =

∫
dx

∫
dx′ φ∗i (x)φ∗j(x

′)v̂(x, x′)φk(x)φl(x
′). (A.15)

Finally, the theory is easily extend to describe a system of different species of bosons.
Assuming the species are chemically independent, each component of the system may
be labeled by A,B, . . . and assigned its own Fock space F (A)

s (H),F (B)
s (H), . . .; Then the

many-component Fock space is constructed as F (A)
s (H) ⊗ F (B)

s (H) ⊗ . . . with the inner
product

〈·|·〉F(A)
s (H)⊗F(B)

s (H)⊗··· =
∏

I∈{A,B,...}

〈·|·〉F(I)
s (H)

, (A.16)

which is only non-zero when the many-component states contain the same components
and the same many-body states within those components.

Consider two components A and B with NA particles in A and NB particles in B,
a two-particle operator can be written as V̂ =

∑NA

i=1

∑NB

j=1 v̂(x
(A)
i , x

(B)
j ). Expressing this

operator in terms of creation and annihilation operators results in

V̂ =
∑
ijkl

v
(AB)
ijkl â

†
Ai
â†Bj

âBl
âAk

, (A.17)

where

v
(AB)
ijkl =

∫
dx

∫
dx′ φ∗Ai

(x)φ∗Bj
(x′)v̂(x, x′)φAk

(x)φBl
(x′). (A.18)

This requires taking into account the conservation of particle counts NA, NB and the fact
that integrals over wave functions associated with different species of bosons is zero.
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Appendix B

Matrix elements needed for third
order perturbation theory

In calculating the third order energy shift to the ground state of a two-component BEC
modeled by the GP equation, matrix elements 〈Ψ(0)

k |V̂ |Ψ
(0)
k′ 〉 between two double substi-

tution states |Ψ(0)
k 〉, |Ψ

(0)
k′ 〉 ∈ F

(AB)
s (H), needs to be evaluated. Here V̂ is the perturbation

given by Eq. (3.5) and the double substitutions are expressed in the notation presented
in Eq. (3.13). Starting with the case where |Ψ(0)

k 〉 = |Ψ(0)
k′ 〉, and if both excitations reside

in the same one-body state |φAm〉 then

〈AmAm|V̂ |AmAm〉 =
1

2
gAA

(
2v(AA)mmmm + 8(NA − 2)v

(AA)
m0m0

+(NA − 2)(NA − 3)v
(AA)
0000

)
− gAA(NA − 1)

(
2v

(AA)
m0m0 + (NA − 2)v

(AA)
0000

)
+

1

2
gBBNB(NB − 1)v

(BB)
0000 − gBB(NB − 1)NBv

(BB)
0000

+ gABNB

(
(NA − 2)v

(AB)
0000 + 2v

(AB)
m0m0

)
− gABNB

(
(NA − 2)v

(AB)
0000 + 2v

(AB)
m0m0

)
− gABNANBv

(BA)
0000

=
1

2
gAA

(
2v(AA)mmmm + 8(NA − 2)v

(AA)
m0m0

+(NA − 2)(NA − 3)v
(AA)
0000

)
− gAA(NA − 1)

(
2v

(AA)
m0m0 + (NA − 2)v

(AA)
0000

)
− gABNANBv

(BA)
0000 ,

(B.1)
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where v(PQ)
ijkl are the integrals in Eq. (2.9). Secondly, if the excitations instead reside in

two different one-body states |φAm〉 and |φAn〉 where m 6= n we get

〈AmAn|V̂ |AmAn〉 =
1

2
gAA

(
4v(AA)mnmn + 4(NA − 2)v

(AA)
m0m0 + 4(NA − 2)v

(AA)
n0n0

+(NA − 2)(NA − 3)v
(AA)
0000

)
− gAA(NA − 1)

(
v
(AA)
m0m0 + v

(AA)
n0n0 + (NA − 2)v

(AA)
0000

)
+

1

2
gBBNB(NB − 1)v

(BB)
0000 − gBB(NB − 1)NBv

(BB)
0000

+ gABNB

(
(NA − 2)v

(AB)
0000 + v

(AB)
m0m0 + v

(AB)
n0n0

)
− gABNB

(
(NA − 2)v

(AB)
0000 + v

(AB)
m0m0 + v

(AA)
n0n0

)
− gABNANBv

(BA)
0000

=
1

2
gAA

(
4v(AA)mnmn + 4(NA − 2)v

(AA)
m0m0 + 4(NA − 2)v

(AA)
n0n0

+(NA − 2)(NA − 3)v
(AA)
0000

)
− gAA(NA − 1)

(
v
(AA)
m0m0 + v

(AA)
n0n0 + (NA − 2)v

(AA)
0000

)
− gABNANBv

(BA)
0000 .

(B.2)

Thirdly, if |Ψ(0)
k 〉 and |Ψ

(0)
k′ 〉 only differ in one excited state

〈AmAm|V̂ |AmAp〉 =
1

2
gAA

(
4
√

2(NA − 2)v
(AA)
m0p0 + 2

√
2v(AA)mmmp

)
− gAA(NA − 1)

√
2v

(AA)
m0p0

+ gABNBv
(AB)
m0p0 − gABNBv

(AB)
m0p0

= gAA

(
(NA − 3)

√
2v

(AA)
m0p0 +

√
2v(AA)mmmp

)
,

(B.3)
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or |Ψ(0)
k 〉 and |Ψ

(0)
k′ 〉 are allowed to differ in two excited states, then more possibilities open

up

〈AmAm|V̂ |ApAp〉 =
1

2
gAA2v(AA)mmpp = gAAv

(AA)
mmpp, (B.4)

〈AmAm|V̂ |ApAq〉 =
1

2
gAA2

√
2v(AA)mmpq =

√
2gAAv

(AA)
mmpq, (B.5)

〈AmAn|V̂ |AmAq〉 =
1

2
gAA

(
4(NA − 2)v

(AA)
0n0q + 4v(AA)mnmq

)
− gAA(NA − 1)v

(AA)
0n0q

+ gABNBv
(AB)
n0q0 − gABNBv

(AB)
n0q0

= gAA

(
(NA − 3)v

(AA)
0n0q + 2v(AB)

mnmq

)
,

(B.6)

〈AmAn|V̂ |ApAq〉 =
1

2
gAA4v(AA)mnpq = 2gAAv

(AA)
mnpq. (B.7)

Lastly if an excitation occurs in each component and we require that |Ψ(0)
k 〉 = |Ψ(0)

k′ 〉, then
the possible matrix element becomes

〈AmBn|V̂ |AmBn〉 =
1

2
gAA

(
(NA − 1)(NA − 2)v

(AA)
0000 + 4(NA − 1)v

(AA)
m0m0

)
− gAA(NA − 1)

(
(NA − 1)v

(AA)
0000 + v

(AA)
m0m0

)
+

1

2
gBB

(
(NB − 1)(NB − 2)v

(BB)
0000 + 4(NB − 1)v

(BB)
n0n0

)
− gBB(NB − 1)

(
(NB − 1)v

(BB)
0000 + v

(BB)
n0n0

)
+ gAB

(
(NA − 1)(NB − 1)v

(AB)
0000 + (NA − 1)v

(AB)
0n0n

+(NB − 1)v
(AB)
m0m0 + v(AB)

mnmn

)
− gABNB

(
(NA − 1)v

(AB)
0000 + v

(AB)
m0m0

)
− gABNANB

(
(NB − 1)v

(AB)
0000 + v

(AB)
0n0n

)
=

1

2
gAA

(
−NA(NA − 1)v

(AA)
0000 + 2(NA − 1)v

(AA)
m0m0

)
+

1

2
gBB

(
−NB(NB − 1)v

(BB)
0000 + 2(NB − 1)v

(BB)
n0n0

)
+ gAB

(
(1−NANB)v

(AB)
0000 − v

(AB)
0n0n − v

(AB)
m0m0 + v(AB)

mnmn

)
.

(B.8)
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Similarly if |Ψ(0)
k 〉 and |Ψ

(0)
k′ 〉 then differ in one excited state

〈AmBn|V̂ |AmBp〉 =
1

2
gBB

(
4(NB − 1)v

(BB)
n0p0

)
− gBB(NB − 1)v

(BB)
n0p0

+ gAB

(
(NA − 1)v

(AB)
0n0p + v(AB)

mnmp

)
− gABNAv

(AB)
0n0p

= gBB(NB − 1)v
(BB)
0n0p + gAB(v(AB)

mnmp − v
(AB)
0n0p ),

(B.9)

or two excited states

〈AmBn|V̂ |ApBq〉 = gABv
(AB)
mnpq. (B.10)

This concludes the calculation of all matrix elements between two double substitutions,
which are necessary for third order perturbation theory.
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Appendix C

Pseudo-code implementation of
Rayleigh-Schrödinger
perturbation theory applied to
the one-component
Gross-Pitaevskii equation

Diving right in, Algorithm 1 shows a pseudo-code implementation of the RSPT calcula-
tions as applied to the GP equations, precisely as described in Section 3.1. As input, a set
of solutions {|φi〉}, {µi}, i ∈ [0,M−1] to the original GP problem given by Eq. (2.14), and
as output the beyond mean-field energy calculated perturbatively to order three. More
in depth, equations (3.7), (3.8), (3.17) and (3.18) are used to calculated the energy shifts
of order 0,1,2, and 3 respectively. Moreover, the fixed size array t refers to a caching of
terms given by Eq. (3.19) to avoid as many inner product calculations as possible, and
vijkl refers to the integrals over the input orbitals (see Eq. (2.9)).

A few optimization opportunities present themselves in the code below, namely, since
most of the time-complexity comes from repeated evaluations of vijkl in the loops, a good
first step is to attempt to parallelize these for-loops using suitable OpenMP pragmas.
However this is not entirely straightforward since for most loops, the index of the inner
loop strictly depends on the index of the outer, resulting in a significantly worse load
distribution over the available threads. An effective solution to this problem is to fuse
the nested loops by hand, for instance instead of looping over m ∈ [1,M) and n ∈ [m,M)
in a nested fashion, a new index k ∈ [0,M(M − 1)/2) is introduced alongside a suitable
mapping k 7→ (m,n) to compute the old indices. As a consequence, each problematic
nested loops in our code may be expressed as a single loop yielding better load distribution,
in this project alone a 200% increase in performance was seen by utilizing this method.
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Algorithm 1: Rayleigh-Schrödinger perturbation theory applied to the one-
component Gross-Pitaevskii equation

Input : Set of eigenstates and eigenenergies {|φi〉}, {µi}, i ∈ [0,M − 1] that solve Eq. (2.14).
Output: Ground state energy E calculated using RSPT up to order three.
// Compute zeroth and first order energy shift

1 E0 ← Nµ0

2 E1 ← − 1
2gN(N − 1)v0000

// Compute second order energy shift
3 E2 ← 0

4 t = []// Fixed size array indexed by (i,j)
5 for m← 1 to M do
6 for n← m to M do
7 me←

{
1 + ( 1√

2
− 1)δm,n

}
g
√
N(N − 1)vmn00

8 ∆E ← 2µ0 − µm − µn

9 t[m,n]← me/∆E
10 E2 ← E2 +me×me/∆E

// Compute third order energy shift. Starting with contributions from
integrals v0000

11 E0000 ← 0
12 for m← 1 to M do
13 for n← m to M do
14 E0000 ← E0000 + t[m,n]2

15 E0000 ← E0000v0000

// Next, contributions from vm0n0

16 Em0n0 ← 0
17 for m← 1 to M do
18 for n← 1 to M do
19 sum← 0
20 for p← 1 to M do
21 sum← sum+ t[m, p]t[n, p]

{
1 + (

√
2− 2)(δm,p + δn,p) + (3− 2

√
2)δm,pδn,p

}
22 Em0n0 ← Em0n0 + gvm0n0 × sum

23 Em0n0 ← Em0n0(N − 3)

// Lastly, contributions from vmnpq
24 Emnpq ← 0
25 for m← 1 to M do
26 for n← m to M do
27 for p← 1 to M do
28 for q ← p to M do
29 Emnpq ←

Emnpq + gvmnpqt[m,n]t[p, q]
{

2 + (
√

2− 2)(δmn + δpq) + (3− 2
√

2)δmnδpq
}

// We can now return the new energy
30 return E0 + E1 + E2 + (E0000 + Em0n0 + Emnpq)

50



Appendix D

Derivation of the integral over
the product of four wave
functions in the harmonic
oscillator basis

Provided wave functions φn(x) =
∑

n cnχn(x) expressed in the harmonic oscillator basis
χn(x) = 1√

2nn!

(
ω
π

)1/4
e−ωx

2/2Hn(ωx) where Hn are the Hermite polynomials, the integral
Eq. (2.9) may be expanded as

vijkl =

∫ ∞
−∞

dxφi(x)φj(x)φk(x)φl(x)

=

∫ ∞
−∞

dx

(∑
i

ciχi(x)

)(∑
j

djχj(x)

)(∑
j

ekχk(x)

)(∑
k

flχl(x)

)

=

∫ ∞
−∞

dx
∑
ijkl

cidjekflχi(x)χj(x)χk(x)χl(x),

(D.1)

then swapping the order of integration and summation as well as expanding the basis
functions yields

vijkl =
∑
ijkl

Kijkl︷ ︸︸ ︷
cidjekfl

[
ω

π
× 1√

2i+j+k+li!j!k!l!

]

×
∫ ∞
−∞

dx e−2ωx
2

Hi(
√
ωx)Hj(

√
ωx)Hk(

√
ωx)Hl(

√
ωx),

(D.2)
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where Kijkl represents a grouping of coefficients to save space. Focusing on the last
integral and introducing the substitution u :=

√
ωx⇒ dx = 1√

ω
du results in

vijkl =
1√
ω

∑
ijkl

Kijkl

∫ ∞
−∞

du e−2u
2

Hi(u)Hj(u)Hk(u)Hl(u), (D.3)

and at this point some external results are necessary to proceed. Specifically the evaluation
of the integral

h(i, j, k)

=

∫ ∞
−∞

du e−2u
2

Hi(u)Hj(u)Hk(u)

=

√
π

2

{
(i+ j − k − 1)!!(i− j + k − 1)!!(−i+ j + k − 1)!!, i+ j + k even;

0, otherwise

(D.4)

provided by Ref. [61], where n!! = n(n − 2)!! refers to the double factorial, behaving
similarly to the regular n! however only including numbers of the same parity as n.
Moreover extending n!! to odd negative integers is necessary resulting in n!! = (n+2)!!

n+2
,

where n is negative and odd, this follows directly from solving for (n−2)!! in n!! = n(n−2)!!
and relabeling n→ (n− 2).

In addition to Eq. (D.4), Theorem 6.8.1 from Ref. [62] which states that the product
of two Hermite polynomials Hi(x) and Hj(x) may be calculated as

Hi(x)Hj(x) =

min(i,j)∑
m=0

(
i

m

)(
j

m

)
2mm!Hi+j−2m(x), (D.5)

is also needed. Getting back to where we left of regarding Eq. (D.3) and applying Eq. (D.5)
gives

vijkl =
1√
ω

∑
ijkl

Kijkl

∫ ∞
−∞

du e−2u
2

Hi(u)Hj(u)Hk(u)Hl(u)

=
1√
ω

∑
ijkl

Kijkl

min(i,j)∑
m=0

(
i

m

)(
j

m

)
2mm!

∫ ∞
−∞

du e−2u
2

Hi+j−2m(u)Hk(u)Hl(u),

(D.6)

and lastly applying Eq. (D.4) to the above results in

vijkl =
1√
ω

∑
ijkl

Kijkl

min(i,j)∑
m=0

(
i

m

)(
j

m

)
2mm!h(i+ j − 2m, k, l) (D.7)

where h(i + j − 2m, k, l) is only non-zero when i + j + k + l is even, greatly reducing
the number of summations, on top of this, expanding Kijkl, h(i, j, k) and the binomial
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coefficients gives

vijkl =
1√
ω

∑
ijkl,

i+j+k+l even

(cidjekfl)

[
ω

π
× 1√

2i+j+k+li!j!k!l!

]

×
min(i,j)∑
m=0

[
i!

(i−m)!m!
× j!

(j −m)!m!

]
2mm!

×
√
π

2
[(i+ j − 2m) + k − l − 1]!!× [(i+ j − 2m)− k + l − 1]!!

× [−(i+ j − 2m) + k + l − 1]!!

=

√
ω

2π

∑
ijkl,

i+j+k+l even

(cidjekfl)

√
(i!j!)/(k!l!)

2(i+j+k+l)/2

min(i,j)∑
m=0

[
2m

(i−m)!(j −m)!m!

]

× [(i+ j − 2m) + k − l − 1]!!× [(i+ j − 2m)− k + l − 1]!!

× [−(i+ j − 2m) + k + l − 1]!!,

(D.8)

further simplifications are without a doubt possible, put this is as far as we go for this
derivation. Reason being, that for all practical purposes most of the above may be pre-
computed and looked up at runtime, effectively reducing the equation to

vijkl =
∑
ijkl,

i+j+k+l even

cidjekfl × cache(i, j, k, l), (D.9)

where cache(i, j, k, l) represent a cache lookup. Then of course more stress is put on the
caching method of choice, but that is beside the point.
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