
MASTER’S THESIS 2021

Self-Optimization of Camera
Hardware
Simon Kristoffersson Lind, Johannes Tykesson

ISSN 1650-2884
LU-CS-EX: 2021-23

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2021-23

Self-Optimization of Camera Hardware

Automatisk Optimering för Kamerahårdvara

Simon Kristoffersson Lind, Johannes Tykesson

Self-Optimization of Camera Hardware

Simon Kristoffersson Lind
si8270an-s@student.lu.se

Johannes Tykesson
jo6761ty-s@student.lu.se

June 24, 2021

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisors: Luigi Nardi, luigi.nardi@cs.lth.se
Waqar Hameed, waqarh@axis.com

Examiner: Volker Krueger, volker.krueger@cs.lth.se

mailto:si8270an-s@student.lu.se
mailto:jo6761ty-s@student.lu.se
mailto:luigi.nardi@cs.lth.se
mailto:waqarh@axis.com
mailto:volker.krueger@cs.lth.se

Abstract

This thesis aims to investigate the automatic tuning of hardware parameters in
a camera’s image processing pipeline. In order to solve the tuning problem, it is
formulated as a black-box optimization problem centered around a physical cam-
era unit. Optimization is performed by comparing the camera’s output to a refer-
ence image. Several black-box optimization algorithms were tested: Bayesian Op-
timization, Evolutionary Optimization, Particle Swarm Optimization, Simulated
Annealing, DIRECT, and Rowan’s Subplex Method. Results indicate that it is
feasible to automatically tune camera hardware parameters using black-box opti-
mization algorithms. For 14 parameters, Rowan’s Subplex Method performs best
with an average error of 6.25. When optimizing amuch larger set of 71 parameters,
Simulated Annealing, Evolutionary, and Rowan’s Subplex Method perform best
with an average error of 9.77, 17.92, and 18.05 respectively.

Keywords: Optimization, Black-boxoptimization, Evolutionary, Bayesian, SimulatedAn-
nealing, DIRECT, Particle Swarm, Simplex

2

Acknowledgements

Wewould like to offer our thanks to our supervisors, Luigi Nardi andWaqarHameed, for their
guidance throughout this work.

Our gratitude is also extended toAxis’ imaging engineers: Jimmie Jönsson,GunnarDahlgren,
Philip Siederer, Wei Wen, and William Chaze, for providing us with much needed practical
knowledge.

Afinal thanks to our hiringmanager atAxis, SabinaAhlberg, formaking this thesis possible.

3

4

Contents

1 Introduction 7
1.1 Contributions . 8
1.2 Related work . 8
1.3 Outline . 9

2 Background 11
2.1 Axis’ Cameras . 11

2.1.1 Camera Hardware Parameters . 11
2.2 Theory for Comparison . 13

2.2.1 RMSE . 13
2.3 Theory for Images . 13

2.3.1 OpenCV . 13
2.3.2 YCbCr Format . 13
2.3.3 Image Derivatives and Sobel Filters 14
2.3.4 Gradient Histograms . 14
2.3.5 Image Histograms . 15
2.3.6 Feature Detection . 15
2.3.7 Image Alignment . 16

2.4 Optimization theory . 17
2.4.1 Black-Box Optimization . 17
2.4.2 Evolutionary Optimization . 18
2.4.3 Bayesian Optimization . 18
2.4.4 Particle SwarmOptimization . 21
2.4.5 Simulated Annealing . 22
2.4.6 Nelder Mead Simplex . 24
2.4.7 Rowan’s Subplex Method . 25
2.4.8 DIRECT . 27

3 Methodology 29
3.1 Black Box Architecture . 29

5

CONTENTS

3.1.1 Image Injection . 29
3.1.2 Setting Parameters in the Camera 30
3.1.3 Requesting an Image from the Camera 30
3.1.4 Image Comparison . 31
3.1.5 Highlighting Differences in Images 32
3.1.6 Dataset and Reference Images . 32

3.2 Random Sampling . 33
3.3 Optimization Algorithms . 33

3.3.1 Evolutionary Optimization . 34
3.3.2 Bayesian Optimization . 34
3.3.3 Particle SwarmOptimization . 35
3.3.4 Simulated Annealing . 35
3.3.5 Rowan’s Subplex Method . 35
3.3.6 DIRECT . 35
3.3.7 Robustness of Optimizer Implementations 36

4 Experiments 39
4.1 Optimizing 14 Parameters . 39

4.1.1 Methodology . 39
4.1.2 Results . 40
4.1.3 Discussion . 45

4.2 Optimizing 71 Parameters . 46
4.2.1 Methodology . 46
4.2.2 Results . 46
4.2.3 Discussion . 52

5 Conclusion 55
5.1 Choice of Algorithm . 55
5.2 Future work . 55

References 57

Appendix A Individual plots with standard deviation 63

Appendix B Popular Science Article 67

6

Chapter 1
Introduction

This thesis is done at Axis Communications, informally known as just Axis. Axis was founded
in Lund, Sweden, in 1984, and its main products are network cameras. In 2019, Axis had just
over 3600 employees in 50 countries [1].

When a consumer buys a camera, they can generally start using their camera immediately,
and get nice images without having to tweak any settings. However, for the engineers working
with cameras, it is an entirely different story. Modern cameras at Axis are complex pieces of
hardware and include several components that transform the image on its journey from the
sensor to a display. Each of these components contains its own knobs and dials that can be
tweaked in order to change different qualities in the image.

Naturally, there are no actual knobs or dials in the camera components, only parameters in
the form of binary numbers. Imaging engineers are tasked with adjusting all these numbers to
produce a good image quality for the consumer. This process has to be repeated every time new
camera hardware is created.

Interviews with imaging engineers at Axis reveal that each camera hardware generally has
over 100 individual parameters that affect image quality and that tuning all of them can take a
team of engineers several weeks.

In order to alleviate the tedious tuning process for the image engineers, this thesis aims to
develop a method for automatically tuning the camera hardware parameters.

Different parameters control different parts of the image quality on the camera and signif-
icantly impact how the image output from the camera looks. Examples of the difference the
parameters can make are shown in figure 1.1. In Fig. 1.1, the rightmost image is taken with pa-
rameters that are manually tuned by expert imaging engineers. Two random configurations are
shown next to the hand-tuned image. Both random configurations have very poor color values,
which suggests that many color-related parameters are different from the hand-tuned. It can
also be seen that the leftmost image hasmuch sharper lines andmore noise, which suggests that

7

1. Introduction

the sharpness and contrast parameters are wrong. Most notable in the middle image is that it is
very dark, which suggests that the brighness parameters are wrong.

Figure 1.1: Pictures of the same scene with different parameters.
Rightmost image is taken with parameters that were hand-tuned by
imaging engineers.

Since it can be assumed that a company such as Axis has many cameras that have already
beenmanually tuned, this thesis will assume that it is feasible to produce a good image that can
be used as a reference.

Given said reference image, a black-box optimization problem will be constructed in an at-
tempt to automatically tune parameters in a camera hardware. Camera parameters will form
the input to a black-box function. The output of the black-box function will be constructed
by comparing an image from the camera to a reference image. Several methods for optimizing
the black-box function will be tested to investigate whether this is a feasible approach or not.

An important thing to note is that this thesis does not aim to improve the image qualitywith
respect to the reference image, only replicate the same image quality. Human imaging engineers
are still needed in order to reach any improvement.

1.1 Contributions
Primary contributions of this thesis are:

• Formulation of camera harware parameter tuning as a black-box optimization problem.
• Development of an optimization framework capable of optimizing camera hardware pa-
rameters.

1.2 Related work
A similar approach to the one in this thesis is presented by Mosleh, Sharma, Onzon, Mannan,
Robidoux, and Heide in their 2020 paper [19]. Mosleh et al. set up a hardware-in-the-loop
framework and optimize camera parameters. The optimization is performed by using CMA-
ES and search-space reduction. While their approach is similar to the one presented in this

8

1.3 Outline

thesis, this work extends the optimization problem by testing several other optimizers and by
optimizing larger problems with more parameters.

1.3 Outline
Chapter 2 will introduce the problem in more detail and provide the theoretical background
needed to understand this thesis. Both background for image comparison as well as theory for
black-box problems and optimization algorithms will be presented. In chapter 3, details are
given surrounding the software architecture used in experiments. Experiments are described
in chapter 4, including methodology, results, and discussion. Finally chapter 5 summarizes
conclusions drawn from the experiments.

9

1. Introduction

10

Chapter 2

Background

2.1 Axis’ Cameras
Disclaimer: This section will give a brief insight into Axis’ cameras in order to provide context
for the rest of this thesis. As such, this section will contain few references and will be intention-
ally vague to avoid disclosing any confidential information.

What all Axis’ cameras have in common is that they are network cameras, which essen-
tially means that they are controlled through a network interface [2]. Most cameras also share
a common hardware platform developed by Axis. Said platform includes the image processing
pipeline (IPP), which contains the parameters this thesis intends to tune. Thus, results from
this thesis will generally apply to most Axis cameras. A shared hardware platform also gives the
benefit that parameters only have to be tuned whenever the hardware platform is changed.

2.1.1 Camera Hardware Parameters
Most commercial cameras include a small number of comprehensive parameters for tweaking
the look and quality of an image, for example “Sharpness”, “Contrast”, “Saturation”, “Color
Tone” as seen in a Canon camera [3]. Examples of the effects of such parameters are displayed
in fig. 2.1.

However, what is not apparent to most consumers is that these parameters actually control
several underlying hardware parameters directly in the IPP. Thus, these comprehensive high-
level parameters give a good idea of the types of effects the underlying hardware parameters can
have on the resulting image.

Hand-tuningparameters are generally done as illustrated infig. 2.2, where a human imaging
engineer has a camera connected to a display and tweaks parameters while seeing them updated
on the display in real-time.

11

2. Background

(a) Increased sharpness (b) Increased contrast

(c) Increased saturation (d) Changed color tone

Figure 2.1: Effects of sharpness, contrast, saturation and color tone

Figure 2.2: Graph of the process of hand-tuning parameters

12

2.2 Theory for Comparison

2.2 Theory for Comparison
For thefirst part of this thesis, amethodwill be constructed for comparing two images. Through-
out this thesis, MSE and RMSE will be extensively used as comparison metrics, so they are
briefly defined here. Definitions below assume a sequence of elements to be compared. Such a
sequence can be trivially constructed from an image by simply concatenating all its pixel-values,
or by constructing a histogram.

2.2.1 RMSE
A well-established method for comparing the distance between two n-dimensional vectors/se-
quences x, y is theMean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(xi − yi)2 (2.1)

Since the MSE can be difficult to interpret (due to the square), the Root Mean Squared Error
(RMSE) is often used instead:

RMSE =
√
MSE (2.2)

Thanks to the square root, RMSE is back to the same unit as the original vectors, which is often
easier to interpret. There is also a similarity to theEuclideandistance between the two sequences
[5].

2.3 Theory for Images
Determining if an image is of good or bad quality will, in this thesis, be reduced to a comparison
with a reference image. In this section, a general theory is presented thatwill beused to construct
methods for reliably comparing two images.

2.3.1 OpenCV
One tool that will be used frequently throughout this thesis is OpenCV. OpenCV is an open-
source library for computer vision algorithms available for many programming languages, e.g.
C/C++ and Python [22].

2.3.2 YCbCr Format
Many video sources, including the cameras used in this thesis, encode their video data in the
YCbCr color space, specifically the NV12 format [12]. Similar to the otherwise commonRGB
format, the YCbCr format consists of 3 components: Y (luma), Cb (chroma blue), and Cr
(chroma red). Luma refers to the brightness of the image. Chroma blue and chroma red refer
to the blue and red color components in the image. YCbCr is a so-calledYUVcolor space, which
is a broader term for this type of color space which refers to the components as Y, U, V. YUV
color spaces originate from the days when televisions were starting to transition to color video.

13

2. Background

Thus, the reasoning behind a luma/color split is that gray-scale televisions could still function
with only the Y channel, and the more modern color televisions could do the extra work of
adding color from the Cb and Cr channels as well [12].

Often, the YUV channels are subsampled, which means that one color space value may
contribute to the color of several pixels. In the NV12 format, each pixel corresponds to exactly
one Y value, but a 2x2 window of pixels share their Cb and Cr values. As a result of pixels
sharing Cb and Cr values, the image is stored in half as many bytes as the ordinary RGB format
[12].

2.3.3 Image Derivatives and Sobel Filters
To measure similarity between images, the derivatives of the images can be used since struc-
turally similar images will have similar derivates in the various regions of the image. To deter-
mine the derivates of an image, the gradient vector in each pixel will have to be computed. The
gradient vector for a pixel is determined by computing the partial derivatives ∂f

∂x
and ∂f

∂y
, where

x is the coordinate of a pixel along the horizontal axis and y is the coordinate along the vertical
axis. Togheter these partial derivatives form the gradient vector [10]:

∇f =

[
gx
gy

]
(2.3)

The most straightforward way to compute the gradient vector at a given position (x, y) is
to compute

∇f(x, y) =
[
f(x+ 1, y)− f(x, y)
f(x, y + 1)− f(x, y)

]
(2.4)

However, this computation does not handle diagonal directions by definition and does not
containmuch information regarding the direction other than x and y. Therefore a Sobel filter or
Sobel operator can be more useful when calculating the partial derivatives of pixels. The Sobel
operator uses convolution with the kernels shown below to compute the partial derivative in
the x and y-direction, respectively. The kernel uses a 3x3 pixel area, and the resulting gradient
vector represents the center pixel.

δf

δx
= f ∗

−1 0 1
−2 0 2
−1 0 1

δf

δy
= f ∗

−1 −2 −10 0 0
1 2 1

 (2.5)

The advantage of using this operator is that the Sobel operator creates image smoothing,
which is helpful when computing derivatives [10].

2.3.4 Gradient Histograms
To match similar pictures to each other, not based on the color of the images, gradient his-
tograms can be used. Two different properties of the gradient for a pixel can be used, the mag-
nitude and the angle of the gradient. The idea is to compute the gradient of each pixel in the pic-
ture by calculating the difference in respect to the x and y-direction, and then use themagnitude

14

2.3 Theory for Images

and angle to produce histograms. The histograms will be divided into several bins based on the
magnitude and angle of the gradient. Similar pictures should therefore have similar histograms.
The gradient is computed by applying a Sobel filter to each pixel in the x and y-direction, re-
spectively [10].

Magnitude
The magnitude of a the gradient for a given pixel is computed by [10]:

mag =
√
g2x + g2y (2.6)

Direction
The direction of the gradient for a given pixel is computed as an angle θ by [10]:

θ = tan−1

(
gy
gx

)
(2.7)

2.3.5 Image Histograms
The histogram of a given image is computed by using the Y, Cb, Cr components (See section
2.3.2) of a picture and divide them into bins based on the value of the component at every
pixel of the image. For an 8-bit image, 256 bins are used to divide the values of said compo-
nent [30]. The histogram of an image can then be compared against other images in order to
detect color changes. Comparison can be done with, for example, the RMSE distance metric.
Intuitively, image histograms are good for detecting differences in color, for example a ligher or
darker image. Though, image histograms might not be suitable for detecting changes in con-
trast or sharpness.

2.3.6 Feature Detection
A common strategy when manipulating images is to extract features [30]. Features are most
commonly used in the context of feature matching, which is when features in two images are
paired to find objects or patterns present in both images. Due to this common task ofmatching
features, the features shoud be invariant to various image transformations. For example, if an
image is rotated, it is desirable to find the same features as in the original [30].

Usually, the task ofmatching features in images is split into two sub-tasks: feature detection
and feature description [30].

ORB
Oriented FAST andRotated BRIEF (ORB) is a combined feature detector and feature descrip-
tor. ORB builds on the FAST [25] feature detector by adding an orientation to the detected
features. In order to perform rotationally invariant feature matching, a rotation component is
added to the BRIEF [8] feature descriptor [27].

15

2. Background

FAST is a feature detector with speed in mind. Specifically, it is a corner detector, which
detects corners by comparing 16 pixels in a circle around a target center pixel. If there is a clear
split such that a few of the 16 pixels are darker or lighter than the rest, the center point is consid-
ered a corner. To find corners faster, FAST employs machine learning to classify the 16 pixels
instead of checking all the 16 pixels manually [25].

BRIEF is a feature descriptor based on comparing pixels in a region around a detected fea-
ture. Given, for example, a feature point from FAST, BRIEF will compare a number of pixel
pairs and encode each comparison as a bit-vector based on which pixel is brighter [8].

2.3.7 Image Alignment
In order to compare two different images of the same scene that may not be pixel-exact, the
images can be aligned based on features from a feature detector. Given featurematches between
the two images, a system of linear equations can be solved to find a transformation matrix that
maps coordinates from one image to the other [30].

Formally, given a set of matched feature points {(x, y), (x′, y′)} an affine transformation
matrix is a matrix

A =

[
a11 a12 t1
a21 a22 t2

]
(2.8)

such that [30]

A

xy
1

 =

[
x′

y′

]
(2.9)

Thus, the task at hand is to solve forA.

Since there is uncertainty when matching features across two images, there may be outliers
that are not actually correct matches. In the presence of outliers, RANSAC is a common algo-
rithm for solving the transformation matrix [30].

RANSAC, orRANdomSAmpleConsensus, is an algorithm that randomly samples amin-
imal subset of data required to solve the equation at hand, and then counts inliers and outliers.
After sampling many minimal subsets, the solution with the fewest outliers is chosen [30].

In the case of image alignment, since there are six unknown variables in the matrix A, six
equations are needed. Each matched feature gives two equations:{

a11x+ a12y + t1 = x′

a21x+ a22y + t2 = y′
(2.10)

Thus threematched features is the minimum to solve forA.
Given three featurematches{(x1, y1), (x′1, y′1)}, {(x2, y2), (x′2, y′2)}, {(x3, y3), (x′3, y′3)},

16

2.4 Optimization theory

a system of equations can be used to solveA entirely:
x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
x3 y3 1 0 0 0
0 0 0 x3 y3 1

a11
a12
t1
a21
a22
t2

 =

x′1
y′1
x′2
y′2
x′3
y′3

 (2.11)

With the transformationmatrixA solved, all theother featurematches are classified as inliers
or outliers based on the accuracy of the predicted points. Formally, given a matched feature
{(xi, yi), (x′i, y′i)}:

a =

[
xi
yi

]
, b =

[
x′i
y′i

]
bpred = Aa{
∥bpred − b∥ ≤ ϵ =⇒ inlier
∥bpred − b∥ > ϵ =⇒ outlier

(2.12)

where ϵ is a pre-defined outlier boundary.

From there, the matrixAwith the fewest outliers is chosen.

2.4 Optimization theory
The parameter tuning problemwill be tackled as a black-box optimization problem. Therefore,
this section gives a formal introduction toblack-boxoptimization, alongwith several algorithms
for solving black-box optimization problems.

2.4.1 Black-Box Optimization
A black-box is a process that receives an input and generates an output while the actual pro-
cess is hidden. The process of optimizing an objective that is the result of a black-box process
is simply referred to as black-box optimization. Due to the unknown nature of a black-box, a
black-box optimization procedure has to optimize the objective based on just the input and the
output and cannot assume any knowledge about the actual process in the black-box [4].

Formally, black-box optimization aims to solve:

argmin
x

f(x) or argmax
x

f(x) . (2.13)

However, only one of these need to be considered since

argmin
x

f(x) = argmax
x

[
− f(x)

]
. (2.14)

Sincef(x) is analyticallyunknown, no assumptions about continuity, differentiability, or smooth-
ness can be made to ease the process of optimization [4].

17

2. Background

One issue that arises when performing optimization of any kind is when to stop. It is com-
mon to stop when little to no improvement is made in terms of the function value, referred to
asGeneration Stalling. Another common strategy is an Evaluation Budget, where a maximum
number of function evaluations is set. When said number of evaluations have been made, the
algorithm is terminated and the best value found within the budget is chosen as the solution
[4]. Throughout this thesis, an evaluation budget will be used as a default stopping criterion.

Camera Parameters as a Black-Box Problem
Optimizing cameraparameterswith respect to an imagequality output can intuitivelybe thought
of as a black-box optimization problem. Camera parameters act as input to the black-box, and
the image quality measure acts as output. Since the problem formulation assumes no knowl-
edge of the camera hardware pipeline, it acts as the black-box in this formulation.

2.4.2 Evolutionary Optimization
Evolutionary algorithms are algorithms based on the idea of evolution and natural selection
[15]. The algorithms prioritize strong solutions that produce an output with good results and
sorts out weak ones with bad results. Therefore, the parameters used in a strong solution are
used to create new better solutions, while the parameters producing weak solutions are dis-
carded. [4].

Given a function to optimize, f(x), an evolutionary algorithm starts by sampling a popula-
tion P0 of candidate points xi ∈ P0. The term generation is used to refer to new populations
over time. In other words, for a set of populations Pi, each Pi is called a generation. Each of
the points in Pi are given a fitness score. In every iteration of the algorithm, points are added to
the next generationPi+1 either by keeping a point in the current generation or by selecting two
parents from the current generation and creating an offspring from those.

Selection of parents is usually based on the fitness measure in order to select parents that are
likely to produce good offspring. One such selection method is tournament selection. Tourna-
ment selection starts by sampling n random parents from the current population and compar-
ing these parents against each other. The parent with the best fitness is returned and therefore
used when creating the offspring [4].

Another frequently used selection method is elitism selection, which selects the n parents
with the best fitness. Roulette wheel selection is a third alternative that picks n random parents
from the population and uses these to create the new population [4].

Creation of new offspring can be done by using several methods, one of which is crossover
and mutation. Crossover uses common elements from strong parents to create new offspring,
whichhopefully is better. Offspring created fromprevious parents is then slightlymutatedwith
a givenmutation probability in order to create a new set of parameters [4].

Basic pseudo-code is found in Algorithm 1 below.

2.4.3 Bayesian Optimization
Bayesian optimization is a machine-learning-based optimization method [9]. Similar to evo-
lutionary optimization, Bayesian optimization keeps a dataset of points x1,x2, . . . ,xn with

18

2.4 Optimization theory

Algorithm 1 Evolutionary Optimization pseudo-code
Use random sampling to create initial population X of size n
Evaluate fitness for initial population yi = f(xi) ∀ xi ∈ X
while stopping criterion is not met do

Select 2 candidates x1, x2 from the population to create offspring o
for each parameter oi in offspring o do ▷Crossover

Select oi from either x1 or x2

end for
for each parameter oi in offspring o do

if random(0,1) < p then ▷Mutate with probability p
oi ← random(lower_bound, upper_bound)

end if
end for
Add o to population
Remove oldest or worst parent in population

end while

known functionvaluesf(x1), f(x2), . . . , f(xn) anduses those tomake adecision aboutwhich
point to evaluate next. Instead of simply modifying a known point, Bayesian optimization
works by fitting a statistical model to the dataset. That statistical model is then optimized over
an acquisition function in order to find a new point xn+1 to evaluate [9].

In pseudo-code, Bayesian optimization looks very simple (algorithm 2).

Algorithm 2 Bayesian optimization pseudo-code
Pick t initial points x1,x2, . . . ,xt

Evaluate f(x1), f(x2), . . . , f(xt)
while stopping criterion not met do

Fit modelM to dataset {(x1, f(x1)), (x2, f(x2)), . . . , (xt, f(xt))}
xt+1 ← argmaxx acquisition(x;M)
add (xt+1, f(xt+1)) to dataset
t← t+ 1

end while
return argminx∈{x1,x2,...,xt} f(x)

Expected improvement (EI), is the most common choice of aquisition function [9]:

EI(x) = E
(
f ∗ − f̂(x)

)+ (2.15)

Where f ∗ is the best known function value so far, and f̂(x) comes from the posterior prob-
ability distribution given by the underlying statistical model M. Note the superscript +, which
effectively means that negative improvement is considered the same as no improvement.

19

2. Background

Gaussian Process
In its base form, the statisticalmodel used in Bayesian optimization is aGaussian process, which
provides a Bayesian posterior probability distribution for previously unknown points [9]:

f(x) ∼ Normal(µ(x), σ2(x)) (2.16)

where, µ and σ2 are the mean and variance respectively.
For simplicity, a shorthand notation is used in following formulas:

f(x1:n) =
[
f(x1) f(x2) . . . f(xn)

]T
µ0(x1:n) =

[
µ0(x1) µ0(x2) . . . µ0(xn)

]T
Σ0(x1:n,x1:n) =

Σ0(x1,x1) Σ0(x1,x2) . . . Σ0(x1,xn)
Σ0(x2,x1) Σ0(x2,x2) . . . Σ0(x2,xn)

...
...

Σ0(xn,x1) Σ0(xn,x2) . . . Σ0(xn,xn)

(2.17)

With a Gaussian process and a dataset {(x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn))}, the
mean and variance are modeled as such:

µ(x) = Σ0(x,x1:n)Σ0(x1:n,x1:n)
−1(f(x1:n)− µ0(x1:n)) + µ0(x)

σ2(x) = Σ0(x,x)− Σ0(x,x1:n)Σ0(x1:n,x1:n)
−1Σ0(x1:n,x)

(2.18)

µ0(x) is called the mean function, and Σ0(x,x
′) is called the kernel of the Gaussian process

[9].
Common choices are a constant mean function, and the power exponential kernel [9]:

µ0(x) = µ, µ constant

Σ2
0(x,x

′) = α0e
−∥x−x′∥2 , α0 constant

(2.19)

Random Forests
Another choice for an underlying model in Bayesian optimization, for example included in the
HyperMapper software [20], is aRandomForest [7]. Random forests are based ondecision and
regression trees. Specifically, random forests are an ensemble method, which combines many
tree classifiers, and introduces randomization into the learning process by selecting a subset of
parameters for evaluating a split at each node. Bagging, also known as bootstrap aggregation,
[6] is also used for each tree in the forest which means that a randomly selected subset of the
data is used when creating the tree. This technique is used to prevent several trees in the same
forest from being created by the same data.

Using randomforests inBayesianoptimization canbe advantageous for several reasons. Per-
haps most notably, which is the rationale in HyperMapper [20] is that trees are easily adapted
for both classification and regression, which make them suitable for both continuous and dis-
crete data. Another reason, as suggested in [28], is that a full Gaussian process scales poorly due
to the quadratic behaviour of the kernel function. Random forests on the other hand, scale
readily to large input spaces.

20

2.4 Optimization theory

A downside to using random forests is that, while the mean µn(x) is simply the forest’s
prediction, the variance σn(x) is not as straight forward to compute. One approach is to com-
pute the variance as a sum of the variance across the predictions from each tree, plus the average
variance of each tree [11].

2.4.4 Particle Swarm Optimization
Particle Swarm optimization (PSO) is another black-box, derivative free optimization method
that has been proven to be successful [4]. The algorithmwas first outlined in the paper Particle
Swarm Optimization by James Kennedy and Russell Eberhart in 1995, and the method draws
inspiration from swarming theory and the nature of birds flocking and fish schooling. Further-
more, the algorithm is also related to Evolutionary programming [16].

PSO is implemented as several particles pi, each with a position in the input space and a
velocity vi. In order to make the particles swarm and explore the input space, each particle has
knowledge of:

• the best position for each particle, p(i)best
• the best position for the whole population of particles, best

Each iteration, all the particles are updated according to the following formula [16]:

vi ← vi + r1C1(best− pi) + r2C2(p
(i)
best − pi)

pi ← pi + vi
(2.20)

WhereC1, C2 are constants, and r1, r2 are uniform random numbers in [0, 1). If the new posi-
tion would be outside a potential bound for a particle, the position is adjusted to be inside the
bounds. [16]

The advantage of the Particle Swarm Optimization algorithm is that it is a straightforward
algorithm. Furthermore, since the algorithms use simple calculations and do not store large
amounts of information it is very efficient and inexpensive to run. Another advantage is that
there are only two constants to set Cp and Ci, making it very easy to try out different values to
find the optimal algorithm [16].

A fewupdates have beenmade toPSO, someof themdescribed in [24]. Most of the changes
proposed to PSO have the purpose of constraining the velocities vi to maintain stability in the
particle system. One such constraining change is called constriction coefficients, which can be
implemented in many ways. A simple method, and the most commonly used is to rewrite the
particle update as follows:

vi ← χ
(
vi + r1C1(best− pi) + r2C2(pbest − pi)

)
pi ← pi + vi

χ =
2

C − 2 +
√
C2 − 4C

, where C = C1 + C2 > 4

(2.21)

The canonical version of PSO, as per [24], is to use this update formula withC1 = C2 = 2.05,
while also limiting the velocity vi = max(vi, vmax), where vmax is usually themaximum range
of each variable in the function’s input space.

21

2. Background

Algorithm3belowdescribes theParticle SwarmOptimization algorithm implementedwith
the changes described above [24].

Algorithm 3 Particle SwarmOptimization pseudo-code
Initialize position pi for each particle randomly
Initialize velocity vi for each particle randomly
best← particle in swarm with best fitness
p
(i)
best ← pi
while loop until stopping criterion is met: do

for for each particle in swarm do
r1, r2 ← random(0, 1)

vi ← χ
(
vi + r1C1(best− pi) + r2C2(p

(i)
best − pi)

)
pi ← pi + vi
if f(pi) < f(p

(i)
best) then

p
(i)
best ← pi
if f(pi) < f(best) then

best← pi
end if

end if
end for

end while

2.4.5 Simulated Annealing
Simulated annealing is an optimization method inspired by the movements of an atom inside
a material under successive cooling [17]. When temperatures are high, the atommoves quickly
and travels throughmany high and low energy states. As the temperature cools, the atommoves
less and settles into a low energy state. Thus, simulated annealing uses this cooling idea for
optimization by simulating a particle xmoving through the input space of the function to be
optimized, f . When temperatures are high, the particle x takes big steps when moving, and it
is also more likely to go to positions where f(xi+1) > f(xi). As it cools, the steps become
smaller, and larger function values are less likely to be accepted.

Formally, (classical) simulated annealing (CSA), works as described in algorithm 4.
We have the formula r < e−(Exnext−Ex)/t, that determines whether or not a point with

higher energy is accepted. It can easily be verified that as the temperature decreases, this proba-
bility decreases as well.

Later, an updated version of the algorithm called fast simulated annealing (FSA) was pro-
posed [31], which shows better performance than CSA in most tests. In FSA, the overall algo-
rithm is the same. Instead of sampling the next point xnext by taking a random step from x, the
next point is instead sampled from a lorentzian distribution:

g(x) =
t

(x2 + t2)
D+1
2

, (2.22)

22

2.4 Optimization theory

Algorithm 4 Simulated Annealing Optimization pseudo-code
Select a random starting point x, and evaluate its energyEx ← f(x)
Set an initial temperature t
while loop until stopping criterion is met do

Generate next position xnext by taking a random step from x
Evaluate the new energyExnext ← f(xnext)
if Exnext < Ex then

accept the new point x← xnext
else

generate a random number r ∈ [0, 1]
if r < e−(Exnext−Ex)/t then

accept the new point x← xnext
end if

end if
decrease temperature t← ωt, ω ∈ [0, 1]

end while

where t is the temperature, andD is the dimensionality of x. Since the Lorentzian distribution
promotes occasional large steps, a faster temperature cooling schedule can be used, tn = t0

1+n
,

where n is the number of iterations that have been made in the algorithm.

Yet another updated version of this algorithm was proposed, called generalized simulated
annealing (GSA) because it generalizes both CSA and FSA [32]. In this version, another set of
changes are made from FSA. First, the distribution for selecting xnext is changed to a Cauchy-
Lorentz distribution:

g(∆x) =
t−

D
3−qv(

1 + (qv − 1) ∆x2

t
2

3−qv

) 1
qv−1

+D−1
2

, (2.23)

where we see qv introduced as a parameter of the algorithm. Temperature cooling is updated
from FSA:

tn = t0
2qv−1 − 1

(1 + n)qv−1 − 1
. (2.24)

Note qv here as well. In GSA, the formula for accepting or rejecting a point has also been up-
dated:

p(accept) =

1, Exnext < Ex

0, (1 + (qa − 1)(Exnext − Ex)/ta) < 0

(1 + (qa − 1)(Exnext − Ex)/ta)
1

1−qa , otherwise
(2.25)

Here qa is introduced as another parameter to the algorithm. ta is introduced as the acceptance
temperature, which in the original paper is just ta = t, though other choices exist.

Choosing qv and qa allowsGSA to generalize bothCSA and FSA. For the choice of qv = 1,
qa = 1, the algorithm behaves like CSA, and for qv = 2, qa = 1 it behaves like FSA. Suggested
values in the original paper are qv ≈ 2.7 and qa ≈ −5.

23

2. Background

2.4.6 Nelder Mead Simplex
TheNelderMead Simplex (NMS) algorithm is a local search heuristic that focuses on finding a
local minimum, opposite of the evolutionary algorithms previously discussed [4]. JohnNelder
andRogerMead first described themethod in their 1965 paper “A simplexmethod for function
minimazation”. It is called a simplexmethod because it uses a simplex to perform optimization.

Formally, a simplex inRn is a “bounded convex polytope with nonempty interior and ex-
actly n+1 vertices” [4]. Amore intuitive way of looking at a simplex is as a collection of points
{v0, v1, . . . , vn} inRn such that the vectors {(v1−v0), (v2−v0), . . . , (vn−v0)} form a basis
inRn [4].

NMS calculates xo as the centroid of all vertices, except the one with the worst fitness value.
Using xo, along with reflection, expansion, contraction, and shrinking operations, NMS itera-
tively maneuvers its simplex towards a local minimum.

1. Reflection is the first method used to calculate new points. Reflection computes a reflec-
tion point based on the centroid xo and the worst point in the simplex according to the
formula [21]:

xr = (1 + α) · xo − α · xworst

α Reflection coefficient
(2.26)

if the resulting point is better than the secondworse point, butworse than the best point,
i.e. f(xbest) ≤ f(xr) < f(xworst), the resulting point replaces the worst point and the
iteration is restared. However, if the reflected point xr is better than the best point xbest,
the iteration continues.

2. The second updating method is expansion. The expanded point is computed by using
the centroid xo and the reflected point according to [21]:

xe = γ · xr + (1− γ) · xo
γ Expansion coefficient

(2.27)

If the expanded point xe is better than the best point, i.e. f(xe) < f(xbest), the worst
point xworst is replaced by the expanded point xe. However, if the expanded point xe
is worse than the best point xbest the point is considered as a failed expansion, and the
worst point xworst is replaced by the reflected point xr.

3. The next step is the contraction step, where the contracted point is computed by using
the centroid xo and the worst point, or the reflected point depending on which has the
lowest score. The contracted point is calculated according to [21]:

xc = β · xworst + (1− β) · xo
β Contraction coefficient

(2.28)

If the contracted point is better than the worst point, the contracted point replaces the
worst point and, the iteration restarts. If the contracted point is not better than theworst
point, the algorithm replaces all points in the simplex except for the best one with points
based on the centroid xo and the current point. This step is sometimes referred toas the
shrink [4].

24

2.4 Optimization theory

The algorithm can be summarized using the following pseudo-code [4, 21]:

Algorithm 5Nelder Mead Optimization pseudo-code
simplex x0, x1, . . . xn
xo ← centroid of points x0, x1, . . . xn−1

reflection:
xr ← (1 + α) · xo − α · xworst

if f(xbest) ≤ f(xr) < f(xworst) then
xworst ← xr, return to start

else if f(xbest) > f(xr) then
goto expansion

else
goto contraction

end if
expansion:
xe ← γ · xr + (1− γ) · xo
if f(xbest) > f(xe) then

xworst ← xe return to start
end if
contraction:
xc ← β · xworst + (1− β) · xo then
if min(f(xbest, f(xr)) < f(xc) then

xworst ← xc return to start
else

xi ← xo + δ · (xi − xo), for i ∈ [1, n]
end if

2.4.7 Rowan’s Subplex Method
Nelder and Mead’s simplex methods have a few well-known weaknesses [26]. Most notably,
NMS sometimes collapses into a subspace when there are bounds constraints on the input
space. Furthermore, NMS generally performs poorly as dimensionality increases. In his Ph.D.
thesis [26], Rowan describes a new method that he calls the Subplex method, which aims to
alleviate the weaknesses of NMS.

Pseudo-code for the subplexmethod, described in algorithm 6, is very simple at first glance.
Now, of course, there is a significant amount of complexity hidden in that pseudo code.

25

2. Background

Algorithm 6 Rowan’s Subplex method pseudo-code
while termination test not satisfied do

set stepsizes
set subspaces
for each subspace do

search subspace with Nelder Mead Simplex method
end for
check termination test

end while

In the subplex method, a few parameters are used:

n: the problem dimension
x: the currently best known point
step: step sizes in each dimension
∆x: the change in x from the previous subplex iteration
α, β, γ, δ: Nelder Mead Simplex parameters
ψ: simplex reduction coefficient
ω: step reduction coefficient
nsmin, nsmax: minimum and maximum subspace dimensions
nsubs: the number of subspaces searched

Set stepsizes: Initial step sizes are user-defined in Rowan’s work. Usually initial step sizes
are determined based on the effective range in the input space for each dimension. In every
subsequent iteration of the subplex method, the step sizes are set based on the current values,
and∆x, as well as the parameters ψ, ω:

step =

{
min(max(∥∆x∥1

∥step∥1 , ω),
1
ω
) · step, when nsubs > 1

ψ · step, when nsubs = 1
(2.29)

After scaling step using 2.29, step is oriented as follows:

stepi =

{
sign(∆xi) · |stepi| when ∆xi ̸= 0

−stepi when ∆xi = 0
(2.30)

Where the subscript i denotes the ith element of the vectors.

Set subspaces: This is the step where themost complexity comes in. Rowan’s method uses
∆x to determine the most promising subspace to search using NMS. Setting subspaces is done
by first sorting the elements in ∆x by their absolute value so that the largest values are first.
With∆x sorted, the following function is maximized:{

∥(∆x1,...,∆xk)∥1
k

− ∥(∆xk+1,...,∆xn)∥1
n−k

when k < n
∥(∆x1,...,∆xn)∥1

n
when k = n

(2.31)

Maximizing 2.31 results in finding any distinct drops in the absolute value of ∆xi. Thus,
Rowan’s method selects the subspace of k ∈ [nsmin, nsmax] that has the largest absolute

26

2.4 Optimization theory

values in∆x. ∆x is repeatedly partitioned until there are no subspaces left, at which point each
subspace is searched using NMS.

Termination test: Rowan’s method terminates when little-to-no progress is made in suc-
cessive iterations. His termination criterion is:

min(∥∆x∥∞, ∥step∥∞ · ψ)
max(∥x∥∞, 1)

≤ tolerance (2.32)

Where tolerance is user defined. This termination test checks that both∆x and step are suf-
ficiently small.

2.4.8 DIRECT
First presentedby Jones, Perttunen&Stuckman, theDIvidingRECTanglesmethod (DIRECT),
is based on Shubert’s method [14].

Shubert’s method is constructed around the assumption that the function being optimized
is globally Lipschitzian, which means that there is a known C , which is the maximum rate of
change in the function [29]. Formally there exists a constant C , called the Lipschitz constant,
such that:

|f(x)− f(x′)| ≤ C|x− x′| (2.33)

f being Lipschitzian implies that for every point x ∈ [a, b] [14]:

f(x) ≥ f(a)− C(x− a)
f(x) ≥ f(b) + C(x− b)

(2.34)

or more generally:
f(x) ≥ f(x′)− C|x− x′| (2.35)

for any x, x′ ∈ [a, b].
Shubert’s method uses this as a heuristic when selecting the next point to evaluate. Given

previously evaluated points x0 . . . xn, the method select xn+1 such that [29]:

xn+1 = argmin
x∈[a,b]

max
k=0,...,n

f(xk)− C|x− xk| (2.36)

Intuitively, Shubert’s method evaluates two ends of an interval [a, b], x0 = a, x1 = b. From
there, two lines are drawn:

g1(x) = f(x0)− C|x− x0|
g2(x) = f(x1)− C|x− x1|

(2.37)

x2 is then selected such that g1(x2) = g2(x2), and the interval is subdivided into two intervals
[x0, x2], [x2, x1], and the same procedure is applied when selecting x3. Now the problem be-
comes which of the intervals to subdivide when looking for x3. Recall, the selection criterion
2.36 is formulated as argmin(max(...)) of all previously known points, which is equivalent
to selecting the subinterval where the intersection g1(x) = g2(x) has the smallest value.

27

2. Background

DIRECT is largely based on Shubert’smethod. However, it doesn’t assume knowledge of a
Lipschitz constant [14]. Instead of sampling points at the ends of an interval, DIRECT samples
the center point. Thus, the initial point in DIRECT for a function in the interval [a, b] is:

x0 =
a+ b

2
(2.38)

So each subinterval [ai, bi] in DIRECT is based around its center point xi. When selecting a
subinterval to subdivide, DIRECT uses the center function value f(xi) as well as the size of
the interval bi−ai

2
. Having selected an interval ([ai, bi], xi), it is divided into thirds with centers

xi+1 = xi − b−a
3
, xi+2 = xi +

b−a
3
.

For selecting an interval to split, the authors define what they call potentially optimal inter-
vals. An interval xj ∈ [aj, bj] is potentially optimal if it satisfies:

f(xj)−K
bj − aj

2
≤ f(xi)−K

bi − ai
2

, ∀ i = 1..n

f(xj)−K
bj − aj

2
≤ fmin − ϵ|fmin|

(2.39)

where fmin is the best known function value, ϵ > 0 constant, andK > 0 an arbitrary rate-
of-change constant. This selection criterion is equivalent to plotting each subinterval in a 2-
dimensional canvas with bi−ai

2
on the x-axis, and f(xi) on the y-axis, and selecting the lower

convex hull of the points [14].

GeneralizingDIRECTtomultiple dimensions is doneby subdividing intervals, nowhyper-
rectangles, in a single dimension at a time. Selecting a hyper-rectangle is done by the same pro-
cedure as above (2.39), only using ∥bi−ai∥2

2
since ai, bi are now vectors. When a hyper-rectangle

has been selected, DIRECT singles out the dimensions with the largest range. Intuitively, that
is the longest sides of the hyper-rectangle. If only a single dimension has the largest range, it
is split. However, if several dimensions are the largest, all said dimensions are subdivided, and
their corresponding centers evaluated. Dimensions are then subdivided according to the order-
ing of their function values, lowest first.

28

Chapter 3

Methodology

This chapter will discuss the construction and design choices made when creating the software
architecture required for the experiments.

3.1 Black Box Architecture
In order to tune parameters on a camera and determine whether or not the parameters produce
an acceptable image, a software pipeline has to be put in place. That software pipeline will form
the black-box to be optimized in the experiments.

Figure 3.1 presents the architecture used.
Since it is designed as a black-box for optimization, the software pipeline has to take a set of

parameters as input and give a number as output. In order to accomplish that, a controller is
designed responsible for communicating with a physical camera unit. When given a set of pa-
rameters, the controller will first set the corresponding parameters in the physical camera. After
the parameters have been updated in the camera, the controller requests an image, which is then
compared to the reference image.

With execution speed as a primary goal,C andC++were themost obvious language choices.
For ease of implementation, C++ was eventually chosen and is used for all components.

3.1.1 Image Injection
One useful feature found in the cameras is the ability to inject raw sensor data into the camera
pipeline, as illustrated in Fig. 3.2

Image injection effectively allows for a pixel-exact scene to be run through the image pro-
cessing pipeline in a loop, which eliminatesmany complications fromhaving a dynamicmoving
scene.

29

3. Methodology

Figure 3.1: A graph of the black-box

Figure 3.2: Illustration if image injection

3.1.2 Setting Parameters in the Camera
Cameras used in this thesis are controlled over a network connection, as mentioned in section
2.1. The network socket interface provides a simple way to set parameters in the camera. The
parameters are all real-valued with different lower and upper bounds. Some parameters are lim-
ited to a lower bound of 0 and an upper bound of 1, while others can be limited to -40 and
40. These bounds are provided to the algorithm when initializing the optimization, and no
pre-processing of the bounds is done beforehand.

3.1.3 Requesting an Image from the Camera
When hardware parameters are updated, there is a delay from the time that they are sent from
the controller until they take effect in the image. By default, there is no way to automatically
detect when parameters have taken effect.

Retrieving an image from the camera is split into two separate programs: a client that is a
part of the controller and a server running on the camera.

In order to retrieve an image, the client sends a request to the server on the camera. The
server then starts capturing images from the image pipeline. Every time a new image is captured,
the server computes an MSE between the current and previous image. Only afterN images in
a row have an MSE of less than 10−4 the last image is sent back to the client. This approach
thus ensures that nothing is changing in the image before sending it to the client. Such a simple
algorithm would not be possible if not for the guarantee of a pixel-exact scene.

30

3.1 Black Box Architecture

Throughout the experiments, N = 5 is used, so five images are stable before sending an
image to the client.

3.1.4 Image Comparison
In order to determine if an image from the camera is of goodquality, it is compared to a reference
image. Several methods were constructed with the help of OpenCV, namely:

• Y-channel histogram comparison
• U-channel histogram comparison
• V-channel histogram comparison
• Gradient magnitude histogram comparison
• Gradient direction histogram comparison
• Image-aligned pixel comparison (Y-channel)
• Image-aligned pixel comparison (U-channel)
• Image-aligned pixel comparison (V-channel)

Gradient direction histogram quickly failed to produce a desirable result, so it was almost
immediately excluded from further testing.

From the rest of the methods, two compound methods were constructed. First, the his-
togram methods were merged into a single histogram comparison method consisting of Y, U,
V, and gradient magnitude histograms. Secondly, image-aligned pixel comparison was com-
bined into a single method consisting of pixel-by-pixel comparison across Y, U, and V layers.
Both of thesemethods were then tested onmanually altered images in order to see whichmeth-
ods corresponded best with a subjective opinion.

A reference image was taken, followed by an image with the camera slightly rotated. The
rotated image was then manually modified by changing focus, brightness, contrast, saturation,
and sharpness. Unfortunately, these images can not be included here, as they were taken inside
Axis’ facilities.

Test Results
All images were looked at by humans, who subjectively scored the images based on their similar-
ity to the reference image. Scoring was done before running any tests. Figure 3.3 shows a plot
of how the two compound methods performed. Images on the X-axis are ordered by how sub-
jectively different they are compared to the reference image. Thus, an ideal comparison would
produce a strictly increasing line. On the Y-axis is RMSE values produced by the comparison
algorithms, normalized for readability.

Based on Fig. 3.3, it is clear that an aligned pixel-by-pixel comparison corresponds best with
a human’s subjective opinion. As such, pixel-by-pixel comparison is the method of choice for
the rest of this thesis.

31

3. Methodology

Figure 3.3: Histogram-based comparison vs. Image-aligned pixel-by-
pixel comparison. Y-axis is RMSE, normalized for readability. X-axis
is different images, ordered by (subjective) similarity to the reference
image.

3.1.5 Highlighting Differences in Images
When looking at the resulting images from optimization, it can sometimes be difficult to spot
differences. In order to highlight differences between two images, a Difference Map will be
used. The computation of a difference map is very simple, and the pseudo-code is shown in
algorithm 7. In short, the difference is computed pixel-by-pixel, and then normalized to [0, 1],
where a value of 1 will be completely white, and 0 will be completely black.

Algorithm 7Difference map pseudo-code
Input: Images a and b
Initialize black output image o
for each pixel ai, bi do

oi ← |ai − bi|
end for
o← o

max(o)

3.1.6 Dataset and Reference Images
For this thesis, reference images are created by performing image injection and capturing a pro-
cessed image with the camera’s human-tuned parameters. In a real-world scenario, it is trivial
to capture a reference image from another camera that has already been manually tuned.

32

3.2 Random Sampling

Three images, or scenes, will be used in the experiments. They are presented in Fig. 3.4.
These scenes will be tested separately in the experiments, only to validate that the results are not
image-dependent. Resultswill thusnotbe combined across scenes. The reason forpicking these
specific scenes is because they represent very different use cases for the camera. For example, the
focus and distance to the objects in the scene are different in each picture. Furthermore, the
colors and contrast are also very different between the images.

(a) Lobby

(b)Desk (c) Plant

Figure 3.4: The three scenes used when testing with the main scene
on the left.

3.2 Random Sampling
In order to have a baseline result that the optimization algorithms can be compared to, random
samplingwill be used. Random samplingworks by setting each parameter to a uniform random
value in its allowed range.

Algorithm 8 Random sampling pseudo-code
while stopping criterion is not met do

for each parameter xi in x do
xi ← random(loweri, upperi)

end for
evaluate f(x)

end while

3.3 Optimization Algorithms
The following subsections describe implementation details and parameter choices for each op-
timization algorithm. All optimization algorithms are implemented in C++, just as the black-
box.

33

3. Methodology

3.3.1 Evolutionary Optimization
For evolutionary optimization, population size was chosen to be 50 based on data presented by
De Jong [15]. De Jong suggests that a population size of less than 10 often failed to converge.
Furthermore, a population size of over 100 often caused slow convergence. As such, a popula-
tion size of 50 seems like a rational choice. Initial testing supports 50 as a default population size.

In terms of selection methods, both elitism selection and tournament selection have been
implemented. Both methods seem to produce very similar results in initial testing, which leads
to elitism being selected for the more extensive experiments due to its simplicity.

A ranked version of crossover is also used such that any parameter in the offspring has a 65%
chance of being selected from the parent with better fitness. Each parameter in the offspring is
also mutated with a 20% probability.

Finally, the population is regularized by removing the oldest member in the population at
each iteration.

3.3.2 Bayesian Optimization
When constructing the implementation of Bayesian optimization for this thesis, it was decided
that a variation of random forests was to be used, specifically a random forest of Extra Ran-
domized Trees proposed in [23].

Recall that plain random forests introduce randomization by only considering a subset of
parameters when selecting the best split (section 2.4.3).

Each individual split is computed by finding the single value in the parameters that mini-
mizes the variance in the resulting subtrees. Extra randomized trees instead pick a random split
value for all parameters, and then selects the parameter that happend to get the best split value.
Pseudo code for computing splits are found in algorithms 9 and 10, respectively.

Selecting the best split for each parameter is the most computationally expensive part of
constructing a random forest. As a result of avoiding the computation of best splits, extra ran-
domized trees are significantly faster to construct [23].

Algorithm 9 Splitting procedure for plain random forest
Input: N parameters x1, x2, . . . , xN , integer n < N
Randomly select n parameters p1, p2, . . . , pn from x1, x2, . . . xN
for i in 1 to n do

Compute best split si for parameter pi
end for
return best split sbest

34

3.3 Optimization Algorithms

Algorithm 10 Splitting procedure for extra randomized trees
Input: N parameters x1, x2, . . . , xN
for i in 1 toN do

Compute random split si for parameter xi
end for
return best split sbest

Optimization over the Random Forest model is done by first predicting 10000 random
points, and then refining the ten most promising points using a simple local search procedure.
Local search is done by iteratively predicting neighboring positions until no improvement is
found. Neighboring positions are found by simply adding random steps to each parameter.

3.3.3 Particle Swarm Optimization
Particle SwarmOptimization is implemented exactly as the canonical version presented in 2.4.4.
As such, the velocities are limited, and parameters are C1 = C2 = 2.05. Prior testing revealed
that a population of 25 seems to perform well, so 25 is the chosen default population size.

3.3.4 Simulated Annealing
Generalized simulated annealing is implemented, with parameters choices qv = 2.6 and qa =
−5 as suggested in [33]. Appropriate initial temperature varies based on the task, andnodefault
is used.

3.3.5 Rowan’s Subplex Method
All parameters associated with Rowan’s subplex method are set to the default values presented
in Rowan’s thesis [26], presented in Table 3.1.

Table 3.1: Parameters used in Rowan’s subplex method

Parameters Values
α, β, γ, δ: 1, 2, 0.5, 0.5
ψ: 0.25
ω: 0.1
nsmin, nsmax: 2, 5

3.3.6 DIRECT
DIRECT does not contain any details left to the individual implementation, and as such it is
implemented as described in 2.4.8.

35

3. Methodology

3.3.7 Robustness of Optimizer Implementations
When implementing algorithms in code, it is appropriate to run tests in order to verify the cor-
rectness of said implementation.

In order to verify the correctness of implementations used in this thesis, they were all tested
on a number of benchmark functions from a paper by Jamil and Yang [13]. They were also
compared to an established off-the-shelf optimizer, specifically BayesOpt [18]. BayesOpt was
chosen over some more popular frameworks on the basis that it is a C/C++ library.

Benchmark functions included are presented in table 3.2.

Table 3.2: Benchmark functions used

Function Dimensionality
Ackley 2, 4, 8, and 16
Colville 4
Griewank 2, 4, 8, and 16
Sphere 2, 4, 8, 16, and 32
Rosenbrock 2, 4, 8, 16, and 32

Benchmark Results
Results, presented in tables 3.3, 3.4, 3.5, 3.6, and 3.7 show the function values found after 1000
iterations of each algorithm, with standard deviations. Each value is the average of five separate
optimizations. Note that lower values represent a better result. Implementations constructed
for this thesis are marked with an asterisk (*). These tables show that implementations used in
this thesis perform competitively with established off-the-shelf optimizers.

Table 3.3: Benchmark results for the Ackley function. Presented as
mean ± standard deviation. Each number is computed from 5 runs
of 1000 iterations each. Best optimizers in bold.

Optimizer 2D 4D 8D 16D
BayesOpt 0.19± 0.16 0.53± 0.12 1.04± 0.18 1.34± 0.31
Bayesian* 0.01± 0.01 0.78± 0.09 2.26± 0.03 2.98± 0.10
Evolutionary* 0.48± 0.18 0.80± 0.20 1.26± 0.20 2.95± 0.22
Particle Swarm* 0.13± 0.15 0.82± 0.13 1.63± 0.17 2.55± 0.28
Simulated Annealing* 0.22± 0.21 0.41± 0.20 0.86± 0.35 1.32± 0.33
Rowan’s Subplex* 0.50± 0.32 1.19± 0.50 0.71± 0.38 0.99± 0.31
DIRECT* 0.62± 0.00 0.78± 0.00 0.78± 0.00 3.07± 1.10

36

3.3 Optimization Algorithms

Table 3.4: Benchmark results for the Colville function. Presented as
mean ± standard deviation. Each number is computed from 5 runs
of 1000 iterations each. Best optimizers in bold.

Optimizer 4D
BayesOpt 0.12± 0.10
Bayesian* 4.97± 0.65
Evolutionary* 19.26± 17.58
Particle Swarm* 5.42± 5.25
Simulated Annealing* 24.23± 35.26
Rowan’s Subplex* 1.47± 1.80
DIRECT* 1.52± 1.48

Table 3.5: Benchmark results for the Griewank function. Presented
asmean± standard deviation. Each number is computed from5 runs
of 1000 iterations each. Best optimizers in bold.

Optimizer 2D 4D 8D 16D
BayesOpt 0.00± 0.00 0.19± 0.12 0.58± 0.21 0.80± 0.17
Bayesian* 0.12± 0.08 0.16± 0.05 0.95± 0.12 1.45± 0.05
Evolutionary* 0.05± 0.04 0.18± 0.06 0.87± 0.16 1.53± 0.12
Particle Swarm* 0.02± 0.01 0.16± 0.08 0.48± 0.12 1.11± 0.03
Simulated Annealing* 0.13± 0.08 0.23± 0.20 0.15± 0.14 0.63± 0.25
Rowan’s Subplex* 0.09± 0.02 0.17± 0.08 0.20± 0.34 0.01± 0.02
DIRECT* 0.02± 0.01 0.02± 0.02 0.01± 0.00 0.18± 0.16

Table 3.6: Benchmark results for the Sphere function. Presented as
mean ± standard deviation. Each number is computed from 5 runs
of 1000 iterations each. Best optimizers in bold.

Optimizer 2D 4D 8D 16D 32D
BayesOpt 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
Bayesian* 0.00± 0.00 0.05± 0.02 2.93± 0.92 20.58± 1.42 67.57± 6.14
Evolutionary* 0.02± 0.03 0.03± 0.02 0.86± 0.40 16.93± 3.70 141.82± 18.49
Particle Swarm* 0.00± 0.00 0.00± 0.00 0.14± 0.07 6.91± 5.96 24.22± 8.60
Simulated Annealing* 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.20± 0.26 6.86± 2.21
Rowan’s Subplex* 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.58± 0.26
DIRECT* 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.79± 0.00 97.19± 1.58

37

3. Methodology

Table 3.7: Benchmark results for the Rosenbrock function. Pre-
sented asmean± standard deviation. Each number is computed from
5 runs of 1000 iterations each. Numbers for Rosenbrock were very
large, so they have been converted into a logarithmic scale for read-
ability. Best optimizers in bold.

Optimizer 2D 4D 8D 16D 32D
BayesOpt −4.51± 2.49 2.28± 0.683 6.27± 0.682 8.56± 0.545 10.4± 0.607
Bayesian* −3.48± 1.6 3.32± 0.859 9.16± 0.407 12.5± 0.597 14.8± 0.109
Evolutionary* 1.59± 2.17 5.76± 1.05 8.28± 0.511 12.2± 0.602 16.6± 0.243
Particle Swarm* −2.03± 3.46 2.92± 1.68 7.01± 0.795 10.3± 1.04 13.6± 0.615
Simulated Annealing* 1.49± 2.02 4.33± 2.28 4.43± 2.57 7.53± 1.06 11.2± 0.769
Rowan’s Subplex* −10.6± 3.87 −3.59± 4.35 3.28± 1.76 5.05± 0.764 8.97± 0.468
DIRECT* −13± 5.01 −1.86± 0.188 3± 0.513 6.09± 1.59 14.2± 0.47

38

Chapter 4
Experiments

In this chapter, the results from the experimentsmade during this thesis will be presented. Two
main experiments were performed, one on 14 parameters and a more extensive experiment on
71 parameters. Each experiment is presented on its own in the sections below. All optimizers
used in these experiments were implemented for this thesis. No off-the-shelf optimizers are
used.

4.1 Optimizing 14 Parameters
Initial experiments that were made in this thesis explored optimization over 14 parameters.
Most of the 14 parameters controlled blue fringe settings, while other parameters controlled
the sharpness, contrast, brightness, and saturation. It is important to note that there are many
more parameters in the camera, which are left unchanged in these initial experiments. Essen-
tially, these 14 parameters form only a subset of the whole tuning problem. The primary reason
for attempting a 14 parameter subset first, is to see if optimization works for a small problem
before attempting a more complete parameter-space.

4.1.1 Methodology
With all 14 parameters implemented in the black-box, all optimizers were tested by running
five separate optimizations of 500 iterations each. Optimization was performed on the three
different scenes presented in section 3.1.6. Primary results and analysis are constructed around
the main scene “Lobby”. Scenes “Desk” and “Plant” are used to verify results from the main
scene.

39

4. Experiments

4.1.2 Results
Results for 14 parameters are presented in tables 4.1, 4.2, 4.3, fig. 4.1, figures 4.2, 4.3, 4.4, 4.5,
4.6, 4.7, and 4.8.
Tables 4.1, 4.2, and 4.3 present the average Mean Square Error (MSE) between the reference
image and the tuned image from each optimizer. Means and standard deviation are calculated
based on five separate optimizations. Minimumandmaximumpresent the best andworstMSE
produced by each optimizer. 500 iterations took 3 minutes and 46 seconds on average.

Table 4.1: Main scene: Lobby. Mean ± standard deviation, mini-
mum and maximum values of the MSE found by each optimizer in
500 iterations. Best optimizers in bold.

Algorithm Mean± standard deviation Minimum Maximum
Random Sampling 47.86± 11.19 31.49 63.17
Bayesian 9.25± 0.97 7.84 10.79
DIRECT 16.37± 12.86 8.77 42.01
Evolutionary 10.68± 6.57 5.86 22.68
Rowan’s Subplex 6.25± 4.44 3.12 15.02
Simulated Annealing 7.93± 5.65 3.41 18.75
Particle SwarmOptimization 14.18± 8.15 6.13 29.08

Table 4.2: Scene: Desk. Mean± standard deviation, minimum and
maximum values of the MSE found by each optimizer in 500 itera-
tions. Best optimizers in bold.

Algorithm Mean± standard deviation Minimum Maximum
Random Sampling 64.39± 13.82 42.96 84.10
Bayesian 18.57± 9.82 12.14 38.15
DIRECT 53.81± 31.16 15.76 87.58
Evolutionary 19.92± 12.16 5.43 38.45
Rowan’s Subplex 6.35± 2.79 2.64 9.83
Simulated Annealing 14.89± 7.897 9.23 30.56
Particle SwarmOptimization 13.57± 6.43 8.07 25.86

40

4.1 Optimizing 14 Parameters

Table 4.3: Scene: Plant. Mean± standard deviation, minimum and
maximum values of the MSE found by each optimizer in 500 itera-
tions for. Best optimizers in bold.

Algorithm Mean± standard deviation Minimum Maximum
Random Sampling 79.04± 24.13 32.80 102.96
Bayesian 19.88± 9.78 12.32 39.21
DIRECT 29.69± 22.96 12.30 72.91
Evolutionary 16.25± 6.17 9.92 27.17
Rowan’s Subplex 4.61± 4.05 1.03 12.09
Simulated Annealing 14.19± 7.17 3.59 25.04
Particle SwarmOptimization 20.12± 8.61 8.41 30.36

Figure 4.1 presents a logarithmic graph based on the values from table 4.1 The figure shows
the mean of the best MSE value found by all optimizers, at each iteration up to 500 iterations.
A natural logarithm scale is used only for legibility. Standard deviation is excluded from this
graph, also for legibility. Individual plots with mean and standard deviation are presented in
Appendix A.

Figure 4.1: Main Scene: Lobby. Mean value of the MSE for each
optimizer at each iteration. Note that Y-axis is logarithmic.

Finally, figures 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8 show the reference image, along with the
best image found by each optimizer after 500 iterations, including random sampling. Note that
these images are not neccessarily from the best of the five optimization repetitions. Included is
also a difference map.

41

4. Experiments

(a) Reference image (b)Output image (c)Difference map

Figure 4.2: Random Sampling, MSE=42.0 with a maximum pixel
difference of 65.7.

(a) Reference image (b)Output image (c)Difference map

Figure 4.3: Bayesian Optimization, MSE=9.4 with a maximum pixel
difference of 58.3.

(a) Reference image (b)Output image (c)Difference map

Figure 4.4: DIRECT, MSE=11.0 with a maximum pixel difference
of 67.0.

42

4.1 Optimizing 14 Parameters

(a) Reference image (b)Output image (c)Difference map

Figure 4.5: Evolutionary Optimization, MSE=6.2 with a maximum
pixel difference of 69.7.

(a) Reference image (b)Output image (c)Difference map

Figure 4.6: Rowan’s Subplex, MSE=4.4 with a maximum pixel dif-
ference of 34.3.

(a) Reference image (b)Output image (c)Difference map

Figure 4.7: Simulated Annealing, MSE=4.1 with a maximum pixel
difference of 43.0.

43

4. Experiments

(a) Reference image (b)Output image (c)Difference map

Figure 4.8: Particle Swarm Optimization, MSE=11.8 with a maxi-
mum pixel difference of 34.33.

In order to visualize how well the best performing algorithm for 500 iterations did on the
two other scenes, desk and plant, the best resulting image is presented in the figures 4.9 and 4.10
below.

(a) Reference image (b)Output image (c)Difference map

Figure 4.9: Rowan’s Subplex, MSE=7.35 with a maximum pixel dif-
ference of 60.

(a) Reference image (b)Output image (c)Difference map

Figure 4.10: Rowan’s Subplex,MSE=5.56with amaximumpixel dif-
ference of 56.33.

44

4.1 Optimizing 14 Parameters

4.1.3 Discussion
As can be seen from the optimized images, all of the algorithms perform very well compared
to the random sampling strategy. Rowan’s Subplex method performs particularly well on this
14-dimensional problem with a mean MSE of 6.25 on the main scene. Results from the main
scene are verified on the second and third scene, which produce slightly different but overall
similar results.

Note also that these results are only snapshots at 500 iterations. Figure 4.1 suggests that
Bayesian optimization is the best performing algorithm between 100 and 300 iterations, which
means that it could be the better choice depending on howmany iterations the optimization is
allowed to run.

When looking at the images produced from the optimizations, it can be seen that random
sampling produces an image with a few notable artifacts and an MSE of 42.0. Nevertheless,
the image is quite good compared to the reference image for the human eye. However, looking
at images produced by the optimizers, all optimizers produce images that are virtually indistin-
guishable from the reference image.

Further, looking at the difference maps, differences seem to show up around edges and in
the pixel-noise for most optimizers. This correlates most with the effects of the sharpness pa-
rameters, which suggests that the sharpness parameters may be the most difficult to tune.

Considering the fact that such a good result was produced in under 4 minutes on average,
this 14-dimensional problem is considered solved.

45

4. Experiments

4.2 Optimizing 71 Parameters
After the successful optimization experimentsmade on the 14 initial parameters, it was decided
that the optimization should also be tested on a significantly larger portion of the IPP parame-
ters, resulting in 71 parameters. Most of the parameters from the 14-dimensional problemwere
included in the 71-dimensional problem, apart from two parameters that were removed due to
conflicts. Parameters included control virtually all parts of the camera’s IPP. More parameters
exist in the IPP, but some were not feasible to tune programmatically due to various reasons.
For example, some parameters require a dynamic scene in order to take effect. Parameters not
included are left to their hand-tuned values in these experiments.

4.2.1 Methodology
Since the new 71-dimensional problem is expected to be more difficult compared to the 14-
dimensional problem, it was immediately decided to run the optimization over 1000 iterations
instead of 500 to produce a satisfying result. The same three scenes from the 14-dimensional
testingwereused for these experiments. Five separate optimizationswere runon the three scenes
for each optimizer.

After looking at results from 1000 iterations, potential for further improvement was ob-
served, which prompted tests with 5000 iterations. Tests were only done with 5000 iterations
to explore if the algorithms could indeed converge to even betterMSE values. Therefore, exper-
iments with 5000 iterations were only performed on the main scene “Lobby”.

4.2.2 Results
Results for 71 parameters are presented in tables 4.4, 4.5, 4.6, 4.7, figures 4.11, 4.12, and figures
4.13, 4.14, 4.15, 4.16, 4.17, 4.18, and 4.19.

Tables 4.4, 4.5, and 4.6 present the averageMSE between the reference image and the tuned
image from each optimizer, at 1000 iterations for each scene. Average MSE for 5000 iterations
is presented in table 4.7. Means are calculated based on five separate optimizations. Minimum
and maximum present the best and worst MSE produced by each optimizer.

1000 iterations took 11 minutes and 5 seconds on average. 5000 iterations took approxi-
mately 1 hour.

46

4.2 Optimizing 71 Parameters

Table 4.4: Main Scene: Lobby. Mean ± standard deviation, mini-
mum and maximum values of the MSE found by each optimizer in
1000 iterations. Best optimizers in bold.

Algorithm Mean± standard deviation Minimum Maximum
Random Sampling 106.37± 20.31 73.34 129.47
Bayesian 49.54± 4.50 42.58 55.22
DIRECT 83.57± 8.21 76.76 96.07
Evolutionary 30.39± 8.53 21.82 44.99
Rowan’s Subplex 40.93± 25.67 13.71 86.59
Simulated Annealing 24.01± 7.21 17.89 35.95
Particle SwarmOptimization 48.71± 24.57 22.47 92.90

Table 4.5: Scene: Desk. Mean± standard deviation, minimum and
maximum values of the MSE found by each optimizer in 1000 itera-
tions. Best optimizers in bold.

Algorithm Mean± standard deviation Minimum Maximum
Random Sampling 157.18± 22.20 113.61 174.45
Bayesian 63.87± 2.75 59.72 67.11
DIRECT 84.11± 9.48 73.24 101.58
Evolutionary 31.90± 3.44 27.38 37.78
Rowan’s Subplex 37.01± 16.62 10.65 61.22
Simulated Annealing 28.86± 6.82 21.01 38.76
Particle SwarmOptimization 48.59± 27.25 30.20 102.34

Table 4.6: Scene: Plant. Mean± standard deviation, minimum and
maximum values of the MSE found by each optimizer in 1000 itera-
tions. Best optimizers in bold.

Algorithm Mean± standard deviation Minimum Maximum
Random Sampling 138.69± 31.85 96.91 184.99
Bayesian 70.35± 15.69 48.19 89.82
DIRECT 125.47± 8.57 114.13 135.98
Evolutionary 37.05± 10.28 28.52 56.70
Rowan’s Subplex 33.99± 10.11 15.84 46.89
Simulated Annealing 24.14± 6.14 16.63 33.63
Particle SwarmOptimization 42.82± 7.27 35.20 55.18

47

4. Experiments

Table 4.7: Main Scene: Lobby. Mean ± standard deviation, mini-
mum and maximum values of the MSE found by each optimizer in
5000 iterations. Best optimizers in bold.

Algorithm Mean± standard deviation Minimum Maximum
Random Sampling 72.37± 16.96 41.48 89.41
Bayesian 34.55± 3.83 31.12 41.49
DIRECT 44.84± 12.98 32.65 68.25
Evolutionary 17.92± 1.22 15.79 19.06
Rowan’s Subplex 18.05± 5.27 12.34 27.71
Simulated Annealing 9.77± 1.71 7.62 11.89
Particle SwarmOptimization 25.59± 4.70 18.76 32.37

Figure 4.11 presents a logarithmic graph which shows the best MSE value found by all op-
timizers, at each iteration up to 1000 iterations. A natural logarithm scale is used only for legi-
bility. A similar graph for 5000 iterations is shown in figure 4.12.
Individual plots with mean and standard deviation for 5000 iterations are presented in Ap-
pendix A.

Figure 4.11: Main Scene: Lobby. Mean value of the MSE for each
optimizer at each iteration up to 1000. This corresponds to data in
table 4.4. Note that Y-axis is logarithmic.

48

4.2 Optimizing 71 Parameters

Figure 4.12: Main Scene: Lobby. Mean value of the MSE for each
optimizer at each iteration up to 5000. This corresponds to data in
table 4.7. Note that Y-axis is logarithmic.

Lastly, figures 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, and 4.19 show the reference image, along
with the best image found by each optimizer after 1000 iterations, including random sampling.
A difference map is also included to highlight differences.

(a) Reference image (b)Output image (c)Difference map

Figure 4.13: Random Sampling, MSE=107.6 with a maximum pixel
difference of 121.0.

49

4. Experiments

(a) Reference image (b)Output image (c)Difference map

Figure 4.14: Bayesian Optimization, MSE=48.7 with a maximum
pixel difference of 93.7.

(a) Reference image (b)Output image (c)Difference map

Figure 4.15: DIRECT,MSE=87.6 with a maximum pixel difference
of 90.7.

(a) Reference image (b)Output image (c)Difference map

Figure 4.16: Evolutionary Optimization, MSE=28.7 with a maxi-
mum pixel difference of 72.7.

50

4.2 Optimizing 71 Parameters

(a) Reference image (b)Output image (c)Difference map

Figure 4.17: Rowan’s Subplex,MSE=35.0with amaximumpixel dif-
ference of 114.7.

(a) Reference image (b)Output image (c)Difference map

Figure 4.18: SimulatedAnnealing,MSE=25.8with amaximumpixel
difference of 50.0.

(a) Reference image (b)Output image (c)Difference map

Figure 4.19: Particle Swarm Optimization, MSE=34.7 with a maxi-
mum pixel difference of 79.7.

51

4. Experiments

In order to visualize how well the best performing algorithm for 1000 iterations did on the
two other scenes, desk and plant, the best resulting image is presented in the figures 4.20 and
4.21 below.

(a) Reference image (b)Output image (c)Difference map

Figure 4.20: Simulated Annealing, MSE=22.56 with a maximum
pixel difference of 53.33.

(a) Reference image (b)Output image (c)Difference map

Figure 4.21: Simulated Annealing, MSE=25.04 with a maximum
pixel difference of 75.67.

4.2.3 Discussion
Random sampling, which can be considered the baseline to compare the algorithms against,
produces theworst result as expectedwith ameanMSEof 106.37 and72.37 after 1000 and5000
iterations, respectively. One notable change from the 14-dimensional problem is thatDIRECT
performs significantly worse compared to the other optimizers. Perhaps surprisingly, Simu-
lated Annealing now performs best on average, both at 1000 and 5000 iterations. Moreover,
Simulated Annealing also performs best overall on all of the scenes. Close seconds are Rowan’s
Subplex method and evolutionary optimization. Worth noting is that Rowan’s method has a
considerable variance after 1000 iterations, resulting in a best MSE of 13.71, and a worst MSE
of 86.59 on the main scene. Results from the experiments on the main scene are verified on
the other two scenes “Desk” and “Plant”, which gives confidence that the result is generalizable
across images.

From figure 4.12 it seems like simulated annealing is a clear winner for any number of it-
erations over 1000. However figure 4.11 suggests that evolutionary optimization might be the
better choice for anything less than 600 iterations.

DespiteMSEvalues generally being significantly larger for this problemthan the14-dimensional
one, the optimized images still look remarkably similar to the original. Though, as expected, the

52

4.2 Optimizing 71 Parameters

best image from random sampling shows amore apparent difference. While there is now an ob-
servable difference for some optimizers, most notably DIRECT and particle swarm, the overall
result is deemed to be of very good quality. No images were included for 5000 iterations since
those experiments were performed only to see if the algorithms could converge further.

Since there are nowmanymore parameters than in the 14-dimensional case, it ismuchmore
difficult to reason about which parameters aremost difficult to tune. However, it is still the case
that the largest differences in the differencemaps seem to be around edges and in the pixel noise.
Thus it is not unreasonable to believe that sharpness still proves to be a difficult obstacle for the
optimizers.

On a final note, since 5000 iterations only takes approximately one hour, random sampling
might actually be a perfectly viable option in practice. Even 100000 iterationsmight be feasible,
which should take approximately 20 hours, and would give random sampling a chance at pro-
ducing a very good result. Given the general timeframe of several weeks for manually tuning a
camera hardware, random sampling might be desirable thanks to its simplicity.

53

4. Experiments

54

Chapter 5
Conclusion

A black-box optimization framework has been put in place that can automatically tune a large
number of camera hardware parameters to fit a reference image. Implementing and testing said
framework has been the primary purpose of this thesis. In this section, results from the experi-
ments and the implementation will be discussed and concluded. Limitations made during this
thesis and possible future work will also be discussed.

5.1 Choice of Algorithm
Several different optimization algorithms have been tested.

The choice of an algorithm to use when optimizing a black-box problem often depends on
the nature of the problem. This was demonstrated during the testing of the robustness of our
algorithms in section 3.3.7. In those tests, the algorithms performed very differently depend-
ing on the problem. What was clear was that the algorithms that performed best overall were
Simulated Annealing, Evolutionary and Rowan’s Subplex. When optimizing hardware param-
eters in a physical camera unit, all three algorithms performedwell regardless of dimensionality,
number of iterations, or the nature of the scene optimized upon. Therefore the choice of algo-
rithm to use on these particular problems should reasonably be one of Simulated Annealing,
Evolutionary, or Rowan’s Subplex algorithm. Across all tests, Simulated Annealing seems to
be the most reliable.

5.2 Future work
For the majority of this thesis, the testing was made on the 14-dimensional problem. There-
fore the implementation and study of algorithms were made on that premise. Testing of the
71-dimensional problem was only made during the latter stages of the thesis process. There-
fore, there was no time to consider studying or testing other algorithms or methods possibly

55

5. Conclusion

better suited for a problem of higher dimensionality. One suggestion of future work would be
to investigate different algorithms and methods to test if anything could yield a better result,
particularly for the 71-dimensional problem.

Even though the 71-dimensional problem is of very high dimensionality, there exist even
more parameters in the cameras used. Therefore another suggestion for further investigation
would be to test more parameters to see if the algorithms could replace the human part of tun-
ing. Another related suggestion would be to see if there are any gains to be made by tuning
the blocks one by one and limiting the number of parameters used instead of tuning all of the
parameters available at once.

This thesis did not explore how results generalize to different scenes. A final suggestion for
future reasearch is to explore for example portfolio optimization, and to investigate how well a
solution from one scene generalizes to others.

56

References

[1] About axis. https://www.axis.com/sv-se/about-axis, Retrieved 2021-04-28.

[2] Axis network cameras. https://www.axis.com/sv-se/products/network-cameras, Re-
trieved 2021-04-28.

[3] Picture style settings and customization.
https://support.usa.canon.com/kb/index?page=content&id=ART170199, Retrieved
2021-04-28.

[4] Charles Audet andWarren Hare. Derivative-Free and Blackbox Optimization. Springer,
2017.

[5] Gunnar Blom, Jan Enger, Gunnar Englund, Jan Grandell, and Lars Holst. Sannolikhet-
steori och statistikteori med tillämpningar. Studentlitteratur, 7th edition, 2017.

[6] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123 – 140, 1996.

[7] Leo Breiman. Random forests. Machine Learning, 45(1):5 – 32, 2001.

[8] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary robust independent el-
ementary features., volume 6314 LNCS of Lecture Notes in Computer Science. Springer
Verlag, EPFL, 2010.

[9] Peter I. Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811,
2018. Available at https://arxiv.org/abs/1807.02811.

[10] RafaelC.Gonzalez andRichardE.Woods.Digital ImageProcessing. Pearson, 4th edition,
2018.

[11] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence, 206:79 – 111, 2014.

[12] Keith Jack. Video Demystified: A Handbook for the Digital Engineer. Newnes, 2007.

57

REFERENCES

[13] Momin Jamil and Xin-She Yang. A literature survey of benchmark functions for global
optimization problems. 2013.

[14] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without
the lipschitz constant. Journal of Optimization Theory andApplications, 79(1):157 – 181,
1993.

[15] Kenneth A. De Jong. Evolutionary Computation A Unified Approach. MIT Press, 2006.

[16] James Kennedy and Russel Eberhart. Particle swarm optimization. Proceedings of
ICNN’95 - International Conference on Neural Networks, pages 1942 – 1948, 1995.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671 – 680, 1983.

[18] Ruben Martinez-Cantin. Bayesopt: A bayesian optimization library for nonlinear op-
timization, experimental design and bandits. Journal of Machine Learning Research,
15:3735 – 3739, 2014.

[19] AliMosleh, Avinash Sharma, EmmanuelOnzon, FahimMannan,NicolasRobidoux, and
Felix Heide. Hardware-in-the-loop end-to-end optimization of camera image process-
ing pipelines. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Computer Vision and Pattern Recognition (CVPR), 2020 IEEE/CVF Conference
on, CVPR, pages 7526 – 7535, 2020.

[20] Luigi Nardi, David Koeplinger, and Kunle Olukotun. Practical design space exploration.
In 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pages 347–358. IEEE, 2019.

[21] John A. Nelder and Roger Mead. A simplex method for function minimization. The
computer journal 7.4, pages 308 – 313, 1965.

[22] OpenCV. Introduction. Available at https://docs.opencv.org/4.5.1/d1/dfb/intro.html.

[23] Geurts Pierre, ErnstDamien, andWehenkel Louis. Extremely randomized trees.Machine
Learning, 63(1):3 – 42, 2006.

[24] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization. Swarm
intelligence, 1(1):33–57, 2007.

[25] E.Rosten, R. Porter, andT.Drummond. Faster and better: Amachine learning approach
to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Pattern Analysis and Machine Intelligence, IEEE Transactions on, IEEE Trans. Pattern
Anal. Mach. Intell, 32(1):105 – 119, 2010.

[26] ThomasHarvey Rowan. Functional stability analysis of numerical algorithms. Technical
report, 1990.

[27] E.Rublee, V.Rabaud, K.Konolige, andG. Bradski. Orb: An efficient alternative to sift or
surf. 2011 International Conference on Computer Vision, Computer Vision (ICCV), 2011
IEEE International Conference on, pages 2564 – 2571, 2011.

58

REFERENCES

[28] B. Shahriari, K. Swersky, Z.Wang, R. P. Adams, andN. de Freitas. Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175,
2016.

[29] Bruno O. Shubert. A sequential method seeking the global maximum of a function.
SIAM Journal on Numerical Analysis, 9(3):379 – 388, 1972.

[30] Richard Szeliski. Computer vision: Algorithms and applications. 2nd ed. working draft,
2021.

[31] H. Szu and R. Hartley. Fast simulated annealing. Physics Letters A, 122(3):157 – 162,
1987.

[32] C. Tsallis and D.A. Stariolo. Generalized simulated annealing. Physica A, 233(1):395 –
406, 1996.

[33] Xiang Yang, Sylvain Gubian, Brian Suomela, and Julia Hoeng. Generalized simulated
annealing for global optimization: The gensa package. R Journal, 5(1):13 – 28, 2013.

59

REFERENCES

60

Appendices

61

Appendix A
Individual plots with standard deviation

Individual plots for each optimizer for the 14 and 71 parameters are presented on the following
pages. The first page shows the plots for 14 parameters, and the second page shows the plots for
71 parameters. All of these plots are generated for the Lobby scene. Each plot shows the mean
plus and minus standard deviation for one optimizer.

63

A. Individual plots with standard deviation

(a) Random Sampling (b) Bayesian

(c)Direct (d) Evolutionary

(e) Subplex (f) Simulated Annealing

(g) PSO

Figure A.1: Main Scene: Lobbywith 14 parameters. Mean value and
mean± standard deviation of the MSE for each optimizer at each it-
eration up to 500. Note that Y-axis is logarithmic.

64

(a) Random Sampling (b) Bayesian

(c)Direct (d) Evolutionary

(e) Subplex (f) Simulated Annealing

(g) PSO

Figure A.2: Main Scene: Lobbywith 71 parameters. Mean value and
mean± standard deviation of the MSE for each optimizer at each it-
eration up to 5000. Note that Y-axis is logarithmic.

65

A. Individual plots with standard deviation

66

Appendix B
Popular Science Article

The next page shows the popular science article written in the process of this master thesis.

67

DEPARTMENT OF COMPUTER SCIENCE | LTH - LUND UNIVERSITY | PRESENTED 2021-06-21

MASTER THESIS Self-Optimization of Camera Hardware
STUDENTS Simon Kristofferson Lind, Johannes Tykesson
SUPERVISORS Luigi Nardi (LTH), Waqar Hameed (Axis Communications)
EXAMINER Volker Krueger (LTH)

Automagically tuning camera quality

POPULAR SCIENCE SUMMARY Simon Kristofferson Lind, Johannes Tykesson

When new cameras are developed, their image quality has to be tuned by expert
engineers, which normally takes several weeks. Our thesis shows that tuning can be
done automatically in a matter of minutes.

Most cameras today come with a large number
of settings that can change the image quality in
many ways. Examples of such parameters are
contrast and saturation. Our thesis was done
at Axis Communications, and our work focused
on parameters in the camera’s ISP chip. These
ISP chips usually contain hundreds of individual
parameters that all have different effects on the
image quality. Some effects are shown below:

Traditionally, all these parameters are manually
tuned by expert imaging engineers who often
spend several weeks to tune a single camera.
Therefore, our thesis aims to automate this
tuning process.

First, we needed to be able to tell if an image
from the camera is good or bad. In order to do
that, we compared it to a reference image. In
practice, this reference image comes from a camera
that has already been tuned.
Next, we implemented several optimization al-

gorithms. These algorithms were then hooked di-
rectly to a camera, which allowed parameters to
be tuned automatically.
Since hundreds of parameters is a massive task

for most optimization algorithms, we started
out small by experimenting with 14 parameters.
Seeing that 14 parameters worked very well,
we expanded to include the most important
components in the ISP chip. In total, we tuned a
staggering 71 parameters.

After running our tests, we were pleased to find
that our tuned images were nearly identical to
the reference image:

Can you tell which one is the reference image?
Neither can we.

In conclusion, our results show that it is possible
to automatically tune 71 parameters in under 15
minutes.
Tuning all these parameters automatically

should save a lot of time for the human engineers.

	Introduction
	Contributions
	Related work
	Outline

	Background
	Axis' Cameras
	Camera Hardware Parameters

	Theory for Comparison
	RMSE

	Theory for Images
	OpenCV
	YCbCr Format
	Image Derivatives and Sobel Filters
	Gradient Histograms
	Image Histograms
	Feature Detection
	Image Alignment

	Optimization theory
	Black-Box Optimization
	Evolutionary Optimization
	Bayesian Optimization
	Particle Swarm Optimization
	Simulated Annealing
	Nelder Mead Simplex
	Rowan's Subplex Method
	DIRECT

	Methodology
	Black Box Architecture
	Image Injection
	Setting Parameters in the Camera
	Requesting an Image from the Camera
	Image Comparison
	Highlighting Differences in Images
	Dataset and Reference Images

	Random Sampling
	Optimization Algorithms
	Evolutionary Optimization
	Bayesian Optimization
	Particle Swarm Optimization
	Simulated Annealing
	Rowan's Subplex Method
	DIRECT
	Robustness of Optimizer Implementations

	Experiments
	Optimizing 14 Parameters
	Methodology
	Results
	Discussion

	Optimizing 71 Parameters
	Methodology
	Results
	Discussion

	Conclusion
	Choice of Algorithm
	Future work

	References
	Appendix Individual plots with standard deviation
	Appendix Popular Science Article

