
Monte Carlo Integration: A
Comparison to Numerical Quadrature

Author

Mirjam Karlsson-Müller 951012-4200

Advisor

Philipp Birken

Department of Mathematics

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

Contents
1 Introduction 5

2 Comparing Algorithms 7
2.1 Asymptotically Optimal Algorithms . 8

3 Numerical Quadrature 9
3.1 Multivariate Interpolation with Lagrange Basis 9
3.2 Composite Numerical Quadrature . 10
3.3 The n-th minimal error of deterministic algorithms 11

4 Monte Carlo Integration 13
4.1 The n-th Minimal Error for Randomized Algorithms 14

5 Comparison 17
5.1 Comparison on F1 . 17

5.1.1 Best Fighter Numerical Quadrature: Composite Mid Point Rule 17
5.1.2 Best Fighter Monte Carlo Integration: Random Riemann Sums 18
5.1.3 Conclusion . 19

5.2 Comparison on F r
d . 19

5.2.1 Best Fighter Numerical Quadrature: Composite Numerical Quadrature 20
5.2.2 Best Fighter Monte Carlo Integration: Monte Carlo with Control Variates 20
5.2.3 Conclusion . 22

6 Testing 22
6.1 Testing Best Fighters for f ∈ F1: . 23

6.1.1 Implementations of Composite Mid Point Rule and Random Riemann
Sums . 23

6.1.2 Results for Mid Point Rule and Random Riemann Sums 23
6.2 Testing the Best Fighters and the Not Optimized Versions on F r

d 24
6.2.1 Numerical Quadrature Implementation . 24
6.2.2 Classic Monte Carlo Implementation . 25
6.2.3 Results of Numerical Quadrature and Classic Monte Carlo 26
6.2.4 Composite Numerical Quadrature Implementation 26
6.2.5 Control Variates Implementation . 27
6.2.6 Results of Composite Numerical Quadrature and Control Variates 27

7 Conclusion and Outlook 31

8 Code Appendix 32
8.1 One Dimensional Implementations . 32

8.1.1 Mid Point Equation . 32
8.1.2 Random Riemann Sum . 33

8.2 Three and Four Dimensional Implementations . 34
8.2.1 Numerical Quadrature . 34
8.2.2 Classic Monte Carlo . 36
8.2.3 Composite Numerical Quadrature . 36
8.2.4 Control Variates . 37

9 References 41

1

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

Acknowledgements
First and foremost, I’d like to thank my advisor Philipp Birken for providing feedback,

suggestions and knowledge every step of the way, especially for his thorough feedback on
the first full version. I’d also like to thank Marco, Edmund and Kanishka, giving me much
to correct on my drafts. And my grandfather, who proofread the final version and as an
experienced mathematician shared his wisdom to my results. And last but not least, my
husband, my mother and Ansgar for making sure I use english and swedish the way its
intended.

2

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

Monte Carlo - Det är inte bara för Hasardspel
En Populärvetenskaplig Sammanfattning

Det var faktiskt för ungefär 80 år sedan, när matematiker som jobbade med att utveckla
kärnvapen myntade begreppet för först gången. I grund och botten, använder Monte Carlo
metoder slumpmässiga värden för att lösa problem. I det här projektet är det specifikt inte-
grationsproblem.

Under ens matematikstudier, kommer vem som helst med ett litet intresse för matem-
atik att stöta på integraler redan i gymnasiet. På universitetsnivå handlar en stor del av
första året om att lära sig hur man beräknar integraler för hand. Men i verkligheten är
beräkningar för hand inte alltid att föredra eller ens möjliga. När det här är fallet, tar vi
datorn till hjälp för att beräkna ungefärliga lösningar till integralen. Olika områden inom
matematik, i det här fallet numerisk analyis och statistik, erbjuder olika metoder. När man
är specialiserad inom ett område når ens kunskaper ofta inte mer än grundnivån i andra
områden. Föreställ dig att du är en turist i ett annat land. Som turist besöker du de mest
berömda platserna och tar del av de mest populära upplevelserna, men de flesta av oss kom-
mer aldrig dyka djupare in i kulturen. Det är ungefär så en student från numerisk analys
känner när den läser en kurs inom statistik.

Det här projet kommer att försöka sig på just en sådan djupdykning. Med en grund i
numerisk analys så är standard verktyget för att uppskatta integraler numerisk kvadratur.
Det vilar dock en förbannelse över metoden: The curse of dimensionality. När man integr-
erar i höger dimensioner, så blir resultatet för felaktiga för att motivera en högre beräkn-
ingskostnad. Det verkar uppenbart att fråga sig själv om det finns ett bättre alternativ inom
statistiken? Det är här Monte Carlo integration kommer in i bilden. Det här projektet kom-
mer att försöka göra en direkt jämnförelse mellan Monte Carlo integration och numerisk
kvadratur med målet att undersöka om Monte Carlo kan vara en metod som är mer lämpad
för integration i två eller tre dimensioner.

Även om det är utom räckvid för detta projekt att få ett slutgiltig svar är det i alla fall
en början. I enlighet med teorin som presenteras i projektet, är Monte Carlo integration
en konkurrent till numerisk kvadratur i högre dimensioner. Men det visar sig att två eller
tre dimensioner kan vara otillräcklig, eftersom båda metoderna producerar resultat med
ungefär samma noggrannhet i testerna.

3

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

Abstract
Integrals are present everywhere in science, and their computation an emphasis in educa-
tion. When methods of exact computation fail, a great variety of methods of approximation
can step in. This project is interested in the Monte Carlo integration methods, an approach,
where the integral is approximated based on the Law of Large Numbers. These methods are
compared to the methods of numerical quadrature and tested on implementations, with the
goal of seeing whether Monte Carlo integration could be a competitor for numerical quadra-
ture in three and four dimensions. The comparison is made in terms of convergence, by look-
ing at the n-th minimal error of an asymptotically optimal algorithm of each method. This
shows that numerical quadrature methods have a smaller n-th minimal error for specific sets
of functions in one dimension, but for sets of multivariable functions, whose smoothness are
small compared to their dimension, Monte Carlo integration is a better pick.

4

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

1 Introduction
Integrals can be found in any field of science, in fact there are too many applications to name
them all, but to name a few: In physics work is described by an integration of the force over
the distance and electric flux is computed by the integral of an electric field over the surface.
The Maxwell equations are multidimensional integrals used in electromagnetism to calculate
total magnetic and electric fields. They are used to calculate the areas under and between
curves and therefore used in, for example, biology for basic NMR spectroscopy, calculating
the area under the peaks. With all these applications, it is no surprise that integrals take
an important role in mathematics, and early on math students learn about them in calculus
classes. While they are taught many tricks and strategies, most integrals can not be solved
exactly, instead their solution has to be approximated. A simple example is∫ 2

0
ex2

dx,

but also the equations describing Gaussian distributions and others. In these cases we rely
on numerical methods, which approximate the result for us. Other situations where we use
these methods are for example when confronted with a costly integral or when the value of
the integrand is only known at a few points. There are different methods available to this
end but this project is especially interested in two types: Methods based on Monte Carlo
integration and how they compare to methods based on numerical quadrature in terms of
rate of convergence.

The name Monte Carlo first came up related to mathematics in the 1940s, when scien-
tists started studying games of chance and their behavior and outcomes and applied them
to different fields. One of the earliest examples of Monte Carlo methods being used under
this name, would be by the scientists working on the development of thermonuclear weapons
during that same time period.[4]. The methods gained popularity after Fermi, von Neumann
and Ulam discovered the possibility of applying Monte Carlo Methods to deterministic prob-
lems. According to Hammersley and Handcomb [3], this lead to an intense study of Monte
Carlo Methods in the 1950s, were it was attempted to apply Monte Carlo methods to any
problem, often more interested if it was possible, instead of whether it was plausible. Conse-
quently, the methods decreased in popularity for a while afterwards, but recovered with the
availability of modern digital computers.

While Monte Carlo integration comes from statistics and is based on probability theory,
numerical quadrature has its origins in numerical analysis and is based on equations for
area computation. Both methods have their strength and weaknesses and are applied to
different problems. Numerical quadrature is efficient and cheap in small dimensions given
a single problem, but struggles in higher dimension due to the minimal cost of computation
growing exponentially in the dimension of the problem [6]. This phenomenon is also called
the Curse of Dimensionality. It can be counteracted to some extent with a high degree of
smoothness, as we will see in the end of section 5, but not compensated entirely. The Monte
Carlo methods do not suffer from the curse and therefore offer themselves as a replacement
for higher dimensions.

5

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

As Robert and Casella said[8, p. 64]: "Lastly, numerical integration tools cannot easily
face the highly (or even moderately) multidimensional integrals that are the rule in statis-
tical problems. Devising specific integration tools for those problems would be too costly,
especially because we can take advantage of the probabilistic nature of those integrals." The
Monte Carlo integration’s weakness however, lies in their slow convergence, making them a
worse choice to use in low dimensions [5].

Are Monte Carlo methods a competition for numerical quadrature when integrating two
or three variable functions? This project aims to find an answer to this central question.
It requires us to first take a look at each method, to understand how they work, orienting
ourselves on chapters 2 and 5 of [5], but also chapter 10 of [2] and [1]. Then we make a the-
oretical comparison examining the rate of convergence of algorithms based on each method.
To this end, the n-th minimal error will be introduced: It describes the smallest maximum
error for a class of algorithms with cost n ∈N. The comparison of the two methods is made
by finding an asymptotically equivalent expression for the n-th minimal error corresponding
to an optimal algorithm of each method, which will then also be introduced. This is done for
specific sets of functions, in one and in higher dimensions. This comparison follows chapter
7 of [5].

Based on the theoretical comparison, we will look at the implementation of the optimal
algorithm for each approach using Python. The algorithms are tested on example functions
chosen from the sets of functions used in the theoretical comparison, using one variable
integrands in one dimensions, and two and three variable integrands in higher dimensions.
This allows us to compare the theoretical results to the error plots generated by our tests.
Based on Robert and Casella [7] we expect the numerical methods to be more efficient in the
one dimensional set of functions. In two or three variable integrands, Monte Carlo methods
could be a valid alternative for numerical quadrature.

6

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

2 Comparing Algorithms
For the comparison of algorithms to each approach, numerical quadrature and Monte Carlo
methods, we first require some basic concepts. These are introduced here based on [5]. There
are two types of algorithms which are of interest to us.

Randomised Algorithms include generating random numbers, which means that even if
their input stays the same, their output may vary every time we run it. An example of
this are the algorithms based on Monte Carlo integration. Since their outcome depends on
random numbers, so does the size of their error.

Deterministic Algorithms do not use any random numbers, which means that the same
input will always produce the same output. An example of this are algorithms based on
numerical quadrature.

Let M be an algorithm that defines a transformation from a function f ∈ F to R:

M : F →R

where the output M(f) approximates the integral of f ∈ F

S(f)=
∫

G
f (x)dx.

The error of M for a specific input f ∈ F is then

∆(M, f)= |S(f)−M(f)|.
Mind that for randomized algorithms, this is not a deterministic value, but depending on the
random values generated within the algorithm. When comparing two algorithms, one option
is to look at their maximum error

∆(M,F)= sup
f ∈F

∆(M, f).

Similarly, we can compare their maximum cost

cost(M,F)= sup
f ∈F

cost(M, f).

To quantify cost, elementary functions and arithmetic operations are counted as one oper-
ation, whereas function evaluations heavily depend on the function f . Therefore, we give
them the cost variable c ≥ d, where d is the number of variables. In this project, we restrict
ourselves to algorithms with maximum cost n, where n is an integer. The main criteria by
which we compare algorithms in this project is the n-th minimal error. To introduce it, we
require two other definitions first.

Definition 2.1: Let Mdet(F) be the set of all deterministic algorithms, taking a function
f ∈ F as input. Set n ∈ N. The set of deterministic algorithms with maximal cost n is then
given by

Mdet
n (F)= {M ∈Mdet(F)|cost(M,F)≤ n}. (1)

A similar definition can be made for randomized algorithms.
Definition 2.2: Let Mran(F) be the set of all deterministic algorithms, taking a function

f ∈ F as input. Set n ∈ N. The set of deterministic algorithms with maximal cost n is then
given by

Mran
n (F)= {M ∈Mran(F)|cost(M,F)≤ n}. (2)

Based on these two definitions, the n-th minimal error can now be introduced.

7

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

Definition 2.3: The n-th minimal error of a set of algorithms Mdet
n (F) or Mran

n (F) with
maximum cost n is given by

edet
n (F)= inf{∆(M,F) | M ∈Mdet(F)}. (3)

and
eran

n (F)= inf{∆(M,F) | M ∈Mran
n (F)} (4)

respectively.
We can use this error as a criteria for optimality. We say that a deterministic algorithm

M ∈Mdet
n (F) is optimal in F, if

∆(M,F)= edet
n (F).

Analogously, we call a randomized algorithm M ∈Mran
n (F) optimal in F if

∆(M,F)= eran
n (F).

2.1 Asymptotically Optimal Algorithms
Often cost and errors cannot be determined exactly, so Müller-Gronbach, Novak and Ritter
[5] suggest to investigate their asymptotic behavior instead. For this we require a criteria for
asymptotic equivalence.

Definition 2.4: Two series of real numbers an,bn on [0,∞[∪{∞} are considered weakly
asymptotically equivalent if from an index n0 all values are finite and

c1 ·an ≤ bn ≤ c2 ·an

for n ≥ n0 and with constants 0< c1 ≤ c2.We write

an ³ bn.

Given this criterion for weak asymptotic equivalence, we can extend the definition to an
optimal algorithm.

Definition 2.5: We call a series of deterministic algorithms Mk ∈Mdet
n (F) asymptotically

optimal on F if
∆(Mk,F)³ edet

n (F).

Equally, a series of randomized algorithms Mk ∈Mran
n (F) is called asymptotically optimal on

F if
∆(Mk,F)³ eran

n (F).

However, not all constructed algorithms Mk can be constructed in a way that their cost
seamlessly increases through the natural numbers. Hence a broader definition of the n-th
minimal error is needed.

Definition 2.6: We call a series of algorithms Mk ∈Mdet(F) asymptotically optimal if for
its corresponding minimal error it holds that

edet
n (F)³ inf{∆(Mk,F) | cost(Mk,F)≤ n}.

Analogously, a series of algorithms Mk ∈ Mran(F) is asymptotically optimal if for its corre-
sponding n-th minimal error it holds that

eran
n (F)³ inf{∆(Mk,F) | cost(Mk,F)≤ n}.

These last two definitions are at the center of the comparison we will make in section 5. First
however, we will move on to looking at numerical quadrature and Monte Carlo integration,
introducing the two approaches but also finding expressions for the n-th minimal error.

8

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

3 Numerical Quadrature
The basic idea of Numerical Quadrature is to integrate a simpler version of f instead of f
itself.

S(f)=
∫

G
f ≈

∫
G

fX dx.

This simpler version fX is given by polynomial interpolation, where X is the set of nodes the
interpolation is based on. Given nodes x1, ..., xn ∈ G and weights a1, ...,an ∈ R the numerical
quadrature Qn(f) approximates S(f).

Qn(f)=
n∑

i=1
ai · f (xi). (5)

Based on Qn(f) a deterministic algorithm can be constructed with maximum cost

cost(Qn,F)= n · (c+2)−1³ n · c, (6)

where c is the cost of a function evaluation. Note also that here the n stands for the number
of nodes, not for the maximum cost. To look at numerical quadrature in several dimensions,
we also need to understand interpolation in several dimensions, which we do next.

3.1 Multivariate Interpolation with Lagrange Basis
This project will focus on the generalization of Lagrange Interpolation to multivariate prob-
lems, as it is later used for testing. We know Lagrange interpolation of a one variable func-
tion f (x) as follows. Given a function f and nodes x1, ..., xn we can approximate f with a
polynomial p of degree n−1:

fX =
n∑

i=1
f (xi)L i(x),

where L i given by

L i(x)=
n∏

j=1
j 6=i

x− x j

xi − x j
1≤ i ≤ n.

This setting can be generalized for multivariate functions. Say we have a function of two
variables f (x, y), then L i(X) would be using a vector X = (x, y). Using x1, ..., xn ∈X as nodes,
we can write

L i(x, y)= L i(x) ·L i(y)=
n∏

j=1
j 6=i

x− x j

xi − x j
·

n∏
j=1
j 6=i

y− x j

xi − x j
.

The same concept also applies for functions with more variables, and will be used in section
6 for the implementation of numerical quadrature for two and three variable functions.

In the one dimensional space, the Lagrange basis polynomials have degree n−1, as they
are a product of n−1 affine factors. Cheney and Light [2] state that the same applies in higher
dimensional cases, as a product of k affine functions on R is still a polynomial of degree k on
Rs, where an affine function is simply a member of Π1(Rs).

9

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

(a) Lagrange Interpolation of sin(x) with different
numbers of nodes.

(b) red=sin(x)sin(y)
blue=Lagrange Interpolation with n = 5

Figure 1: Lagrange Interpolation.

An increase in interpolation nodes usually increases accuracy, see figure (a). However,
when dealing with equidistant and/or more interpolation nodes than the degree of the func-
tion we are interpolating, an inaccuracy in form of oscillation towards the bounds of the
interpolation interval can occur. We will go more into detail in the next section. Figure (b)
shows the approximation in three dimensions for a specific n.

3.2 Composite Numerical Quadrature
From one dimensional interpolation we are familiar with a concept called Runge’s phenomenon
which stands for oscillations towards the boundaries of the interpolation interval when us-
ing equidistant points or too many points. In one dimensional numerical quadrature this
problem is solved by splitting the integration interval into several integration intervals, in-
terpolating and integrating on each separately and then adding the results. This greatly
reduces the error towards the boundaries. To demonstrate: The standard Mid Point Rule for
an integration interval G = [0,1] is given by

K(f)= f
(
1
2

)
The Composite Mid Point Rule however, takes the middle point of each of the n subintervals,
hence changing the equation to

Kn(f)= 1
n

n∑
i=1

f
(
2i−1

2n

)
. (7)

This approach translates to a multidimensional approach. By splitting the hypercube G =
[0,1] into k smaller hypercubes with side 1/k we can create a composite numerical quadrature
equation. Let T(G i) be the smaller hyper cubes such that G1 ∪ ...∪Gk = G which have been
created by a linear transformation

T i(x)= 1
k
· (i+ x) where i ∈ I = {0, ...,k−1},k ∈N, x ∈R.

10

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

The composite interpolation polynomial is then given by

fX ,k =
∑
i∈I

1i
G · fT i(X),

where X ∈ G is the set of initial interpolation nodes. The composite numerical quadrature
equation is hence given by

QX ,k(f)= S(fX ,k)= ∑
i∈I

∫
T i(G)

fT i(X)(x)dx. (8)

Both, the composite mid point rule and the composite numerical quadrature, will be used in
section 5, where they will represent the algorithms based on numerical quadrature and be
compared to algorithms based on the Monte Carlo methods.

3.3 The n-th minimal error of deterministic algorithms
In section 5, the n-th minimal error of deterministic algorithms (3) will be compared to the n-
th minimal error of randomized algorithms. For this we will look at asymptotically equivalent
expressions of the corresponding errors. By the definition of asymptotic equivalence, we
know that this requires an upper and a lower bound. Therefore, we will now find general
expressions for the upper and lower bound of edet. This section is based on chapters 7.1.2 and
7.1.5 by Müller-Gronbach, Novak and Ritter’s [5]. The first step to derive a lower bound of
edet is a definition.

Definition 3.1: The set of generalized deterministic algorithms M̃det(F) contains all de-
terministic algorithms M : F → R, which can be written as a succession of transformations
φk :Rk →R:

M(f)=φv(f)
(
Nv(f)(f)

)
, (9)

where v(f) is the total number of function evaluations during the algorithm M, based on
an input f , and Nk(f) is the data obtained after doing v(f) = k function evaluations. Note
that this definition of v(f) plays with the idea that it is possible for the number of total
function evaluations to be only determined as the algorithm progresses, making the decision
to terminate the algorithm depending on the information N(f) obtained up to this point. The
maximum amount of function evaluations v(f) for f ∈ F is given by

v(M,F)= sup
f ∈F

v(M, f).

The definition of M̃det includes all deterministic algorithms, ignoring whether M ∈ M̃det

can actually be computed by a deterministic algorithm. Consequently, the definition is
broader than that of Mdet. Therefore,

Mdet(F)⊂ M̃det(F).

Similarly, as in section 2, we can define M̃det
n as the set of generalized deterministic algo-

rithms with maximum cost n.
Definition 3.2: The n-th minimal error of a set of algorithms M̃det

n (F) with maximum cost
n is given by

ẽdet
n (F)= inf{∆(M,F) | M ∈ M̃det

n (F)}. (10)

11

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

The maximum costs of M ∈ M̃det
n can be estimated by

cost(M,F)≥ c ·v(M,F),

where c is again the cost of a function evaluation and costs of elementary functions and arith-
metic operations are ignored, as they do not vary. Therefore, we know that the maximum cost
of M ∈ M̃det is bound by

c ·v(M,F)≤ cost(M,F)≤ n,

from which we can conclude that M has a maximum of [n/c] function evaluations at sequen-
tially picked nodes. Following from this and (3.3), we conclude that for n ≥ c

Mdet
n (F)⊂ M̃det

n/c(F).

Since all mappings M ∈ Mdet
n (F) are also in M̃det

n (F), the n-th minimal error of Mdet
n (F) is

also a possible candidate for the n-th minimal error of M̃det
n (F), however, since there are even

more mappings in this set, there can be an even smaller error. It follows that

edet
n (F)≥ ẽdet

[n/c](F).. (11)

Therefore, the lower bound of edet follows from the lower bound of ẽdet.We finish up the
derivation of the lower bound with a theorem, which describes the lower boundary of ẽdet in
the multidimensional case.

Theorem 3.3 [5, p. 260] Let m > n. Assume there exist functions g1, ..., gm : G →R and a
constant ε> 0, so that the following three statements hold.

(i) the sets {x ∈G|g i(x) 6= 0} are pairwise disjoint

(ii) {
n∑

i=1
δi · g i|δ1, ...,δm ∈ {±1}}⊂ F

(iii) S(g1)≥ ε for all i = 1, ...,m

Then it holds that
ẽdet

n (F)≥ (m−n) ·ε.
We will apply this to a set F in the comparison part of the project, where we also look at the
problem specific lower bound for the one dimensional case.

For the upper bound of edet
n (F), ẽdet

n (F) is used as well as the fact that under general
geometric assumptions, numerical quadrature is asymptotically optimal, see [5]. This leads
to the next theorem.

Theorem 3.4[5, p. 271] Let S be linear and F symmetric and convex. Let M ∈ M̃det
n (F) be

a generalized algorithm with node x1 and functions ψ2, ...,ψn. Then there exists a quadrature
equation Qn with node x1 and

xi =ψi(0), i = 2, ...,n

so that
∆(Qn,F)≤∆(M,F)

holds.
From this it follows that

ẽdet
n (F)= inf{∆(Qn,F)|Qn with n nodes}.

12

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

We know the maximum cost of Qn on F from (6).

cost(Qn,F)= n · (c+2)−1≥ n.

It follows that
edet

n (F)≤ ẽdet
[n+1]/[c+2](F),

for n ≥ c+1. Thus we have obtained an upper and lower boundary for edet:

ẽdet
[n+1]/[c+2](F)≥ edet

n (F)≥ ẽdet
[n/c](F)≥ (m− [n/c]) ·ε. (12)

4 Monte Carlo Integration
Monte Carlo Integration is a statistical approach to the approximation of an integral. Based
on it, one can construct a randomized algorithm. To understand Monte Carlo integration, we
need a bit of statistic terminology first. Monte Carlo integration is based on the Law of Large
Numbers. There are several weaker and stronger versions of it, based on different types of
convergence. Recall that the Expectation of a random variable X is given by

E(X)=
∫
Ω

X (ω)dP(ω),

where Ω is the outcome space, ω ∈Ω and P(ω) is the probability of outcome ω.
Theorem 4.1: Law of Large numbers (strong version)[1, p.204]: Assume that {Yn}n≥1

is a sequence of independent random variables with finite variance Var(Yi)= σ2 < ∞ and
expectation E(Yi)=µ. Then the arithmetic mean

Xn = 1
n

n∑
i=1

Yi

converges in quadratic mean to µ:

Xn
L2
−→µ.

Hence the expectation which is defined by an integral, can be approximated by an arithmetic
mean. This is the basic idea behind Monte Carlo integration.

Alternatively, using the same terminology as for the numerical approach, Monte Carlo
integration approximates an integral

S(f)=
∫

G
f (x)dx

by

Dn(f)= 1
n

n∑
i=1

f (xi),

where xi are n random samples in G.This holds accordingly if xi are the samples of a equally
distributed random vector X with length d. To optimize the methods many different alter-
ations can be made, hence this version is also called the Classic Monte Carlo Integration as
it is unaltered.

Based on Monte Carlo integration, one can construct a randomized algorithm M ∈Mran.
Unlike with numerical quadrature, the output of M for a constant input f will not always be
the same, but will depend on the random values generated. This means the output M(f) is
itself a random variable. Therefore, the error

|S(f)−M(f)|

13

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

is also a random variable. Its error is defined to be the standard error of the random variable,

∆(M, f)= (E(S(f)−M(f))2)1/2.

The cost of a randomized algorithm possibly also depends on the random numbers generated,
therefore, it is a random variable itself. However, in the further comparisons, the integration
area is limited to G = [0,1]d, for which the maximum cost is

cost(Dn,F)= n · (c+d+1),

where c is the cost of a function evaluation, n the amount of samples generated and d the
dimension.1

4.1 The n-th Minimal Error for Randomized Algorithms
Similarly to section 3.3, we will in this section derive a lower bound for the n-th minimal error
of randomized algorithms, see (4). We will however, not derive a general upper bound for it,
since the upper bound is problem specific for randomized algorithms. This section follows
Müller-Gronbach, Novak and Ritter [5], chapter 7.2.2. To start, we require a definition.

Definition 4.2: LetΩ be an outcome space and ω ∈Ω one possible outcome in the outcome
space. The set of generalized random algorithms M̃ran(F) contains all maps M : F ×Ω→ R

which fulfill

(i) For any ω ∈Ω we can rewrite M such that M(·,ω) ∈ M̃det(F).
(ii) For all f ∈ F, M(f , ·) :Ω→R and v(f , ·) :Ω→N are random variables.

Note that as in (9), v(f , ·) stands for the total number of function evaluations during an algo-
rithm M. To understand the first statement, imagine that the randomly generated numbers
ω of the randomized algorithm are determined beforehand and during the algorithm will only
be called. By fixing this ω ∈Ω beforehand, we remove the random component of the mapping
M : F ×Ω→R, enabling us to write

M(·,ω) ∈ M̃det(F).

Therefore, M fulfills (i) if this process of fixing ω ∈ Ω is possible for all ω ∈ Ω. The second
statement plays to the random part of M, saying that since we generate random numbers
in the algorithm, the outcome M(f , ·) of a fixed input f will itself be a random variable.
We remember (9), where we treated v(f) as a function of the input f , with the idea that it
is possible that the amount of function evaluations is only determined as the algorithm is
running. When to terminate, does then only depend on the information Nk(f) acquired after
v(f) = k function evaluations. In the case of a randomized algorithm, Nk(f ,ω) does not only
depend on the input f , but also on the random variables generated during the algorithm.
We can conclude that therefore the amount of total function evaluations also depends on the
random values. If we thus fix the input f , the output v(f , ·) only depends on the random
values, therefore fulfilling v(f , ·) :Ω→N.

Analogously to (9), we are not interested if a map M ∈ M̃ran(F) can actually be computed
with a randomized algorithm, therefore it holds that

Mran(F)⊂ M̃ran(F).
1See Chapter 2, Example 2.5 in Müller-Gronbach, Novak and Ritter p. 19 [5].

14

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

In correspondence to section 3.3 we ignore the cost for arithmetic and comparison operations,
evaluations of elementary functions and generating of random values, thereby reducing the
cost of an algorithm M ∈ M̃ran(F) to

cost(M,F)≥ c ·v(M,F),

where
v(M,F)= sup

f ∈F
E(v(M, f , ·)).

Definition 4.3: Reducing the cost of a mapping M ∈ M̃ran to the amount of function
evaluations and their cost, the generalized random algorithms with maximum cost n are
given by

M̃ran
n (F)= {M ∈ M̃ran(F)|v(M,F)≤ n}

and their corresponding n-th minimal error by

ẽran
n (F)= inf{∆(M,F)|M ∈ M̃ran

n (F). (13)

With the same reasoning that we used to arrive at 11, we conclude that

eran
n (F)≥ ẽran

[n/c](F). (14)

Therefore, it is possible to bound eran
n (F) with a lower bound derived for ẽran

[n/c](F). To derive a
lower bound for it however, we require some additional definitions.

Definition 4.4: Let f1, ... fm ∈ F be functions and α1, ...,αm > 0 be weights such that∑m
k=1αk = 1. Furthermore, let µ(A) be a discrete probability measure on F, defined by

µ(A)=
m∑

k=1
αk ·1A(fk), A ∈ F. (15)

Then the average error of M ∈ M̃det with respect to µ is given by

∆(M,µ)=
(∫

F
(S(f)−M(f))2dµ(f)

)1/2
=

(
m∑

k=1
αk · (S(fk)−M(fk))2

)1/2

.

Meaning that the supremum of the maximum error ∆(M,F) gets replaced with an average
error. A new set of generalized deterministic algorithms is constructed with this.

M̃det
n (µ)= {M ∈ M̃det(F)|v(M,µ)≤ n}

with
v(M,µ)=

∫
F

v(M, f)dµ(f)

describes all mappings M ∈ M̃det(F), which use an average of n function evaluations. Analo-
gously to (10) and (13), ẽdet

n (µ) can be described by

ẽdet
n (µ)= inf{∆(M,µ)|M ∈ M̃det

n (µ)}.

This n-th minimal error can be used to define a lower bound for ẽran
n (F), see the next theorem.

Theorem 4.5[5, p.280] For every discrete probability measure µ such that (15), then it
holds that

ẽran
n (F)≥ 1p

2
ẽdet

2n (µ).

15

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

Analogously to Theorem 3.3, there exists a theorem describing the lower bound of ẽdet
n (µ).

Theorem 4.6[5, p.281] Let m > 2n. If there exists functions g2, ..., gm : G → R and a
constant ε> 0 such that the following are fulfilled.

(i) the sets {x ∈G|g i(x) 6= 0} are pairwise disjoint.

(ii) F̃ = {
m∑

i=0
δi · g i|δ1, ...,δm ∈ {±1}}⊂ F

(iii) S(g i)≥ ε for all i = 1, ...,m

Then it holds that
ẽdet(µ)≥ (m/2−n)1/2 ·ε.

Taking into consideration (14), Theorem 4.5 and Theorem 4.6, we have derived an expression
for the lower bound of eran

n (F):

eran
n (F)≥ ẽran

[n/c](F)≥ 1p
2

ẽdet
[2n/c](µ)≥ (m/2− 2n

c
)1/2 ·ε (16)

with m > 2n. This will be applied in the next section of the project. We will then also
investigate problem specific upper boundaries for eran

n (F).

16

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

5 Comparison
In this part, a direct comparison between Monte Carlo integration and numerical quadrature
will be made for two specific sets of functions F, one containing one variable functions and the
other containing multivariable functions. On one side we have the team of algorithms based
on numerical quadrature, sending forth their best fighter, meaning asymptotically optimal
algorithm, for each setting. It will go up against the best fighter of the team of algorithms
based on Monte Carlo integration on the other side. We then compare the n-th minimal error
of the two best fighters for each specific set of functions and see who comes out on top. This
ensures equal a priori assumptions for f ∈ F. Since the result of a deterministic algorithm
could always be randomly matched by the result of a randomized algorithm, we can say that

M̃det
n (F)⊂ M̃ran

n (F),

from which it follows that
edet

n (F)≥ eran
n (F).

The randomized algorithms are then a better choice to the deterministic on a F, if eran
n (F) <

edet
n (F). The theorems and proofs of this section of the project are taken from/based on sec-

tions 7.1.2, 7.1.4, 7.2.2 and 7.2.3 of [5].

5.1 Comparison on F1

To make this comparison we first need to define F1.
Definition 5.1: Let f ∈ C1([0,1]) and || · || be a semi norm defined by

|| f || = || f ′||∞.

F1 is then given by
F1 = { f ∈ C1([0,1]) | || f || ≤ 1}.

For this set of functions, we expect the numerical approach to be more successful, as previ-
ously mentioned in the introduction to this project. We now compare the n-th minimal error
of each approach’s best fighter.

5.1.1 Best Fighter Numerical Quadrature: Composite Mid Point Rule

The best figher of numerical quadrature on F1 is the composite mid point rule, but equiva-
lently also the trapezoidal rule or Gaussian quadrature as they are asymptotically optimal
as well. However, in this project we will restrict ourselves to the mid point rule. The lower
bound of this method follows from the next theorem.

Theorem 5.2 [5, p.257] Let Kn be the composite mid point rule given by (7). For the set of
functions F1 it holds that

ẽdet
n (F1)=∆(Kn,F1)= 1

4n
From which a Corollary follows:

Corollary 5.3[5, p.259] The mid point rule defines an asymptotically optimal series of
algorithms on the set F1. It holds that

edet
n (F1)³ c

n
.

To be able to proof this corollary, we require the following lemma.

17

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

Lemma 5.4 [5, p.259] Let an,bn be two montonely decreasing series of positive real num-
bers, which have subsequences with the property

ank ≤ c1 ·bnk

with c1 > 0. Furthermore either

ank+1 ≥ c2 ·ank or bnk+1 ≥ c2 ·bnk

holds, with 0< c2 ≤ 1. Then it follows that

an ≤ c1/c2 ·bn for n ≥ n1.

Proof Corollary 5.3: If we combine Theorem 5.2 with (11), then we get the following lower
bound for edet

n (F):
edet

n (F)≥ ẽdet
[n/c] =

c
4n

.

For the upper bound we apply Lemma 5.4 with bn = c
n and

an = inf{∆(Kk,F1) | cost(Kk,F1)≤ n}= edet
n (F),

where Kk is the middle point rule with k nodes. The cost of the mid point rule Kk is given by

cost(Kk,F1)= k · (c+1)= nk.

Due to this and theorem 5.2, it follows that

ank =∆(Kk,F1)= 1
4k

.

Replacing k = (c+1)/n and c/nk = bnk , we conclude

1
4k

= c+1
4nk

= c+1
4c

bnk

= bnk

(
1
4
+ 1

4c

)
≤ 1

2
bnk .

It follows by lemma 5.4 that an ≤ bn for n ≥ c+1. In other words

an = edet
n (F)≤ c

n
,

which combined with the lower bound is enough to prove the corollary. .

5.1.2 Best Fighter Monte Carlo Integration: Random Riemann Sums

Random Riemann Sums are a version of Monte Carlo integration which is defined by

Rn(f)= 1
n

n∑
i=1

f (X i)

with independently equally distributed random variables X i on Bi = [(i−1)/n, i/n]. The cor-
responding theorem to theorem 5.1 is as follows.

18

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

Theorem 5.5 [5, p.283] For the set of functions F1 and the method Rn of random Riemann
sums

ẽran
n (F1)≤∆(Rn,F1)= 1

2
p

3 ·n3/2

and
ẽran

n (F1)≥ 1

144
p

2 ·n3/2

hold. From this theorem also follows a corollary.
Corollary 5.6[5, p.284] The method of random Riemann sums Rn defines an asymptoti-

cally optimal sequence of algorithms on F1 and

eran
n (F1)³

(c
n

)3/2

holds.
Proof: From Theorem 5.5 we know that

1

144
p

2
·n−3/2 ≤ ẽran

n (F1)≤ 1

2
p

3
·n−3/2.

The next step is applying definition 2.4

eran
n (F)³ n−3/2,

which implies

eran
n (F)≥ ẽran

[n/c](F)=
(c
n

)3/2
.

5.1.3 Conclusion

From corollary 5.3 we know
edet

n (F)³ c
n

and from corollary 5.6 we know that

eran
n (F)³

(c
n

)3/2
.

As we have assumed n ≥ c to arrive at (11) and (14), therefore it holds that
c
n
≥

(c
n

)3/2
.

When looking at the behavior of these two errors as n goes towards infinity, it is clear that the
randomized algorithm has a higher speed of convergence. This goes against our expectations,
however, we will look at this behavior in practice in section 6.

5.2 Comparison on F r
d

As in the previous section, we first define the set of functions we are comparing for.
Definition 5.7: Let G = [0,1]d be the integration area, f ∈ Cr(G) and || · || be a semi norm

defined by
|| f || =max |a| = r|| f (a)||∞

F r
d is then given by

F r
d = { f r(G) | || f || ≤ 1}.

Given the results of the previous section and the already known problems of numerical
quadrature due to the curse of dimensionality, Monte Carlo’s best fighter is expected to come
out on top here.

19

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

5.2.1 Best Fighter Numerical Quadrature: Composite Numerical Quadrature

We have seen composite numerical quadrature in section 3.2 and especially in (8), so we will
move straight to the theorem describing its n-th minimal error.

Theorem 5.8 [5, p.269] On the set of functions F r
d

ẽdet
n (F r

d)³ n−r/d

holds. Furthermore the composite quadrature equations QX ,k fulfill

∆(QX ,k,F r
d)³ k−r ³ n−r/d

k ,

where nk refers to the amount of nodes of QX ,k.
A corrollary follows from this theorem.

Corollary 5.9 The sequence of composite numerical quadrature equations QX ,k is asymp-
totically optimal on F r

d and

edet
n (F r

d)³
(c
n

)r/d

holds.
Proof: The lower bound is quickly proved with

edet
n (F r

d)≥ ẽdet
[n/c](F

r
d)³

(c
n

)r/d
.

For the upper bound and asymptotic optimality we use the same strategy from the proof of
corollary 5.3.
Let

an = {∆(QX ,k,F r
d| cost(QX ,k,F r

d)≤ n},

bn =
(c
n

)r/d
,

nk = cost(QX ,k,F r
d).

ank =∆(QX ,k,F r
d)

According to theorem 5.8,

ank = ẽdet
nk

(F r
d)³ n−r/d

k = bnk · c−r/d ≤ bn.

By lemma 5.4 it follows that an ≤ bn, or in other words

an = edet
n (F r

d)≤
(c
n

)r/d
,

which combined with the lower boundary is enough to prove the corollary.

5.2.2 Best Fighter Monte Carlo Integration: Monte Carlo with Control Variates

As briefly mentioned in the introduction to Monte Carlo integration, there is a grand variety
of possibilities to optimize the classic method. Here we are interested in the Control Variates,
which is one of the methods that utilize variance reduction.
The idea is actually quite similar to numerical quadrature: Instead of approximating the
expectation for

Y = f (X),

20

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

we instead pick a function that is closely related to f (X), but whose expectation is known or
easily computable and let it define a second random variable

Z = f̃ (X).

We calculate the expectation of

Ỹb = bE(f̃ (X))+ (f −b f̃)(X),

already rewriting the expression by approximating the expectation with the mean we get

E(Ỹb)= D̃n,b = bE(f̃ (X))+ 1
n

n∑
i=1

(f −b f̃)(X i),

where b ∈ R. It is therefore crucial how Z and b are chosen. Müller-Gronbach, Novak and
Ritter [5] suggest using composite interpolation so that

Z = f̃ (X)= fX ,k.

Hence the Monte Carlo method using composite interpolation is given by

MX ,k(f)= S(fX ,k)+ 1
kd ·

kd∑
i=0

(f − fX ,k)(X i),

where X i are equally distributed on G.
Theorem 5.10 [5, p.285] For the set of functions F r

d it holds that

ẽran
n (F r

d)³ n−(r/d+1/2).

Furthermore the Monte Carlo methods MX ,k fulfill

∆(MX ,k,F r
d)³ k−(r+d/2) ³ m−(r/d+1/2)

k ,

where mk are the amount of function evaluations of MX ,k.

Corollary 5.11 The sequence of Monte Carlo methods MX ,k is asymptotically optimal and

eran
n (F r

d)³
(c
n

)r/d+1/2
.

Proof: The lower bound is proven with

eran
n (F r

d)≥ ẽran
[n/c](F

r
d)³

(c
n

)r/d+1/2
.

For the upper bound and asymptotic optimality we use the same strategy from the proof of
corollary 5.2. Let

an = {∆(MX ,k,F r
d| cost(MX ,k,F r

d)≤ n},

bn =
(c
n

)r/d+1/2
,

nk = cost(MX ,k,F r
d).

ank =∆(MX ,k,F r
d)

According to theorem 5.10

ank = ẽran
nk

(F r
d)³ n−(r/d+1/2)

k = bnk · c−(r/d+1/2) ≤ bn · c−1/2.

By lemma 5.4 it follows that an ≤ bn, or in other words

an = eran
n (F r

d)≤
(c
n

)(r/d+1/2)
,

which combined with the lower boundary is enough to prove the corollary.

21

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

5.2.3 Conclusion

From corollary 5.8 we know that the n-th minimal error of a deterministic algorithm based
on composite numerical quadrature the n-th minimal error is given by

edet
n (F r

d)³
(c
n

)r/d
.

Corresponding, corollary 5.10 showed that the n-th minimal error of a randomized algorithm
based on control variates is given by

eran
n (F r

d)³
(c
n

)r/d+1/2

Assuming d, r are given and c is the same for both, we are only interested in how the error
changes with respect to n. The n-th minimal error of composite numerical quadrature is
proportional to

n−r/d

and the n-th minimal error of control variates is proportional to

n−r/d−1/2

Consequently, it is smaller for the Monte Carlo algorithm, which shows that on F r
d the ran-

domized algorithm based on control variates, a Monte Carlo method, is a better choice than
the deterministic algorithm based on composite numerical quadrature. This is especially
the case, when the smoothness r is small in relation to the dimension d due to the curse of
dimensionality.

6 Testing
In this section, we want to test the theoretic results of the previous section but also the unal-
tered approach for each method. For this the best fighters implementation get tested on f ’s
from F1 and F r

d and then the errors plotted and obtained. As the theoretic results did, this
section also stays in an integration area of G = [0,1]d. Recall that the error of randomized
algorithms is itself a random variable, and hence changes every time the algorithm is run. To
get an estimate for a general error, one takes the expectation of said random variable error,
which can then be approximated by the mean. Therefore, the classic Monte Carlo and the
random Riemann implementation was run j = 1000 times, and the control variates imple-
mentation was run j = 10 times, and the results averaged and then compared. Furthermore,
the true value of the integral S(f) was computed with scipy.integrate.quad, and for the error
calculated with

|S(f)−M(f)|,
where M(f) is the output of the algorithm. Consistent with the last section, we start with
testing on f ∈ F1. The code to all the implementations in this section can be found in section
8. All the plots are on a logarithmic scale.

22

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

6.1 Testing Best Fighters for f ∈ F1:
For functions in F1 the following were chosen:

f1(x)= sin(x)

f2(x)= e
1
2 x

6.1.1 Implementations of Composite Mid Point Rule and Random Riemann Sums

The composite mid point rule was implemented in a way, that it would first calculate the
midpoints mi for each of the n subintervals of the integration interval [0,1] and then sum
them up as follows

Kn = 1
n

n∑
i=1

f (mi).

The random Riemann sums implementation works very similar, but instead of using the
midpoints, it uses n randomly generated points xi in the integration interval [0,1].

Rn = 1
n

n∑
i=1

f (xi).

6.1.2 Results for Mid Point Rule and Random Riemann Sums

(a) f1(x)= sin(x) (b) f2(x)= e
1
2 x

Figure 2: Error per Number of Iterations

These plots show what we initially expected: For integration on a one dimensional set, it
is best to stick to algorithms based on numerical quadrature, such as the mid point rule.
But in the theoretical comparison we saw that the rate of convergence is higher for Random
Riemann Sums, so why is this not visible in the plots? There can be several reasons for
that. First, the results of section 5 are based on asymptotic equivalence. Second, even if
the rate of convergence is higher, if the error is much larger to begin with, it will take many
computations for the error curve of Random Riemann sums to cross the error curve of the
composite mid point rule. The plots below are showing the error for a much higher amount
of iterations, but even going to up to 100’000 points, the error of the Random Riemann sum
does not fall beneath the error of the mid point equation. Hence, it is most likely due to the
asymptotic nature of the results, that the application does not agree with the theory. It is
also to note that even if the error of Random Riemann sum would have crossed the error of
the mid point rule with such a high number of points, the cost at this point by far exceed the

23

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

costs of the algorithm based on the mid point rule, because the output of the random Riemann
sum implementation varies substantially. Therefore, it is only useable after running it many
times and taking an average. When doing that for a large number of points, the costs quickly
increase. Note that in the plots below the average error of the Random Riemann Sum is not
taken over 1000 runs, but over 100.

(a) f1(x)= sin(x) (b) f2(x)= e
1
2 x

Figure 3: Error per Number of Iterations

It takes many iterations more for the random Riemann sum method to reach an accuracy of
around 10−3, as it does for the mid point rule.

6.2 Testing the Best Fighters and the Not Optimized Versions on F r
d

The test functions in F r
d are

g1(x, y)= cos(x)cos(y)

g2(x, y)= e−1/2x · e−1/2y

g3(x, y, z)= sin(x)sin(y)sin(z)

g4(x, y, z)= e−1/3x · e−1/3y · e−1/3z

The first two implementations are based on classic Monte Carlo and basic numerical quadra-
ture with a Lagrange basis, without any optimizations to decrease the error.

6.2.1 Numerical Quadrature Implementation

As seen in 3.2, the basic numerical quadrature is of the form

Qn(F)=
n∑

i=1
ai · f (xi).

To test the weights ai from Lagrange interpolation were used.

ai =
∫

G
L idx.

It was tested in two and three dimensions over [0,1]d. For a two variable integrand, numer-
ical quadrature with a Lagrange basis looks as follows

Qn(f)=
n∑

i=1

(
f (xi, yi) ·

∫ 1

0
L i(x)dx ·

∫ 1

0
L i(y)d y

)
,

24

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

which was used as a basis for the implementation. Similarly, for a two variable integrand, it
is given by

Qn(f)=
n∑

i=1

(
f (xi, yi, zi) ·

∫ 1

0
L i(x)dx ·

∫ 1

0
L i(y)d y ·

∫ 1

0
L i(z)dz

)
.

6.2.2 Classic Monte Carlo Implementation

As seen in part 4, the idea behind Monte Carlo integration is to the arithmetic average of n
random samples in the integration area.

Dn(f)= 1
n

n∑
i=1

f (xi).

Since the tests were done with two and three variable integrands, it was implemented to
take n · d samples in [0,1] which where then assembled into n random vectors with length
d.These were then summed up and divided by n.

Two dimensions:

D3(f)= 1
n

n∑
i=1

f (x, y) with (x, y) ∈ [0,1]2.

Three dimensions:

D4(f)= 1
n

n∑
i=1

f (x, y, z) with (x, y, z) ∈ [0,1]3.

25

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

6.2.3 Results of Numerical Quadrature and Classic Monte Carlo

The plots show the error over amount of iterations.

(a) g1(x, y)= cos(x)cos(y) (b) g2(x, y)= e−1/2x · e−1/2y

(c) g3(x, y, z)= sin(x)sin(y)sin(z) (d) g4(x, y, z)= e−1/3x · e−1/3y · e−1/3z

Figure 4: Error per Number of Iterations

While numerical quadrature has an error which scales depending on the dimension, two or
three variable functions don’t appear to make the error worse than what it is for Monte Carlo.
However, neither of these methods is asymptotically optimal. Therefore, it seems plausible
that the theory prediction does not apply to them.

6.2.4 Composite Numerical Quadrature Implementation

Recall that composite numerical quadrature is given by

QX ,k(f)= S(fX ,k)=
k∑
i

∫
T i(G)

fT i(X)(x)dx,

where fT i(X)(x) is the Lagrange polynomial evaluated at x, with nodes x ∈ X in the area
T i(G). The implementation of composite numerical quadrature splits the integration area
[0,1]d in k smaller hyper cube shaped areas, represented in the previous equation with T i(G),
and then uses the implementation of numerical quadrature in 6.2.1 to get an approximation
of the integral over each of these areas. These are then summed up in the final step.

26

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

6.2.5 Control Variates Implementation

In section 5.2.2 we described control variates, utilizing composite interpolation with

MX ,k(f)= S(fX ,k)+ 1
kd ·

kd∑
i=0

(f − fX ,k)(X i),

where fX ,k is the composite Lagrange polynomial on the area G = [0,1]d with k subareas and
X i are equally distributed on G.
For the control variates implementation, an additional function was needed, which computes
the composite Lagrange polynomial for a subarea of G and evaluates it at a point x. The con-
trol variates generates the kd random values and makes sure they get summed up according
to which subarea of G they are in.

6.2.6 Results of Composite Numerical Quadrature and Control Variates

The plots show the error per iteration for each of the test functions separately. This time
the integration area is split into k smaller areas, creating a second variable k. To show
better how the accuracy develops for each function with varying k, we look at the plots of one
function at a time.

(a) k = 1 (b) k = 3

(c) k = 5

Figure 5: Plots for Test Function g1(x, y)= cos(x)cos(y): Error per Number of Iterations.

The error converges with very few iterations for both control variates and composite quadra-
ture. This is actually a pattern we see for the following test functions as well.

27

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

(a) k = 1 (b) k = 3

(c) k = 5

Figure 6: Plots for Test Function g2(x, y)= e−1/2x · e−1/2y: Error per Number of Iterations.

28

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

(a) k = 1 (b) k = 3

(c) k = 5

Figure 7: Plots for Test Function g3(x, y, z) = sin(x)sin(y)sin(z): Error per Number of Itera-
tions.

29

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

(a) k = 1 (b) k = 3

(c) k = 5

Figure 8: Plots for Test Function g4(x, y, z)= e−1/3x · e−1/3y · e−1/3z: Error per Number of Itera-
tions.

As for the plots corresponding to the first test function, the plots for the remaining test
functions also show fast convergence and small error already for a small amount of itera-
tions. It can also be noted that the difference in error between composite numerical quadra-
ture and control variates varies, both methods obtaining smaller and bigger errors than the
other. Therefore, it is not possible to say that this exactly confirms the theoretical statement.
However, the theoretical statement is about the asymptotic n-th minimal error, which means
there is room for variation in the definition. It also has to be said that since the control vari-
ates method’s output is a random variable, the error of it is as well. We use the expectation of
the error and approximate it with the mean over several runs, to get the value displayed in
the plots. Consequently, the values bigger than the deterministic approach could be because
the random values generated were in this case ending up above the expected value.

30

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

7 Conclusion and Outlook
In section 5 we have shown how the n-th minimal error of the deterministic approach and the
randomized approach compare to each other. We showed that for both f ∈ F r

d, where r is the
smoothness and d the dimension, the n-th minimal error of Monte Carlo integration based
methods converges faster towards zero as n goes towards infinity. When putting these results
to the test, the experiments for one dimensional functions opposed this result. Achieving the
same accuracy with Random Riemann sums as with the mid point rule takes far too many
iterations. The most possible cause of this is the asymptotic nature of the result for the n-th
minimal error. Based on the tests made for one variable functions, it is clear that the mid
point rule is a better suited option. This also confirms our expectations from the introduction
based on [5] and [8]. For two and three variable test functions, these results were not as
conclusive as it varies which method produces a smaller error. This can be due to several
factors: On one hand, we stated in section 5 that the randomized algorithms are especially
favoured, when the smoothness r of a function is very low and the dimension d is very high.
The test functions used in section 6.2 all have high smoothness r, decreasing the error caused
by the curse of dimensionality. On the other hand, two or three might not be a high enough
dimension to cause a significant difference in error between the two methods.

While this project gave a basic idea of how the methods, given a specific situation, of the
two approaches perform, this project is far from making a conclusive comparison. There are
many other optimization strategies for Monte Carlo integration, which could be investigated
as well. The same holds respectively for numerical quadrature. The asymptotically opti-
mal algorithm this project touched upon, control variates, depends on the result of compos-
ite numerical quadrature. Proving that combining the methods, gives composite numerical
quadrature a worthy competitor. Furthermore, this project solely focused on rate of conver-
gence to make a comparison. Maybe focusing purely on a worst case analysis with maximum
cost and maximum error, would give a different result.

All these things considered, this barely scratches the surface and there is much left to
look at to make a conclusive comparison between the two approaches. Or maybe it is as
Robert and Casella[8, p. 22-23] say: "However, given the dependence on specific problem
characteristics, it is fruitless to advocate the superiority of one method over the other, say
of the simulation-based approach over numerical methods. Rather, it seems more reason-
able to justify the use of simulation-based methods by the statistician in terms of expertise.
The intuition acquired by a statistician in his or her everyday processing of random models
can be directly exploited in the implementation of simulation techniques (...), while purely
numerical techniques rely on less familiar branches of mathematics." In which case a com-
parison would better be conducted by a statistician with more "expertise". It is to note that
they conclude with suggesting that a combination of the two perspectives often produces a
"desireable approach", which based on the small error of the control variates in section 6, we
can agree with.

31

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

8 Code Appendix
For all implementations the following imports were made

1 from scipy.integrate import quad
2 import numpy as np
3 import random

8.1 One Dimensional Implementations
These are corresponding to the descriptions in 6.1.1.

8.1.1 Mid Point Equation

1 def Midpoint(f,n):
2 """
3 Parameters
4 ----------
5 f : function
6 to be integrated
7 n : integer
8 #subintervals
9

10 Returns
11 -------
12 float
13 Approximative Solution for the integral of f.
14

15 """
16 deltax=1/n
17 l=[i/n for i in range(0,n+1)]
18 m=[(l[j]+l[j-1])/2 for j in range(1,len(l))]
19 s=sum(f(i) for i in m)
20 return s/n

32

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

8.1.2 Random Riemann Sum

1 def Riemann(f,n):
2 """
3 Parameters
4 ----------
5 f : function
6 to be integrated
7 n : integer
8 #subintervals
9

10 Returns
11 -------
12 R : float
13 Approximative Solution for the integral of f.
14

15 """
16 X=random.sample(list(np.linspace(0,1,1000000)), n)
17 R=1/n*sum(f(x) for x in X)
18 return R

33

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

8.2 Three and Four Dimensional Implementations
These correspond to the implementations described in 6.2.

8.2.1 Numerical Quadrature

For the implementation of numerical quadrature, first a function is needed that computes a
Lagrange basis polynomial L i at a given point.

1 def L(x,n,i,A,B):
2 """
3 Generates Lagrange Basis Polynomial L_i(x) on interval [A,B]
4 with n nodes.
5

6 Parameters
7 ----------
8 x : float
9 point of evaluation

10 n : integer
11 #interpolation nodes
12 i : integer
13 index of basis polynomial
14 A : float
15 lower boundary of interpolation interval
16 B : float
17 upper boundary of interpolation interval
18

19 Returns
20 -------
21 lx : float
22 Evaluation of the Lagrange Basis Polynomial L_i at point x.
23

24 """
25 X=np.linspace(A,B,n)
26 k=0
27 lx=1
28 while k<n:
29 if k == i:
30 lx=lx
31 else:
32 l=(x-X[k])/(X[i]-X[k])
33 lx=lx*l
34 k+=1
35 return lx

This will then be used in the numerical quadrature implementation.

34

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

1 def Quadrature(f,n,d,a,b):
2 """
3 Approximates the interval of f based on Numerical quadrature on an
4 integration cube [ax,bx],[ay,by],*[az,bz].
5 Parameters
6 ----------
7 f : function
8 Function with 2 or 3 variables
9 n : integer

10 Amount of Interpolationpoints
11 d : integer
12 dimension i.e. 2 variables, d=3.
13 a : list
14 lower boundaries of interpolation [ax, ay, *az]
15 b : list
16 upper boundaries of interpolation [bx, by, *bz]
17

18 Returns
19 -------
20 float
21 Integral approximation of f on hypercube
22 """
23 X=np.linspace(a[0],b[0],n)
24 Y=np.linspace(a[1],b[1],n)
25 Q=0
26 if d==3:
27 i=0
28 while i<n:
29 j=0
30 while j<n:
31 Q+=quad(L,a[0],b[0],args=(n,i,a[0],b[0]))[0]*quad(L,a[1],b[1],args=(n,j,a[1],b[1]))[0]*f(X[i],Y[j])
32 j+=1
33 i+=1
34 elif d==4:
35 Z=np.linspace(a[2],b[2],n)
36 i=0
37 while i<n:
38 j=0
39 while j<n:
40 h=0
41 while h<n:
42 Q+=quad(L,a[0],b[0],args=(n,i,a[0],b[0]))[0]*quad(L,a[1],b[1],args=(n,j,a[1],b[1]))[0]*quad(L,a[2],b[2],args=(n,h,a[2],b[2]))[0]*f(X[i],Y[j],Z[h])
43 h+=1
44 j+=1
45 i+=1
46 else:
47 return "Please enter dimension 3 or 4."
48 return Q

35

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

8.2.2 Classic Monte Carlo

1 def MonteCarlo(f,n,d):
2 "How do i generate a sample with a known average??"
3 X=random.sample(list(np.linspace(0,1,10000)), n*(d-1))
4 i=0
5 S=0
6 if d==3:
7 while i<n*(d-1)-1:
8 S+=f(X[i],X[i+1])
9 i+=2

10 elif d==4:
11 while i<n*(d-1)-2:
12 S+=f(X[i],X[i+1],X[i+2])
13 i+=3
14 else:
15 return "Please enter dimension 3 or 4"
16 return S/n

8.2.3 Composite Numerical Quadrature

1 def CompositeQuadrature(f,n,d,k):
2 """
3

4 Parameters
5 ----------
6 f : function
7 to be approximated (2 or 3 variables)
8 n : integer
9 #interpolation nodes

10 d : integer
11 dimension, 3 or 4
12 k : integer
13 #subintervals of [0,1]
14

15 Returns
16 -------
17 float
18 Approximated solution of integral of f over [0,1].
19

20 """
21 Q=0
22 if d==3:
23 for j in range(0,k):
24 ax,bx=j/k,(j+1)/k
25 for m in range(0,k):
26 ay,by=m/k,(m+1)/k
27 a,b=[ax,ay],[bx,by]

36

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

28 Q+=Quadrature(f,n,d,a,b)
29 return Q
30

31 elif d==4:
32 for j in range(0,k):
33 ax,bx=j/k,(j+1)/k
34 for m in range(0,k):
35 ay,by=m/k,(m+1)/k
36 for h in range(0,k):
37 az,bz=h/k,(h+1)/k
38 a,b=[ax,ay,az],[bx,by,bz]
39 Q+=Quadrature(f,n,d,a,b)
40 return Q
41 else:
42 return "Please enter dimension 3 or 4."

8.2.4 Control Variates

This needs a function, which evaluates a composite Lagrange approximation polynomial at a
given point, which in itself needed a classic Lagrange polynomial function.

1 def LagrangeInterpolation(f,n,d,x,a,b):
2 """
3 Creates the Lagrange interpolation of a function f with n nodes
4 on a hypercube [ax,bx],[ay,by],*[az,bz].
5

6 Parameters
7 ----------
8 f : function
9 to be interpolated

10 n : integer
11 #interpolation nodes
12 d : integer
13 dimension
14 x : list
15 coordinates of evaluation
16 a : list
17 lower boundaries of interpolation [ax, ay, *az]
18 b : list
19 upper boundaries of interpolation [bx, by, *bz]
20

21 Returns
22 -------
23 float
24 Evaluation of the Lagrange Interpolation Polynomial
25 at point x.
26

27 """
28 K=np.linspace(a[0],b[0],n)

37

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

29 M=np.linspace(a[1],b[1],n)
30 P=0
31 if d==3:
32 i=0
33 while i<n:
34 j=0
35 while j<n:
36 P+=f(K[i],M[j])*L(x[0],n,i,a[0],b[0])*L(x[1],n,j,a[1],b[1])
37 j+=1
38 i+=1
39 elif d==4:
40 H=np.linspace(a[2],b[2],n)
41 i=0
42 while i<n:
43 j=0
44 while j<n:
45 h=0
46 while h<n:
47 P+=(f(K[i],M[j],H[h])*L(x[0],n,i,a[0],b[0])*L(x[1],n,j,a[1],b[1])*L(x[2],n,h,a[2],b[2]))
48 h+=1
49 j+=1
50 i+=1
51 else:
52 return "Please enter dimension 3 or 4."
53 return P
54

55

56 def CompositeLagrangeInterpolation(f,n,d,k,x):
57 """
58 Parameters
59 ----------
60 f : function
61 to be approximated (2 or 3 variables)
62 n : integer
63 #interpolation nodes
64 d : integer
65 dimension, 3 or 4
66 k : integer
67 #subintervals of [0,1]
68 x : list
69 coordinates of function evaluation
70

71 Returns
72 -------
73 float
74 Evaluation of the Composite Lagrange Interpolation Polynomial at
75 point x.
76

77 """

38

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

78 if d==3:
79 for j in range(0,k):
80 ai,bi=j/k,(j+1)/k
81 if ai<=x[0]<=bi:
82 ax,bx=ai,bi
83 if ai<=x[1]<=bi:
84 ay,by=ai,bi
85 return LagrangeInterpolation(f,n,d,x,[ax,ay],[bx,by])
86 elif d==4:
87 for j in range(0,k):
88 ai,bi=j/k,(j+1)/k
89 if ai<=x[0]<=bi:
90 ax,bx=ai,bi
91 if ai<=x[1]<=bi:
92 ay,by=ai,bi
93 if ai<=x[2]<=bi:
94 az,bz=ai,bi
95 return LagrangeInterpolation(f,n,d,x,[ax,ay,az],[bx,by,bz])
96 else:
97 return 'Please enter dimension 3 or 4'

This is then used in the "Control Variates" function.

39

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

1 def ControlVariates(f,k,n,d):
2 """
3 Approximates the interval of f based on Control Variates on an
4 integration cube [ax,bx],[ay,by],*[az,bz]
5

6 Parameters
7 ----------
8 f : function
9 to be approximated (2 or 3 variables)

10 n : integer
11 #interpolation nodes
12 d : integer
13 dimension, 3 or 4
14 k : integer
15 #subintervals of [0,1]
16

17 Returns
18 -------
19 CV : float
20 approximate integral solution
21

22 """
23 X=random.sample(list(np.linspace(0,1,10000)), k**(d-1))
24 Y=random.sample(list(np.linspace(0,1,10000)), k**(d-1))
25 Z=random.sample(list(np.linspace(0,1,10000)), k**(d-1))
26 Q=CompositeQuadrature(f,n,d,k)
27 S=0
28 if d==3:
29 i=0
30 while i<k**(d-1):
31 S+=f(X[i],Y[i])-CompositeLagrangeInterpolation(f,n,d,k,[X[i],Y[i]])
32 i+=1
33 elif d==4:
34 i=0
35 while i<k**(d-1):
36 S+=f(X[i],Y[i],Z[i])-CompositeLagrangeInterpolation(f,n,d,k,[X[i],Y[i],Z[i]])
37 i+=1
38 CV=Q+(1/(k**(d-1)))*S
39 return CV

40

Monte Carlo Integration:
A Comparison to Numerical Quadrature

Mirjam Karlsson-Müller
19951012-4200

9 References
[1] D. Anevski. A Concise Introduction to Mathematical Statistics, chapter 10. Studentlit-

teratur, 2017.

[2] W. Cheney and W. Light. A Course in Approximation Theory, chapter 10. Brooks/Cole,
2000.

[3] J.M. Hammersley and D.C. Handscomb. Monte Carlo Methods, chapter 1. Methuen Co
LTD, 1975.

[4] M.H. Kalos and P.A. Whitlock. Monte Carlo Methods, chapter 1. Wiley-VCH Verlag
GmbH Co., 2008.

[5] T. Müller-Gronbach, E. Novak, and K. Ritter. Monte Carlo Algorithmen, chapter 2,5,7.
Springer Verlag, 2012.

[6] E. Novak and K. Ritter. The curse of dimension and a universal method for numerical
integration. In J.W. Schmidt G. Nürnberger and G. Walz, editors, Multivariate Approxi-
mation and Splines, pages 177–188. Birkhäuser, Basel, 1997.

[7] C.P. Robert and G. Casella. Monte Carlo Statistical Methods, chapter 1. Springer, 2004.

[8] C.P. Robert and G. Casella. Introducing Monte Carlo Methods with R, chapter 3. Springer,
2010.

41

