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Abstract

Semantic segmentation of medical images is an important task with many ap-
plications. However, manually delineating 3D images is time-consuming and the
demand for automation is high. For many image segmentation tasks, deep learn-
ing has provided state-of-the-art results. However, the varying nature of magnetic
resonance (MR) images due to factors such as different machine vendors and clin-
ical protocols has been found to lead to domain transfer issues for deep learning
segmentation models.

This thesis aims to investigate three different data augmentation methods to
remedy this domain generalization problem. We first consider a standard data
augmentation approach and study the effects of applying stacked image processing
functions to the training data. We then study the effects of including weakly labeled
training samples from the unseen data domain in the training set. Lastly we study
the effects of training a Cycle GAN to transfer labeled training samples to the
unseen domain, and including this synthetic data in the training. The experiments
are carried out on MRI data from three separate domains, where labeled training
samples only exist for one of them. The studied methods are found to increase
average DICE scores on the rectum and urinary bladder by 9-14% and 25-40% on
the two unseen domains, and 95th percentile Hausdorff distances are decreased by
60-71% and 33-54%. Additionally, combining the use of unlabeled data from unseen
domains with extensive image processing is found to further boost segmentation
performance.
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1 Introduction

1.1 Motivation

This thesis was carried out at RaySearch Laboratories, a medical software company spe-
cialised in the generation of radiotherapy treatment plans for cancer patients. In the
creation of such treatment plans, the segmentation of regions of interest (RoI:s) - such
as organs or tumours - in a patient image is a crucial step. Furhermore, the applications
of medical image segmentation go beyond treatment planning and include areas such as
diagnostics and population level research [1]. However, manually detecting and delin-
eating RoI:s in 3D images is tedious and time-consuming work, leading to a demand for
automation. This could also remove the risk of error due to factors such as fatigue and
reduce variations between different practitioners.

Deep learning is a commonly used technique for medical image segmentation and
is available in several treatment planning systems for radiotherapy such as RayStation,
where a common use case is segmentation of organs at risk on Computed Tomography
(CT) scans. This thesis instead focuses on MR images, which have several benefits over
CT - for example, they are significantly better at differentiating soft tissue and do not
require the patient to be exposed to ionizing radiation [2]. These benefits have led to the
suggestion of an MRI-only treatment planning workflow (the current workflow requires
CT images to generate the treatment plans), which has received high interest [3, 4] and
motivates the development of accurate MR segmentation models. MRI-only planning
aside, the current CT-based treatment-planning workflow relies on image registration
between CT and MR images, for which MR segmentation is also crucial [3].

1.2 Challenges

Unfortunately, training MR segmentation models is not an easy task due to several factors.
Firstly, as with many other medical image analysis problems, acquiring sufficient amounts
of high-quality annotated training data is not an easy (or cheap) task. Secondly, there is a
large variation apparent in MR images due to factors such as differences in the hardware
of the image acquiring machines, scanning settings and clinical protocols [1]. The first
difficulty is present for the case of CT scans too, but the second is more unique to MR. The
practical implication of this second problem is that a segmentation model that is trained
on data from one clinic (interpreted as one data domain) often experiences significant
performance loss when used on data from another clinic. The simple solution to this
would be to include data from many different clinics in the training of the model, but the
scarcity of high-quality annotations makes this approach infeasible, in practice if not in
theory. Another option, which is also the approach chosen for this thesis, is to use data
augmentation in order to reduce the impact of domain shift.
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1.3 Aim

The aim of this thesis is to analyze several methods of performing data augmentation
for training deep learning segmentation models for MR images. Specifically, we aim to
answer the following questions:

• Is it possible to reduce the negative impact of domain transfer on segmentation
model performance by applying data augmentation at training-time?

• Of the methods tested, which is the most appropriate one?

• Can anything be said about what domain differences in MR images are contributing
most to domain shift performance loss?
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2 Background

2.1 Medical image segmentation

In general, image segmentation refers to the task of automatically partitioning an image
into meaningful subparts, or segments. In medical imaging, these RoI:s are often specific
organs or pathologies such as cancer tumours, and the segmented images can be used for
several clinical applications such as diagnostics, treatment planning and patient follow-up
[5]. Figure 1 shows a few examples of images of the male pelvic region and corresponding
label masks for the rectum and the urinary bladder.

Figure 1: Slices of pelvic MR images and their corresponding label masks for the urinary
bladder (yellow) and the rectum (green). Background voxels are assigned a value of 0 in
the mask.

To formalize and provide some notation, the task of medical segmentation is the
following: given an image (in 2 or 3 dimensions) x of a patient’s anatomy and a set of
RoI:s, finding the mask y that corresponds to the locations of the RoI:s in the image - in
other words finding a mapping f such that

f(x) = y. (1)

It is convenient to think of this as a set of classification tasks: for each pixel (voxel, in
the case of 3D images) in x, the goal is to determine which RoI the pixel belongs to (or
rather which RoI the majority of the pixel belongs to, seeing as the physiological reality
of the patient is not divided into pixels).
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There currently exists a number of different automated segmentation techniques [5],
but this thesis is focused on a deep learning based method discussed in Section 3 for
finding f . For this method, the task is formulated as utilizing a set of n training images
X = {xi}n1 and corresponding hand-annotated RoI masks Y = {yi}n1 to find a function f ,
parameterized by a deep neural network, that minimizes the distance between a predicted
mask ŷ = f(x) and the true RoI mask y. Specifically, one aims to find a function that
generalizes well to images that are not contained in the training set - in other words, one
seeks to find

f ∗ = arg min
f∈H

E(x,y)∈X×Y [D (f (x) , y)] (2)

for some distance measure D, where H represents the hypothesis space (i.e. the parameter
space of the neural network) and where the expectation is taken over the joint space
of images and labels X × Y . As with any deep learning model, one tries to find f ∗

by optimizing an objective (consisting of a loss function and some regularizers) on the
training data X and Y , by means of gradient descent or some stochastic version thereof.

2.2 Domain transfer - concepts and notation

As mentioned, one of the prominent challenges within medical image segmentation tasks
is scarcity of high-quality labeled data [6]. Deep learning models for natural images
are usually trained on large data sets, and limited resources in terms of time, money
and expertise makes it challenging to curate medical image data sets of similar size.
This means that the problem of deep learning models overfitting to the training set is
an important consideration when developing computer vision models for medical image
segmentation. Furthermore, differences in the setup used when acquiring the images (such
as different modalities, scanning machines and clinical protocols) as well as populational
variations between e.g. different countries provides an additional challenge to medical
image segmentation tasks called domain shift [7]. Put in words, the domain shift problem
means that the performance of a deep learning model trained on one set of images might
be significantly worsened when tested on a different set of images.

Mathematically, this can be understood as a space X × Y of features and labels,
with different probability distributions PS and PT representing the source and the target
domains, respectively. Suppose then that we have a set DS = {(xSi ,ySi )}nS

i=1 of nS samples
drawn from X ×Y with probability PS and a set DT = {(xTi ,yTi )}nT

i=1 of nT samples drawn
with probability PT . A deep learning model m is trained on a training subset DtrainS ⊂ DS
and tested on a testing subset DtestS ⊂ DS \ DtrainS from the source domain as well as on
a subset DtestT ⊂ DT . Using some performance metric P , we can now define the domain
shift error as the expected performance difference between the source and target domains
when m is used

εDS := EDtest
S ,Dtest

T
(P (xS,yS,m)− P (xT ,yT ,m)). (3)

Naturally, the notation above can be expanded to include an arbitrary number of source
and/or target domains.

An intuitive solution to the domain shift problem would be to include data from both
source and target domains in the training of the deep learning model. However, this is
often unfeasible due to the scarcity of labeled training data discussed above. Instead, a
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number of other solutions have been proposed to the problem. Guan and Liu [7] - from
whom a lot of the notation in this report is borrowed - provide a detailed overview of
such domain adaptation approaches used for segmentation as well as other medical image
analysis tasks. They divide deep learning approaches for the problem into the following
four categories:

• Supervised domain adaptation. When a limited amount of labeled examples
from the target domain is available for training

• Semi-supervised domain adaptation. When in addition to a small amount of
labeled examples, redundant unlabeled data from the target domain is available for
training

• Unsupervised domain adaptation. When only unlabeled data from the target
domain is available for training

• Domain generalization When no target data is available for training, neither
images nor labels.

In addition to the above categories, one can add the following:

• Weakly supervised domain adaptation When no labeled target data is avail-
able, but one can obtain noisy, or weak, target labels with little or no effort

For the purpose of this thesis, unsupervised and weakly supervised domain adaptation
is investigated alongside domain generalization.

2.3 Magnetic resonance imaging

The workings of an MRI scanner is a joint feat of modern physics, mathematics and engi-
neering, and the details of the technique are far beyond the scope of this thesis. However,
this section gives an overview of some of the important concepts so that the reader un-
derstands what is seen in an MR image and some sources of variation. The overview is,
unless otherwise indicated, based on MRI - From Picture to Proton by McRobbie et. al
[8].

2.3.1 Generating the MR signal

The fundamental reason that MR phenomena are observed is the magnetic moment of
atomic nuclei, which is a result of the quantum mechanical interactions between the
angular momenta of the nucleons (protons and neutrons) [9]. This moment is intrinsically
connected to the spin of the nucleus [10] which means that it is only non-zero for atoms
where either the number of protons or the number of neutrons (or both) is odd [9], such
as for the hydrogen atom, the nucleus of which consists of a single proton.
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What happens in an MR scanner, is that a sample (i.e. the body of the patient) is
placed in an external magnetic field. Using the terms of classical physics, this forces the
magnetic moments of the nuclei in the sample to align with the external field. Quantum
mechanically, the external field provides a z axis to which the nuclear spins can either
align parallelly (spin up) or antiparallelly (spin down). These two states have an energy
difference proportional to the strength of the external field which makes the population
of the spin up state slightly larger than that of the spin down state, leading to a net
magnetization of the sample parallel to the external field. However, the field of the net
magnetization is too weak to be measured, compared to the external field.

In order to get a measurable signal, one applies a radiofrequency (RF) pulse to the
patient, i.e. a short pulse of electro-magnetic radiation. If the frequency of the RF pulse
matches the energy gap between the spin up and down states, it stimulates the nuclei to
flip from one state to the other - the duration of the pulse determines the probability to
switch states. Without going into the details, one can ensure that the RF pulse changes
the direction of the net magnetization of the sample, from the z axis (as defined by the
external magnetic field) to the xy-plane, where the field direction will oscillate with the
frequency of the RF pulse. As the net magnetization of the sample is now perpendicular
to the external field, it can be measured - this is the MR signal.

2.3.2 Contrast in MR images

The above explanation provides a description of how the MR signal is generated, but not
why it is an interesting quantity for medical purposes. The reason for this is that different
kinds of tissue have properties that in several ways effect the MR signal. There are three
such factors that are of great importance for the resulting image; proton density (PD),
spin-lattice relaxation time (T1) and spin-spin relaxation time (T2).

The first, PD, is somewhat self explanatory. The measured signal will naturally depend
on the density of the nuclei that are emitting the signal. This means that the measured
signal will be high for tissue that contains high levels of hydrogen, essentially tissue with
high water content. The two latter, T1 and T2, are not as intuitive to understand but
are both connected to the decay in signal over time. As stated above, the interaction
between the RF pulse and the nuclei of the sample causes the net magnetization to dis-
align with the external magnetic field, generating a measurable field in the perpendicular
plane. However, this transversal magnetic field will eventually disappear, due to two
separate phenomena in the nuclei. Firstly, the external magnetic field will cause the net
magnetization to realign with the direction of the field, as excited nuclei go back to the
spin up state by interacting with (losing energy to) its surrounding environment. This
process is called spin-lattice relaxation, and T1 is the time constant related to this decay
in signal. Secondly, the reason that there is a field in the xy-plane is not only that the net
magnetization vector of the sample is ’tilted down’, but also that the individual magnetic
moments of the nuclei oscillate in phase with eachother. Over time, interaction between
a nucleus and its microscopic environment (e.g. other nuclei and electrons) causes this
precession to dephase, eventually netting out to zero. This is called spin-spin relaxation,
and T2 is the related time constant. Note that unlike spin-lattice relaxation, spin-spin
relaxation has nothing to do with the realignment of the net magnetization to the external
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field, and is thus in essence not affected by the external field strength.

Differences in PD, T1 and T2 is what makes the signal vary between different tissue,
creating the contrast of the MR image. By using a series of different RF pulses (pulse
sequences), and applying gradients in the external magnetic field (that is, varying the field
strength along the spatial axes), it is possible to generate images where the contrast (dif-
ference in signal between various tissue) stems from T1 properties, T2 properties or PD.
To no surprise, these are called T1-weighted, T2-weighted and PD-weighted, respectively.
The reader should note that these types of images are not mutually exclusive categories
- the measured contrast will always be a result of differences in both transversal and lon-
gitudinal relaxation, as well as proton density. However, with different pulse sequences
one can manipulate the atomic interactions with the magnetic field so that T1, T2 or PD
properties are either highlighted or suppressed. Two properties that are important for
determining whether the image will be T1- or T2-weighted are the time to repetition (TR)
of the pulse sequence, and the time to echo (TE), which can be interpreted as the time
between initialization of a pulse sequence and the measurement of the signal. In general,
T1-weighted images have short TR and TE while T2-weighted images have longer TR
and TE.

2.3.3 Sources of variation

To summarize, there are a number of factors that effect MR image differences, besides
inter-patient variation. Firstly, the strength of the magnetic field (and the TE) will
have a great impact on the general signal strength of the image. Secondly, variations in
parameters such as the choice of pulse sequence, TR and TE will will result in differences
in tissue contrast. For example, in T1-weighted images the signal of fat will be stronger
than the signal of fluids, which means that fat will appear brighter in the image. On the
other hand, the signal from fluid is in general higher than the one from fat in T2-weighted
images.

In addition to variations in the signal strength, different scanner settings will lead to
different signal to noise-ratios, which is also affected by choices in the image-reconstruction
process, i.e. the process of turning the measured signal into an image. Furthermore, MR
images can contain a number of artefacts which are also affected by the choice of imaging
parameters.
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3 Data

In this thesis, labeled and unlabeled 3D MRI scans of the male pelvic region from three
different data sets are used to investigate the impact of data augmentation on the domain
shift problem. The RoI:s studied are the urinary bladder and the rectum. The three
data sets differ in several ways including scanner, choice of pulse sequence and weighting,
and are described below. A summary of the data sets are given in Table 1 and a more
thourough description can be found from the specified reference for each dataset.

Table 1: Information regarding the MR scanner settings used to create the data sets. For
DT2, most information about the dataset is unavailable.

Domain DS DT11 DT12 DT13 DT2
Pulse sequence 2D FRFSE FRFSE TSE FRFSE SE
Scanner GE Discovery 750 W 3.0 T Unknown Unknown Unknown Siemens Skyrafit
TE (ms) 96 97 91-102 65 Unknown
TR (ms) 15 000 6000-6600 12000-16000 9000 Unknown
Band width per pixel (Hz) 390 390 200 390 Unknown
Slice thickness (mm) 2.5 2.5 2.5 2.5 4
Voxel size (mm3) 0.44× 0.44 0.875× 0.875 0.875× 0.875-2.5× 1.1× 1.1 0.875× 0.875 0.875× 0.875
Reference [5] [11] [11] [11] N/A

The data were exported in mhd-format from RayStation. For the labeled images,
a box centered around the bladder and the rectum was exported. For images with no
corresponding labels, a mask separating the patient’s body from the surroundings was
generated by thresholding and a box centered around the center of the generated mask
was exported. Admittedly, there is some risk to this procedure as it does not ensure that
the two kinds of images are geometrically identical. However, as the bladder and rectum
are both situated at the center of the scans this was deemed acceptable. Furthermore,
ocular inspection of the two types of procedure did not show significant differences.

The volumes used were all of size 388 × 421 × 114 voxels, and the spatial resolution
was 2.5× 0.7× 0.7 mm. As is apparent from Table 1, not all images were acquired with
this resolution, meaning that the more coarse-grained images were interpolated to fit the
resolution of the remaining scans.

3.1 Source Domain - DS

The source domain is represented by a set of T2-weighted images from the MR-PROTECT
trial [4], an MRI-only treatment planning study in Lund, Sweden. This data was made
available for this thesis through the national ASSIST project, a joint project between
Swedish healthcare institutions, academia and industry with the aim of collecting and
processing clinical radiotherapy data for machine learning. From this image set, a total
of 38 images and corresponding manually catered labels are used with the following split;
24 train, 6 validation and 8 test.
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3.2 Target Domain 1 - DT1

The first target domain consists of images and labels from the Gold Atlas project [11],
publicly available at https://zenodo.org/record/583096.YIbi1y0Rq3U . The dataset origi-
nally consists of 19 scans of the male pelvic, of which 18 were used (one was removed due
to the patient having an artificial femur). These 18 images were divided into validation
and test sets with 9 images each. As indicated by Table 1, the images of DT1 are acquired
with 3 different scanners and different settings, meaning that there exists distinct subdo-
mains within DT1. The RoI delineations are created by 5 human practitioners agreeing
on a consensus.

3.3 Target Domain 2 - DT2

For the second target domain, a subset of a large unlabeled dataset of anonymized MR
scans from Iridium Kankernetwerk, Antwerp, Belgium was used. 19 images were selected
from the data set and were manually labeled by myself under the supervision of a clinical
expert. These images were used for validation (9 samples) and testing (10 samples).
In addition to these, 52 unlabeled images were used for the experiments which rely on
unlabeled target data.

3.4 Domain differences and data set statistics

To give a sense of how the three data domains differ from one another, Figure 2 shows
sample slices from each of the domains. From these images it is apparent that the MR
scans vary in several ways, such as mean intensity level, tissue contrast, RoI volume,
patient size, RoI homogeneity as well as the vertical placement of the RoI:s (for example,
the bladder in the bottom middle scan has not yet started at the specific slice). It is also
striking that there is a variation in these features within each domain as well, for example
the relative intensity in the bladder is significantly higher in the top scan from DT2 than
in the bottom scan. Figure 3 shows a zoomed-in view of the slices in Figure 2. Here,
we see some more fine-grained differences between the domains, such as noise level and
smoothness of the edges in the scans.

To quantify the domain differences, Figures 4 through 6 show scatter plots of statistics
for the different domains. Figure 4 shows RoI volumes of the different domains, and
compares the target domains to the source. Notice that DT2 has a much higher variance
in both rectum and urinary bladder volume. Figure 5 shows the mean intensities of the
RoI:s of the different domains, after standardising each image to a mean of 0 and standard
deviation of 1, i.e. the standardised RoI mean intensities relative to the image means.
Figure 6 shows the two first principal components of the intensity histograms of the
normalized images, to further highlight the variation in intensity distributions between
domains.

All of the statistics in Figures 4-6 were calculated on volumes that were cropped and
centered around the urinarly bladder and rectum, as in Figure 2, as these were the scans
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Figure 2: Slices from 9 different patients from DS (left column), DT1 (middle column) and
DT2 (left column). All slices show the scan in the xy-plane, with z = 45, and are cropped
to show the bladder and the rectum of the patient. The variations between (and within)
domains that are visible to the naked eye include voxel intensity distributions, noise level
and RoI size.

that were used to evaluate model performance.

A source of inter-domain variation in the MR images which is not discussed here is the
amount of artefacts present in the images. There are a number of artefacts that can be
showcased in MR images, and some of these are more common for certain pulse sequences
than for others [8]. However, correctly observing these artefacts is a detailed task and
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Figure 3: Slices from 9 different patients in DS (left column), DT1 (middle column) and
DT2 (left column). These slices are the same as in Figure 2 but zoomed in. The bladder
and bladder wall (to the left in the images) are clearly visible in all scans except the bottom
middle one. The DS images seem to be sharper as well as contain more high-frequency
noise, while the DT1 and DT2 seem more blurred.

was therefore decided to be left out of the scope for this thesis.
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Figure 4: Rectum and bladder volume for the different domains. The distributions of DS
and DT1 seem to be quite similar, while DT2 includes a considerable number of samples
with larger urinary bladders, and a few samples with larger rectums. These differences
might be related to differences in clinical protocol.

Figure 5: Rectum and bladder mean intensities for the different domains. It is clear that
DT12 and DT2 are different from DS, with most samples having significantly higher relative
bladder intensities. Some differences in the bladder intensities are also apparent between
DT11 and DS. There does not seem to be as a significant difference between the domains
in terms of the mean intensities of the rectum

13



Figure 6: First two principal components of the intensity histograms of the normalized
images from the different domains. It is clear that the histograms of DT12 and DT2 are
differently distributed than those of DS, while DT11 and DS seem rather similar in this
aspect. The small number of samples in DT13 make it hard to say anything in general
about its histogram distribution. All histograms were computed using 50 bins.
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3.5 A note on image padding

All data domains do not cover the same physical space, i.e. the raw MR scans do not
take up the same volume. For the training of deep learning models, it is necessary that
all inputs are of the same shape (in voxel space), and it was decided to let one voxel
represent the same physical dimensions across all domains. This means that some of the
MR scans needed to be padded as part of the preprocessing of images. The choice of
padding strategy might be of importance for the performance of the deep learning model,
as it has a major impact on the distribution of intensities after normalization, and the
need for padding varies between domains - see Figure 7.

The padding strategy used in this thesis was padding with a constant value, and
no extensive experimentation was done on different padding values. However, it was
found empirically that min-padding (i.e. padding with the smallest measured intensity)
performed better on the baseline than padding with -1000, which is the RayStation default,
indicating the impact that padding strategy has on model performance. The statistics of
Figures 5 and 6 are calculated on the min-padded images, i.e. the exact same images that
are fed to the neural network during training and inference.

Figure 7: The distribution of padding voxel percentage over the different domains. Scans
from DT12 and DT2 are aquired with a smaller scan region that the other domains, and
thus need padding to have the same size before feeding them to the neural network. The
padding of images leads to differences in intensity distributions after applying normaliza-
tion or standarization.
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4 Methodology

4.1 Segmentation Network

The base segmentation network used for all experiments was an in house implementation
of the well known U-Net architecture, specifically developed for segmentation of medical
images [12] - see Figure 8 for the general network architecture. The main difference
between the original network and the used one was that it was adapted to work with 3D
data instead of 2D, meaning all convolutions were in 3D.

Figure 8: Neural network architecture for the U-Net
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For the baseline experiments, the only preprocessing done was that the volumes were
cropped to a size of 252× 182× 72 voxels (to fit the GPU memory while still containing
all of the ROI:s) and subsequently standardised to a mean of 0 and standard deviation
of 1.

4.1.1 Loss function and optimization

The segmentation network outputs an array of shape w×d×h× (nc+ 1) where w×d×h
is the size of the input data and nc is the number of classes (i.e. the number of RoI:s).
These values are interpreted as class probabilities by applying the softmax function

p̂vc =
eŷvc∑nc

c=0 e
ŷvc

(4)

where p̂vc is the probability that voxel v belongs to class c (where 0 is no class/external)
and ŷvc the corresponding value in the output array.

The loss of the segmentation network is calculated using the negative crossentropy
between the ground truth labels and the predicted probabilites:

L = − 1

|V |
∑
v∈V

nc∑
c=0

Ic(v)log(p̂vc) (5)

i.e. the mean crossentropy taken over all voxels in the output volume V . Ic(v) is here
representing the indicator function for the output class of voxel v.

The segmentation network is trained using the Adam Optimizer [13] with a learning
rate of 10−3. The number of epochs and iterations varied somewhat between experiments
and are therefore specified in their respective section. Due to GPU memory constraints,
the network as trained using a batch size of 1, meaning that the loss function of Equation
5 was calculated, differentiated and used to update network weights for one image at the
time.

4.2 Augmentation methods

4.2.1 Traditional Data Augmentation

It is well known that using data augmentation is a powerful tool to reduce overfitting in
deep learning models, especially for training setups with small data sizes [14]. A common
explanation for this is that by performing data augmentation, i.e. altering the training
data, the neural network will get experience from a larger portion of the possible data
points than from only training on non-augmented examples [14]. This naturally leads
to the question of whether it is possible to synthesize training examples from the target
domains (or at least closer to them) by applying augmentation to the source domain exam-
ples. Zhang et. al. argue that this is precisely the case [15], and suggest an augmentation
pipeline for the task of segmenting MR images, called BigAug.
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The data augmentation experiments closely follow the pipeline of Zhang et. al. which
includes the following 9 steps:

1. Blurring of the input image by convolving the image with a Gaussian kernel k with
mean 0 and standard deviation σ to form Iblurred = k(σ)∗Iinput, where σ ∼ U(0.25, 1)

2. Random sharpening of the image by applying a Gaussian kernel, and then adding
the difference between the blurred image (scaled by a factor α) to the input image
in order to amplify high-frequency information, i.e

Isharpened = Iinput + α(Iinput − k(σ) ∗ Iinput) (6)

where α ∼ U(10, 30) and σ ∼ U(0.25, 1)

3. Adding Gaussian noise with mean 0 and standard deviation σ to the input image,
where σ ∼ U(0.1, 1.0)

4. Shifting the intensities of the input image by some value m, where m ∼ U(−0.1, 0.1)

5. Applying gamma correction to the input image, i.e. for every voxel intensity apply
the transform

vout = (vin)γ (7)

where γ ∼ U(0.5, 4.5). The intensities of the input image are first normalized to lie
between 0 and 1

6. Rescaling the intensities of the input image by a factor k and subsequently shifting
by a factor m, i.e. applying the transformation

vout = kvin +m (8)

for every voxel vin in the input image, where k ∼ U(0.9, 1.1) and m ∼ U(−0.1, 0.1)

7. Rotate the image by an angle d, where d ∼ U(−20◦, 20◦). Rotation is performed
around all axes with independently sampled angles

8. Deform the image elastically by applying a smooth deformation field, generated
by deforming a coarse grained (voxel size 8 × 8 × 8 cm) grid with random values
σ ∼ N (0, 0.5)[cm] and interpolating to get voxelwise displacements

9. Scale the image by a factor s ∼ U(0.4, 1.6) and crop or pad the resulting image
(using a linear ramping strategy) to preserve image shape

During training of the deep learning model, the above steps are performed in a stacked
manner (i.e. after one another). For every image, the processing functions above are each
applied with a probability p (chosen to be 0.5 as in the original paper). The intervals
specifying the parameter distributions indicated above was chosen to be the same as in
[15], and should together with the probabilities be interpreted as hyperparameters of
the model which can be optimized. In addition to the augmentation steps given above,
another step was added which was not in the original paper, namely changing a number of
slices in the top and bottom of the images to a set value - either the maximum value of the
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image or the minimum value, with equal probabilities. This was added to compensate for
the padding of a number of images (see the discussion in connection to Figure 7), and the
number of slices affected was chosen randomly so that 0-15% of the voxels were changed,
in accordance with Figure 7. Just like the other augmentation steps, this addition had
a probability of 0.5 to be utilized for each batch during the training of the segmentation
network.

It should be noted that this approach to domain adaptation comes with a big practical
advantage, namely that it does not require any specific knowledge regarding the target
domain, as compared to the two methods described below which both require access to
unlabeled image data.

4.2.2 Weak Labels

As stated previously, manually delineating MR images is a time-consuming and expensive
task (this is why we are interested in automatic segmentation in the first place). However,
there are other ways of automatically segmenting MR images than the deep learning
approach discussed in this report. Such automatically generated labels will generally
not be of as high quality as labels delineated by experts, but it can still be expected
that automatically generated labels are correlated to the ground truth. This raises the
question as to whether automatically generated labels can be used for training a deep
learning model, that will in turn exceed the performance of the algorithm that generated
the labels (on some held out validation set). While this might seem unintuitive (after all,
how could the student outperform the teacher?) training with noisy labels is an important
subfield within the study of weakly-supervised learning [16]. What is more; if the label
noise is unbiased one might expect that the noise cancels out, so that the expected value
of the noisy labels coincide with the exact labels. An excellent example of this is given
by Rolnick et. al. [17] who trained a classification network on the MNIST data set. With
label accuracy just 1% higher than for randomly assigned labels, they still managed to
achive 90% accuracy on a held-out test set with noise-free labels.

The success of using noisy labels as augmentation in a one-domain setting sparks
the question if the same technique is successful for reducing the domain shift error, and
motivates the experiments described in this section.

A way to create weak labels for the target domain images is to use a technique called
atlas-based segmentation, which was the state-of-the-art technique for medical image seg-
mentation before the deep learning paradigm shift. This technique is based on deformable
image registration, where the RoI:s from one or a number of labeled patients (atlases) are
deformed to match the geometry of the image one wants to generate segmentations for.
The resulting deformation is then used to deform the labels of the atlas, generating the
segmentation. For multi-atlas segmentation, the atlases are deformed one-by-one, and the
result of each of these is fused using one of a number of different possible algorithms [18].

In the multi-domain setting described in this report, labels were created for the 52
unlabeled samples of Target Domain 2: DunlabeledT2 = {xT2i }52i=1. They were generated
using an implementation of multi-atlas segmentation in RayStation, and the deep learning
segmentation network was then trained on the combined setDtrainS ∪{(xT2i ,y∗T2i )}52i=1 where
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y∗T2i denotes the weak label of sample i.

Examples of such images with their corresponding weak labels are shown in Figure
9. Generally, the atlas-segmented labels succeed in localizing where the RoI:s are in the
image. However, they are not good at making precise predictions regarding the boundaries
of the RoI:s, and often miss these (although the RoI boundaries are correctly located in
some of the cases).

Figure 9: Samples of DT2 images with weak labels. The weak labels generally do an
adequate job of delineating the RoI:s, however they are not very precise and often miss
the boundaries.

4.2.3 Cycle GAN domain transfer

Another popular method for reducing the domain shift error is to align the images of
the source and target domains, so that they look more similar [7]. There exists many
techniques for this type of domain transfer, but one of the prominent ones is to use a
Generative Adversarial Network (GAN) [19] to synthesize new training data. For the
specific problem of domain shift, utilising a Cycle GAN [20] for the domain translation is
particularly interesting, as it allows mapping images from one domain to another without
losing geometrical information (i.e. RoI placement), allowing style changes in the source
images s.t. they resemble target images, while still staying true to their labels.

The Cycle GAN consists of two parallel data flows where the principal idea is that
two generators are trained, one for the mapping from source to target domains

For the training of the Cycle GAN in the following experiments, images from DtrainS

and the 52 unlabeled images from DT2 were used to train the Cycle GAN to learn the
mapping between the source domain and target domain 1. Therafter, the Source-to-Target
Generator GT was used to generate synthetic data

DsyntheticT2 = {GT (xSi ),ySi }
ntrain
S
i=1 (9)

i.e. the labels of the DS training data were used as labels for the synthetic data set. The
deep learning model was then trained on the combined set DtrainS ∪ DsyntheticT2 . For each
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epoch in the training, all samples of this dataset were used, meaning that the model trains
on two versions of the same image per epoch; the original image and the domain-mapped
image. Because of this, the number of epochs were reduced by half as compared to the
other experiments in this report.

4.2.4 Additional methods

The weak labels and Cycle GAN approaches to data augmentation both have their draw-
backs. The obvious downside with the weak labels approach is that the weak labels are
not perfect, as seen in Figure 9. For the Cycle GAN, even if target domain specific image
features such as intensity levels, noise and artefacts are reproduced in the synthetic data,
geometrical features such as RoI shape are not. A domain transfer method that remedies
both of these drawbacks have been shown to achieve good results on brain MRI data
[1], and was tested for this thesis as well. The method builds on a deep learning based
image registration method where the source domain geometries are deformed to match
unlabeled target domain data. However, it proved difficult to transfer these results to the
pelvic region, possibly because the image registration problem is harder to solve for this
region. Therefore, the method was never used in the data augmentation setting. The
method is described in Appendix A, together with some initial results.

4.3 Evaluation

Three different metrics are used to evaluate the performance of the segmentation network.
Defining V as the ground truth 3D mask of a specific class, and V̂ the corresponding
predicted mask, these are:

• DICE. The Dice score measures the volumetric overlap of the predicted label mask
and the true mask, by calculating

2|V ∩ V̂ |
|V |+ |V̂ |

(10)

where |V | denotes the number of voxels of V

• Hausdorff distance The Hausdorff distance measures the maximum shortest dis-
tance between a surface element of Vc and one of V̂ c, i.e.

Hmax = max

{
sup
v̂∈∂V̂

(
inf
v∈∂V

(d(v, v̂))

)
, sup
v∈∂V

(
inf
v̂∈∂̂V

(d(v, v̂))

)}
(11)

where d is the Euclidean distance and ∂V and ∂V̂ denote the surfaces of V and
V̂ , respectively. Similarly, instead of taking the maximum distance (the supremum
norm) one can calculate some percentile, creating for example the H95% distance.
Figure 10 shows the visual interpretation of the components used for calculating the
distance.
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Figure 10: Visualization of the two elements used when calculating the Hmax distance
(see Equation (11)). Reproduced from Rocchini, CC BY 3.0, via Wikimedia Commons.

A note on the calculation of results for the rectum RoI, is that the ground truth
contours vary in how much of the RoI is delineated. This might be because of varying
guidelines or interpretations of these, regarding how much of the sigmoid colon and anal
canal to include in the delineation of the rectum. The results of this is that there is
variation between and within the different domains regarding what is included in the
ground truth rectum contours. To mitigate the effect this has on the performance metrics,
the rectum RoI:s were truncated so that no part of the RoI in the model predictions
extends above or below the ground truth, and vice versa.

The experiments are evaluated on the means and standard deviations of the defined
metrics, evaluated over all patients. Additionally, the score distributions are evaluated,
and the model predictions are manually inspected qualitatively. As each model was trained
more than once, all patients occur multiple times in the evaluations. This means that
if a model was retrained 5 times, for example, all of the patients occur 5 times in the
evaluation.
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5 Results

5.1 Baseline segmentation results

Figure 11 shows the score distributions for the baseline model after repeating training 7
times. The domain shift error is apparent for all metrics, both in terms of the absolute
scores and the variability of the scores. Noticeably, there is not only a performance
difference between the source and target domains, but there is also a large gap between
DT1 and DT2 except for on the H95% scores for the rectum. This indicates that the
distance between the probability distributions from which the samples are obtained is
smaller between DS and DT1 than between DS and DT2, something that is also indicated
in the image statistics of Figures 4, 5 and 6, i.e. the RoI volumes and mean intensities as
well as the first principal components of the normalized image histograms.

Upon inspection of the predicted segmentation masks (see examples in Figure 12) it is
clear that while the segmentation model makes mistakes on the source domain (e.g.bottom
row, left column in Figure 12), these are not as frequently occuring nor as large as for the
target domains - especially DT2. From Figure 12, two distinct types of prediction errors
are illustrated:

• prediction follows ground truth quite nicely for part of the contour, but makes some
large mistake by either ’floating out’ (e.g. top row, middle column) or ’collapsing
in’ (e.g. top row, rigt column);

• the model predicts ROIs elsewhere in the image, seemingly random (e.g. middle
row, right column).

While both types of errors occur in all domains, they are significantly more common in
the target domains. Especially the second type of error is evident in almost all examples
from DT2, and likely affects the H95% distance significantly. Note that both types of
error contribute to making the predicted RoI masks unrealistic in shape, i.e. it is enough
to observe the predicted masks to realize that they are wrong, without even seeing the
corresponding MR image.
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(a) Dice score

(b) Hausdorff 95 score

Figure 11: Results for the baseline experiments, evaluated over the different domains.
The domain-dependent performance difference is clear, in terms of all metrics and RoI:s.
Note escpecially that the worst-performing DICE scores on DT2 are lower than 0.1, and
that a significant number of samples in both target domains have a H95% of more than 5
cm for the rectum, which is far from clinically acceptable.
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Figure 12: Sample of the segmentation results for the baseline model on 9 patients,
with columns corresponding to DS (left), DT1 (middle) and DT2 (right). Ground truth:
rectum = red, bladder = blue. Predictions: rectum = green, bladder = purple. For
DS, the predictions follow the ground truth quite nicely, although some errors are made.
For the target domains however, the number of errors is greatly increased - especially for
DT2. There are at least two distinct types of prediction error; firstly there are instances
where connection to the ground truth is lost, secondly there are instances where the model
predicts RoI structures seemingly random in the image.
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Table 2: Average difference in performance metrics for the urinary bladder between a)
including a specific image processing step in the BigAug pipeline and b) not including
it. The three top scores for every metric is bolded. Note that negative differences in the
H95% distances indicate better performance.

DS DT1 DT2
Dice [%] H95% [mm] Dice [%] H95% [mm] Dice [%] H95% [mm]

rotation 0 -0.7 4 -9.8 10 -9.3
additive pixelwise noise 0 0.1 0 0.3 -1 0.5
elastic 0 -0.8 2 -4.7 7 -5.4
blurring 0 0.3 -1 -0.3 2 -3.2
sharpening 0 -0.6 6 -4.7 7 -1.1
intensity shift 0 -0.3 2 -1.5 0 -0.3
gamma correction 0 -0.1 3 -7.6 6 -5.3
affine intensity transformation 0 0.3 -3 3.1 -5 2.2
scaling 0 -0.2 8 -9.0 12 -7.5

5.2 Choice of BigAug augmentation steps

In order to get a better understanding of how the 9 separate steps of the BigAug pipeline
affects model performance, a hyperparameter search was carried out. The search con-
sisted of repeatedly training a segmentation model using the BigAug pipeline, but before
each new training session, all 9 steps were randomly chosen to be either used or not used
for the training, with a probability of 50%. To keep training times low, a stop criterion
was included so that training was aborted if no improvement on the validation loss was
registered for 100 consecutive epochs. This process was repeated 25 times, and the eval-
uation was done on the validation sets of each domain. The added augmentation step of
masking the images to simulate padding was not used in any of these, and the metrics
were calculated on the full rectum RoI:s, not the truncated ones.

For each of the 9 image processing steps in BigAug, the average metrics were compared
between the experiments where the step was included and the ones where it was not. The
results of these experiments are shown in Tables 2 and 3 for the urinary bladder and
rectum, respectively. As is clear from the tables, all of the preprocessing steps except
for the additive noise and intensity shift (steps 3 and 4 as described in Section 4.2.1)
were in the top 3 steps with highest impact for some metric on at least one of the target
domains. No proper statistical investigation of these results was carried through, as it was
deemed that the number of experiments was far too small to take interactions between
augmentation steps into consideration. Instead, the conclusions from these results were
that all of the augmentation steps might have an impact on segmentation results and that
none of the steps should therefore be excluded from the pipeline. Note that in general, the
impact of the augmentation steps on DS results is significantly smaller than on DT1 and
DT2 . An observation regarding the results in Tables 2 and 3 is that the two augmentation
steps that seem to have the biggest performance impact are rotation and scaling. These
two steps, however, may both invoke the need for padding in the resulting images. This
means that it is not certain that it was the actual rotation and scaling of the images
that affected the results, but that it could also be the resulting padding that is boosted
performance.
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Table 3: Average difference in performance metrics for the rectum between a) including a
specific image processing step in the BigAug pipeline and b) not including it. The three
top scores for every metric is bolded. Note that negative differences in the H95% distances
indicate better performance.

DS DT1 DT2
Dice [%] H95% [mm] Dice [%] H95% [mm] Dice [%] H95% [mm]

rotation 0 -0.6 5 -12.6 10 -12.6
additive pixelwise noise 0 -1.1 0 -0.2 -1 -2.7
elastic 0 1.9 3 -1.8 6 1.4
blurring -1 0.2 1 -5.7 4 -10.0
sharpening 1 0.6 2 1.6 3 6
intensity shift 1 -1.2 1 0.1 0 -2.3
gamma correction 0 -2.6 1 -7.1 3 -5
affine intensity transformation 0 1.5 -1 -7.2 -5 -1.4
scaling 0 -3.7 3 -6.8 9 -10.7

In addition to the results in Tables 2 and 3, the experiments were used to study the
effect of varying the number of augmentation steps for model training. The results are
shown in Figure 13, and clearly indicate a correlation between model performance and
the number of augmentation steps. This further motivates that all of the augmentation
steps were used for the final results and evaluation on the test sets.
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(a) Bladder DICE scores (b) Rectum DICE scores

(c) Bladder Hausdorff 95 scores (d) Rectum Hausdorff 95 scores

Figure 13: DICE score and H95% distances plotted against number of augmentation steps
in the BigAug pipeline, together with least squares-fitted regression lines (including con-
fidence intervals). It is clear that there is a connection between model performance and
number of augmentation steps for the two target domains. For the source domain, there
is no clear correlation.
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5.3 Training of Cycle GAN for domain transfer

During the training of the Cycle GAN, tendencies of mode collapse in the creation of
synthetic target data was observed. In many of the samples, the target generator GT

synthesizes a bright bladder in the bowel region of the patient. It is understandable that
this feature might trick the adversarial discriminator, as very bright bladders are common
in DT2 but not in DS. The cycle consistency loss should incentivise the conservation of
geometrical features in the generation of synthetic data in order to be able to generate
a good cycled image, but apparently this is not the case. What is more, the cycled
image (the result of feeding GT (xSi ) through the target-to-source generator GS) is nearly
identical to the original image - see Figure 14 below.

Figure 14: From left to right: original image, synthetic target domain image and cycled.
The cycle gan introduces new geometrical features but still manages to get nearly perfect
cycled images, indicating that some information about the original image (left) is hidden
in the generated image (middle). This behavior enables low cycle-consistency loss even
though new geometric features are introduced in the generation process.

The behavior described above has been documented with Cycle GANs previously [21],
and the explanation is that the generator is hiding information about the original image
that is not visible to the naked eye, enabling perfect restoration.

As the hidden information is not visible to humans, it is reasonable to assume that it
is hidden in low amplitude (possible high frequency) intensities in the generated image,
which would indicate that adding low-amplitude noise to the synthetic data would make
perfect reproductions of the original image impossible. Figure 15 indicates that this is
the case, as it shows that a very small perturbation of GT (xS) essentially breaks down
the cycled image.

Because of the behavior discussed above, the Cycle GAN was re-trained using a slightly
different pipeline, where Gaussian noise was added to the generated data before they are
passed through the second generator. This resulted in a more robust model with smaller
tendency to create artificial bladders in the synthetic data, although not completely mak-
ing this behavior disappear. Importantly, this new Cycle GAN was not able to perfectly
reproduce the initial images, meaning that adding geometrical information that is not
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Figure 15: Cycled image after perturbation (top), without perturbation (middle) and
original image (bottom). Adding noise on a scale that is inconceivable to the naked eye
makes the recreation of the original image break down, as apparent in the differences
between the top and middle images.

present in the original image leads to an increase in the cycle consistency loss. See Figure
16 for an example of this. It is likely that the unwanted behavior of adding artificial blad-
ders can be reduced be reweighting the adversarial and cycle consistency loss functions,
however this was not tested due to time constraints.

It should be noted here that while the Cycle GAN generates synthetic data that seem
close to the distribution of DT2, the discriminators clearly overfits to the training data - see
training curves in Appendix B. This might partially explain the mode collapse behavior
described above, as it means that in order to fool the discriminators, the generators have
to synthesize data that looks just like the training data from the other domain (not just
as if it is drawn from the same distribution).

5.3.1 Cycle GAN generated data

After training the cycle GAN for 100 epochs, the model of epoch number 50 was chosen to
generate synthetic training data for the segmentation model. Figure 17 shows one example
of synthetic training data generated by this model in the source - target direction and one
example in the target - source direction. Both images are from the training data of the
Cycle GAN, as this is what is used for the subsequent training of the segmentation model.
It is apparent that the Cycle GAN manages to modify images so that they resemble the
other domain, such as the intensity variations in the bladder and shadow-like artefact of
DT2, as well as the details in the fat of DS .
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Figure 16: Left to right: original image, synthetic target domain image and cycled original
image, after adding intermediary Gaussian noise to the training pipeline. The generator
still synthesizes new geometrical information (the bladder in the synthetic image), but
this now increases cycle inconsistency, as indicated by the differences between the original
image and the cycled image.

In order to study the nature of the synthetic data, the same statistics were calculated
as for the real images (see Figures 5 and 6). The results of this is shown in Figures 19 and
18. These figures, together with the samples in 17, indicate that the distributions of DT2
and DsyntheticT2 are closer to each other than to DS, meaning that the Cycle GAN serves its
purpose as it can generate synthetic data from a distribution that resembles that of the
target domain distribution.
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Figure 17: Samples of domain transfer data generated by the Cycle GAN. In the top row,
a sample from DS (left) and the the synthetic DT2 data generated from it. Vice versa
in the bottom row, i.e. a DT2 image and its synthetic DS counterpart. Domain-specific
intensity distributions and details are picked up by the Cycle GAN generators to produce
realistic synthetic data
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Figure 18: RoI Mean intensities. To the left is the real data from DS and DT2. To the
right, the DT2 data are replaced by synthetic data generated by running the DS data
through the Cycle GAN generator. The bright bladders of DT2 are reproduced in the
synthetic data, and the relative intensity distributions of the rectum are not changed
significantly.

Figure 19: First two principal components of the histograms of normalized images from
DS and DT2 (left), as well as DS and synthetic data to imitate the style of DT2 (right).
The synthetic images seem to follow the intensity distribution of DT2 quite well. The
principal components differ from those of Figure 6 as the synthetic data is included in the
calculation of the principal components.
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Table 4: Performance comparison for all experiments on DS. Best scores in bold and top
3 (excluding best) in italic. Overall, Cycle GAN + BigAug give the best results.

Rectum Urinary Bladder
Dice [%] H95% [mm] Dice [%] H95% [mm]

Baseline 82 (8) 13.4 (14.7) 95 (2) 2.7 (0.6)
Cycle GAN 84 (8) 9.7 (9.0) 95 (1) 2.6 (0.6)
BigAug 83 (8) 9.9 (7.9) 94 (3) 4.2 (7.2)
Weak Labels 83 (8) 9.8 (8.1) 94 (2) 3.1 (1.3)
Weak Labels + BigAug 83 (8) 8.1 (6.2) 94 (3) 3.4 (2.3)
Cycle GAN + BigAug 84 (6) 7.9 (6.0) 95 (2) 2.7 (0.9)
Cycle GAN + Weak Labels 83 (7) 10.4 (9.0) 94 (2) 3.4 (1.7)
Cycle GAN + Weak Labels + BigAug 84 (6) 7.8 (5.4) 94 (3) 3.4 (2.1)

5.4 Quantitative evaluation of augmentation methods

For each of the augmentation methods discussed in Section 4.2, the segmentation network
was trained 5 times. This section covers these results for each of the domains studied.
Boxplots visualizing the distributions of the performance metrics defined in Section 4.3
for all of the experiments are given in Figures 20 and 21 (for the urinary bladder and
rectum, respectively), and Tables 4, 5 and 6 give the means and standard deviations of
the metrics for each domain respectively. These tables and figures show the results of
evaluating model performance on the held out test sets on each of the domain. Since
optimization on the target domain validation sets was kept low, the results on these can
also be informative, and are displayed in appendix C.

For DS, it is clear from Table 4 that the average metrics for the rectum were improved
in all of the experiments, with the best overall results obtained by combining the use of
Cycle GAN-generated data with the BigAug pipeline. The boxplots in Figure 21 show
that the performance metrics are improved especially for the patients on which they
perform poorly - the worst H95% distance for the baseline is > 90 mm, while it is < 20
mm for the combination of all three methods (see Figure 21b). For the urinary bladder,
no method outperforms the baseline in terms of DICE score, but the H95% distances are
slightly improved for the ’Cycle GAN’ and ’Cycle GAN + BigAug’ experiments. Note
especially that all experiments where weak labels were utilised led to an increase in the
average H95% distances. In the boxplots of Figure 20b, this is seen by the fact that the
outliers have larger H95% distances for the Weak Labels experiments.

For DT1, there is a clear improvement from the baseline in all of the experiments,
as seen in Table 5 as well as Figures 20 and 21. For many of the experiments, Figure
21 indicate that there is no clear difference in the results between DT1 and DS patients,
suggesting that the domain gap is effectively bridged. For the urinary bladder, the per-
formance loss compared to the source domain is still visible, however the differences are
significantly smaller than for the baseline. Furthermore, from Table 5 it is clear that com-
bining methods lead to better average performance (except for the Cycle GAN + Weak
Labels combination). The best average result is obtained by the Cycle GAN + BigAug
combination, although the differences to the results of combining all three methods are
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Table 5: Performance comparison for all experiments on DT1, as well as scores for 5 human
experts compared to their consensus. Best model scores in bold, and top 3 (excluding
best) in italic. Cycle GAN + BigAug gives the best results for all metrics.

Rectum Urinary Bladder
Dice [%] H95% [mm] Dice [%] H95% [mm]

Baseline 73 (16) 53.2 (40.2) 79 (17) 23.6 (19.0)
Cycle GAN 85 (7) 20.5 (28.3) 89 (6) 9.3 (7.9)
BigAug 83 (9) 10.4 (6.6) 89 (8) 12.1 (18.5)
Weak Labels 84 (7) 10.5 (15.7) 82 (15) 20.1 (21.9)
Weak Labels + BigAug 84 (5) 8.2 (4.5) 91 (4) 6.5 (5.9)
Cycle GAN + BigAug 87 (5) 7.9 (5.6) 92 (4) 4.3 (4.3)
Cycle GAN + Weak Labels 78 (10) 16.7 (24.9) 84 (16) 12.7 (15.9)
Cycle GAN + Weak Labels + BigAug 86 (4) 9.0 (5.8) 92 (4) 4.5 (2.7)
Interobserver agreement 93 (2) 3.1 (5.3) 95 (2) 2.4 (0.7)

quite small - especially for the urinary bladder. As stated in Section 3.2, the ground
truth for domain DT1 was obtained by 5 clinical practitioners agreeing on a consensus
delineation. Table 5 also shows the average metrics obtained by comparing the individual
delineations of each of the experts to this consensus. It is clear that none of the models
reach the same level of average performance as these 5 domain experts, however it should
be noted that for some of the patients the model performs on par with the practitioners.

For DT2 too, all methods provide significant improvement as compared to the baseline,
as shown in Table 6 and Figures 20-21. When only one of the methods is used, the
introduction of synthetic data (Cycle GAN experiments) or weak labels results in higher
performance on the rectum than the BigAug pipeline, in contrast to the results for DT1
where this is not the case. For the urinary bladder, the Cycle GAN experiments show
the best results. It is clear that the combination of methods additionally boosts the
segmentation performance (except for the DICE scores of Cycle GAN + Weak Labels),
and the best average results are obtained when all three methods are combined. For the
rectum, Figure 21 indicate no clear differences in performance compared to the source
domain for these experiments (for the bladder, the results still lag significantly behind
the other two domains). In contrast to the results on the DS and DT1, the inclusion of
weakly labeled data in general leads to clear performance gains on the H95% distances for
DT2(compare for example ’BigAug’ with ’Weak Labels + BigAug’ in Figure 21b).
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Table 6: Performance comparison for all experiments on DT2. Best model scores in bold,
and top 3 in italic. In general, the combination of all three augmentation methods give
the best results.

Rectum Urinary Bladder
Dice [%] H95% [mm] Dice [%] H95% [mm]

Baseline 57 (22) 49.9 (28.9) 54 (24) 40.3 (19.6)
Cycle GAN 80 (9) 17.9 (20.5) 75 (14) 23.3 (15.9)
BigAug 72 (13) 34.7 (31.3) 70 (23) 25.6 (19.0)
Weak Labels 75 (10) 16.5 (18.4) 64 (22) 25.0 (16.8)
Weak Labels + BigAug 81 (8) 7.9 (4.7) 81 (14) 13.4 (10.3)
Cycle GAN + BigAug 83 (8) 11.2 (16.5) 83 (13) 15.7 (13.3)
Cycle GAN + Weak Labels 68 (12) 10.8 (5.2) 73 (16) 18.1 (10.7)
Cycle GAN + Weak Labels + BigAug 82 (7) 7.7 (5.7) 84 (11) 11.2 (8.2)
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(a) DICE scores

(b) H95% distances

Figure 20: Score comparison for the urinary bladder on the test sets
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(a) DICE scores

(b) H95% distances

Figure 21: Score comparison for the rectum on the test sets
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5.5 Qualitative evaluation of augmentation methods

While the numerical metrics provide some insight to model performance, they do not give
the full picture. Therefore, the predicted segmentation masks of the models were studied
manually in order to get a better understanding of the results. This section provides
a summary of the key observations from this study, and shows a number of samples of
predicted segmentations. As the report is limited to 2 dimensions only slices of these
samples are shown, and the reader should keep in mind that this is not an ideal way of
presenting 3D data.

In general, the quality of the segmentations are correlated to the metrics discussed
above. This means that for the best models, the frequency of both types of errors dis-
cussed in Section 5.1 is significantly reduced. Figure 22 shows the same slices as Figure
12, but with the predicted segmentation of the model that performed best on each re-
spective domain, on average. That is, for DS and DT1 the predictions are from the ’Cycle
GAN + BigAug’ model, while the predictions on DT2 are from the model where all three
methods are combined. Comparing with the baseline results (Figure 12) the improve-
ments are clear, expecially for the two target domains. It is also clear that the predicted
segmentations are in no way perfect.

Besides the general observation above, an interesting property of the models trained
on noisily labeled samples is highlighted by the manual inspection; the tendency of these
models to predict several independent structures is significantly reduced compared with
the models that were not trained using the weak labels. Additionally, the boundaries of
the RoI borders are in general smoother, and the RoI shapes appear more realistic (for
example, predicted RoI masks do not have holes in them). This RoI-shape regularization
mainly occurs in the target domains, especially DT2, and is visualized for one DT2 patient
in Figure 23. For DS, the RoI shapes predicted in the baseline experiments are already
quite regular, and no clear difference is seen between these results and the results for
training on weak labels.

However, for a training setup that already performs well on a certain patient, adding
weakly labeled samples to the training seems to not have a positive effect as it increases the
distances between predicted RoI boundaries and their true boundaries. This is illustrated
in the bottom row of Figure 23.
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Figure 22: Sample of the segmentation results for the best models on each domain, with
columns corresponding to DS (left, ’Cycle GAN + BigAug’ model), DT1 (middle, ’Cycle
GAN + BigAug model’) and DT2 (right, ’All’ model). Ground truth: rectum = red,
bladder = blue. Predictions: rectum = green, bladder = purple. Comparing to the base-
line results (see Figure 12) it is clear that segmentation performance is greatly improved,
especially on DT1 and DT2.
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(a) Baseline (left) and Weak Labels (right) seg-
mentations

(b) BigAug (left) and BigAug + Weak Labels
(right) segmentations

(c) Cycle GAN + BigAug (left) and Cycle GAN
+ BigAug + Weak Labels (right) segmentations

Figure 23: Different segmentations of the same DT2 slice, illustrating the regularizing
properties of using weak labels for training of the segmentation model. For each row, the
result of a model trained without weak labels is shown to the left. To the right, the result
of the same training setup is shown, with the difference that noisily labeled DT2 images
were included. In the top two rows, it is clear that the model trained on weak labels
predict more realistic bladder shapes, and in general only one structure is predicted per
RoI. In the bottom row, however, it can be seen that the ability to follow the true RoI
contours is decreased when predictions are already good.
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5.6 On the training time of combined approaches

The number of iterations to be used for the training of the segmentation model was
determined largely from the validation results on the baseline experiments, as these were
the first ones to be carried out. As the augmentation pipeline got more complex. It
was noted that the time before convergence on the DS validation set was prolonged,
and for some of the experiments it is not sure whether the validation loss had fully
plateaued, suggesting that better results would be obtained if the model was trained for
more iterations. However, this was not carried through due to time constraints. This
does not effect the conclusions of the thesis as the main questions are related to whether
the augmentation techniques reduce the domain shift error, which they clearly do. What
remains unclear is how much better the models would be if they were trained for a longer
period of time. To get a hint of final model performance, a training was carried out using
the ’Cycle GAN + BigAug’ setup for twice the number of epochs, the results of which
are shown in Figure 24. From this, we draw the conclusion that model performance will
likely be improved by longer training times.

(a) Urinary bladder Dice scores (b) Urinary bladder H95% distances

(c) Rectum Dice scores (d) Rectum H95% distances

Figure 24: Results of training a segmentation model with the BigAug pipeline and Cycle
GAN generated data, after 500 and 1000 epochs. In general, metrics keep improving after
the 500:th epoch for all domains
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6 Discussion

6.1 Effects of the augmentation methods on segmentation per-
formance

Firstly, it is clear that all three methods examined lead to increasing ability of the seg-
mentation model to generalize to unseen domains, as illustrated by Tables 4-6 and Figures
20-21. Adding to this, there seems to be an even larger gain in performance to be achieved
by combining the methods instead of using only one of them. An observation to be made
here is that neither the Cycle GAN images nor the weak labels are perfect - that is, the
weak labels are often misaligned with the true RoI borders, and the cycle GAN sometimes
introduces artefacts such as new structures in the synthetic data. This means that one
should be careful about using the weak labels or Cycle GAN generated data on their own
in a real world clinical setting, for example using the weak labels for treatment planning,
or the synthetic data for automated diagnostics. Nonetheless, the experiments show that
both weak labels and Cycle GAN-generated data are valuable in a data augmentation set-
ting, where the mistakes made are of less importance as the data is only used for model
training.

For the BigAug pipeline, performance on both target domains increase while perfor-
mance on DS seems largely unaffected. It is somewhat surprising that the augmentation
pipeline does not improve performance on the source domain, as such augmentation steps
have been known to significantly increase model generalization ability on other computer
vision tasks.

Including DsyntheticT2 in the training sets improves segmentation performance on all
domains. For DS, only doing this augmentation step yields the best result on all metrics
but the rectum H95% distance, which is also the only metric which was improved by the
BigAug pipeline on this domain. For DT2, including DsyntheticT2 yields better results than
including weak labels or using the BigAug pipeline, while for DT1 the ’Cycle GAN’ results
are comparable to the ’BigAug’ results. This can be taken as an indication that the Cycle
GAN approach is more domain-specific than the BigAug approach, i.e. the performance
gains will likely be higher on the domain that the Cycle GAN was trained on than on
other domains. However, the improvements on DS speak against this interpretation of
the results.

Disregarding the fine-grained details, it is still clear that both the BigAug and the
Cycle GAN approaches provide improvements in the segmentation results on the target
domains while not affecting the source domain negatively, and that combining the two
methods yield even better results. With the weak labels approach, however, the results
are more ambiguous. In favor of the approach, we note that including noisily labeled
DT2 data in the training improves the result compared to the baseline on both target
domains, and combining this with the BigAug pipeline yields better results than only
using BigAug augmentation. However, for DS and DT1 the ’Cycle GAN + BigAug’
experiments in general yield better results than also including the weakly labeled DT2
data. On the other hand, for DT2 the best results on the DICE and H95% metrics are
obtained by using all three methods. A possible explanation to these observations might
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be found by inspecting the predicted segmentations qualitatively, as described in section
5.5. As shown in Figure 23, the inclusion of weakly labeled samples in the training set acts
as an RoI-shape regularizer, i.e. the number of independent structures predicted for each
RoI is reduced, and the predicted shapes are less sprawling. This effect greatly reduces
the number of predictions that are catastrophically bad. However, as seen in the bottom
row of Figure 23, the performance gain achieved by including weakly labeled samples for
training diminishes when model performance improves, as the inclusions of these samples
can lead to reduced ability of the model to correctly predict RoI boundaries. This is not
a surprising result considering the nature of the weak labels, which are good at locating
the RoI:s but do not follow boundaries well.

Thus, the answer to the question as to whether weakly labeled samples should be
added to the ’Cycle GAN + BigAug’ method or not depends on the purpose of the
segmentation model. If the purpose is to reduce the number of catastrophic predictions,
but the demands on segmentation quality are not too high, including weak labels is likely
a beneficial augmentation step. However, if the predicted segmentations need to be on
par with the performance of clinical practitioners, then excluding weak labels from the
training is likely to increase the chances of adequate segmentations, at the cost of bad
predictions becoming even worse.

6.2 What causes the domain shift error?

Comparing between DT1 and DT2, there are strong indications that DT1 is closer to the
source domain. This can be seen in the data set statistics of Figures 4, 5 and 6, as well
as by the fact that the segmentation results on DT1 are better than on DT2 in nearly all
experiments. The results of the augmentation experiments all indicate that the domain-
shift error is can be reduced more for DT1, suggesting that the statistics used in Figures
4-6 can be indicative of the segmentation model performance.

However, the question as to what properties of the MR images are the most contribut-
ing factors to the observed domain shift error remains largely unanswered. In order to
answer this question, future studies might try to find MRI properties that correlate with
segmentation model performance. For this thesis, the test set was deemed to small to get
reliable answers to this question, and manual inspection of the images did not result in
the identification of any clear patterns.
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7 Conclusions and future work

Concluding the discussion above in relation to the questions that this thesis aimed to
answer, we note

• All three augmentation methods - that is, classical data augmentation (BigAug),
synthetic data generation (Cycle GAN) and weak labels - provide improvements on
the baseline segmentations of the unseen domains.

• The best results are achieved by combining several of methods, and which com-
bination is best depends on the purpose of the segmentation model. If the most
important goal is to reduce the number of catastrophic predictions then all of the
three methods should be combined. If, however, the requirements on segmentation
quality is high, then excluding weakly labeled samples from training is likely to
increase the number of acceptable segmentations.

• For the best performing models, the domain difference in the studied metrics for de-
lineation of the rectum is nearly undetectable, while the predicted bladder contours
are still better on the seen (source) domain.

• A number of image features (e.g. relative RoI intensities) have been identified
where there are high inter-domain variations, and which seem to be correlated to
segmentation performance. However, it has not been determined which of these
actually cause to the domain shift error, and there are likely a large number of such
features that remain to be studied. Therefore, there is no answer to what domain
differences affect the domain shift error most.

This thesis has studied the problem of inter-domain performance variations of deep
learning segmentation models using data from three separate domains. An interesting
area for future research would be to extend the number of domains studied to further
understand how the augmentation methods discussed generalize. As the test set sizes in
this thesis are very small, the result quality of such research would likely be improved if
the data sizes within each domain were larger. This would increase both robustness of the
results and overall model performance. Furthermore, it would be of interest to explore
different set-ups for training the Cycle GAN, for example reweighting the loss functions
and including data augmentation to avoid the overfitting behavior of the discriminators.

7.1 Final remarks on clinical relevance

While the methods studied result in significantly improved segmentation of unseen data
domains, the results do not reach the same level as they do on the source domain for all
RoI:s. Furthermore, comparing with the human level performance in Table 5, it is clear
that the models perform worse than clinical experts on all domains. As the results lag
behind human performance even on the source domain, it is likely that more annotated
data is needed to successfully train deep learning segmentation models that reach the
performance level of clinical experts. However, the results presented indicate that it might
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not be necessary to acquire labeled data from all domains that one needs the model to
perform well on. For the domains studied here, it is reasonable to believe that labeled DT2
data would be enough to improve performance sufficiently on both target domains. An
interesting question for future research is then to find a way of determining from which
domains labeled data would improve general segmentation performance the most, as this
could provide a way to allocate labelling resources efficiently. As the methods discussed
improved general performance on all domains, it is likely that they would be useful for
training segmentation models on larger data sets as well.
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Appendix A: Learned transformations to generate syn-

thetic data

Initially, another method for creating synthetic training data was used than Cycle GAN
was tried out. However, this method proved difficult to get to work properly on the
anatomical region studied in the thesis. Included below is a description of the method as
well as a visualization of the initial results.

A.1 Method description

A potential drawback with the Cycle-GAN, is that it is not able to synthesize new ge-
ometries in the images, while still keeping accurate to the labels. However, Zhao et. al.
[1] propose another deep learning-based augmentation technique that might remedy this.
The technique is based on learning two transformations that are applied to the images in
DtrainS .

The first transformation τs is a spatial deformation of the image which is represented
by a voxel-wise displacement field

u : Rw×d×h −→ Rw×d×h×3 (12)

i.e. a displacement field in three dimensions for each voxel in the image. This vector field
defines the deformation function

φ = id + u (13)

where id is the identity function. The function u is parameterized by a 3D U-Net, which is
trained to maximize the similarity between the source and target images (as measured by a
local cross-correlation function) while ensuring that u is smooth by adding a regularization
term consisting of the norm of the spatial gradients of u, forming

Lτs = Lsim + λLsmooth (14)

where λ is a weighting parameter [22].

The second transformation is called an appearance transformation and consists of a
voxel-wise addition:

τa (x) = x +ψ (15)

ψ is also parameterized with a U-Net, which is trained to optimize the voxel-wise squared
difference in intensities between the source and target image, while discouraging drasti-
cally different intensity changes within a specific ROI within the target image [1].

As for the Cycle-GAN experiments, the transformation U-Nets are trained on DtrainS

and DunlabeledT . The resulting transformations are then applied on DtrainS to create synthetic
training data. Contrary to the Cycle-GAN, the labels of DtrainS are also transformed using
the spatial transformation, meaning that the synthetic data set is

DsyntheticT2 = {
(
τs
(
τa(x

S
i )
)
, τs(y

S
i )
)
}n

train
S
i=1 (16)

The segmentation network is trained on the combined data set DtrainS ∪ DsyntheticT2 .
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A.2 Learning the spatial transformation

After some experimentation, the learned transformation approach was abandoned as it
proved too difficult to train a U-Net to generate vector fields that gave acceptable result
when applied to source image data. Figure 25 shows a sample of the training results, which
make clear that the spatial deformation is not succesful in warping the source image to
imitate the target.

Figure 25: A sample of a DT1 (Source) image, and the result of applying a learned
transformation to it, to imitate the geometry of the target image from DT2. The applied
vector field does not do a good enough job at imitating the target geometry, and this
method to generate synthetic data was never used to train a segmentation network.
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(a) DS discriminator loss (b) DS generator loss

(c) DT2 discriminator loss (d) DT2 generator loss

Figure 26: Training (blue) and validation(red) loss curves for the training of Cycle GAN,
x-axes represents number of epochs. Clearly, the discriminators overfit to the training
data

Appendix B: Cycle GAN training curves

Figure 26 shows the loss functions for the training of the Cycle GAN used to generate
DsyntheticT2 . As discussed in Section 5.3, both discriminators overfit to the training data
quite drastically. When the discriminators are overfit, it is reasonable to assume that the
generators do not learn to generate general target domain data, but rather try to imitate
the training set of the target domain. It would be interesting to investigate methods to
reduce this overfitting behavior, however training a segmentation network on synthetic
data generated by the overfitted Cycle GAN still improves segmentation performance
significantly as seen in Section 5.4.
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Appendix C: Experimental results on validation sets

Figures 27 and 28 show the score distributions on the validation sets. As stated, optimiza-
tion on the validation sets of the target domains was not performed extensively, meaning
that the validation results should be fairly indicative of model performance on unseen
test data. For the source domain, the model choice was based on validation loss, i.e. it is
likely that the models are overfitted to the validation set. In general, the patterns in these
results are the same as for the test sets. However, the performance on DT2 is generally
lower on this validation set, and somewhat higher for DT1
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(a) DICE scores

(b) Hausdorff 95 scores

Figure 27: Score comparison for the urinary bladder on the validation sets
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(a) DICE scores

(b) Hausdorff 95 scores

Figure 28: Score comparison for the rectum on the validation sets
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