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A system for affective touch has been constructed, in a
study of humanoid and social robotics. The system de-
tects, processes and analyses signals from touch, identi-
fies touch types, and provides a corresponding emotional
response and expression. Touch is detected on an Epi
humanoid robot head through the use of conductive paint
on the inside on the head shell, and the electrical sig-
nal produced is processed into a digital representation of
touch. Touch types are defined and classified through the
application of machine learning. Approximate touches
are applied to the head, including a variation in the ar-
eas of touch, and training provides a classification of ten
touch types with an accuracy above 85%. Touch types
are mapped to related emotional responses, providing the
basis for the selection of an eye colour expression from
an Epi humanoid robot. The system is integrated with
the Ikaros cognitive modelling framework and real-time
interaction is made possible, enabling a dynamical and
complex human-robot interaction. This further confers a
consistent framework for a future experimental evaluation
of the system.

1 Introduction
The various modalities of communication are of funda-
mental importance in humanoid robotics, but the sense
of touch has often been disregarded as part of the reper-
toire of a robot in social interaction. The application of
theories and creation of models for this purpose, would
be a contribution to humanoid and social robotics. This
thesis is dedicated to the creation of a coherent model of
touch interaction in humanoid and social robotics, involv-
ing the representation of touch and the categorisation of
different touch types, where these are related to an af-
fective response and a communicated expression. The
model is tested through the construction of a somatosen-
sory system that allows affective touch to become part of
the cognitive architecture of a robot. The study aims at
the implementation of such a system for affective touch
through constructing a basic setup of the system that
could be easily applied to a humanoid robot. This is done
with the purpose of adding to the qualities of humanoid
robots and for the development of touch interaction as an
integral part of social robotics.

The system is initially conditioned by whether it is
possible to achieve a functional detection of touch on the
surface of a robot head, such that the signal produced can
be processed and analysed to obtain applicable informa-
tion from the detected touch. In the detection and identi-
fication of touch, different touch gestures, or touch types,
are defined. The touch types are related to an affect
and assumed to be conveying a meaning corresponding

to that affect. A further condition for a functional sys-
tem is if a relevant response to touch can be produced,
where that response may be mediated by the emotions
that are related to the types of touch involved in the
interaction. Robotic expressions could comprise a com-
municated response, which is related to the emotional re-
sponse. Therefore, the study employs a mapping of how
emotions are related to touch, and of how a robot ex-
pression can be related to different emotions, establishing
specific connections between the different representations
of the system.

A system for affective touch should most gener-
ally aim at fulfilling the requirements for a meaning-
ful human-computer bi-directional interaction, in that
a robot should be able to “feel”, “understand”, and “re-
spond”, in ways similar, or analogous, to those of hu-
mans (van Erp & Toet, 2015). Human-robot interaction
(HRI), including touch, can be said to be established if
the robotic system is capable of 1) spatial discernment,
2), discernment of touch types, 3) providing an evalua-
tion of the affective quality of touch and 4) producing
an expression related to the affective quality of touch.
The system thereby created does not need not comprise
functionality for touch that is identical to the human so-
matosensory system, but should produce a relevant rep-
resentation and an effective behaviour that is similar to
that of humans, and which acts as a foundation for func-
tional interaction.

The measurement of an electrical field on the robot
head shell surface can provide an input signal from touch,
and from signal processing, data can be produced for the
identification of touch. Signal processing here means a
conversion of the signal from an analogue current to digi-
tal data and a treatment of that data to acquire informa-
tion of which area has been touched, the strength of the
signal produced, and the variation of the signal strength
over time. This allows the creation of a representation of
touch through cognitive modelling and the categorisation
of touch into different touch types. A discrimination of
different touch types can be carried out by use of ma-
chine learning, and the training of a machine learning
model for the recognition of touch patterns. The detec-
tion and identification of touch thereby provides the basis
for a robotic somatosensory system as analogous to the
human sense of touch in the consequent grouping of sen-
sory inputs into specific stimuli. The setup enables the
detection of touch and the creation of a related electrical
signal, the signal is processed as to extract relevant in-
formation, and a categorisation of touch is made possible
through cognitive modelling.

Distinct neurophysiological pathways (Olausson et al.,



2002) for affective touch and a somatotopic mapping be-
tween tactile sensations and emotions (van Erp & Toet,
2015) may exist. Correspondingly, responses to touch
interaction can be specific in kind and directly related
to the type of touch that is applied, which is particu-
larly relevant to HRI involving interpersonal touch. An
over-arching mapping of affective touch to emotion would
therefore enable the use of emotions as a response to
touch. If robotic expressions can in turn be related to
emotion, it would facilitate the identification of robot
expressions to be used as a communicated response to
touch. In the setup of this study, this corresponds to
further cognitive modelling, where the representations
of the different phenomena involved are related and set
to provide an output of the system that confers a func-
tional communication. This provides the grounds for bi-
directional interaction, in which the application of touch
to the robot affects the somatosensory system and a re-
lated expression is communicated to the human adminis-
tering the touch. An integration of the system with the
Ikaros cognitive modelling framework provides the pos-
sibility for real-time interaction with the robot, where
responses can be experienced directly through robot ex-
pressions. This further increases the humanoid qualities
of the robot, adding dynamics and complexity to the sys-
tem for affective touch, and advances its abilities for social
interaction.

2 Touch, Emotion and Robotics
The investigation of a somatosensory system in robotics
relies on the basic features of touch, as established in
physiology and neuroscience, human emotions as brought
forth in primarily affective psychology, and the overall
developments in robotics, including cognitive, humanoid
and social robotics.

The Human Somatosensatory System

The sense of touch is an essential part of human biology
and child development, and lays a foundation for how hu-
mans approach and experience the world. It is expended
for the detection of, and orientation in, the environment,
and touch is at the root of behaviours such as tool use
and communication, as well as in the social creation of
human culture (Field, 2001; Finnegan, 2014; Fulkerson,
2014). Touch communicates meaning as part of social
function in humans and is an important part of social in-
teraction and embodiment in communication (Dunbar &
MacDonald, 1998).

Somatosensation provides humans with information of
the environment through tactile perception, which pro-
vides an input in carrying out motor action. It enables
the human embodiment of proprioception and the ability
to discriminate external events from ones own actions.
In humans, the sense of touch is processed in the pri-
mary somatosensory cortex, in the parietal lobe postcen-
tral gyrus, which is somatotopically ordered, with neigh-
bouring bodily areas corresponding to neighbouring brain
regions, and in the adjacent secondary somatosensory cor-
tex, important for distinguishing tactile shapes and de-
tecting light touch (Banich & Compton, 2011; Gazzaniga
et al., 2006). The human body contains multiple differ-
ent somatosensory receptors that can be categorized into

groups for contributing to the detection of pressure, tem-
perature, vibration and can activate pain. Different parts
of the body have different receptor densities, purveying
different sensitivities to touch. Different receptor types
have different mechanisms of activation, where the cells
of receptors are involved in sensory transduction, which
means that mechanical, thermal and chemical energy is
converted into electrical signals, that become the input
of the somatosensory system. Through neural adapta-
tion and habitation learning, the somatosensory system
can become less sensitive to its input or have increased
sensitivity to lesser input. In providing the basis for pro-
prioception and information of body position, somatosen-
sation is at the foundation of the sense of embodiment
and bodily awareness, including the localisation of limbs,
and information from the somatosensory cortex is used by
the motor cortex for the planning, control and execution
of motor actions. Neural pathways from the somatosen-
sory cortex provide information to the orbitofrontal cor-
tex, which is responsible for important functionality with
regard to social interaction, affect and reward, and in-
terconnected with the amygdala, with a primary role in
emotional responses, thereby relating touch to affective
and interpersonal behaviours (Adolphs, 2009; Gazzaniga
et al., 2006). The sense of touch may overall be con-
sidered foundational to social interaction and communi-
cation and the somatosensory system is an integral part
in social cues and social coordination, as related through
bodily actions and bodily awareness (Kolb et al., 2016).

Human Emotions

Affective psychology has yet to provide a consensus on
the definition of emotions, but certain theories are estab-
lished in their descriptions of components of emotional
life. The theories of basic emotions which tend to be
independent of factors such as cultural background, and
that are exhibited by humans universally, is one such a
description. The classification of such basic emotions
differs between theories, where an agreement exists in
that basic emotions involve distinctive neural pathways
and characteristic physiological factors, and are related
to characteristic universal nonverbal expressions, such as
facial expressions. In the theory of basic emotions origi-
nated by Ekman and Friesen, emotions are classified from
communication of facial expressions, where specific such
expressions are universally recognised as conveying basic
emotions (Ekman & Friesen, 1969; Ekman, 1999, 2004).
The basic emotions may be grouped in multiple, but min-
imally five, emotions, where a grouping of six emotions
usually includes happiness or enjoyment, surprise, sad-
ness, anger, fear, and disgust. What may be referred
to as complex emotions could in such a model be con-
structed as the combination of basic emotions, with a
model of basic emotions thereby enabling a description
of a more elaborate emotional life (Ekman & Cordaro,
2011; Ortony & Turner, 1990).

Whether emotions are perceived as pleasant, unpleas-
ant or neutral is part of the characteristics of emotions in
the theories of basic emotions, and is made a fundamen-
tal differentiating factor in theories such as the pleasure-
arousal-dominance (PAD) model. The PAD model for
emotional states or temperament applies a division of
emotion into the three dimensions of pleasure, arousal
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and dominance, where these are scaled from the po-
larities of pleasant-unpleasant, arousal-non-arousal and
dominance-submissiveness, with a numerical representa-
tion of emotion along related scales (Mehrabian, 1996).
Experiments on similar models typically rely on phys-
iological and non-verbal indicators for the detection of
emotional states (Mehrabian, 2007).

Affective Touch

Discriminative touch enables the basic transmission of so-
matosensory information, a differentiation of the charac-
teristics touch stimuli, such as location and texture, and
can contribute to information processing in communica-
tion (McGlone et al., 2014). Communication through
touch confers the mediation or triggering of emotional
states. In social interaction, touch and touch gestures can
comprise components of affect and emotion, contain an
emotional meaning and produce an emotional response,
and such touch is referred to as affective. Non-verbal
communication in humans includes prosody of voice, fa-
cial expressions, gestures by way of hand and body, and
the direct interaction through touch. In humans, affec-
tive touch is a primary means for conveying emotions
and emotional states (van Erp & Toet, 2015) and it is
suggested that humans have a specialized neurophysio-
logical system for affective touch alone, separate from the
mechanisms of discriminative touch (Gordon et al., 2013;
Olausson et al., 2002). Löken et al. (2009) proposes that
a gentle stroke, which is administered at a velocity of 1-
10 cm/s specifically stimulates the neural structures for
affective touch that is perceived as pleasant.

Affective touch involves physical interaction and pro-
duces emotions that are necessary for social bonding. It
is used for the purposes of achieving well-being and social
connection and it is a part of the modulation of behaviour
(von Mohr et al., 2017). The topography of touch is im-
portant in determining its interpretation, with meaning
depending on the location of touch and the creation of
touch patterns, over time. The social and affective mean-
ing of touch is highly dependent on context and the rela-
tionships of the interacting parties. Here, the emotional
bonds between the person administering and the person
receiving touch plays a major role in governing which ar-
eas of the body are available, relevant and appropriate for
touch, and which type of touch is deemed applicable on
different areas (Suvilehto et al., 2015). Context may fur-
ther be regarded a causal factor also in the perception of
emotion, as comprising a socially constructed phenomena
(Armon-Jones, 1985). In the modulation of behaviour,
touch has widespread effects on social attitudes, psycho-
logical factors and to the perception of social agents and
institutions (van Erp & Toet, 2015).

Cognitive, Humanoid and Social Robotics

The problem of perception is fundamental in cognitive
robotics. Artificial intelligence has historically been con-
cerned with problem solving and the construction of rele-
vant representations for the execution of tasks. The prob-
lems of robotics may however require replacing a reliance
on representation with parallel activities that are part of
a direct interaction with the world, where perception and
action are dependent on each other, and perception and

reasoning are intertwined processes (Brooks, 1991).
Robotic systems are dependent on what perception

and the type of environmental information that are con-
sidered relevant as part of their detection processes, where
infrared sensors and cameras are examples of mechanisms
for creating sensory inputs (Balkenius et al., 2008). A
structure of robot behaviours may be described in terms
of hierarchical layers, where for example the avoidance
of obstacles and the creation of motor control and loco-
motion provide the basis for a robots orientation in the
world. This can be followed by planning and the exe-
cution of actions as a response to external stimuli. An
extension can occur in robot learning, where discrimina-
tion is applied to objects in the environment and through
object recognition. In imitation or demonstration, the
robot interacts with humans and adapts its behaviours
accordingly (Mataric, 2000; Schaal et al., 1997).

A robot is referred to as humanoid when its design
includes features and behaviours approaching those of
human beings, where facial and bodily features, and be-
haviours including facial expressions, eye movements, ges-
tures and pointing are of importance (Adams et al., 2000).
In mirroring behaviours, human movements and expres-
sions are tracked and replicated by the robot. Eye move-
ments and tracking can enable a participation in gaze fol-
lowing, with the movements of the robot eyes following
the human gaze, in joint attention, and a shared visual fo-
cus. Robot functions and behaviours can include speech
synthesis and speech processing, which thus enable verbal
communication as part of the robots repertoire. Models
of verbal communication can include turn-taking, where
the overlapping and breaks, as well as fails and fixes oc-
curring in human dialog are integrated into the robots
behaviour to enhance its communicative abilities. Hu-
manoid robotics may overall be regarded an investigation
of human cognition, in comprising the creation of models
of cognition corresponding to that in humans (Atkeson
et al., 2000).

The implementation of humanoid features means an
increase in social interaction competence, and humanoid
robotics in this way allows for the development of social
robotics, in which social human-robot-interaction (HRI)
is the central focus (Duffy, 2003). Cognitive robotics is
also at the basis of social robotics in that the problem
of perception is part of the adaptation that is made for a
functional social interaction. The behaviour of regulation
includes a processing of social cues, and can be applied for
general social coordination, where a robot further adapts
to a system of social rules. In the behaviour of intention
movements the robots movement and expressions can oc-
cur in a response to the presence and actions of other so-
cial agents. This means that robot behaviours include the
communication of the purpose of the robots actions to hu-
mans. Humanoid robots may interact through emotional
expressions and humanoid features and behaviours can
thereby make possible the creation of emotional bonds
in HRI. In a vision of embodied cognition, perception
is an integral part of social coordination, and social in-
teraction should be considered in constructing cognitive
models. Social robotics is in these respects a continua-
tion of the investigation of human cognition, as well as
directed towards constructing robots that are functional
in different social roles (Feil-Seifer et al., 2007).
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Robotics and Touch

Communication is multi-modal in comprising all types of
perception, and takes on an embodied quality in the full
expressions and interchanges of social interaction. The
sense of touch is in this way essential in the development
of humanoid and social robots, but it is often neglected.
While haptic interfaces for computers has been the object
of much recent development, tactile information is used as
a primary sensory input for robots for social assistance,
robots as companions, and robots for human learning,
which typically are used in the care of children and the
elderly (Feil-Seifer & Mataric, 2005; Leite et al., 2013;
Limbu et al., 2013). Studies that are directed towards
a general investigation of touch in robotics and human-
robot-interaction can be found (Albini & Cannata, 2020;
Cooney et al., 2012; Johnsson & Balkenius, 2011; Kerpa
et al., 2003; Martinez-Hernandez et al., 2016; Stiehl et al.,
2005), and studies of material and methods for the detec-
tion of touch (Dahiya, 2019; Gallagher et al., 2018; Zhang
et al., 2017) exist, but these topics have yet not received
an extended treatment in the literature on robotics.

The development of a somatosensory system could be
a contribution to robotic interaction with the environ-
ment in general, where tactile information is used in the
orientation of the robot, for adjustment of motor actions,
in the regulation of actions, in the mirroring of human
behaviour and in the communication of purpose in in-
tention movement. In social interaction, an increased
potential for acting as an embodied agent would change
the relationship to humans in aspects of direct bodily in-
teraction and multi-modal communication. Comprising
touch as a part of the robots general repertoire would be
an advancement in social robotics, in contributing to be-
haviours involving social cues and for social coordination.
The interest perceived in interaction with a robot, and
the assessment of robot behaviours by humans, depends
on the abilities of the robot for perceptible touch inter-
action (van Erp & Toet, 2015). Social touch can further
be said to enhance the humanoid qualities of a robot, it
improves the communication of emotions, produces and
maintains the relationship between social agents, where
touch is also a mediator of friendship, and manifests so-
cial presence and the embodiment of actions as performed
by an interacting party, thereby establishing a social rela-
tionship. The development of robot behaviours for affec-
tive touch and related emotional expressions would have
the greatest impact on robots that are used for care, assis-
tance, companionship and learning, conferring a general
improvement of the quality of interaction.

3 Theoretical Framework
We will here consider the implications of including cogni-
tive modelling of touch in a model for humanoid robotics,
and which types of touch should be included in such a
model, as well as investigate relation of touch to emo-
tions and how expressions in a humanoid robot may be
applied as response to affective touch.

Machine Learning

In constructing a system for affective touch, the discrim-
ination of types of touch from sensory input could be
carried out from different schemes, where machine learn-

ing would provide a differentiation of touch types through
pattern recognition.

Figure 1: A schematic diagram describing the relation-
ship between the inputs, xi, synaptic weights, wi, sum-
mation function, Σ, activation function ϕ, and output,
yi, of an artificial neuron.

Artificial neural networks (ANN) is a machine learning
architecture that is inspired by the biological brain, and
the mechanisms of the synaptic connections in the brain.
Its architecture comprises a network of distributed paral-
lel processing, in which a calculation is used for updating
weights related to nodes in the network, analogously to
how synaptic connections in the brain changes with neu-
ronal signal input (see Fig. 1 for a schematic diagram
of this process) (Zha, 2003). An ANN model thereby
provides a classification of patterns or a regression of
series, and the ability for producing an accurate classi-
fication can be established through the training of the
network. In the categorisation of affective touch, such a
model could be implemented as part of a cognitive model
for the identification of touch, and used for the discrimi-
nation of touch types.

The artificial neuron is the basic processing unit of
each artificial neural network, where nodes are connected
to other nodes in layers of input, output and hidden lay-
ers, which are the layers between input and output. An
activation function is applied for enabling a non-linear
transformation of the input, which is necessary for com-
plex learning. For the establishment of a neural network,
two or more artificial neurons must be joined, where a
basic architecture is the feed-forward neural network, for
which the information is channelled in the forward direc-
tion, from the input nodes, through the hidden layers, to
the output nodes. This is referred to as a static architec-
ture, whereas ANN architectures involving cycles or feed-
back loops between nodes, or that employ various delays
to the processing, are called dynamic structures. A neu-

Figure 2: Schematic diagram describing the setting of
input values, xi, and the production of output values, yi,
and the connections to nodes hidden layers, of a multi-
layer neural network.
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ral network may be described by the input nodes being
in a direct connection with the output layer, in a single
layer network. A multi-layer neural network is created
by including hidden layers, that can be fully or partially
connected, where fully connected layers are referred to as
dense layers (see Fig. 2). In so-called back-propagation,
a calculation of gradient descent is executed, where the
gradient of the error produced by the model is used to
update the node weights and the bias of the network in
order to reduce the error of prediction. In such a gra-
dient calculation, a step of gradient descent towards an
optimum is made, in a process that can be repeated until
the network converges on such an optimum.

The classification provided by the ANN is produced
by the detection of characteristics in data and the gen-
eration of a corresponding pattern recognition, which in
turn produces a potential for predictive processing. The
learning process of an ANN is accumulative in adapting
to patterns of information, where the parallel process-
ing architecture permits a fast computation, when imple-
mented on a standard computer. In supervised learning,
a mapping of input and output is used, where the neu-
ral network is provided with the target response for the
given inputs, and the relation between the pattern and
the target value determine the setting of node weights. In
unsupervised learning, target values are not used, but the
characteristics of the inputs are differentiated as part of
the learning process and used as a basis for classification
(Wong & Hsu, 2006). In reinforcement learning, there
is neither a given target response, nor is unsupervised
learning applied, but the learning is optimised through
the maximisation of a reward function, which determines
which outcome corresponds to a successful recognition.

Figure 3: Illustration of decision plane and margin and
the differentiation of classification instances (filled circles
and squares) in two dimensions.

Machine learning can further be provided by a
support-vector machine (SVM). The idea of the SVM is
derived from the structural risk minimization principle
(Vapnik, 1995). It functions through the transformation
of data into a higher dimensional space RN, with a num-
ber of features, N, where a decision boundary and hyper-
planes within a certain range of that boundary are set to

differentiate data into classes (Gandhi, 2018). With a pa-
rameterisation of N=2, the hyperplane is one-dimensional
and for N=3, it is two-dimensional, with a hyperplane
separating data into two classes (see Fig. 3). The mar-
gin, which spans the space between the decision bound-
ary and the instances of data in training, separates the
classes and should be maximised. A total separation of
data into different classes may however prove impossible
and does typically not provide an effective optimisation.
In soft margin classification, the SVM therefore weighs
the widest possible margin in maximisation against the
possible misclassification of data in the process of differ-
entiation. Support vectors are the instances of data that
are situated on the border of the margin and these vectors
correspond to the designation of the decision boundary.
The support vectors are used as instances representative
of the classification of data and these instances are applied
in the computation of prediction. For nonlinear datasets,
kernels can be used for implicit mapping of inputs into
high-dimensional feature spaces. The kernel represents
the transformation of the decision boundary into an ap-
propriate form for separating the classes.

It has been proposed that the classification and regres-
sion of an SVM can become superior to that of an ANN,
independent of coding (Wong & Hsu, 2006). It is possible
that the optimisation of an SVM has less complications
due to the sparse parameterisation in defining the clas-
sifier, where an ANN uses an undetermined combination
of connection weights for its recognition. The calcula-
tions of the SVM may also be less computationally inten-
sive (Gandhi, 2018). Specifically for touch patterns, the
treatment of direction in movement may be more suited
to SVM learning (Lau et al., 2008)

The Communication of Affective Touch

Approaching affective touch in humanoid and social
robotics, it is assumed that different touch types will tend
to communicate a specific meaning, and that a discrim-
ination between emotions conveyed by affective touch is
possible. Emotions may be communicated through touch,
face and voice expressions, with partly differentiated neu-
roanatomical systems, that can converge into an emo-
tional representation (Schirmer & Adolphs, 2017). It may
also be produced by touch independent of face and voice.
Hertenstein et al. (2006), describes a study where one par-
ticipant touches the arm of another, without them having
visual or auditory access to each other, and attempts to
communicate an emotion. Such touch is sufficient to com-
municate the six basic emotions, where the person being
touched makes a relevant decoding of that touch, among
twelve possible choices, with an accuracy of 30-38% for
happiness, 24% for surprise, 31-35% for sadness, 57-59 %
for anger, 48-51% for fear and 63-83% for disgust. It is
possible also for observers of such touch to decode the in-
volved emotions, where participants in the study watched
video clips of the first part of the experiment and judged
which emotions were communicated. Observers could dis-
tinguish the emotions involved in affective touch, with a
probability above chance for emotions happiness, anger,
fear and disgust. In a follow-up study, Hertenstein et
al. (2009), emotions were communicated via touch ap-
plied to the whole body, with an overall increased ac-
curacy in their categorisation, compared to touching the
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arm only. The duration of touches that can communi-
cate emotions in these studies tend to vary from 4.5 to 8
seconds, with slight differences in duration between the
studies. In Thompson and Hampton (2011), the commu-
nication of emotions through touch is investigated with
regard to the relationship of the involved parties. Here,
two strangers can communicate and discriminate six ba-
sic emotions, among twelve possible choices, from touch,
with a success of communication that has a mean of 39%.
In romantic couples this ability increased, where surprise
and sadness, with the lowest recognition in strangers, is
at an approximate level of the other emotions and the
mean is raised to 52%.

The Duration and Intensity of Emotion

In order to gain a dynamic representation of emotions in
humanoid and social robotics, a description of how emo-
tions arise, change and expire, and which intensity they
are perceived to possess is needed. As emotions unfold
over time, the qualities of emotions are in complex rela-
tionship to a multitude of factors. The duration of emo-
tions tend to be dependent on affective style, including
factors of attention and regulation. In a simple model of
emotion, emotions may however be said to have a peak of
intensity and a recovery period, in which the emotional
perturbation is lessened and returns to baseline. Emo-
tional responses can in this way differ by peak and am-
plitude (Davidson, 1998). The rise time to the peak and
the length of the recovery period of the emotion is de-
pendent on the individual. The variation of emotional
duration may overall be large, where emotions can last
a few seconds, or remain for multiple hours. If emotions
are regarded as dynamical processes, the duration and
intensity of an emotion could be dependent on the nature
of the event triggering it, the properties of the emotion
itself and the characteristics of the subject experiencing
the emotion (Verduyn et al., 2015; Verduyn et al., 2012).
Disturbances in the balance of emotional dynamics, where
multiple peaks of emotion can occur, the recovery period
is lengthened and the emotion sustained over longer peri-
ods of time, is symptomatic of mental disorders, occurring
in for example major depression disorder and generalised
anxiety disorder (Deckert et al., 2020).

Basic emotions tend to arise and subside relatively
quickly, where unpleasant basic emotions arise faster and
have longer recovery periods than pleasant ones (Ekman,
2004). Studies on the duration and intensity of emo-
tion further show that among the unpleasant emotions,
episodes of sadness tend to be most intense and last the
longest, followed by anger, with fear having a lower inten-
sity and shorter duration than anger, and disgust having
both the lowest intensity and shortest duration (Brans
& Verduyn, 2014). Enjoyment, as a pleasant emotion,
has a shorter duration than all of the unpleasant emo-
tions (Verduyn et al., 2009), and surprise differs from the
other basic emotions in an overall considerably shorter
duration (Ekman, 2004).

Colour and Emotion

The communication of emotions in humanoid robotics can
be carried out through features such as facial expressions,
speech and sound and motor action. The Epi humanoid

robot includes expressions mediated through the colour
of the robot eyes, which we will employ for the commu-
nication of emotion. Colour may be considered emotion-
ally salient, where the dependence of emotion on colour
is complex, and relies on many different factors. Emo-
tional reactions to colour are overall dependent on con-
textual, historical, environmental, physiological, psycho-
logical and cognitive factors and depends on individual
characteristics.

A review of the literature on how colour is perceived
as an emotional expression, has been undertaken, where
different such expressions could be related to specific
emotional states. According to Valdez and Mehrabian
(1994), and in terms of the Pleasure-Arousal-Dominance
(PAD) model (Mehrabian, 1996), colour hues red and yel-
low, with high wavelengths, are both physiologically and
emotionally related to arousal, whereas blue and green,
with low wave-length, are emotionally calming. An in-
creased saturation, as related to brightness and relative
perception of white, tends to be correlated with increased
arousal. Red and yellow are here conceived as unpleas-
ant, where blue and green are pleasant, depending also
on saturation and brightness, and where increased satu-
ration and in particular brightness is associated with plea-
sure. The findings may be only weakly generalisable, and
with a dependence on both gender and culture. Fugate
and Franco (2019) describes a study on english-speakers,
where participants are asked which colour they relate to
the words for basic and other emotions. Here, happiness
is related to yellow and light blue, sadness to dark blue,
anger is related to red, followed by black, fear is related
to black, followed by red and disgust is related to shades
of green and brown.

Häring et al. (2011) combines eye colour with bod-
ily movements and sound as a humanoid expression of
the Nao robot, investigating whether different combina-
tions of these expressions may produce the emotions joy,
sadness, anger or fear, in human research subjects. Eye
colour is chosen based on cultural preferences, where red
is associated with anger, dark violet with sadness, yel-
low with joy and dark green with fear. An effect is in this
study noticed in how the colour red contributes to the ex-
pression of anger. In Terada et al. (2012), basic emotions
are represented by coloured light from an acrylic sphere.
Joy is represented by bright yellow-red and green, surprise
by yellow-red, sadness by blue-purple, anger by red, fear
by purple and blue, and disgust by red-purple and blue-
purple. This setup was used in an experiment in which
research subjects related and rated the colours as expres-
sions of emotion. The results from this study provides
some support for the representation of emotion through
colour, according to the arrangement described. Tärning
et al. (2019) represents basic emotions through coloured
lighting of the eyes in the Epi humanoid robot. An ex-
periment is conducted in which its participants evaluate
what basic emotions these colours represent. Turquoise
is rated highest for enjoyment, closely followed by vio-
let, blue and yellow, with red clearly rated lowest for this
emotion. Turquoise is rated highest for surprise, followed
by neutral (grey), green, yellow, with an overall lower rat-
ing for blue, and with red distinctly being rated the low-
est. For sadness, blue is rated highest among the colours,
followed by turquoise, and with a smaller difference be-
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tween turquoise and the other colours. Red is here clearly
rated highest for anger, and also to a lesser extent repre-
sents disgust, where the evaluation of the other colours is
grouped without distinct separation. A succinct separa-
tion of colours is not found for fear.

These studies suggest that the display of different
colours may contribute to or elicit emotionally specific
reactions from human subjects. The representation of
emotions through the use of colour in humanoid robots
is however not unambiguous and may to an extent be
arbitrary, where complexities such as the meaning and
effects of displaying a changing or dynamic combination
of colours has not generally been investigated. The stud-
ies available however suggest that an overall tendency of
differentiated emotional responses to specific colours ex-
ists.

4 Setup, Implementation and Re-
sults

A somatosensory system has been constructed for detect-
ing, processing, analysing and responding to touch on
a humanoid robot head, in an investigation of affective
touch in humanoid and social robotics. In this section,
the setup of the system will be described. This includes
the materials used, the Ikaros modelling platform, which
provides a basis for cognitive modelling, the methods
used for the detection and identification of touch and the
implementation of machine learning for classification of
touch types. Results from the training of machine learn-
ing models for the recognition of touch patterns are pre-
sented. This is followed by the motivation for the possible
responses of the system and how they are implemented
into the system. This implementation relies on the map-
ping of touch types to emotions and expressions, which
will be discussed and the parameters for the setup of this
cognitive modelling program will be described. The ma-
terial design of the robot head, and the construction of
the setup for producing an electrical signal from the de-
tection of touch, is further elaborated in Johansson et al.
(2021).

The Epi Humanoid Robot

The Epi humanoid robot comprises an open humanoid
platform for developmental robotics, with a design and
features that can be used in a study of affective touch
in robotics. It is constructed by Johansson et al. (2020),
and made available for this study by the Lund Univer-
sity Cognitive Robotics group. The study was performed
on an Epi head shell, in plastic material, with a design
that allowed its production from 3D printing. In order
to optimise the setup, there was a successive develop-
ment and testing of the material, the components and
their connections within the system, as further described
in Johansson et al. (2021). The Epi humanoid robot is
directly compatible with the Ikaros cognitive modelling
framework, which is integrated with the system of this
study (Balkenius et al., 2020).

The Ikaros Cognitive Modelling Framework

Ikaros is a programming framework for cognitive mod-
elling that has been instigated by the Lund University
Cognitive Science robotics group (Balkenius et al., 2020).

It is primarily directed towards the simulation of system-
level brain and neurological functions, where different
functionalities can be tested through the application of
input data. A cognitive model may be regarded a sim-
ulation of a cognitive system, and of how information is
processed by this system. In Ikaros, the effects of cogni-
tive modelling on the data may be studied, in an investi-
gation of the corresponding neurological processes. The
Ikaros program is further directed towards the control of
robots, where the modelling of cognitive systems can be
interfaced with robotic functionality. The Epi humanoid
robot can be directly interfaced with the existing func-
tionality of the system, meaning that robot actions and
expressions can be related to cognitive processing (Jo-
hansson et al., 2020).

The Ikaros program is based on self-retained modules
of C++ code, with a particular functionality, where these
modules can be connected through the module inputs and
outputs. The inputs and outputs are defined trough the
use of XML protocols describing the data type and size
of the connections. This creates a structure of functional-
ity and connections between different functionalities, thus
making it possible for different such functionality to be
used in conjunction and dependent on each other. The
structure enables the processing of information in real-
time, with a flow of information between modules, as well
as to and from external processes.

An integration of Ikaros with the somatosensory sys-
tem, with the creation of Ikaros modules for the identifi-
cation of, and responses to touch, would mean that the
system could be related to different Epi expressions and
actions. These include changes to the colour hue and in-
tensity of the eyes, changes in pupil size and position,
body position and motor actions through e.g. a tilt of
the head, and auditory expressions produced from sound
synthesis. These features can be used in a response from
Epi, where different touch types may produce a related
Epi expression. A WebUI graphical interface acts as dis-
play for the streams of data, and the results of cognitive
modelling. It includes a representation of the Epi head,
with a graphical presentation of its expressions, including
a display of different eye colours. With a module for the
identification of touch connected to the input of a module
for response and the production of expressions, the latter
could be connected to the Ikaros WebUI or Epi robot.
Cognitive modelling of touch and related responses can
then take place in real-time, in a direct interaction with
the environment, where the system for affective touch fa-
cilitates a bi-directional exchange with humans.

The Detection of Touch

For the detection of touch, conductive paint is applied
to the inside of the surface of the Epi humanoid robot
head shell. Conductive paint is easily utilised, allows de-
tection of touch over large surfaces, its implementation
is economically cheap and the design is easily replicated
on similar robot bodies. The conductive paint acts as
a potentiometer sensor, facilitating a capacitance mea-
surement. When a conductive material, such as a human
hand, approaches or is applied to the surface, its electrical
field produces a change in capacitance of the conductive
paint area. Capacitance is proportional to the charge of
an area relative to its electrical potential.
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Figure 4: Illustration of the principal setup for the de-
tection and signal processing of touch. The capacitance
of an area of conductive paint changes and the electrical
signal of the area is directed through cords to an Arduino
touch board

Figure 5: Illustration of the topography of sensor areas,
with the related electrode indicated, in the front of the
Epi head shell.

Figure 6: Illustration of the topography of sensor areas,
with the related electrode indicated, in the back of the
Epi head shell.

The conductive paint is divided into twelve areas,
where each of the areas is connected to one of the twelve
electrodes on an Arduino touch board. The touch board
has twelve corresponding electrode sensors, and performs
the initial processing of the electrical signal in the system

(see Fig. 4). The topography of the different areas, in the
front and back of the inside of the head shell are shown
in Fig. 5 and Fig. 6. Each sensory area is connected to
an electrode of the touch board, which processes the elec-
trical signal created from touch, so that it can form the
basis of further analysis. Furthermore, the electrical field
of a hand that is placed only in the proximity of the head
can produce a limited electrical signal from the capaca-
tive areas. The electrical fields of surrounding conducting
objects may also be detected by the sensors, and the pro-
duction of a signal from this, or from for example the
movement of arms or the body of an interacting human,
in the proximity of the Epi head, will be regarded as noise
in the system constructed. Therefore, a filter is further
imposed on the signal, through the signal processing of
the touch board, as a cut-off against noise.

Figure 7: The Arduino touch board and conductive paint
from Bare Conductive.

In this study, Bare Conductive’s Electric Paint (Bare
Conductive, n.d.) was used as conductive paint, with Bare
Conductive’s Touch Board (Bare Conductive, n.d.) em-
ploying an Arduino Leonardo mini-computer, which com-
prises a ATmega32U4 microcontroller (Bare Conductive,
2020), was used for signal processing (see Fig. 7). The
touch board consists of 12 electrodes (denoted E0-E11),
where the signal of each electrode provides the input of
an MPR121 capacative touch sensor, providing analog-
to-digital conversion. The touch board has a serial out-
put for both receiving and transmitting data, as accessed
through a USB protocol. Modifications of the signal pro-
cessing can be carried out using the standard Arduino
IDE. The output of the data produced is transmitted
through connecting a micro USB cable from the board
to the USB port of a standard PC computer.

Signal Processing

With the detection of touch from multiple sensory areas
and an electrical signal providing information of the char-
acteristics of touch, patterns of touch may be established,
during a certain time frame. The initial representation of
touch comes from this measurement, and consists of the
values of the electrical signal produced and their changes
over time. The signals of the sensor areas provide infor-
mation on which area is touched and the electrical field
detected, through the changes in capacitance occurring
when charge is added to the area. These factors are de-
pendent on the surface of the hand that is in contact with
the detector over time, and on the movement of the hand,
in time.

The Touch Board uses an MPR121 capacitive sensor
to digitise the capacitive signal. The integrated circuit
charges and discharges the capacitance with a known cur-
rent during a specific time step. The current produced is
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proportional to capacitance and the area measured over
time, wherefore a linear ramp voltage is induced. The
linear ramp voltage is filtered and output as a 10-bit dig-
ital value, which represents the voltage reached during
the charge time, with a maximum value of 3.3 V and
where a voltage of zero implies that it did not exceed the
minimum value of approximately 3 mV, in that time.

As the measurement of capacitance depends on the to-
tal charge of an area, a hand touching the head will tend
to contribute to the increase in charge to a larger extent
with an increased pressure of touch, and therefore the
measurement of touch may be correlated to the pressure
applied, where pressure is force per unit area. Further-
more, the electrical field of the hand producing a signal
from other areas in the proximity of that area which it is
closest to, could be used as a measurement of the location
of the hand, beyond the localisation of the hand on the
area that produces the largest signal.

In the detection of an electrical field, the capacitance
measured may differ due to effects of the environment,
where for example the electronics of a robot head, or
close-by conductors can produce an electrical field in-
terfering with the detection. In the signal processing of
this study, a baseline signal is therefore first defined for
all electrodes and the value of this baseline is subtracted
from the total measured value, where their difference, δ,
may be considered a measurement of the differentiation
of the signal from the baseline. If δ is below a certain
cut-off, the value of the measurement is set to zero in or-
der to discard noise and interference. The signal thereby
takes on values ranging from δ to umax, where umax, is
the maximum value. For the identification of touch, the
signal values are normalised by factoring them with 1

umax
.

The sample rate of the signal processing is set to ∼28
Hz providing a reasonable resolution for the measurement
of the duration and timing of touch. The resolution in
time is theoretically 0.035 s, where effects from the charg-
ing and discharging of the capacitance of the electrodes
may affect the measurement of one such time step. In
the system for touch, touch patterns are measured dur-
ing a time window of a maximum of seven seconds. This
measurement has two hundred time steps for each of the
twelve electrode measurements, thus comprising a total
of 2400 measurement values.

Touch Types

In this study we will assume that social touch has the
characteristic of consisting of patterns and gestures of
certain generality and varying complexity. A further as-
sumption is that it is possible to discriminate between and
recognise different touches, in that different touch types
have specific connotations, convey meaning and commu-
nicate an affect. Definitions of touch gestures and types
tend to vary in the available literature, but common cat-
egorizations do exist. From related research, and with
primary sources of the study of affective touch in Herten-
stein et al. (2006) and Thompson and Hampton (2011),
and the classification used in the recognition of touch pat-
terns of Alonso-Martín et al. (2017), Cooney et al. (2012),
Huisman (2017), Sun et al. (2017), and van Wingerden
et al. (2014). Different touch types were compiled and
included in this study according to the extent that they
occurred in the literature and depending on their rele-

Figure 8: Approximate areas for touch on the Epi hu-
manoid robot head.

Touch Definition Areas

None Effects of background and
random interaction. All

Short
touch

Tap Quick and gentle touch with
one or multiple fingers.

P:9,10
S:7,8,11,12

Poke Quick jab or prod with one
finger. P:6 S:4,5

Press Brief prod with multiple
fingers. P:6, S:4:5

Slap Quick hit with the fingers or
the flat of the hand. P:9,10 S:7,8

Long
touch

Pat
Repeated and quick prods,
with the fingers or the flat
of the hand.

P:1 S:2,3

Pick Repeated and quick prods,
with one finger. P:4,5 S:6,1

Hold Sustained grasping per-
formed with one hand.

P:7+9+11,
8+10+12
S:4+7+9,
5+8+10

Stroke
Directed movement with
the fingers or the flat of the
hand.

P:5→10,4→9
S:10→5,9→4

Rub
Repeated back and forth
movement with the fingers
or the flat of the hand.

P:4,5 S:6,1

Areas is the area on the Epi head, as illustrated in Fig. 8, where P
denotes the primary areas, and S denotes the secondary areas.

Table 1: The names and definitions of touch types, with
the areas for the application of touch given.
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vance to the study. The definitions chosen are directed
towards basic affective touch under the condition that
the touch is applicable to a humanoid robot head with
non-elastic skin in a stationary setup. In creating an
overview of touch types, differently named touch types
with the same definition of execution were considered the
same and thus merged under one name. Touches specif-
ically involving a location were considered generally, so
that e.g. “stroke cheek” is considered a “stroke”, and “rub
back” is used as “rub”. Touch types such as “shake”, “lift”,
“squeeze”, “twist”, “tickle” or “scratch”, were not consid-
ered valid and meaningful in the application on a robot
head shell, nor inviting a straightforward execution in a
possible experiment involving research subjects applying
touch to the robot.

In the creation of such a nomenclature, the differ-
ent touch types should have distinguishing characteris-
tics, but it is also possible that the combination of differ-
ent types of touch could comprise a more complex, but
yet relevant communication through touch gestures. The
touch types should thereby describe basic components of
touch communication, that combined can be considered
to convey further meaning and communicate affect. We
also distinguish between characteristically short and long
touches, where short touches are more basic in nature,
and where the long touches have patterns that are addi-
tionally dependent on time. The short touches may cor-
respond to the beginning parts of long touches and the
long touches can overall comprise parts that correspond
to short touches. The long touches may also be consid-
ered part of a continuum, where the characteristics of one
touch could provide a foundation for, or be a part, of the
characteristics of other types.

Nine different touch types were thereby defined. The
short touches are: “tap”, in which there is quick and gentle
contact of one or multiple fingers with the touch object,
“poke”, where a finger is used in a quick prodding ac-
tion, “press”, involving multiple fingers performing a brief
pushing action, and “slap”, in which the hand is flattened
and the fingers or the hand is used in a quick hitting
action. The long touches are: “pat”, where the hand is
flattened and the fingers or the hand repeatedly and with
short intervals quickly prod the object, “pick”, in which a
finger repeatedly and with short intervals quickly prods
the object, “hold”, where the touch object is grasped and
held by one hand in a sustained action, “stroke”, where
the fingers or the hand are in contact with the touch ob-
ject while performing a movement along it and “rub”, in
which the hand is flattened and the fingers or the hand is
in contact with the touch object while performing a back
and forth movement on it. In order to include a possibil-
ity for other interaction to occur, a touch type referred to
as “none” is further included. It will primarily be related
to signals produced from background interference and in-
teraction patterns that may be deemed random or acci-
dental. It will also represent a misidentification of touch,
in that the other touch types are not forced to include
badly defined patterns, making the prediction certainty
a more meaningful quantity by including the possibility
of an interaction outside of the defined types for affective
touch. The touch types and their definitions are compiled
in Table 1.

Examples of how short touches may be considered a

part of longer ones here includes how a “tap”, “press” or
“slap” may be the beginning of a “pat”, “hold”, “stroke”,
or “rub”, in the approach of the hand to the touch ob-
ject. These short touches could also be components in
the repeated prodding of a “pat”. A “poke” may be be
the beginning of a “pick”, and a “pick” could consist of
repeated “pokes” with short intervals. The characteris-
tics of long touches could for example be related in how
the “pat” and “pick” both comprise patterns of repeated
touches and may interchange, or in how the sustained
trait of a “hold” could provide the foundation of, or be
part of a “stroke” or a “rub”, where “stroke” and “rub”
both comprise movement.

In the literature, the location of touch is sometimes
given or indicated, but is overall not clearly defined and
related to specific touch types. We have therefore defined
primary areas of touch, for the different touch types, ac-
cording to the definitions in the literature reviewed, where
possible and relevant, but generally for being a probable
location of execution and to provide a reasonable plac-
ing for the application of the touch type to the humanoid
head. Secondary areas of touch were chosen as the rel-
evant and applicable neighbouring areas of the primary
ones, where the “stroke” motion is reversed in the sec-
ondary case. The primary and secondary areas for the
different touch types are listed under Areas in Table 1,
where Fig. 8 shows the numbers, from 1 to 12, assigned
to the different areas of the Epi robot head. It should be
noted that these areas describe the location and move-
ment of touch and are not identical to the conductive
paint areas on the inside of the head, used for the detec-
tion of touch (see Fig. 5 and Fig. 6).

The Identification of Touch

In the setup of the system for affective touch, the signal
produced from the detection of touch provides the input
to the touch board where it is converted and processed, as
to produce data for the identification of touch. The out-
put from the touch board is used as input for the Ikaros
program, to further analyse the signal and to enable the
cognitive modelling of a somatosensory system. The in-
stallation of Ikaros was done on a Linux platform, and
the Arduino board was connected through a USB port
to a standard computer running Ikaros. To create a suit-
able treatment of the signal in correspondence to affective
touch, four new modules in Ikaros have been developed
(Karlsson, 2021). The different stages of processing and
analysis, with a division between these modules, is illus-
trated in Fig. 9.

The continuous output from the touch board provides
a stream comprising the signal from detection, and a first
module in Ikaros constitutes an interface, between the
USB port and Ikaros, which is compatible with the seri-
alisation and format of the output from the touch board
and the USB protocol. In the module, the input is format-
ted appropriately and the data can through the output
of the module be supplied to other Ikaros modules. The
output stream of the module consists of an array with the
values of the signal for each time-step, where one row of
data comprises the twelve values measured by the elec-
trode. The values represent the strength of the signal
from the detection of touch, which is set to zero when
there is no triggering of touch above the noise level in the
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Figure 9: Illustration of the stages and general chronology of the system for affective touch. In the inital signal
processing of the touch board, the time-steps and signal are defined. In the first Ikaros module an array for time-steps
is defined, followed by the identification of touch through the buffering and definition of a matrix for touch over a time
window, in the second module and the prediction of touch types from the defined touch, in the third module. The
fourth module is dedicated to the response and expressions of the system, where touch type certainties are factored
with emotion strength ratios and the result is mapped to colours, and an Epi eye colour expression is produced.

touch board signal processing.
The array of each time step of the first module pro-

vides the input of the second module, which enables the
basic identification of touch. The signal values during an
interval of the ten latest time-steps will be referred to as
a buffer. The buffer provides a sample of the signal pro-
duced during that time, and a summation of the signal
values of each buffer is used to determine whether a new
touch has started and whether it is ending. The start and
end of a touch is defined by imposing a condition on this
sum to be above or below a certain level. When the con-
dition for the start of a touch i fulfilled, a possible time
window of seven seconds is started, where arrays from the
interface module are added to a two-dimensional matrix,
with rows representing time steps, and with the columns
containing the signal values for each time-step. The gath-
ering of data for the identification of touch can end when
the buffer condition is fulfilled, or when the time-window
reaches it end. If the gathering ends due to the buffer
condition, zero values are added to remaining matrix of
the time window, as to always provide an equally sized
matrix, whereupon the time window ends before the full
seven seconds have been concluded. A short touch will
thereby tend to produce an matrix of initial values above
zero, followed by a larger interval of zero values. A longer
touch may also end before the conclusion of the time win-
dow, with the adding of zero values for the remaining
rows. If a touch is applied during the full time window,
and continues beyond it, a re-triggering of a new time-
window will tend to occur, as the first time-window ends.
The matrix thereby produced represents a measurement
of touch, and its values may be regarded as the identifi-
cation of a touch pattern, that can be used for machine
learning classification.

For machine learning from an artificial neural network
(ANN) in Ikaros, a library from the Tensorflow platform,
for machine learning algorithms and related implemen-
tations, is used (Martin Abadi et al., 2015). The basic
structure of the ANN comprises a sequential model with
input, output and two hidden dense layers, where each
node connects to all nodes in the adjacent layer. The in-
put is adapted to the format of the identification matrix,
of 2400 places, and the hidden layers consist of 256 and
32 nodes each. The number of outputs in an ANN classi-
fication task are set to the number of classifiers, which

here corresponds to the ten different touch types. A
batch normalization layer is applied after the first dense
layer, fixing the medium and variance values for further
inputs and preventing over-learning. A drop-out layer is
employed after the second dense layer, to prevent over-
learning, increasing the generalisation of the learning, by
randomly setting node weights to zero. In order to add
higher dimensions and enable a more complex prediction
of patterns, an activation function is applied to the com-
putation of the dense layer weights. The activation func-
tion of dense layers in our model is relu, which stands
for rectified linear unit, which handles negative gradient
values in computation, conferring advantages such as ef-
ficiency and improved quality of gradient descent calcu-
lations. For the output layer, a softmax function, which
is a normalised exponential function, is used. When the
value of the output is determined, a loss function calcu-
lates whether the arrived values are close to or differ from
the expected value. If a value differs significantly from the
expected value, this is an indication that the network cal-
culation of weights and bias should confer an adjustment
to improve pattern recognition. The Adam optimisation
algorithm is therefore applied to the learning, with the
learning rate set to 0.01, for further promoting efficiency
and reducing noise.

The Scikit-learn library for machine learning was em-
ployed for the application of a Support Vector Machine
in this study (Pedregosa et al., 2011). The effectiveness
of an SVM depends on the selection of the kernel, the
kernels coefficient γ, which is set to prevent overlearn-
ing, and the soft margin parameter C, which sets the
boundaries within which risk minimisation are applied
to a hinge-loss function, used for determining whether
the calculation should be adjusted. The SVM model em-
ployed in this study is non-linear and uses a Radical Basis
Function (RBF) kernel, which is applied for overcoming
the space complexity problem of memory usage, by using
support vectors in training, rather than accessing the full
data set. The parameter C could be considered a regular-
isation parameter in the SVM, where a a smaller margin
may be accepted with a larger value of C, dependent on
if the decision function provides a better classification of
all training points. A lower C will tend to lead to a larger
margin and therefore a more plainly applicable decision
function, but however potentially reduces training accu-
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racy. In this study, the parameter is set to a relatively
high value, C=100, where accuracy of classification is em-
phasized, compared to a maximisation of the margin of
the decision function. The RBF kernel coefficient γ pa-
rameter defines the impact that a single training example
can have on the classification, where lower values of γ con-
fers a possibility for larger such effects and higher values
of γ will mean the imposition of greater restrictions. The
γ parameter is inversely related to the radius of influence
of the samples selected by the model as support vectors.
The model of this study employs a setting of γ=1, with a
relatively restrictive scaling, imposing a comparative lim-
itation on the effects of training data on classification. An
SVM employs feature weights in the representation of the
hyperplane, and our model here uses the scheme of bal-
anced weights, where there is an automatic adjustment
of weights depending on, and inversely proportional to,
the frequency of the different classes in the classification
input.

The system thereby comprises a cognitive model for
the identification of touch, where a matrix representing
touch is created and machine learning is used for the
recognition of touch types. The certainty of prediction
is defined as the relative probability of the prediction be-
ing true, and it is given directly by the machine learning
model. The output of the prediction module in Ikaros is
the certainty values for all touch types. This allows for a
categorisation of touch to be carried out and a possibil-
ity of recognising which touch type a particular touch is.
With the identification process integrated in the Ikaros
framework, the predictions of touch can be applied in
real-time, making the categorisation of affective touch in
a direct interaction with an Epi robot possible.

Training and Accuracy

Touch areas N.o.
touches

Accuracy
(ANN)

Accuracy
(SVM)

Primary 1000 0.90 0.88
Secondary 1000 0.87 0.87
Total 2000 0.86 0.88

Table 2: For the data samples from primary areas, sec-
ondary areas and in total, the number of touches applied
and the accuracy produced in ANN and SVM machine
learning, respectively.

For training, touches of different types are applied to
the Epi head, where the matrix of time-steps and signal
values that is produced in the identification of touch, is
used as the input for learning. In the supervised learning
applied, a target label is used for relating the touch pat-
tern to a particular touch type, and provided as input for
classification. The different touch types are applied in a
approximate fashion, according to the description of Ta-
ble 1, and each touch type is repeated multiple times, pro-
ducing samples of data that can be used in the machine
learning training of a model. The data is divided into
training, test and validation samples, according to best
practice, so that 70% of the data set is used for the train-
ing of the model, 15% is used for validation of training,
and 15% is used for testing the model and producing an

evaluation measured through accuracy and loss. Train-
ing is executed through the functionality of the machine
learning frameworks and the validation of the training
provides an estimate of how classification is thereby de-
veloped. With learning over epochs, turns of fitting the
data, a recognition of patterns may be established and
an increase in the training and validation accuracy and
a decrease in the training and validation loss, will tend
to occur. Testing is then carried out, where an overall
evaluation of accuracy and loss can be provided from the
test data. The SVM model did not allow a division into
validation and test data, and the test sample was used
for both the learning and the evaluation, which should
be noted in comparing the test accuracy of the ANN and
SVM models.

The short touches were applied with a duration of ap-
proximately 0.5-1.5 s, and the long touches were applied
with a duration of approximately 1.5-4.5 s. Two different
samples of data, with regard to the touches applied, were
gathered, where the first contains a sample of touches
that were applied to the primary areas, and the second
contains a sample of touches that are applied to the sec-
ondary areas, as described in Table 1. The samples are
of the size of 1000 touches each, for the primary and sec-
ondary areas respectively, totalling 2000 touches, which
are distributed equally over the different touch types,
with 200 touches applied for each touch type. The “none”
touches are created by lowering the buffer threshold for a
touch to start and moving hands and arms in the vicinity
of the head, with the system thereby detecting what may
be considered by-products of touch interaction, occuring
as a background to the execution of touch.

As presented in Table 2, the learning from the primary
area touch sample, produces a test accuracy of approxi-
mately 0.90 for the ANN, and the SVM gains an accuracy
of 0.88. The learning from the secondary touch area data
produces a test accuracy of approximately 0.87 for the
ANN and with the same value of accuracy for the SVM.
When merging the two samples, and thereby gaining a
sample of 2000 touches on both primary and secondary
areas, the test accuracy is 0.86 for the ANN, and 0.88
for the SVM. Thus it appears that the effect of mixing
touch areas, to the extent done in this study, so far only
has a marginal effect on the accuracy of learning in the
classification of touch types, and that learning can occur
where different touch areas coincide between touch types.
A differentiation of touch characteristics can thereby be
upheld also in a varying application of touches. Further,
notable differences between the ANN and SVM accuracy
can not be observed, indicating that the different models
share classification and that learning is optimised across
models. The comparison of model accuracies is a cross-
check also for the effects of changing and adding touch
areas to the analysis. The fact that neither model shows
a markedly lowered accuracy as a result of this, implies
that a reasonable classification of the data from touches
on varied touch areas is not provided by coincidence.

Mapping of Touch and Emotion

A test study, described in Johansson et al. (2021), was
made to establish a relationship between basic emotions
and the touch types defined. Forty participants of an on-
line survey were shown a recorded video of different touch
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Enjoyment Surprise Sadness Anger Fear Disgust

Tap 0.61 0.00 0.08 0.31 0.37 0.15

Poke 0.01 0.45 0.19 0.59 0.28 0.29

Press 0.00 0.43 0.22 0.56 0.47 0.36

Slap 0.00 0.63 0.45 0.89 0.60 0.41

Pat 0.40 0.38 0.21 0.29 0.18 0.16

Pick 0.03 0.65 0.19 0.46 0.31 0.31

Hold 0.61 0.58 0.16 0.16 0.34 0.14

Stroke 0.73 0.38 0.28 0.01 0.05 0.08

Rub 0.63 0.29 0.21 0.05 0.10 0.06

The scale for strength were set from values None (0.0), Weak (0.5) and Strong (1.0).
Shading of emotional strength is applied as: [0.0-0.2], [0.2-0.4], [0.4-0.6], [0.6-0.8], [0.8-1.0]
The strongest emotion related to a touch types is set to bold.

Table 3: Table of expected emotional responses from touch, with the mean strength of the emotion given as a fraction
corresponding to the mean value assigned to it. Shading is applied to the table for an overview, where a darker shade
indicates a stronger emotional response and a lighter shade a weaker emotional response

types being applied on an Epi robot head and asked to
provide a judgement on which of the six basic emotions
they would expect to constitute an emotional response
to that touch. The scale for emotional strength ranged
from 0.0, for the choice of “none”, meaning no emotional
response, to 1.0, for the choice of “strong”, a generally
strong reaction, where a value of 0.5 is defined as corre-
sponding to the answer “weak”. The results of this study
on the mapping of touch-emotion are presented in Ta-
ble 3. For every touch, the expected triggered emotion
and the mean strength assigned to it, are shown. It can
be observed from this table that enjoyment has a rela-
tively high representation among the emotions selected,
and that anger and surprise are also often considered ex-
pected emotions to be triggered from touch. Sadness, fear
and disgust are less commonly related to the touch types
defined, but a “slap” includes a higher strength for sad-
ness and fear in its response, and a “press” is evaluated
as triggering fear with a strength of 0.47.

Mapping of Emotion and Colour

With basis in the literature, as previously described, a
mapping of colour to emotion has been defined, as to
provide robotic response in the form of Epi eye colour
expressions. The six basic emotions are here represented
by an expression of colours distributed over colour space
and related to distinct colour characteristics. A differenti-
ation has been made between primarily enjoyment, which
tends to be a pleasant emotion, and secondarily surprise,
which may be neither pleasant nor unpleasant, to the
other emotions, sadness, anger, fear and disgust, which
tend to contain a larger unpleasant component. Enjoy-
ment and surprise are mapped with a higher brightness,

Emotion Colour RGB

Enjoyment Turquoise (64,224,208)

Surprise Gossamer
green (48,144,127)

Sadness Midnight
blue (25,25,112)

Anger Venetian red (200,8,21)

Fear Tyrian purple (94,8,68)

Disgust Cactus green (92,117,94)

Table 4: The mapping of emotion to colour. For each
basic emotion, the conventional colour name and corre-
sponding RGB values are noted.

and closer to the RGB value of white, (255,255,255), while
the unpleasant emotions will tend to have comparatively
lower brightness and be closer to black, which has an
RGB value of (0,0,0). As a default colour we have chosen
middle grey, with an RGB value of (119,119,119), which
will act as a centre to the expressions produced, and to
which the colour expression will return when there is no
emotional response.

In this study, turquoise will be mapped to enjoyment,
gossamer green is mapped to surprise, midnight blue to
sadness, venetian red to anger, tyrian purple to fear and
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cactus green to disgust. In Table 4 the colours and the
corresponding RGB values are noted. The RGB model is
additive in that it allows for the creation of new colours
through the addition of RGB values. Colour may in this
way be combined from a division in colour space, where
the colour characteristics are retained relative to their in-
clusion in the combined result. This means that emotions
can be represented by a combination of colours, where
the representation of an emotion is proportional to the
strength of that emotion. The expressions produced by
the system could in this way be regarded as representing
complex emotions.

Response to Touch

For the treatment of the response to touch in the system,
an additional, fourth, Ikaros module has been created (see
Fig. 9, for an overview). The output from the identifica-
tion of touch is an array consisting of ten columns with
certainty values from the prediction provided, and these
certainties are used as the input for the response module.
The prediction certainties of the ten touch types then
provides the basis for determining a relevant response.
Taken as a summation of patterns, the set of certainty
values may in total be considered an approximation of
the touch applied, representing a combination of touches,
where the different types are weighted according to their
certainty value. Approaching the predictions in this way
allows for the treatment of complex touch, where touch
is comprised of the categorical touch types as basic ele-
ments, or where different types are applied successively
during the duration of the time window.

In order to allow for responses also during the course
of the time window, which can last up to seven seconds,
the application of touch is divided into different stages.
These stages are defined to depend on the buffer signal
value and how this value changes. Buffering is carried
out in the second Ikaros module, for the identification of
touch. If the change in signal strength over the time of
the buffer selection is a positive value, above a certain
limit, i.e. the signal is increasing, the touch is defined to
be in the “attack” stage, most likely in the beginning of a
touch, where an increase in signal strength follows from
the placing of the hand on the head. If the absolute value
of change is below that limit, the application of touch is
defined as being in a “sustain” stage, during which the
hand is placed on the head, and not yet removed from
it. If the value of the signal is negative, with an absolute
value above the limit, this is regarded as the “release”
stage of the movement, where the hand is pulling away
from the head. Predictions are then possible when the
stage of the signal changes from “attack” to “sustain”, and
a signal is first established, or from “sustain” to “release”,
where a fuller prediction can be made. With a release, it
is likely that the touch is finished and the overall predic-
tion is executed and the time window ended. It would be
possible for a touch to contain many such phases however,
where for example the repetitions of a “tap” or “pick” may
be detected as changes between these stages. Predictions
are made through the machine learning model of the third
Ikaros module. By allowing for predictions to take place
during the extension of the time window, it is possible to
produce a more dynamic response, where expressions may
be communicated before the application is fully finished,

and dependent on the characteristics and touch compo-
nents of the touch applied thus far. This gives the human
party administering touch a continuous feed-back which
allows the system to approach the qualities of real-time
interaction further.

In producing a response, we will assume that touch
should be mapped to emotions as a primary arbiter of
such a response, where the values of Table 3, provides
the relative representation of emotions related to touch
types. The prediction certainty values for the different
touch types are factored with the corresponding ratio rep-
resenting the strength of an emotion, to produce values of
relative emotional representation as a response to touch.
The prediction certainties of the touch types identified
from the touch applied, are thereby used as a weighting,
representing a combination of touches and affecting the
proportion of emotions that will comprise the emotional
response. In the Ikaros module, a matrix of ten columns
corresponding to touch types and six rows for emotions,
are filled with values representing the resulting emotional
response data, with the values of the strength of the six
basic emotions weighted by prediction certainty accord-
ing to their relation to touch.

In the system for affective touch, the colour of the Epi
eyes is used as an expression, and in order to further pro-
duce an expression as the communication of a response,
the emotional response must be mapped to that colour
expression. Colour is in this study mapped to emotion,
where different emotions correspond to a certain setup of
RGB values, according to Table 4. Colour is here repre-
sented by values from the RGBmodel, in a combination of
the red, green and blue colour hues. The RGB values cor-
responding to different basic emotions are factored by the
relative values of the emotional state, where the combina-
tion of such values are normalised to the sum of relative
values, to produce the RGB value of the combination.

The representation of emotions are weighted according
to:

ERep,j =
∑
i

CTouch,i · ERat,j , (1)

where ERep,i is the representation of emotion i, CTouch,i

is the prediction certainty of touch type i, and ERat,j is
the strength ratio of emotion j, related to touch type i,
where the different touch types, i, are summed over. The
RGB value of an emotion is then set as:

~ERGB,j = ERep,j · ~ERepRGB,j , (2)

where ~ERGB,j is the weighted RGB value and ~ERepRGB,j

is the RGB value, of emotion j. The total RGB value of
the expression is thereby given by:

~ETotRGB =
∑
j

~ERGB,j , (3)

by summing the RGB values of the different emotions,
j, and the weighted emotions thereby contribute to a
summed RGB value. The sum of RGB values is nor-
malised to fit the RGB value range, so that expressions of
colour are in this outline limited to the ranges of the RGB
setup and the related colour space. The combination of
colours according to this scheme, enables the production
of an RGB value that depends on the relative represen-
tation of emotions, according to the touch-emotion map-

14



ping and dependent on the prediction certainties of the
current touch types.

As to include a duration of emotions in the descrip-
tion of the response, and to make the responses further
dynamical and temporally interactive, a simple and gen-
eralised function for the changes of emotional intensity
with time is defined as:t < tpeak : AEmo,i = aEmo,i · e

(t−tpeak)

tpeak

t > tpeak : AEmo,i = aEmo,i · e
−(t−tpeak)

tpeak

(4)

where AEmo,i is the amplitude of emotion i, at time t,
and aEmo,i is a factor of emotional amplitude that will
is set for emotion i, and tpeak is a set time at which the
peak in amplitude will be reached. The emotional in-
tensity will hence describe an exponentially shaped rise,
until it reaches its peak, where it decays towards zero.
With different values set for aEmo,i the amplitude will
be dampened to different extent, approximating the dif-
ference in intensity and duration of different emotions,
i.

To further provide temporal complexity in the pre-
sentation of a response, functionality has been developed
for the inclusion of a history of emotions as a basis for
the production of an expression. This means that when
a new emotional response occurs, a representation of the
history of emotions are added to the emotions currently
expressed, with relative values representing the distri-
bution of emotions that have constituted the responses
of the interaction thus far. The historical emotions are
treated as a group, providing a background to the current
emotion, where the values of emotional strength for this
group becomes part of the calculation of an expression.
As a group, the historical emotions will further have a du-
ration and emotional intensity that is separate from the
current emotions. With the possibility of including such
a background, the real-time interaction expressions will
comprise a merging of colours over time that is dependent
on the previous interaction.

Parameterisation and WebUI

Figure 10: Screenshot from Ikaros WebUI for displaying
an Epi response to touch. Parameters are set to default
values, as visualised by the sliders in the upper middle
and right, and a tap is detected, as seen in the lower left
bar graph, with an enjoyment emotional response, as dis-
played through the lower right bar graph. An expression
is produced, as shown by the above left Epi head graphic,
which displays a turquoise colour of the eyes.

In the Ikaros response module, a parameterisation has
been created for the number of touches that should be
part of the further weighting of a response, so that it is
possible to vary this value within the setup. A parameter
is also related to prediction certainty, making possible a
cut-off on the touch type certainty values, where touches
with a certainty below that value should be excluded from
factoring in the response. For the default setting, shown
through the Ikaros WebUI in Fig. 10, there is a selec-
tion of one touch type, where the requirement on touch
certainty is that it should be above zero. A further pa-
rameterisation is applied to the number of related emo-
tions of each touch type, to be included in the factor-
ing and used in the calculation of the colour expression,
where the emotions are selected to be included according
to the strength fraction, with higher values taking prece-
dence. In the default setting, one emotion is selected, so
that the primary emotion of the current touch types pro-
vides the basis for an expression only. Fig. 11 shows the

Figure 11: Screenshot from Ikaros WebUI for displaying
an Epi response to touch. Parameters are set to select
three touch types (slider in the upper middle). Primarily
a poke, secondarily a slap, is detected and a none touch
for background is also identified (lower left bar graph).
An emotional response of anger, disgust and surprise, in
that order of magnitude of strength, is produced (lower
right bar graph). An expression of red-brown colour is
produced by the merging of related colours in the eyes of
the Epi head (above left).

WebUI from a parameterisation allowing three touches
and three emotions to occur as a result of a touch. This
means that the emotions, weighted from the touch cer-
tainty and the strengths of the emotions related to the
different touch types, occur according to a normalised
distribution of their relative representation. The RGB
values corresponding to the emotions weighted by cer-
tainty thereby contribute to the expression in the form of
Epi eye colour. In this way, an increase in the complexity
of the identification, response and expression, is enabled,
as multiple touch types and emotions contribute to the
final expression.

To enable a further increase in complexity, the inclu-
sion of an emotion history is also parameterised. The
emotion history is by default excluded, but can be in-
cluded to an amount dependent on the emotion history
parameter. This parameter has a range from zero to one,
where a value of zero means an exclusion of the history,
and a value of one that the relative values of the emo-
tion history contributes equally as the current touches in
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Figure 12: Screenshots from WebUI for displaying an
Epi response to touch. Two possible touch types and
two emotions are selected through the parameterisation,
where a hold and stroke are identified. Above: The emo-
tion history parameter is set to zero, and the response is
a representation of the current emotions enjoyment and
surprise, in that order of magnitude. Below: The emo-
tion history parameter is set to one, and the response is
a representation of the current emotions enjoyment and
surprise, which are reduced compared to the when a his-
tory was not included, and with anger and fear added as
specifically historical emotions.

the calculation of the colour expression. This is exempli-
fied in Fig. 12, which shows the emotional representation
without and with a history included. When the duration
has passed the peak of intensity, the historical emotions
tend to have a lower intensity than the current emotions,
due to the intesnity having decreased for a longer time.

A parameter is defined for the touch envelope factor,
which sets the level at which a new stage in the envelope
of a touch occurs, among the different stages, “attack”,
“sustain” and “decay”. This setting determines the initi-
ation of predictions during the time window, where the
envelope factor is multiplied with the general buffer size
for triggering touch. The default value for the envelope
factor is ten, meaning a change in signal value of ten
times the buffer signal is used to set the limits of the dif-
ferent stages of touch. Setting this parameter to a value
of one would in turn mean a triggering of different stages
according to the triggering of the general touch identifi-
cation, according to the buffer size. With an increase in
the value of this parameter, less triggering of the stages of
touch would tend to occur. Depending on this parameter,
there will be a production of responses from the shifting
of stages during the time window, and thus it is a setting
affecting the temporal changes of the response and the
dynamics of the expression.

Furthermore, the duration of emotions is adjusted by

the emotion peak time parameter, which sets the time
at which there is a peak in intensity of the emotional
response. As previously described, this means that there
will be an increase in intensity up to this point, and there-
after a decrease in intensity for the remaining duration.
Changing this parameter changes the peak of intensity of
all emotions, where this will have an effect on the changes
in intensity of current emotions, and the merging of these
into an expression. It will also correspond to changes
in historical emotions, and their contribution to the ex-
pressions produced. The amplitude factor, for setting
the overall relative intensity of the emotions, is also pa-
rameterised, but accessible only through the Ikaros XML
protocol for the response module. This parameter setting,
allows individual amplitude factors to be set on each emo-
tion, thus governing their relative relationship in intensity
between the emotions included.

Through such a parameterisation of the system, a
transparency in what results are produced from cognitive
modelling is achieved and an easily accessible interface
is created for the response settings. In possible experi-
ments involving the system, the parameter settings could
thereby provide a well-defined basis for how the response
is produced.

5 Conclusions and Discussion
This study presents a system for 1) detecting touch, 2)
classifying different types of touch, 3) relating touch and
emotion 4) relating emotions to a robot expression. A
model of interaction through affective touch in robotics
is introduced and the applicability of that model is exam-
ined through the construction of such a system. This is
an investigation of whether a somatosensory system for a
humanoid robot can be constructed from easily applica-
ble components, in a solution that could be reproduced
for different robots, and if the implementation of a corre-
sponding response can enable a functional bi-directional
interaction. The system for affective touch comprises the
detection of touch on a robot head, the processing of a sig-
nal from detection, into a digital representation, of touch,
and the classification of the type of affective touch ap-
plied, where an expression is produced as a representation
of a related emotional state. It provides a bi-directional
interaction in real-time, where touch interaction produces
the communication of an emotional expression.

The system for affective touch is applicable to a hu-
manoid robot that has an input of at least two hundred
signal values from twelve different areas of touch over
seven seconds. The quality of the identification of touch
and the relevancy of its responses are significant to the ap-
plicability of the system. Machine learning has been used
to enable the recognition of touch types “pat”, “poke”,
“press”, “slap”, “stroke”, “tap”, “pick”, “hold” and “rub”,
and a type, “none”, for background noise. Data samples of
touches on what was defined as primary and secondary ar-
eas of touch on the humanoid head were created and used
for the training of two different machine learning models.
Training on the total sample of touch types provides an
accuracy above 85%, in the classification of touch, for the
ten touch types, with similar values for an artificial neu-
ral network and a support vector machine model. The
system relates touch to emotion, which in turn is related
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to robotic expressions. The certainty of the prediction of
touch types is factored with values from an evaluation of
related emotions to create a representation of emotion as
response. Emotions are related to colour, by way of RGB
value, where a representative value is produced from fac-
toring the value assigned to the emotional response to the
RGB value of the related colour. The rigidity of dividing
affective touch into different touch types is loosened by
allowing a combination of touch types to be represented
by their values for certainty of prediction. A combination
of different touches may provide information on applied
touches that goes beyond singular categories, allowing for
a complex modelling of affective touch and its responses.
The response is divided into different stages, with possi-
ble different predictions of touch types and corresponding
responses, in real-time interaction, as to provide a dy-
namical exchange. The system further allows for a con-
sistent framework for the investigation of affective touch
in robotics, by providing a parameterisation of its com-
ponents. Such a parameterisation can further be used as
reference for the setup of the system. The parameterisa-
tion includes possibilities for modifying the handling of
the touches and emotions included, and whether to in-
clude previous emotions in the calculation of the current
expression, as well as for the treatment of emotion with
regard to its duration and intensity.

In the construction of a system for affective touch,
many choices must be made regarding the definitions of
touch, emotions and expressions and in relating their rep-
resentations. Touch types are defined as patterns of touch
and it could be that in this conceptualisation, the discrim-
ination of touch types becomes too gross, where relevant
attributes are excluded, as for example machine learning
requires a division into characteristic patterns for learning
to occur with a reasonable accuracy. It can be noted that
in the training applied, the touches will tend to be differ-
ently executed, due to the human factor, thus adding vari-
ation to the data, but however within certain boundaries.
The combination of different touch types in the system
also makes possible a complex analysis of touch, beyond
the limitations of the touch type definitions. The rep-
resentation of emotion further requires gross estimates,
as the literature overall does not provide detailed data
on for example the scale of emotions, how different emo-
tions may mix and merge, or interrelate over time. The
strength of emotions is in this study factored with pre-
diction certainties and normalised to fit the format of
the colour expressions. This may exclude the scaling of
emotions as they naturally occur, and in the system, a
multiplicity of emotions are considered to merge into one
emotional state and together produce an expression. The
expressions produced are limited to the colour scale, and
spread out over colour space, to provide a differentiation
of expressions. Overall, the system could however be con-
sidered a principal assessment of the phenomena involved
and may represent broad strokes of basic human function-
ality applicable to a humanoid robot.

The validity of the system could be further assessed
through experiments involving human participants, pro-
viding their judgements on the quality of interaction. A
system for affective touch, including possibilities for bi-
directional interaction in real-time, could in this way be
regarded a setup for experiments in humanoid and so-

cial robotics, involving touch. A future study could en-
tail research participants applying touch, directly inter-
acting with the robot and evaluating the identification
and responses it provides. Further development could
allow for such interaction to update the somatosensory
system through learning during the course of interaction,
including both supervised and, if possible, reinforcement
or unsupervised learning, with direct responses from the
research subject providing directing values for the learn-
ing process.

Location is of particular importance in affective touch.
A setup alternative to the one of this study would have
to be applied to, for example, distinguish between affec-
tive touch on the lips and the chin of the humanoid. To
improve the design, a higher granularity of touch areas
would be a first possible step, where this study was lim-
ited to twelve such areas. While the number of nerves in
the human skin will not be approached in similar stud-
ies, an increase in points of detection would provide an
important contribution to localisation. There is however
a down-side in that materials for detecting touch tend
to be expensive and inaccessible. In the identification of
touch, it would further be of interest to enable the recog-
nition of whether more than one hand is applied to the
robot, allowing for additional important distinctions in
touch types. This could be achieved by applying cluster-
ing algorithms, where a dependence on the spatial ability
of the detection is again of importance, but where cluster-
ing may be carried out from the values of signal strength
and a calculation of distance, based on the relationship
between the sensory areas of the robot head. Pressure
sensitivity is an additional factor, and an increased reso-
lution in pressure could provide important characteristics
to the classification of touch. A textile-based capacative
material may be placed on the outside of a robot head as
its contact surface, skin, and in direct contact with the
touching hand. The application of pressure to such a tex-
tile could change its texture and with that its capacative
detection. Video could further be used in conjunction
with the detection of an electrical field, where this would
correspond to the sense of sight and its effects on the
perception of affective touch. The use of video would in-
troduce a complexity of setup, but could contribute with
important information to the recognition of touch. The
importance of context to touch, including the history of
interaction and dependence on personal relationships may
be difficult to study, but is nevertheless of further great
importance, if advances in the fields of humanoid and so-
cial interaction involving touch are to be made.

In the academic study of touch types, we can conclude
that an improved foundation of definitions for touch in-
teraction is needed. These definitions would benefit from
including at least the following factors: 1) part of the
hand that is in contact, 2) movement pattern, 3) dura-
tion, and, 4) pressure or force. The relationship between
touch and emotion needs further study, as neurological
studies of touch usually do not provide useful information
on more direct links or mappings between these phenom-
ena and studies that do make these connections do not
provide details on those relationships.

The mechanism of measuring changes in capacitance,
caused by touch, is not directly analogous to that of hu-
man touch, in which sensory neurons such as mechan-
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ical and thermic receptors provide the mechanism, but
it provides a parallel function. For the purposes of this
study in humanoid and social robotics, the detection and
identification of touch is carried out in such a way that
a parallel is established. The investigation of a system
for affective touch has relevancy to the problem of per-
ception, providing a model of the sense of touch, it en-
hances the humanoid features of a robot and furthers an
understanding of the requirements for a functional so-
cial cognition. In humanoid and social robotics, robot
behaviours cannot become exactly like those of humans,
and the behaviours of current robots are overall far from
directly correlated to human behaviour. In approaching
an embodied interaction that includes touch, robots for
the learning of children will become less of a novelty or
temporary toy, as such development would lead to an in-
crease in interest and deepen the meaning of exchanges in
long-time interaction. Robots for the care of the elderly
could through improved capabilities for tactile commu-
nication, with related responses and expressions, enjoy
enhanced humanoid abilities, and acquire competencies
for social interaction that are conducive to care.
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