
MASTER'S THESIS

Axel Holmqvist and David Jungermann
DEPARTMENT OF DESIGN SCIENCES
FACULTY OF ENGINEERING LTH | LUND UNIVERSITY 2021

Optimizing the usability of
REST API reference documentation

Optimizing the usability of REST API reference documentation

Copyright © 2021 David Jungermann, Axel Holmqvist

Published by
Department of Design Sciences
Faculty of Engineering LTH, Lund University
P.O. Box 118, SE-221 00 Lund, Sweden

Subject: Interaction Design (MAMM01)
Supervisor: Joakim Eriksson
Co-supervisor: Kevin Kimaryo at Homepal AB
Examiner: Mattias Wallergård

Abstract
With an increasingly growing demand for accessible data, the amount of REST API:s world-
wide is growing. All REST API:s come with some form of reference documentation, which
is crucial for the comprehension and usage of the API. Every API provider should therefore
consider the usability of their reference documentation, to facilitate the learning and usage
of their product.

This master’s thesis was performed in collaboration with Homepal AB, a startup com-
pany within the real estate industry. The master’s thesis explores what features and properties
should be included in a reference documentation order to support the needs of the end users.
Furthermore, it aims to investigate how di�erent types of developers use reference docu-
mentation di�erently. These learnings were then applied to a prototype, that was subject to
evaluation in several stages.

By using a user-centered design process and an iterative approach, with interviews and
and a usability study, combined with literature studies of former research, heuristic analyzes
of example documentation, along with insights from the private sector, prototypes of di�er-
ent levels were created and iterated with the goal of creating a final prototype illustrating the
learnings, that then could be used as inspiration for improving the reference documentation
of Homepal.

The result of the design process, and the final prototype, was mainly evaluated through
user observation and feedback, as well as the usage of the System Usability Scale. The proto-
type was highly and widely appreciated among the users, and received an average SUS score
of 95.

Keywords: REST API, reference documentation, usability, user centered design, user ex-
perience

2

Sammanfattning
Med allt större efterfrågan på tillgänglig data ökar antalet REST API:er markant världen
över. Varje REST API har någon form av referensdokumentation, vilket är avgörande för
förståelsen samt användandet av ett API. Samtliga API-leverantörer bör således överväga
optimering av referensdokumentationens användbarhet för att underlätta inlärning och an-
vändning av sin produkt.

Denna masteravhandling utfördes i samarbete med Homepal AB, ett startup-företag inom
fastighetsbranschen. Mastersavhandlingen ämnar att undersöka vilken funktionalitet och
vilka egenskaper som bör inkluderas i en referensdokumentation för att uppfylla slutanvän-
darnas behov, samt undersöka hur olika typer av utvecklare använder sig utav referensdoku-
mentation på olika tillvägagångssätt. Dessa lärdomar applicerades sedan slutligen på en pro-
totyp som utvärderades i flera steg.

Genom att använda en användarcentrerad designprocess och ett iterativt tillvägagångssätt,
med intervjuer och användbarhetsstudier kombinerat med litteraturstudier av tidigare forskn-
ing, heuristiska analyser av dokumentationsexempel, samt insikter från den privata sektorn,
skapades prototyper på olika nivåer vilka itererades med målet att skapa en slutgiltig proto-
typ som illustrerar den kunskap som samlats, och som kan fungera som inspiration för att
förbättra Homepals referensdokumentation.

Resultatet av designprocessen och prototypen utvärderades huvudsakligen genom använ-
darobservation och feedback, samt genom användning av System Usabilty-skalan. Proto-
typen uppskattades mycket och brett bland användarna, och fick ett genomsnittlig SUS-
resultat på 95.

Nyckelord: REST API, referensdokumentation, användbarhet, användarcentrerad design,
användarupplevelse

3

Acknowledgements
This research paper has been conducted during the Spring of 2021 and is presenting the work
of the Master’s Thesis by us, Axel Holmqvist and David Jungermann. With its completion,
we are finishing our studies in Information & Communication Technologies Engineering at
the Department of Design Sciences, Faculty of Engineering LTH, Lund University.

The work has been done at Homepal, in Malmö, Sweden, to which we would like to say
a big thank you. The o�ce space successfully made us feel like members of the team, and it
has truly been a pleasure writing our Master’s Thesis at the company. An extra thank you to
our supervisor, Kevin Kimaryo, who has been providing for all of our needs.

We would also like to thank our supervisor at LTH, Joakim Eriksson, who has guided
us throughout the thesis with relevant feedback and insightful ideas regarding the design
process.

Finally, we would like to express our gratitude to all of the interview participants and
user testers, as well as employees being a part of feedback workshops, for taking your time
and voluntarily contributing to our work.

Lund, May 2021
Axel Holmqvist and David Jungermann

4

Contents

1 Introduction 9
1.1 Background . 9

1.1.1 Homepal . 10
1.2 Related Work . 10
1.3 Scope . 11
1.4 Purpose and Goals . 12

2 Technical Background 13
2.1 Application Programming Interfaces . 13

2.1.1 Local API:s . 13
2.1.2 Web API:s . 14
2.1.3 Open API:s . 16
2.1.4 RESTful API:s . 17

3 Theoretical Background 19
3.1 User-Centered Design . 19
3.2 Design Process . 20
3.3 Usability . 20
3.4 User Experience . 21
3.5 Universal Design . 22
3.6 Heuristic Analysis . 22
3.7 Interviews . 22
3.8 Prototyping . 23
3.9 Usability Testing . 23

3.9.1 Planning Usability Studies . 24
3.9.2 System Usability Scale . 25

3.10 API Reference Documentation . 25
3.10.1 Supplementary Documentation . 26

3.11 Types of Developers . 27
3.12 Concerns with API Usage . 28

5

CONTENTS

3.13 API Documentation Guidelines . 32
3.13.1 Former Research . 32
3.13.2 Insights from the Private Sector . 34

3.14 Usage Examples . 35

4 Design Process 39
4.1 Timeline of Key Activities . 39
4.2 Understand Phase . 41

4.2.1 Literature Study . 41
4.2.2 Heuristic Evaluation . 41
4.2.3 User Interviews . 43
4.2.4 Summarized Results . 48

4.3 Explore Phase . 48
4.3.1 MidFi Prototyping . 50
4.3.2 HiFi Prototyping . 55

4.4 Materialize Phase . 61
4.4.1 Usability Testing . 61
4.4.2 Final Prototype . 67

5 Discussion 71
5.1 Understand Phase . 71

5.1.1 Literature Study . 71
5.1.2 Heuristic Evaluation . 72
5.1.3 User Interviews . 72

5.2 Explore Phase . 73
5.2.1 Feature Prioritization . 73
5.2.2 MidFi Prototyping . 73
5.2.3 Developer Team Talk . 73
5.2.4 HiFi Prototyping . 74

5.3 Materialize Phase . 74
5.3.1 Usability Testing . 74
5.3.2 Result Evaluation . 75
5.3.3 Final Prototype . 76

5.4 Future Work . 78

6 Conclusion 81

References 83

Appendix A User Interviews 89
A.1 Interview Questions . 89
A.2 Form of Consent . 91

Appendix B Usability Tests 93
B.1 User Tasks . 93
B.2 Form of Consent . 96
B.3 User Feedback Questions . 97

6

CONTENTS

Appendix C Implementation 99
C.1 Selected Implementations . 99

7

CONTENTS

8

Chapter 1

Introduction

This introductory chapter aims to describe the importance of API:s to the modern web, and why
documentation plays a tangible role in regards to the adoption and usage of these. Following this, a
description of the company which this work is based around, Homepal AB, will follow, with the main
goal of describing the context in which this study is performed. Thereafter, this chapter will present
the purpose, goals and scope of this thesis work. Lastly, an aggregation of previous related research
and findings within the area will act as foundation for further work and considerations made in this
thesis.

1.1 Background
Application Programming Interfaces, API:s, are the backbone of the modern web, and their usage
is constantly increasing. In 2016, there were around 12 000 open API:s, which is 30 times
more compared to 2006 [9], and there are no signs of this growth slowing down. In a study
conducted by RapidApi1, API usage was set to increase in 2020, with 65.5% of the respondents
answering that they intend to use more API:s in 2020 [35].

The goal of an API is to provide a service to a consumer, in order to facilitate re-use of
previously implemented software. This drastically lowers the complexity of implementing
interconnected software, since it is possible to leverage already existing API:s to implement
the desired functionality. Web API:s can be based on several di�erent underlying technolo-
gies. For the consumer, the underlying technology mainly decides on what format the data
should be accessed and returned, but the overall goal is the same for all types of Web API:s.
According to the same study conducted by RapidAPI [35], the most prominent technology
is RESTful API:s, commonly referred to as REST API:s, with 62.50% using it to implement
Web API:s in production.

In order to use third-party software e�ciently, the API provider must supply resources
to facilitate learning and usage. In studies conducted by Robillard [36], as well as Robillard

1https://rapidapi.com/

9

1. Introduction

and DeLine [37], it is concluded that lacking documentation negatively a�ects the e�ciency
of learning an API, and is actually the largest obstacle for developers when faced with the
task of learning a new API. The documentation in itself can act as an obstacle to overcome.
Uddin and Robillard claim that poor documentation may lead to dissatisfied developers, and
an ine�cient development process, along with potential abandonment of the API [39].

Therefore, as an API provider, putting e�ort into your documentation may be a well-
worth investment, as it can increase the number of satisfied developers and the software
that is built on top of your work will be of higher quality. Furthermore, it may increase
engagement with your platform, as the developers working with your API are satisfied with
the service you provide.

1.1.1 Homepal
Homepal AB2 is a startup company based in Malmö, Sweden. They are building a platform
for organizing and maintaining data for real estate companies. These property companies
oftentimes have a large number of intertwined and complex systems for data control. These
systems are often based on old technologies, and are di�cult to access, which leads to du-
plicated data with lacking quality. Homepal aims to simplify integration with this data, by
providing a REST API for third-party developers, called Homebase API, as well as a trans-
parent data model that can be used to structure the complex data generated with the real
estate companies. The idea is that instead of writing unique software integrations for every
company, you can use Homepal’s services for all companies, meaning that software can be
reused for all property companies on the Homepal platform.

In order to facilitate this process, Homepal has a developer portal that acts as a starting
point for developers that want to use the API and other services, that also holds the docu-
mentation along with guides on how to get started using the platform, as well as tools for
newer and more experienced developers alike.

1.2 Related Work
There are no doubts that software, and local API documentation is a well-researched sub-
ject which should be seen as widely spread and thoroughly examined. However, conducted
research that specifically concerns the usability of REST API reference documentation is a less
explored area when it comes to published work within academia. Despite the growing inter-
est, there is a lack of exhaustive studies concerning individual experiences from developers
within this area. After having examined related work for this thesis, two major research
groups, from Mersburg University of Applied Sciences and School of Computer Science at
McGill University respectively, were found that had a major focus on REST API reference
documentation and its usability aspect.

Meng, Steinhardt and Schubert have attempted to understand how developers use API
documentation by conducting a study where developers are tasked with solving problems
using an API new to them [21]. The results indicate how documentation should support
developers when learning a new API, and how documentation can be improved in order to

2https://homepal.se/

10

1.3 Scope

increase the support for developers. In a subsequent article Meng, Steinhardt and Schubert
[22] put the guidelines suggested in the article above to the test. In this study, they use these
guidelines to compare developers using optimized documentation and developers using non-
optimized documentation. The study showed that the optimized documentation decreased
the number of errors, and made the developers more e�cient in completing their tasks.

Uddin and Robillard [39] claim that the act of creating functioning documentation for
an API is di�cult, and that these problems propagate and impact the usage of the API. Ten
often occurring documentation problems were selected, and were the focal point of a large
study in order to investigate which issues a�ected developers the most and why. Further-
more, in a study by Robillard [37], developers are asked on the obstacles and challenges with
learning a new API. The results show that an API that is easy to use is also easier to learn,
and that the overall usability a�ects how the API is perceived and understood when learn-
ing to use it. Furthermore, Robillard claims that: “[. . .] the way to foster more e�cient API
learning experiences is to include more sophisticated means for developers to identify the information
and the resources they need-even for well-designed and documented APIs.”. Robillard and DeLine
[36] also conducted a study that bring up the di�culties of learning a large API, and how
this a�ects developers and their e�ciency. In order to investigate what actually makes API:s
hard to learn, a study was conducted in which 440 developers were asked about di�culties
and obstacles that may arise when using a new API. Based on this survey, five guidelines for
constructing API documentation were constructed; the API documentation should include
usage examples, should be unambiguous and complete, support di�erent scenarios for usage,
convenient to navigate, and finally, include relevant design elements.

In addition to these two research groups, Sohan, Mauer and Anslow have, together with
the aforementioned Robillard, carried out a study [38] on the e�ectiveness of usage examples
in Web API documentation. The authors claim that there is a distinct di�erence in features
between local and Web API:s and that existing research on API documentation usability has
primarily focused on local API:s, thus the need for research regarding Web API documentation
usability.

1.3 Scope
This thesis is written within the area of Interaction Design, which consequently will be the
main focus. Therefore, the pure textual content of documentation will not be considered in
practice, despite it obviously a�ecting the overall usability of the documentation. In the final
stages of this thesis, it will be assumed that the present documentation is factually correct,
complete and up-to-date. This delimitation is introduced as a means to prevent this thesis
from diving too deep within the field of technical writing, as well as sparing the authors
from having to specify the details of the API. This further allows the authors to focus on
documentation at a higher abstraction level, where features and concepts can be evaluated
from a usability standpoint.

As mentioned in Section 2.1, there are considerable di�erences between local API:s and
REST API:s, which warrants di�erences in how to approach their documentation. Since
the collaborating partner, Homepal, is working on a RESTful Web API, this thesis will only
focus on the documentation of these API:s. In this thesis, the term API will therefore refer
to RESTful Web API if nothing else is explicitly stated.

11

1. Introduction

Furthermore, the term documentation can refer to various types of information, and di�er-
ent abstraction levels. For example, should a "Get Started"-guide be referred to as documen-
tation? Is a StackOverflow thread, or a blog post considered as documentation? This thesis
will focus mainly on reference documentation, and if nothing else is explicitly stated the term
documentation will refer to reference documentation for REST API:s. Also, since Homepal’s
API is not yet widely spread, the authors assume that the documentation is the only source
of information on the API, which may not be the case for more established services. This
thesis will therefore focus entirely on the documentation provided by Homepal.

Lastly, due to the nature of the focus on interaction design, the authors have chosen not
to focus and highlight programming contributions at large. The design process of this thesis
included programming to a large extent in the implementation phase, but these solutions
will only be briefly explained, in order to pertain to the predefined scope.

1.4 Purpose and Goals
The academic purpose is to further elaborate on–and extend–previous work made in re-
gards to REST API reference documentation, by applying theory, as well as insight from
the industry and users in order to create a better experience for users of the Homebase API
documentation. There are aspects and features that a�ect the overall usability of the doc-
umentation that will be evaluated through various forms of heuristic analysis, interviews,
prototyping and usability testing. By doing this, the authors of this thesis hope that it will
be made evident what factors positively a�ect REST API reference documentation, and how
di�erent developers, and their respective needs, can be supported when using the Homebase
API documentation. In extension, successful approaches and solutions can be applied and
implemented for the Homepal Developer Portal. The purpose of this thesis is summarized
through the goals below:

Goal 1: Understand what features and properties should be included in an REST API reference
documentation to support the needs of the developers.

Goal 2: Understand how di�erent types of developers use documentation di�erently, and how
the documentation accommodates for the needs of di�erent developers.

Goal 3: Apply what was learned in relation to previous goals in order to create a prototype
that performs well in evaluation.

12

Chapter 2

Technical Background

This chapter aims to briefly go over and explain the technical prerequisites for this thesis, in order to
provide the reader with the needed context and what technology the work is based upon. The goal is
to clearly di�erentiate di�erent types of API:s and the core technologies they are based upon, as well
as briefly explain the relevant technology for this thesis. Worth noting is that all aspects of REST API
development cannot be included in this thesis, due to the defined scope. This means that less general
terminology will be excluded, and interested readers are encouraged to read up on concepts that are
not explained further.

2.1 Application Programming Interfaces
An Application Programming Interface, commonly referred to as an API, is used to interface two
or more pieces of software. API:s define how information should be shared, and how requests
to the API should be made, and what is returned from API based on the request. Logically,
API:s are often divided into a client, the consumer of an API and a provider, an entity that
maintains and provides the service to the client. API:s come in a multitude of variants, with
di�erent purposes and underlying technologies.

2.1.1 Local API:s
A Local API is kept locally on the client side, and is often included as a library, framework
or package that can be used to access additional functionality locally from the client. An
example of a local API is the Java JDK 1. By linking to a local API, the client can access
functions and subroutines from the API, that can then be used as if they were client’s own.
Local API:s are outside of the scope for this thesis, but it is important to clearly distinguish
these from other types of API:s in order to fully understand the context of the work.

1https://docs.oracle.com/en/java/javase/15/

13

2. Technical Background

2.1.2 Web API:s
Web API:s are made accessible through the internet, and commonly use HTTP (see Section
2.1.2) to establish communication between a client and a provider, in order to expose func-
tionality that can be used by the client. In Web API terminology, the provider is often re-
ferred to as the server, since the API is often placed on a server that can be accessed remotely
by the client. See Figure 2.1 for an illustration of the server client infrastructure, alongside a
Web API.

{...}

GET / POST /
PUT / DELETE

JSON / XML / ...

CLIENT WEB API SERVER

Figure 2.1: Web API Client Server Architecture.

The client can make requests to the server, with the API acting as an intermediary. De-
pending on what request is made to the API, the server responds with an appropriate object
for what was requested. A common scenario is requesting data from the server, through the
API, in order to use this data on the client side. Depending on the configuration, the returned
object can be in various formats, e.g. JSON or XML, but as noted in the study conducted by
RapidAPI [35], JSON is the most popular data format, and is also the data format used in
the Homebase API, which makes it relevant to this thesis. For an explanation of JSON, see
Section 2.1.2. It is also possible for the client to change the data present on the server with
the use of the API. A common property for a clear majority of Web API:s is CRUD, which is
an abbreviation of Create, Read, Update, Delete, and describes the types of actions that are
usually performed on the data held by the server.

Web API:s can have di�erent underlying technologies that define how the communica-
tion is structured in detail. However, this thesis is only concerned with REST API:s, which
are explained further in Section 2.1.4.

HTTP
Hypertext Transfer Protocol is a communication protocol, that is responsible for a majority
of the communication handled over internet. For the purpose of this thesis, HTTP will be
explained with foundation in its usage related to Web API:s, but the protocol can be used
for many purposes outside of the scope of this thesis. One of the fundamental properties of
HTTP, that are used heavily in Web API:s are HTTP Status Codes [7]. These codes are returned
by the server upon handling a request from the client, and depending on the type of request
sent from the client and the result of said request, the server returns an appropriate code. An
excerpt of the most common codes can be seen in Table 2.1.

These status codes are just a small sample of all available codes, but can be used to illus-
trate the core purpose of them; to provide feedback that clients can base their logic on. If

14

2.1 Application Programming Interfaces

Table 2.1: HTTP Status Codes.

Status Code Meaning Usage
200 Ok Succeeded request.
201 Created Successfully created a new resource
404 Not Found Server could not find the requested resource.
500 Internal Server Error Internal Error with server.

the server returns an error code, the client knows that something went wrong in a previous
request, and can adapt accordingly.

The second relevant core feature of HTTP in regards to this thesis is Request Methods.
These methods are used, and sent to the server, by the client, and they indicate what action
the client wants to perform on the server [7]. Examples of request methods can be seen in
Table 2.2.

Table 2.2: HTTP Request Methods.

Method Functionality
GET Retrieves data

POST Adds new resource
PUT Edits resource

DELETE Removes resource
PATCH Partially modifies resource

Uniform Resource Identifiers, URI:s, are used to uniquely identify a resource. In practice,
these are strings that are formatted in a way that allows them to uniquely point out a resource
that the server holds so that the resource can be accessed [7]. In the context of Web API:s,
URI:s are often referred to as Endpoints.

In the same manner as returning an object from the server to the client, the client can
pass objects of di�erent formats to the server. These are referred to as Message Bodies in the
HTTP specification [7], and can be used to send additional information to the server. If the
client wishes to create a new resource, they can supply the parameters for the object they
wish to create in the message body.

In order to specify the operation of the HTTP communication, the client can also pass
values as Headers to the server. Header fields can specify multiple parameters of an HTTP
message, for example the data format and length for the message bodies, inclusion of cookies
and access control.

Conclusively, HTTP’s functions are used to provide the actual functionality of Web API:s.
If a server holds information about Users, and each user has a unique social security number,
this number can be sent via HTTP to the server to retrieve other information about this user.
An HTTP request, from the client sent to the server, in order to retrieve information about
a single user, could therefore look like this:

GET http://example-api.com/users/960318-9001

15

2. Technical Background

Since the client uses the GET request method, nothing needs to be supplied in the message
body of the request. The social security number is passed as a parameter in the URI, and can
be parsed by the server. If everything has gone according to plan, the server will respond with
something similar to this:

HTTP 1.1 200 OK
<Headers>
...
{

ssn: "960318-9001",
name: "Kent Andersson"

}

The status of the completed request is sent back to the client, along with the requested
resource passed in the message body. Headers are omitted in the example.

JSON
JavaScript Object Notation is a syntax and open standard file format for storage and transfer
of data. As previously mentioned, it is used heavily within Web API:s, and is also in use at
Homepal. Essentially, a JSON object is a key-value store, where an object has a unique key
that is providing a value [4]. JSON is easily parsed and created by computers, while also being
easy for humans to read and comprehend. The syntax is simple, yet still o�ers appropriate
amounts of complexity and expressivity. For example, you can create arrays and nested objects
in order to accurately represent complex data structures. JSON is not dependent on any
language, and can be used with almost all programming languages. Below follows an example
of a JSON object.

{
id: 1,
name: "Kent Andersson",
ssn: "960318-9001",
children: ["Lisa Andersson",

"Filip Andersson"]
}

2.1.3 Open API:s
Open API:s are API:s that are publicly available, with few restrictions on access. These are
often based on public data, or by authorization and authentication to the data you wish
to access. An example of an Open API is Spotify2. By using this Web API, you can access
data available to all people, but you can also authenticate yourself in order to access data
specific to your user account. The Homebase API works in a similar way in regards to access.
Developers who wish to integrate with the API request access via the Developer Portal are

2https://developer.spotify.com/documentation/web-api/

16

2.1 Application Programming Interfaces

subsequently provided with means of authorization via OAuth3, and are then granted access
to the appropriate data. Furthermore, third-party developers can use the sandbox along with
the mock data, without authentication. This allows developers to develop their application
without actually authenticating to access the real data.

2.1.4 RESTful API:s
A RESTful API is an architectural software style, that can be applied to Web API:s. REST
stands for Representational State Transfer, and was coined by Roy Fielding in 2000 [10]. Fielding
defines REST by applying various constraints in sequence to a blank canvas project. There
are several constraints that must be met for a service to be considered entirely RESTful.
However, as noted by Pluskiewicz, there are common misconceptions around REST and its
usage [32]. He claims that it is hard to pertain to all constraints as presented by Fielding, and
that in reality most "REST" API:s are technically not RESTful at all, which has subsequently
coined the terms RESTish and REST-like, to represent API:s that aim to be RESTful, but
breaks some properties of the definition. This thesis will however adhere to a more relaxed
approach to the RESTfulness, and will also consider API:s that are not entirely RESTful by
definition.

This thesis will not bring up all the properties and constraints that define a REST API
in detail, since it lies outside the scope for this thesis. But, knowing the core concept of the
architecture will be beneficial for understanding what should be included and considered
when constructing documentation. There are three main legs that make up the foundation
of a REST API, according to Pluskiewicz [32].

1. Representation

2. State

3. Transfer

Representation is a depiction of a resource on the server, meaning that a client does not di-
rectly modify the resource on the server, but rather modifies a representation of the resource
that then can be used as a blueprint to modify the actual resource. State refers to the internal
state of the client application. This state is created from one or more resource representa-
tions. Finally, Transfer refers to the act where a client can transfer between di�erent states
by retrieving and altering resources placed on the server. In HTTP, this is done by using
the aforementioned request methods, and using the response from the server to update the
internal client state. A memory rule, brought up by Pluskiewicz [32], is that "Each endpoint
REpresents a State Transfer". A prerequisite for a REST service is the Client-Server architec-
ture explained in Section 2.1.2. It is also important that the server does not hold any form of
history on the communication with the client. This is due to the Statelessness property defined
by Fielding. Essentially, this means that each request sent to the server should be atomic, and
should contain all information needed for the server to fulfill the request. Furthermore, all
resources should be uniquely identified with the use of a URI [10].

3https://oauth.net/2/

17

2. Technical Background

18

Chapter 3

Theoretical Background

This chapter aims to bring up the theoretical background for this thesis, both in relation to REST API
reference documentation, but also in regards to interaction design as well as the design process and
methodology that has been applied and used during this thesis work.

3.1 User-Centered Design
Preece, Rogers and Sharp describe the concept of User-Centered Design as involving users
throughout the design process [34]. They claim that this stems from the fact that real users
always have a di�erent perception of what is being evaluated than a person that has worked
on the product, or is involved with the process in some manner. You, as a product devel-
oper, are already somewhat aware of the possibilities and limitations of the product, which
colors your perception of how the product should be used. Opening up to feedback from
users without prior experience with the product can provide valuable insights, as well as new
outlooks on the subject product, which in turn can yield a better, more usable end result. In
Norman’s The design of everyday things [30], the author brings up three aspects to consider, in
order to maintain focus on the user throughout the design process:

1. Early focus on the users.

2. Empirical measurements.

3. Iterative design process.

There are several methods that can be used to incorporate users, and their feedback into
the design process – for example, by usability testing and evaluation, surveys or interviews.
Norman states that the goal of the user-centered design philosophy is to understand the needs
of the users, and how to accommodate for these needs by representing them in your design.

19

3. Theoretical Background

3.2 Design Process
A concept within interaction design that is tightly coupled with user-centered design is the
Design Process. Preece, Rogers and Sharp define the process as an iterative four step procedure
[34].

1. Identify requirements.

2. Develop design alternatives.

3. Develop prototypes.

4. Evaluate.

The goal is that these activities are dependent on each other, and should be performed
multiple times, iteratively. In coherence with the user-centered approach, the user’s needs
should be considered on every activity. The purpose of this workflow is to continuously
innovate and improve on previous work, so that the product constantly evolves, and the end
result is the best possible product for the specified requirements. These requirements should
therefore be grounded in a rigid, well-researched understanding of the end user. There are
multiple conceptual models of this process, but most are based around the same key activities.
This thesis will follow a process based on the model described by Gibbons [11]. An illustration
of this process can be seen in Figure 3.1.

UNDERSTAND

DEFINE EMPATHIZE IDEATE PROTOTYPE TEST IMPLEMENT

EXPLORE MATERIALIZE

Figure 3.1: Re-illustrated Design Process from Gibbons [11].

3.3 Usability
Preece, Rogers and Sharp define Usability as a quality attribute that assesses the degree to
which interactive products are easy to use and learn [34]. This includes optimization of the
interaction that users have with the interactive product. Preece, Rogers and Sharp has broken
down the concept into six goals:

1. E�ective

2. E�cient

3. Utility

4. Learnable

20

3.4 User Experience

5. Memorable

6. Safe

These goals can be considered when evaluating the usability of an interactive product,
usually by asking questions regarding a product, related to a certain goal. Preece, Rogers and
Sharp continue by explaining that problems or issues with a design can be discovered early,
if these usability goals are considered by the designer.

3.4 User Experience
User Experience (UX) is a broad concept, and should be seen as the total experience with a
system. Nielsen and Norman [29] define it as "[. . .] all aspects of the end-user’s interaction with
the company, its services, and its products.". Preece, Rogers and Sharp [34] formulate it as a
measurement of how humans feel for a product and their satisfaction or contentment of
using it. Furthermore, they state that it is not possible to design a user experience, only
design for a user experience. Unfortunately, there is no magical formula, unifying theory or
framework for this, only methods and guidelines. McCarthy and Wright have, however, made
an e�ort in creating some kind of framework by defining what they call "The Four Threads of
Experience" [19]. The threads should not be seen as fundamental elements of experience, "[. . .]
rather ideas to help us think more clearly about technology as experience." [19]. The four threads
include:

The Sensual Thread: represents the sensual engagement and immersive part of an ex-
perience, formerly the interplay, interaction and connection to the system in question.

The Emotional Thread: represents how emotions are connected to the situation and
the experience. For example the joy of solving a problem, or the frustration of unre-
sponsive functionality.

The Compositional Thread: represents the narrative part of an experience. What’s
this about? Where am I? What has happened? What will happen if...? In other words
inner thoughts and questions that are raised in parallel to our experiences.

The Spatio-Temporal Thread: represents the place and the time where the experience
is taking place, and how this e�ect the overall experience.

When thinking about user experience these four threads have to be merged to get a weav-
ing instead of singular threads, in order to capture the often inter-weaved reality of the user’s
experience.

Lastly, Nielsen and Norman state that it is important to distinguish UX from both User
Interface (UI) and Usability. UI is merely a part of the design, where the UX can be bad, due
to other parameters, even though the UI is well designed. Usability is solely a quality attribute
of UI covering whether a system is easy to learn, if it is e�cient to use, how pleasant it is,
and so forth [29].

21

3. Theoretical Background

3.5 Universal Design
Another staple concept in the field of interaction design is Universal Design. People have dif-
ferent physical and psychological attributes, that may a�ect how they use a product. Norman
[30] brings up di�erent physical factors, such as height, that a�ect how a user interacts with
a design. In the context of this thesis, factors concerning prior API knowledge and overall
software development skills are more applicable to the concept of universal design. The goal
is to design a product that can be useful for all users, but this is not an easy task – sometimes
there must be compromises. Norman claims that some things must be di�erent for di�erent
people, but also for di�erent times and contexts. Norman continues by explaining that a
single product, often can not fit the needs of all users, but it can be adapted and optimized
to everyone’s benefit. By providing flexibility, you allow the user to decide how they want
their experience, which in turn allows for a user base with a broader spectrum of defining
psychological and physical attributes.

3.6 Heuristic Analysis
Heuristic Analysis is a form of evaluation, where predefined rules, commonly referred to as
heuristics are used to locate issues with a product or interface, as stated by Nielsen [26]. Tra-
ditionally, heuristic evaluation is used to find usability issues, where the heuristics defined are
commonly various usability principles. Nielsen further states that a small group of evaluators
should find issues together, since a single evaluator may miss certain issues in the interface.
However, the law of diminishing returns applies in this case, and Nielsen therefore claims
that the number of evaluators can be kept quite low, while still finding the clear majority of
issues. Nielsen recommends a number of evaluators from three to five.

While this thesis is very interested in the general usability aspect of the final product, the
focus lies within how well the documentation is structured. Therefore, the set of heuristics
used is di�erent from more traditional usability heuristics. The heuristic analysis is described
further in Section 3.13.1 and 4.2.2.

3.7 Interviews
Preece, Rogers and Sharp describe four main categories for conducting interviews: Unstruc-
tured, semi-structured, structured and group interviews [34]. The names stem from the amount
of control that the interviewer has over the conversation, where a structured interview is the
most rigid in its approach. The suitability of a given interview type depends on what results
are sought after. If the interviewer is looking for quantitative data, a structured interview is
a better choice, since the closed questions can be used to draw general conclusions, when
aggregated with answers from interviews with other participants. On the other side of the
spectrum, an unstructured interview, with more open-ended questions, can provide more
qualitative data, since the answers can be more elaborate and detailed [34].

However, in order to get the most out of your interview, it must be meticulously planned
in advance. As stated by Nielsen, there are several pitfalls to conducting interviews with
users [28]. One of these pitfalls is asking users to either remember previous use of a product,

22

3.8 Prototyping

or speculating on future use of said product. Therefore, Nielsen claims that you should only
focus on the present, and ask questions regarding their current usage, and their opinions on
what is placed directly in front of them.

On the contrary, Nielsen states that an interview can be a great tool for exploring the
general attitude of users in regards to a product or a problem. These opinions can then be
translated into concrete design properties by the designers. However, as an interviewer, you
should avoid coercing users into giving their opinions, which Nielsen refers to as the Query
E�ect. When asked, users tend to give their opinion, regardless if its well-formed or not, and
may not even reflect their actual preferences. This can lead to malformed requirements down
the line, due to making decisions based on ill-formed opinions. Rather, regard unsolicited
opinions higher, as they are more likely to be something that actually a�ects the end users.
Lastly, using only interviews as a means of obtaining user input may not be the best approach.
However, by combining it with other forms of user evaluation, through Data Triangulation,
one can make the end result greater than the sum of its parts [28].

3.8 Prototyping
Prototyping is a very useful tool for a number of reasons. Preece, Rogers and Sharp claim
that it can be used as a means of facilitating communication between stakeholders at various
stages in the design process [34]. Furthermore, it is an e�ective, quick and cheap canvas in
order to discover, test and evaluate designs. Rather than blindly creating the product, and
subsequently waiting for user feedback, you can develop a prototype, and evaluate it quickly.
This allows for quicker iterations, and hopefully, a more complete and well-functioning de-
sign in the end.

As the the design process progresses, the amount of resources spent on prototypes is gen-
erally increased. A more refined prototype will yield better results, as it will be more similar
to the end product, therefore providing feedback that in theory should be more applicable.
However, on the other hand, it takes longer to develop, which renders them less e�cient.
Early on, as Preece, Rogers and Sharp note, a Low Fidelity Prototype is oftentimes preferred.
These prototypes, often abbreviated LoFi prototypes, are usually not similar to the final prod-
uct, and represent little-to-none of the functionality. They are used more to represent ideas,
than for actual evaluation, and are quick and easy to iterate on. As the project progresses,
designers tend to construct Middle-Fidelity (MidFi) and High-Fidelity (HiFi) prototypes, that
generally are interactive and are truer to the end product, in order to further evaluate design
decisions in a more realistic context.

3.9 Usability Testing
As mentioned in Section 3.1, one of the key activities in user-centered design is Usability
Testing. As noted by Norman [30], obtaining empirical results is very important, and a way
to facilitate this is through user testing. If you only conduct interviews, studies and surveys,
there is a chance you miss critical factors that are overlooked by the participants. Lewis states
that the defining factor of usability tests is the task based nature [14]. In other methods used
in user-centered design, like heuristic evaluations, surveys and interviews, there is less focus

23

3. Theoretical Background

on actually completing tasks, and more focus is placed on the opinions of the evaluators. As
Lewis states, this is not necessarily a bad thing, but it is a large di�erence that should be
considered during the design process.

As Meng et al. [21] state, there is a need for studies that do not rely solely on self re-
port (within the field of REST API reference documentation), but instead rely on directly
observed activities. Former studies and surveys rely on how users perceive documentation,
not necessarily how they actually use it – which is the sole purpose of usability testing. Leth-
bridge, Singer and Forward [13] noted that developers, when being asked, considered them-
selves spending considerable time reading documentation, but when being observed in the
study the total time in front of documentation was only 3%. The authors titles this as words
versus actions, which is a simple yet clear picture and explanation of the di�erence between
surveys or interviews and usability testing.

Usability testing is a large area in itself, and usability testing can be performed in large
number of ways, with di�erent purposes and goals. How the test should be conducted de-
pends on factors such as technology, time and fidelity of the prototypes used.

3.9.1 Planning Usability Studies
As mentioned above, there are numerous ways of conducting usability studies where every
situation and case is di�erent. In order to aid this process, Loranger has created a checklist
[15] with activities and aspects to consider when planning a usability study:

1. Define Goals for the Study: What do the stakeholders want to learn? What type of
data do we want to get? Don’t commit to too many goals, as for every goal you add,
the quality of the other goals will drop.

2. Determine the Format and Setting of the Study: Lab or in field? Moderated or un-
moderated? In-person or remote?

3. Determine the Number of Users: How many users are needed for the specific goals
defined? A recommended guideline is five participants1.

4. Recruit the Right Participants: Identify people that match your demographic and use
real users. Proxy users that pretend or imagine scenarios might lead to invalid results.

5. Write Tasks that Match the Goals of the Study: The tasks can be explanatory tasks
where the user discover and explore information (qualitative) or specific tasks where
the user has a clear focus with a correct answer or end goal(quantitative). Write strong
tasks that are concrete and clear from aspects that might prime or bias the participant’s
behavior.

6. Conduct a Pilot Study: This will help you refine and tune your tasks as well as your
recruiting criteria. It’s better to catch problems early.

7. Decide on Collecting Metrics: Common usability metrics of quantitative are time on
task, satisfaction ratings, success rate, and error rate while measurements such as ease of use

1"After the fifth user, you are wasting your time by observing the same findings repeatedly but not learning
much new." [27]

24

3.10 API Reference Documentation

or satisfaction questions about the task, satisfaction about the system are example of quali-
tative metrics. (Decide on when you would like to ask the question on the latter, for
example after each task or at the end of the session?)

8. Write a Test Plan: Document you approach, as a record for future studies and as a
communication tool, with the above mentioned points.

9. Motivate Team Members to Observe Sessions: In order to establish common ground.
The team will spend less time on guessing and debating, and more time on designing.

3.9.2 System Usability Scale
The System Usability Scale is a method for quickly evaluating a system from a usability stand-
point [5]. The scale is built upon a questionnaire, consisting of 10 questions, which are re-
sponded to with a number from one to five, where one represents Strongly Disagree and five
represents Strongly Agree. After the respondents have filled out the survey, a single number,
between 0 and 100 is calculated based on a predetermined formula. The resulting number
indicates the overall usability of the evaluated system for a given respondent. For several
respondents, these scores can be averaged in order to find a general usability score for the
system. A higher average score indicate better usability, which can be seen in Figure 3.2,
where SUS scores are compared to adjective ratings, acceptability scores and grades – based
on research by Bangor, Kortumand and Miller [2].

Figure 3.2: A comparison of various scales in relation to average SUS
score. [2]

3.10 API Reference Documentation
Documentation plays an important role when it comes to usability since the interface alone
is insu�cient when it comes to actual, correct usage of an API. Even though many di�erent
forms of documentation exist, there is a clear distinction between reference documentation
and pedagogical documentation, such as a tutorial or a book [16], and support/help documen-
tation for that matter.

Reference documentation is the type of documentation in focus for this thesis. It is a
concise and technical manual containing the information and instructions required in order
to work with, and e�ectively use, an API, and should therefore be seen as a tool for ongoing

25

3. Theoretical Background

work. The documentation is thorough and detailed, and developers will accordingly have
high expectations of the content within [16]. Reference documentation is used to describe
objective facts about an API, and the commands, utilities, components and other accompa-
niment concepts related to it [3]. A good documentational narrative consists of “[. . .] syntax
of each operation; a description of what the operation does; what parameters the operation takes, in-
cluding default values, valid values, and type of data, Boolean, string, etc.; what data the operation
returns; error messages you might encounter using the operation examples” [18], according to Mar-
vin. He summarizes this as providing the user with "[. . .] what goes into a request, what form the
request takes, and what data gets returned.".

When it comes to REST API reference documentation, the concept remains the same but
the content slightly di�erentiates as it has a focus on parts that are essential and specifically
connected to a RESTful Web API. This includes details about resource descriptions, end-
points, parameters, HTTP status codes and request- and response examples – which are all
parts of the earlier explained concept of Web API:s, see Section 2.1, and crucial to know in
order to make use of a REST API. This information is often organized in the form of docu-
mentation units, where all information on a particular subject is placed direct connection to
the corresponding resource and/or endpoint.

The importance of reference documentation, no matter if the API is used internally or
externally, is something that has been confirmed in several studies and should be seen as
crucial. In a study by Meng et al. [20], based on interviews with 15 experts followed by
112 participants, it was concluded that reference documentation was the third information
source for developers to get started with an API (after code examples and tutorials) and the
first when it came to ongoing work and problem solving. Reference documentation should
thus be seen as the key to the consumption of API:s overall, whether it is local or web based.

3.10.1 Supplementary Documentation
In addition to the reference documentation, there are supplementary information sources,
documentation and guidance for the user regarding an API. Common concepts involve:

• a Getting Started section with follow along instructions and tutorials to get up and
running, for potentially inexperienced users,

• a User Guide section to give the user conceptual information needed to understand the
API – together with best practices,

• a Developer Guide section with common use cases and tasks – together with code exam-
ples,

• a Test Platform or Sandbox for the user to test API requests and get responses within
an already set up and closed environment – sometimes with pre-written, already func-
tioning code,

• an external platform with crowd funded information (such as a social medium, blog,
forum or website)

The above mentioned concepts can be packaged together, and traditionally thereafter
released as an Software Development Kit or as a Developer Portal. However, when it comes to

26

3.11 Types of Developers

Web/REST API:s it is common to integrate and combine these concepts in close proximity
to the reference documentation site, thus making it hard to distinguish what is a part of the
reference documentation, and what is not.

3.11 Types of Developers
When it comes to both user-centered- and universal design, it is important to understand
the di�erent types of end users, their work styles and their characteristics – and furthermore
that they may di�erentiate a lot.

In order to address these di�erences, Clarke has carried out a 12 month study [6] ob-
serving users2 using their products. The result of these observations are personas of di�erent
types of developers, in order to humanize the needs and make it easier to relate to and work
around. The personas are solidly based upon work styles, characteristics and motivations,
and aspects such as expertise, experience or education are consciously excluded. This was
motivated by claiming that the former are less liable to change over time – e.g. a system-
atic developer will always be a systematic developer (no matter the experience or expertise
gained).

Clarke’s three personas [6] are:

The Systematic Developer

• Writes code defensively. Does everything they can to protect their code
from unstable and untrustworthy processes running in parallel with their
code.

• Develops a deep understanding of a technology before using it.

• Prides themselves on building elegant solutions.

The Pragmatic Developer

• Writes code methodically.

• Develops a su�cient understanding of a technology to enable them to use
it.

• Prides themselves on building robust applications.

The Opportunistic Developer

• Writes code in an exploratory fashion.

• Develops a su�cient understanding of a technology to understand how it
can solve a business problem.

• Prides themselves on solving business problems.

2Users include a wide range of job titles including professions such as ‘Rocket Scientist’, ‘Surveyor’, ‘Cus-
tomer support’ as well as ‘Software engineer’ and ‘Software developer’

27

3. Theoretical Background

Clarke claims that these personas has been an invaluable resource for their teams at Mi-
crosoft in order to understand who the user is that they are designing for and to give a uni-
versal positive user experience for developers. Furthermore, Meng et al. [20] confirm both
the systematic developer and the opportunistic developer when it comes to API development as
they have observed these characteristics in their study as well. The authors claim that that
API documentation needs to serve both of these personas.

3.12 Concerns with API Usage
It is well known that poor documentation is an extensive problem when it comes to the
consumption of an API. In order to pinpoint the relative size of it and map the relation to
other problems, statistics from Postman’s3 yearly report of 2020 on the state of API [33] were
extracted. The report is based upon on a survey answered by 13,586 API industry members
from all around the world, and is the largest report within industry. It is carried out with the
purpose of understanding the industry and providing insights on issues and opportunities
for API:s.

First of all, when looking at how well API:s are documented according to the users we
can see that the average score was 5 (OK) on a scale from 0 to 10, including 27.7% of the
respondents. The answers were spread in a the shape of a bell curve meaning that only 2.3%
of the respondents considered the API documentation they were working with as a 10 (Very
well documented).

0 (Not well documented)
1
2
3
4

5 (Documentation is OK)
6
7
8
9

10 (Very well documented)

0% 5% 10% 15% 20% 25% 30%

Figure 3.3: Quality of API documentation.

Furthermore, when asked about the obstacles of consuming an API, the highest, by a
wide margin, was Lack of documentation with a score of 54.3% – meaning that over half of
the respondents considered this as their number one problem, before aspects such as lack
of knowledge and complexity of API. It is worth mentioning that more experienced API
industry participants (6+ years) were more likely to put Lack of documentation as their biggest
problem.

3Postman is a popular API client and development tool that, among other things, enables people to test
calls to API:s. Read more on: https://www.postman.com/

28

3.12 Concerns with API Usage

Lack of documentation
Lack of knowledge

Complexity
Lack of time

Lack of budget
Lack of people

Leadership buy-in
Stakeholder prioritization

Team buy-in
Lack of tools

Stakeholder expectations (unrealistic/unclear)

0% 10% 20% 30% 40% 50% 60% 70% 80%

Note: Multiple answers allowed

Figure 3.4: Obstacles to consuming API:s.

Finally, when looking at insights from the users and what specific aspects of the doc-
umentation they thought were missing, suggested improvements were gathered. The top
most helpful enhancement suggested for improving API documentation were Better examples
(66.4%) and Sample code (53.0%).

Better examples
Sample code

Standardization
Real-world use cases

Up to date
Better workflow processes

SDKs
Additional tools

0% 10% 20% 30% 40% 50% 60% 70% 80%

Note: Multiple answers allowed

Figure 3.5: Improving API documentation.

In Meng, Steinhardt and Schubert’s research [20] on what software developers want in
an API documentation, interviews were held where one of the questions regarded common
issues when developing, using an API new to the participants. The answers to this question
seemed to touch four main areas, which are summarized below:

The first problem regards getting started and up and running. The interview subjects
often had problems identifying the first entry point, and to get something running in
the first place. They state that once the first call to the API has succeeded, everything
else is not very di�cult.

The second problem regards not knowing the domain and the domain-specific con-
cepts, where the interview subject claimed that they often simply did not understand
the documentation on a conceptual level, due to a lack of background knowledge
within the field.

The third problem regards licensing condition in the getting started phase. The in-
terview subjects stated that they often had problems finding out if the API required a
license, and if they did, how did it work and how was it used?

29

3. Theoretical Background

The fourth problem regards documentation and code examples that do not work. The
interview subjects claimed that since the systems frequently changes, the documen-
tation sometimes is not up to date, not even the getting started guide. Furthermore,
code examples that do not work are simply annoying and frustrating.

In addition to this, Uddin and Robillard carried out and exploratory survey [39] on API
documentation problems. In this case, the research did not solely involve Web/REST API:s
but also included other types of API:s. The survey had 69 respondents from software de-
velopers (including some architects, consultants, managers and testers). Six of the problems
regarded content and are described by the authors as follows:

Incompleteness: The description of an API element or topic was not where it was
expected to be.

Ambiguity: The description of an API element was mostly complete but unclear.

Unexplained examples: A code example was insu�ciently explained.

Obsoleteness: The documentation on a topic referred to a previous version of the API.

Inconsistency: The documentation of elements meant to be combined did not agree.

Incorrectness: Some information was incorrect.

Some interesting statements from the respondents were, first of all, that they mentioned
that they have dealt with lots of auto-generated documentation and were the documentation
often misses out on important parts. Furthermore, the developers were frustrated over code
examples that did not have and adequate explanation, despite appreciating code examples
generally. A reason could be that it was not clear enough which part of, and how, code
examples should be changed in order for it to work for the developer. Another frustration
lied, once again, in the documentation not being up to date due to rapid development of the
API, and that the current documentation did not represent the changes done. In addition, the
developers lacked proper information on when a significant functionality had been changed.

Four additional problems were identified, which regarded presentation, and are described
by the authors as follows:

Bloat: The description of an API element or topic was verbose or excessively extensive.

Fragmentation: The information related to an element or topic was fragmented or
scattered over too many pages or sections.

Excess structural information: The description of an element contained redundant
information about the element’s syntax or structure, which could be easily obtained
through modern IDEs.

Tangled information: The description of an API element or topic was tangled with
information the respondent did not need.

30

3.12 Concerns with API Usage

When looking at what the respondents answered, a few aspects were interesting in the
context of Web API:s. First of all, the fact that respondents often complained about the
amount of text within the documentation that do not really have a meaning, especially in
the introduction. In addition, respondents mentioned that having to click through multiple
pages of a documentation–and look for information on di�erent depths–was di�cult. Fi-
nally, the respondents complained about multiple usage scenarios that were nestled in one
description.

As stated, this research considers all types of API:s, and as such, a part of the result
may not be relevant for this thesis. Therefore, the results should act as food for thought,
not directly related to REST API:s, that could be taking into consideration when writing
technical documentation.

After having identified the problems, these were sent out to other employees, with the
job role of software developer, software engineer, or software architect, at the same company
as a new survey [39], which allowed for ranking of the considered problems. The ranking
survey had 254 respondents:

Incompleteness

Ambiguity

Incorrectness

Unexplained examples

Fragmentation

Inconsistency

Obsoleteness

Bloat

0% 5% 10% 15% 20% 25% 30%

= "Severe" + "Blocker" responses, = "Frequently" responses
Note: Only problems that were selected as the top problem by at least one user are included (leaving out

Tangled information and Excessive structural information).

Figure 3.6: Top API problems: frequency and severity.

The data from Uddin and Robillard’s study is compiled and visualized through two bars
(see Figure 3.6), where the first (lighter) bar represent the percentage of respondents listing a
problem as severe or as a blocker, and the second (darker) bar represents the percentage of re-
spondents listing a problem as frequently experienced. As seen in Figure 3.6, the study clearly
showed that Incompleteness, Ambiguity and Incorrectness were the most severe problems. The
first two aforementioned are also the most frequently experienced, together with Unexplained
examples close behind.

31

3. Theoretical Background

3.13 API Documentation Guidelines
As mentioned in Section 1.2, former research within RESTful Web API Documentation
should not be seen as extensive. However, the carried out studies have all produced useful
guidelines when it comes to the creation of documentation. In addition, there are numerous
of non-academic guidelines regarding the studied area that contains great advises and council
of use. Both will be presented in this section.

3.13.1 Former Research
Meng, Steinhardt and Schubert carried out an observation study [21] on how developers use
API documentation while solving programming tasks involving an unfamiliar API, with the
goal of generating general implications and consequences of API documentation design. The
results of the study revealed di�erent types of documentation usage, together with barriers
and obstacles that that needs accommodation in order to create a successful API documen-
tation, at least in regards to usability. These guidelines are slightly extended and named as
heuristics in a later study [22] by the authors.

The concluded guidelines and heuristics for optimization are summarized below (Note
that the heuristics have been paraphrased and truncated):

Heuristic 1: Enable e�cient access to relevant content. [22]

1.1 Sorting information after relevancy for the user.

1.2 Clustering of internally relevant information.

1.3 Transparent and consistent navigation together with a powerful search
function.

1.4 Consistent sectioning and structuring of information.

Measures have to respect the fact that developers are di�erent and use API doc-
umentation in di�erent ways. Therefore, all types of developers need to be able
to access content in an e�cient way. First of all, structure the documentation
according to categories that reflect the functionality (or content) instead of the
type of information provided (i.e. "Shipment Handling", "Address Handling"
instead of "Samples", "Concepts", etc.). Secondly, in order to reach all types of
developers with conceptual information it is recommended to integrate such
information where it is needed and not only in a segregated section. Lastly, de-
velopers need to know where in the documentation they are currently at in order
to be able to find it again. This is also achieved with a powerful search (or a sin-
gle page documentation that lets the user utilize the search functionality in the
browser in order to find the desired section). [21]

Heuristic 2: Facilitate initial entry into the API. [22]

2.1 Clean, complete and working code examples that can be copy-pasted.

2.2 Relevant background knowledge for a given part of the API.

32

3.13 API Documentation Guidelines

2.3 Clear mapping between concepts and API functionality.

2.4 Concise introductory overview to the API, and its purpose and features.

Measures have to provide appropriate entry points to get started with a new API.
First of all, it is claimed that code examples is an important resource for all types
of developers, both for initial learning and for finding solutions to a problem.
The examples have to be ready to use via copy and paste. Secondly, background
knowledge and conceptual information is very important in the initial learning
process, for developers without knowledge in the domain covered by the API,
and should therefore be provided in the documentation, integrated within the
description of tasks and usage in relevant sections. Lastly, whenever conceptual
information is introduced, examples of how it is represented in the code should
be presented clearly as well. [21]

Heuristic 3: Support di�erent development strategies. [22]

3.1 Selective access to code, eg. by using multiple columns and clear format-
ting di�erences between content and code.

3.2 Clear text-to-code relations and distinct mapping between them.

3.3 Redundancy of important, conceptual information.

3.4 Try-out functionality of code examples.

Measures have to serve all types of developers when it comes to presentation of
content, and the actual content. First of all, code examples have to be clearly
distinguished from text in order to be identified right away (e.g. by two sepa-
rate columns). Secondly, words within a text that refer to API elements should
be highlighted in some way. Thirdly, critical pieces of conceptual information
should be presented redundantly in di�erent part of the documentation in order
to not being missed (e.g. integrated in the code as comments). Lastly, attempts
to enable fast usage of the API should be made (e.g. code examples of API calls
and integrated try-out functionalities to submit requests and directly receive
responses). [21]

When looking at other research, general guidelines (also applicable to REST API:s) have
been found and cherry picked in order complement the already mentioned REST API specifics.
The following guidelines have not necessarily been declared or stated as guidelines by the au-
thors, but are expressed in an encouraging way and based upon research:

1. Changes in significant functionality requires, and should have, some kind of feed-
back in the documentation in order to address this. Consumers may assume backward
compatibility in versioning. However, they mention that it is not reasonable to do this
for every change – only the ones concerning important functionality [39].

2. Developers trust code more than documentation, and therefore should working code
examples be used. The code examples should be presented as small chunks along with
comments that explains the code [20].

33

3. Theoretical Background

3. Clearly separate code examples from text. A suggestion to do this is by displaying
them in separate, clearly distinguished columns adjacent to each other (as some API
documentation already do) [20].

4. Necessary conceptual, background knowledge needs to presented redundantly and
integrated in both the tutorial, documentation and as comments in code examples in
order to satisfy every type of developer style [20].

3.13.2 Insights from the Private Sector
In addition to former research that is academically published, general guidelines from com-
panies (such as Microsoft, Github, etc.) and conferences concerning API documentation
(such as API the Docs, Write the Docs, etc.) should be seen as equally important, even though
the methodology behind the results might not be as transparent. Getting a hold of what the
experts from the private sector recommend will be of great use in order to generate ideas,
thus their guidelines and recommendations are compiled below:

Jason Etcovitch, senior software engineer at Github4, claims that developers come to
documentation to do many things, and as an API provider one should let them dis-
cover and engage creatively through playing around. Etcovitch encourages interactive
documentation, and claims that learning through playing should be replicated in doc-
umentation as well. This is referred to as the "Try a thing, see a change"-feedback loop.
Furthermore, Etcovitch suggests that content should be clearly tied to usage examples
and that there should be a visual connection between the two. An exemplary example
of this is Stripe’s SDK documentation5 where clicking a content section highlights the
corresponding relevant part of a code example. Etcovitch and his team investigated an
expansion of this; clicking on a part of the usage example scrolls the content column
to the relevant section. [8]

Ben Ahmady and Tuan-Minh Nguyen, technical writing lead and group product man-
ager at Onfido6, talks about putting e�ort into a clear section for the generation of API
tokens for authentication against both the live API and the sandbox environment. This
is something that a lot of services take for granted, but should be getting enough at-
tention to make it as positive experience as possible. Furthermore, they state that the
assumption "Developers like to copy + paste!" is a good way to start from when creating
documentation. Finally, their team have spent a lot of e�ort (on behalf of their cus-
tomers) to replace text describing the system and product with visualizations of the
API, its building blocks and relations in order to get a better picture of how it all works
– what can be created and not. [1]

Ryan Paul, software engineer and technical writer at Stripe7, talks about the mod-
ern web and that it makes it possible for documentation to resemble an application
rather than a user manual. This has numerous benefits, where on is the tailoring of

4www.github.com
5www.stripe.com/docs
6www.onfido.com
7www.stripe.com

34

3.14 Usage Examples

dynamic content based on the user and its context. For example to display the pay-
ments methods that are relevant for their region in the documentation, or to hide or
show reference documentation sections based upon what features that are activated on
the user’s account. Another example would be, if logged in, to display the user’s API
key integrated into code examples and thus making the 100% ready for copy-pasting.
The downside with this, however, is that documentation is becoming harder to write
as it more looks like software and therefore become a bottleneck for documentation
content changes [31].

Lorna Mitchell, senior developer advocate at Nexmo, likes to resemble the documen-
tation as a restaurant menu with nine items; Getting Started Docs, Authentication
Overview, Common Tasks, SDKs and Libraries, Request/Response Examples, Human
Contact, Tools Platter, Troubleshooting Guide and Extras. A developer does not order
and eat the whole menu at once, but examines it over time in series of di�erent visits.

Mitchell states that the most important aspect, to her, is the Getting Started Content.
This is your chance to introduce developers to the landscape and give them a good
overview of the system (eg. What techniques are used? Is it RESTful? Which authenti-
cation do you use? What is the format?). She further states that "Every API is someone’s
first API" and that as a technical writer, you should not be afraid to over-explain docu-
mentation. A must have, according to Mitchell, is to include at least one working code
example ready to copy-paste in order for a the developer to easily get a successful feed-
back on that the API is working. Additionally, dependencies and prerequisites have to
be clearly stated and linked, if for example a user account is needed in order to use the
API. When it comes to code samples overall, Mitchell highly encourages a lot of them
in order to speed up the working phase of the developer. Thus she also encourages API
providers to write these in several languages and syntax. However, cURL is considered
the most important since every developer should be able to read it, understand it, and
translate it to something else. [23]

Maria Nagagga, senior program manager at Microsoft, talks about friction free learn-
ing and experimenting within the browser, and the importance of the concept in Mi-
crosoft’s project "Try .NET". When being able to try out functionality within the doc-
umentation, users do not have to install any tools or set up any environments, which is
where a lot of things can go wrong. Furthermore, Nagagga states that there is a benefit
of keeping the interactive documentation login free in order to give the user ’a quicker
win’ when looking for experimentation. A user should be able to edit the code online,
click run, and see the results in order to feel "that moment of success". [24]

3.14 Usage Examples
The concept of usage examples is explained di�erently in literature, and there are some dis-
tinctions to address regarding the terminology used in this thesis. In this thesis, the term
Usage example refers to some form of example that describes the usage in some way to the
reader. The term Code example is a form of usage example, which uses code to convey the
example to the reader. A code example could be some rows of code for a given programming
language, that can be copied and used instantly in the correct environment. Another term

35

3. Theoretical Background

used is Response/Request example, which uses the data format used in the API to convey the
example to the reader. These are used to illustrate how data should be sent and received for
correct usage of the REST API.

The concept, and role, of usage examples, and code examples in particular, are often, if
not always, mentioned throughout research and guidelines on API documentation and there-
fore deserves its own section. Researchers encourage their usage, and developers appreciate
it. According to a survey by Meng, Steinhardt and Schubert [20], 96% of the participants
answered Yes to the question "Do you like to work with code examples?". A reason could be
that developers trust code more than documentation since they experience that there is a
greater risk in the documentation being outdated or missing, as reported by multiple sources
[20] [17].

However, code examples are not flawless. When looking at the answers to the aforemen-
tioned questionnaire, problems with code examples and their frequency (perceived by the
participants) are listed and presented. The problems included were Outdated, Insu�ciently
documented, Too easy, Badly programmed, Incomprehensible, Not working and Too complex, where
all had a mean rating between 2.7-3.5 on the scale 1 to 5 (where 1 = ’never’, 5 = ’very often’).
The top problems were Outdated and Insu�ciently documented, even though it was reported
that developers trust code more than documentation (due to the documentation often being
outdated).

When looking at interviews regarding expectations of code examples [20], we can distin-
guish a few frequently reoccurring preferences from the developers (and interpretations by
the authors):

1. Programmed professionally and show best practice use.

2. Include brief and informative explanations. (However, it is of course appreciated if
the code examples can be understood without explanations.)

3. Be concise, or organized as a series of chunks (if it is a longer example).

4. Should be complete.

5. Should work correctly.

The interview subjects continue by explaining what they use code examples for, and starts
with stating that it is mainly to get into a new domain and find entry points into an API faster.
Another aspect is to grasp information faster, since code is more easily scanned, compared
to a long block of text. It is also a way to quickly identify if a page contains content that
relates to the problem and the solution the developer is looking for. When using the code
examples, they are often copied and modified to fit the new context and the specific needs.
Finally, they claim that is a great way to get an intuitive feel of how the code should look like
and be written.

In addition to this, Sohan et al. provide empirical evidence that code examples in docu-
mentation reduce mistakes and improve success rate and developer satisfaction [38]. Worth
noting is that in this paper, the term code example is broader, and resembles the term usage
example used in this thesis. Their research has a main focus on code examples, and its im-
pact on the usability of an API documentation, rather than documentation as a whole. They
have however, through their research, generated recommendations as a set of guidelines that
extend beyond code examples. Their four recommendations [38] are as follows:

36

3.14 Usage Examples

Recommendation 1. REST API documentation needs to include examples of data
types such as Integer, String, and Array for each API field to satisfy API client devel-
oper information need.

Recommendation 2. REST API documentation developers need to include examples
showing the valid data format for the API elements.

Recommendation 3. If API requests need to use HTTP Request headers, in addition
to the request method and body, REST API developers need to include examples of
the HTTP headers.

Recommendation 4. If there are prerequisites for making an API call, REST API de-
velopers need to provide examples showing how to get the prerequisites in the API
documentation.

The study was controlled and carried out through observations with experienced soft-
ware engineers, where the participants where divided into two groups – one with an API
documentation including code examples and one with an API documentation excluding code
examples. The API used was Wordpress REST API V2 where the former mentioned docu-
mentation was an enhanced version of Wordpress REST API documentation, with added
code examples, and where the latter was simply Wordpress REST API documentation. As a
conclusion, the authors suggest and recommend API developers to include usage examples
with realistic data, and claim that it is an essential requirement for an API documentation.

In a study by Nasehi et al. [25] concerning what makes a recognized answer (i.e. a good
and helpful answer) on StackOverflow8, the conclusion is drawn that just providing code is
not enough and that it has to be accompanied by some explanation. The authors state that a
good and helpful code example have to at least include explanation, code, and being correct.
One of the parameters of being a recognized answer was a concise code solution, that leaves
out unnecessary and bloat details within the code, and represent their absence with e.g. a
comment instead. Furthermore, the study showed that shaping the answer after the context
of the question, and the expertise level of the user, were two factors. The authors more
extensively list and explain all parameters when it comes to recognized answers [25]. However,
the interesting parameters, for this thesis, are:

• Concise code (Less complex and shorter code examples).

• Highlighting important elements (The answer starts with highlighting the key element
of the solution).

• Step-by-step Solutions (The code divided to multiple chunks, each chunk of the solu-
tion).

• Inline Documentation (Comments within code can be used as an alternative way of
explanation.)

In addition to these findings, the authors make some further suggestions on code exam-
ples in API documentation. They state that documentation should evolve and be inspired by

8www.stackoverflow.com

37

3. Theoretical Background

forums, such as StackOverflow, by adding solutions to, and cover, frequently asked questions.
They also suggest to investigate the possibility and e�ectiveness of a wiki-like capability in the
documentation section where users can contribute with solutions of their own. However, if
implemented this has to be clearly distinguished from the o�cial documentation.

38

Chapter 4

Design Process

This chapter aims to describe the various stages of the design process, as described in Section 3.2, and
how these have been adapted for this thesis. Furthermore, this chapter describes what approaches,
methods and activities have been used for each phase in the process, along with the obtained results for
these activities. Lastly, thoughts and insight into design decisions are also included in this chapter.

4.1 Timeline of Key Activities

In order to summarize–and get an overview of–the design process, a timeline was created
that can be seen in Figure 4.1. The timeline presents the key activities carried out in each
phase and how the activities related to each other with respect to time.

39

4. Design Process

Literature Study
Heuristic evaluation of existing REST API documentation
Interviews with users
– compilation and evaluation

Prioritization of functionality (characteristics) (MoSCoW method)
MidFi Prototyping
Talk with the developer team
HiFi prototyping
– compilation and evaluation

Usability Testing
– compilation and evaluation
Implementation of �nal prototype

LITERATURE STUDY

HEURISTIC EVALUATION

USER INTERVIEWS

FEATURE PRIORITIZATION

MIDFI PROTOTYPING

DEVELOPER TEAM TALK

HIFI PROTOTYPING

USABILITY TESTING

FINAL PROTOTYPE

EX
P

LO
R

E
M

AT
ER

IA
LI

Z
E

U
N

D
ER

ST
A

N
D

Figure 4.1: An overview of the design process and its main activities.

40

4.2 Understand Phase

4.2 Understand Phase
As previously illustrated, the Understand phase consists of two parts, Empathize and Define, ac-
cording to Gibbons (see Section 3.2). These boil down to understanding the needs of the end
users for a given product. By observing what your users do, say, think and feel, it is possible to
reduce these observations into tangible needs that should be considered in subsequent parts
of the design process.

UNDERSTAND

DEFINE EMPATHIZE IDEATE PROTOTYPE TEST IMPLEMENT

EXPLORE MATERIALIZE

Figure 4.2: Understand Phase of the Design Process.

In this thesis, research in the understand phase was conducted in three ways; through a
literature study, a heuristic analysis of competitors, as well as interviews with developers that
are currently using the existing version of the Homebase REST API documentation.

4.2.1 Literature Study
The literature referenced in Chapter 3 was studied in this phase of the design process. This
was done to orient this thesis in the context of API documentation, as well as to obtain
information on best practices recommended in academia, and how these aspects are applied
in practice. Furthermore, theory regarding aspects of interaction design were considered as
well, in order bring structure to subsequent thesis work. This involves design processes, tools
and common terminology used throughout this thesis.

4.2.2 Heuristic Evaluation
In order to better understand the state of API documentation within the real estate indus-
try, as well as API documentation at large, an evaluation of the documentation for competing
companies, as well as established companies within other sectors, was performed. The real
estate company documentation examples were selected by Homepal. Outside of these, se-
lected were the top three most used, still intact API:s, according to ProgrammableWeb 1.
These are Youtube, Flickr and Amazon Product Advertising. Furthermore, three examples
of API:s with highly regarded documentation within the community, Stripe, Spotify and On-
fido, were subject to evaluation as well. The reasoning behind this selection was to provide
a general picture of the API documentation landscape, by providing context on API:s in the
same sector, as well as examples on documentation of API:s with a large user base, along with
examples of well-crafted documentation.

1https://www.programmableweb.com/apis/directory

41

4. Design Process

The goal is to see which techniques from theory actually are applied in practice, and
how they are implemented. This way, it is possible to find potential solutions of problems,
along with commonly used concepts that seem to work well. Furthermore, analyzing the
documentation in the real estate sector may be beneficial, since it may indicate how the
context a�ects the documentation, and what the general quality of potential competitors is.
Homepal’s current API documentation is also subject to evaluation at this stage.

Meng et al. [22] define a set of heuristics and guidelines concerning API documentation.
Using these heuristics and guidelines, a list of key features and properties was compiled,
which was then used to evaluate the overall quality of the subject API documentation. It also
helps with the task of structurally analyzing external API documentation, as it provides a
framework of what properties to consider, which in turn limits deviation from these factors to
some extent. The list with the desired properties for each heuristic is found in the theoretical
background, Section 3.13.1. For the purpose of this analysis, Meng’s guideline 1.3 has been
divided into two properties:

1.3.1 Transparent and consistent navigation.

1.3.2 Native search functionality.

The API documentation examples selected were then evaluated in binary manner, simply
deciding whether a desired property was present or not by an evaluator group consisting of
two members, and the score for each evaluator was aggregated. As mentioned in Section
3.6, Nielsen recommends a slightly larger number of evaluators, but due to time constraints,
only the authors of this thesis were evaluators in the heuristic analysis. The results of this
evaluation are presented in Table 4.1 and 4.2 below.

Table 4.1: Heuristic Analysis of Competitors. The column Heuristic
refers to the heuristics in Section 3.13.1.

Heuristic Unit4 HomeQ FastAPI Assetti Platform of Trust Homepal
1.1 X X X
1.2 X X X X X
1.3.1 X X
1.3.2 X X
1.4 X X X X X X
2.1 X X X
2.2 X X X X
2.3 X X X X
2.4 X X X
3.1 X X X
3.2 X
3.3 X X X X X
3.4 X X

The results from the heuristic evaluation were interesting, as the documentation of the
direct competitors were not of great quality, generally, with Unit4 and Assetti scoring the
lowest. The reason for their low score was mostly related to the conceptual content and
organization of the information, not due to a lack of functionality. However, the lack of
transparent navigation and conceptual information about the API, makes it di�cult to make
use of the included functionality. Both HomeQ and Platform of Trust had documentation

42

4.2 Understand Phase

Table 4.2: Heuristic Analysis of the Most Popular API:s and Highly
Regarded Documentation. Heuristic refers to the heuristics in Sec-
tion 3.13.1.

Heuristic Youtube Flickr Amazon PAAPI Stripe Spotify Onfido
1.1 X X X X X X
1.2 X X X X X X
1.3.1 X X X X
1.3.2 X X X X
1.4 X X X X X X
2.1 X X X X
2.2 X X X X X X
2.3 X X X X X
2.4 X X X X X X
3.1 X X X X
3.2 X X X X
3.3 X X X X X
3.4 X X X

that fulfilled a lot of the predetermined guidelines. Furthermore, it was made evident that
large API:s do not have to have great documentation, especially in the case of Flickr, whose
documentation was fragmented, hard to navigate and lacked usage examples. The examples
that were selected to represent good quality documentation also scored the highest, fulfilling
almost all guidelines respectively. This shows that the heuristics and guidelines defined by
Meng are, at least in partial agreement with the general consensus of what is considered to
be good documentation in the industry, as well as academia.

However, a heuristic evaluation has limits. In the case of Youtube and Stripe, the di�er-
ence in score only di�ers on a single guideline, but the writers still regard the Stripe docu-
mentation to be significantly better. The documentation for the Youtube API fulfilled most
guidelines, at least well enough to get a passing grade, but Stripe fulfilled them in a more
convincing manner when it came to the overall experience, which is not represented in the
final results. Quantifying usability is di�cult since there are subjective factors that a�ect the
evaluation of the documentation. The final results should therefore not be used as a final us-
ability evaluation, but rather as an estimated evaluation of what key properties are included,
to varying extents, in certain examples of API documentation. As previously mentioned, the
process of systematically evaluating examples of documentation proved to be very valuable,
perhaps more valuable than the end results, as it allowed for partial quantification of ab-
stract concepts that potentially could inspire future work. The writers had preconceptions
and opinions on what makes up good and bad documentation respectively, but at this stage
it was put into terms that were easier to grasp, and, in the extension, to consider and apply
at later stages in the design process.

4.2.3 User Interviews
At this stage of the process, semi-structured interviews were held with developers that are
currently working with integrations using the Homebase API. To clarify, these developers are
not directly working on developing the API, but are working with the API in some manner
(i.e. customers or partners to Homepal). Semi-structured interviews were held with five de-

43

4. Design Process

velopers, with the goal of a better general understanding of how well-functioning the current
documentation is, what properties a�ect the overall perception of it, and what critical issues
that might exist. The purpose was also to gain insight on what needs, at least perceived needs,
the actual end-users of the documentation have, and if these di�er from what has been stated
in theory. It all boils down to establishing a user-centered approach at an early stage in the
process that is going to function as a supplement to future user testing. However, the quote
"What users say and what they do are di�erent" [28] was a point always in mind when planning,
carrying out and evaluating the interview sessions.

The planning was based upon Loranger’s checklist on activities and aspects to consider
when planning a usability study, as described in Section 3.9.1, and Section 3.7. In the former
mentioned checklist, activities such as "Write Tasks that Match the Goals of the Study" was
self explanatory changed to "Write Questions that Match the Goals of the Study" in order to
fit the purpose. However, the overall method remained the same. The full outline for the
semi-structured interview sessions is attached in Appendix A.1.

The interviews took place over video conferencing software, where the audio was recorded
for later transcription. Before the interview started, all subjects where shown a form of con-
sent (attached in Appendix A.2), which they all orally gave their consent to. The interview
subjects were asked to have the developer portal and reference documentation (of the Home-
base API) at hand as reference and support of memory – in order to minimize the inaccurate
perceived usage of a system, as described by Nielsen [28]. The interview started from open
questions that were all based on previous research of common API documentation issues and
common guidelines, as well as thoughts from the private sector (described in Section 3.12
and 3.13).

Again, the purpose of the interview was to address the overall and general feeling of the
documentation section, and identify users’ critical issues in mind, together with spontaneous
thoughts on possible features. This will later be examined and evaluated through observation-
based user tests in order to attain an accurate sense of what users really do and how they really
feel. As Nielsen states [28], the right way to assess features is to have people use them; "Users
are pragmatic and concrete, and have no idea how they might use a new feature solely based on a
description of it."

Participants
As mentioned, the interviews were conducted with five stakeholders, that in some way use the
Homebase API, and thus the API documentation. The participants were briefly profiled, of
which the results are presented in Table 4.3. Five was an appropriate number of participants
at this stage, since the goal was to find qualitative data, which is time-consuming to extract
and draw conclusions from.

Main Takeaways
Usage frequency: Given the answers from the interview session it can be concluded that the
reference documentation of the Homebase API is widely used among its users, during inte-
gration with the API. P1 states that it is used frequently at the moment, in order for their
team to create test data for the integration. P3 and P4 agree, claiming that they have the doc-
umentation readily available at every development session. However, the integration work

44

4.2 Understand Phase

Table 4.3: Participant Characteristics. The column Time describes
the time elapsed for the integration with Homepal, as of conduction
of the interview.

Title Daily work Connection Time

P1 Chief Engineer, Full Stack
Developer

Builds API integrations.
Makes sure the pipeline
between frontend and
backend works good.

Integrates with Homepal
in order to enable real es-
tate businesses to termi-
nate contracts digitally.

3 months.

P2 CTO, Co-founder

Responsible for develop-
ment. Writes code and
does integrations with
API:s on a daily basis.

Collaborators to Home-
pal. Retrieves data. (Is go-
ing to send data as well in
the future).

9 months.

P3 Application Consultant

Customizes platforms in
order to meet customers’
needs, often through inte-
grations.

Integrates with Homepal
in order to fulfill the
needs of a real estate cus-
tomer.

1 month.

P4 Developer, CEO
Responsible for business,
as well as development of
the services provided.

Uses data, aggregated by
Homepal, on equipment
in relation to real estate.

3 months.

P5 CTO
Responsible for the devel-
opment of their real estate
system.

Two-way integration with
Homepal, where data is
sent to Homepal, and vice
versa.

8 months.

has just begun, and they have therefore not spent a lot of time in the developer portal as a
whole yet. P2 and P5 are not necessarily actively working on integration at the time of this
writing, but they both state that they have spent considerable time going through–and ac-
tively been using–the documentation during previous work with the Homebase API.

Common usage: When asked what the users first looked for and what they most commonly
used in the/a documentation, the participants first and formerly mentioned endpoints, at-
tributes and data types of objects, examples of responses and requests, as well as authorization
guidelines. P4 further explains that the documentation is also used for identifying if the API
handles the di�erent parts that are needed or not; "It may be the case that the API does not
have the endpoints for the exact information that I need.", and that P4 therefore first scans the
documentation for di�erent endpoints. P4 continues by saying that "Since I am a developer, I
like to see code." and claims that when later actively integrating, P4 only looks at the request
and response examples.

When it comes to creation of objects, P5 talks about the importance of concrete exam-
ples of responses and requests in order to be able to generate object models. Furthermore,
regarding the attributes of objects, P3 states that the documentation is also often used for
identifying if attributes are optional or not. Both P4 and P5 want to highlight that they visit
the information regarding authorization, since this often is a cumbersome part of an inte-
gration. Finally, P1 stands out by being the only one that mentions frequent usage of the
developer portal’s sandbox for verification. Other participants are instead using other tools
in their own environment.

Experienced issues: In order to identify experienced issues, the participants where asked to

45

4. Design Process

recall their first integration with the API, together with their biggest adversity. When looking
at the experienced issues, the conclusion is that it involves the creation of tokens and the
process of authentication, ambiguous error messages, data formats, and validations placed on
attributes and objects. Both P2 and P5 puts a lot of focus on validations, where they mean that
there are always issues with this aspect, and that validation aspects are documented scarcely,
and rarely with high quality. However, they both state that this critique is not directed against
Homepal, where P5 says that their "[. . .] validations could not have been documented in another
way, since it is a little bit too complicated to make a sensible variant of it.".

P1 brings up numerous, smaller, more specific issues involving aspects such as the docu-
mentation not being compatible with a screen width less than 1400 pixels (since P1 would
like to work with the documentation side-by-side with the sandbox on a screen), and that
misspellings of endpoints such as /leases instead of /lease only gave a non-informative unde-
fined response. P3 thinks that parts of the documentation were "[. . .] huddled together.", and
that more time should be spent on making certain parts of the documentation extensively
written. Finally they all agreed on, once again, that the creation of tokens and authentication
phase is always a bit tricky and should be described as clearly as possible.

It should be mentioned that the participants were overall satisfied with their integration
and the documentation of it as a whole. P1 expresses this as "It worked very painlessly, but I
think that a lot of it was due to [Employee at Homepal] and that he helped us.". P3 comments the
documentation by saying that "There were some strange descriptions from place to place, but there
have not really been any oddities apart from that.". Homepal is, at the moment, a business that
works close to the customer and thus giving integrators considerable amount of personal
support, which may a�ect how the developers use the documentation.

Conceptual information: It can be concluded that when being asked what the participants
think about conceptual information, they all agree on its importance, and that they in gen-
eral would appreciate more of it, preferably with some form of an illustrated architectural
overview. P1, P3, and P4 did not have any prior knowledge of the real estate domain and thus
all agree that it was di�cult to grasp the concepts. P4 expresses this as "In retrospect, it is al-
ways di�cult to think that you did not understand it at first, but it was in fact di�cult to understand
in the beginning.". They all had to spend considerable time on reading about classes and inves-
tigate how they were related. P3 thinks that some things are crystal clear such as the relation
is_part_of_building, but other aspects, for example that the class Leasable inherits from Space
are harder to understand. P4 agrees, by stating that classes such as Buildings and Rooms, and
their relation, are of course easy to grasp, but it is more di�cult to relate the concepts to the
real world when it comes to more abstract concepts such as Installations. P2 and P5 both had
prior knowledge and experience within the domain, and thus had an easier time in regards to
the conceptual information. However, P5 agrees with the other participants on the need of
more hierarchical information. He thought it was a bit tricky to grasp the inheritance part,
due to Homepal’s API being based on a di�erent standard than P5 used in their business. P2
highlights the importance of documentations giving the users a conceptual understanding,
especially when it comes to relations and hierarchy, and that it does not matter if it is tech-
nical or practical; "It could be a simplified version of the relations from the database, or the relations
in real life.".

When asked about thoughts on an architectural overview, all participants agree on the
benefits of it, where P2 and P4 actually suggest it without even being given the question.

46

4.2 Understand Phase

P4 states that he would have realized concepts (where he had some issues) fairly right ahead
if having an overview to to read or to take a look at. P4 expresses his idea as some kind of
flow chart, where one could quickly see the relations between the concepts in the data model,
and how they relate to the physical objects in the problem domain. Additionally, P1 would
appreciate more informative comments and descriptions throughout the documentation, as
well as in the examples in order to prevent a lot of scrolling between di�erent parts when
having to look for information and read up on concepts elsewhere. P1 gives an example of
this: "In ’Lease’, there is a property called ’lease_of’, and this only points to ’Leasables’. This is where
I mean a comment would be useful stating that ’lease_of’ has to be a ’Leasable’.".

Potential functionality: In the interviews, the participants were also asked about their opin-
ions on potential added functionality and information, such as code examples, navigation
functionality and built-in tools for execution of endpoints. Generally, the participants were
not adamant on adding more functionality, as most felt that less sometimes is more, and too
much functionality can take away focus from the parts that really matter. P4 expresses this
by saying "My philosophy is ’Keep it simple’, it is supposed to be easy." However, some participants
stated that added functionality can be useful in certain cases, but they would not use it to
a large extent personally. P2 thinks that code examples are unnecessary, but could be used
for certain parts, such as a special endpoint that does not follow the same pattern as others,
which he adds should be avoided in an API at all. P2 continues by stating that code examples
are mostly for developers that have not performed many integrations, and developers that
are not used to it. At this stage, examples are unarguably a great asset. But as soon as one
is used to API:s, code examples becomes superfluous. P4 states that he would surely look at
the examples if they were included. However, he continues by saying that the examples has
to be written in the same programming language as one uses, in order for them to be useful
directly, which would mean that a lot of examples would have to be written to cover the most
common languages. P5 agrees that if you are not very comfortable in the language that you
working in, then it is a good feature. However, since it is a REST API, requests work the
same way in all languages, which limits the value that code examples provide.

In regards to a potential search functionality, in order to make navigation more e�cient,
P2 believes that a well structured sidebar is enough in order to navigate well. He continues by
saying that when using an API for the first time, you often do not know what you are looking
for, and at a later stage, if you know what you are looking for, a search functionality is not
needed, since you remember where the information is located from last time. P4 states that
scrolling is preferred since he does not know what di�erent concepts are called in di�erent
API:s. It is really hard searching for domain specific names, and therefore do not think that
a search function would have been used. However, he adds that "A search feature is neat if you
know what you are looking for.".

The general consensus regarding some form of favorite functionality where users of the
documentation can mark commonly used parts was that it may be useful in some cases, es-
pecially if the API is very large, but that it would not be used in most cases. P4 states that
if you use certain endpoints to a very large extent, you often know where they are situated
anyways. Furthermore, P2 states that if you write an entire integration, you are not really
concerned with certain endpoints more than others, since most of the time you will use all
of them, and will integrate them in the order that best fits your development, which in turn
limits the usefulness of navigating to a given endpoint quickly.

47

4. Design Process

When it comes to native execution of endpoints, P3 relates it to the REST API docu-
mentation of their organization, to which he states that he appreciates the ability to try out
functionality quickly by executing an endpoint from the documentation. P3 says: "I just want
to check if something is working, really quickly. I would have liked a Try it out below every endpoint in
the documentation, where I could also include and tweak parameters.". P1 agrees on the importance
of being able to edit examples, more specifically the body, for trial and error. P1 continues
by suggesting listing all the available endpoints as suggestions in a scroll down menu in the
sandbox view. P4 tends to stick with Postman, due to being used to it, stating that he does
not want to spend time on learning every service’s sandbox or try out functionality. P5 likes
and uses the sandbox from time to time, in order to take a quick peak of how something
looks, but mostly tests the API using code written in his own environment.

Structure and distribution of content: Regarding the structure, placement and distribution
of the information in the documentation, most participants were happy with the current
documentation. P1 however, would like a clearer documentational mapping between the un-
derlying data structure and the corresponding endpoints in the API, as it was overwhelming
to understand in the initial stage of his integration. P2 stresses the fact that it is incredibly im-
portant to have an introduction and conceptual explanation, as well as authorization guide-
lines, in the beginning. He continues by explaining that factors that apply to the entirety of
the API should be explained first, as good understanding of these parts are a prerequisite for
correct usage of the API at large. P5 thinks that the connected information in the middle
column (of the current documentation), containing text, and the right column, containing
code, is not fully aligned, which causes some confusion. He requests clearer di�erentiation
between di�erent parts of the documentation.

4.2.4 Summarized Results
In the Understand phase for the design process applied in this thesis, three approaches were
used, a literature study, an heuristic analysis and semi-structured interviews with users of the
Homepal documentation. The literature gathering performed during this phase, provided
valuable theoretical knowledge to base the work on. The heuristic analysis gave insight into
the world of API documentation, both in the real estate industry, as well as other examples
of documentation from the industry. The interview sessions with users provided some much
needed feedback on the current documentation, as well as their opinions on possible future
features and changes that potentially could improve their experience. Furthermore, it was
interesting to see attributes of the di�erent developer types, described by Clarke, see Section
3.11, and how these characteristics manifested themselves in practice, as well as how this
a�ected how a given developer used the documentation.

4.3 Explore Phase
The Explore phase consists of two steps, Ideate and Prototype [11]. The goal with the phase is
to explore ideas that can be used to cater for the needs specified in the Understand phase. By
generating large amounts of potential ideas in the ideation step you come up with potential
design solutions that can be concretized and evaluated using prototypes.

48

4.3 Explore Phase

UNDERSTAND

DEFINE EMPATHIZE IDEATE PROTOTYPE TEST IMPLEMENT

EXPLORE MATERIALIZE

Figure 4.3: Explore Phase of the Design Process.

In this phase, the goal is to explore the needs of the users, similar to the ones interviewed
in the previous phase. However, the goal is also to explore the needs of potential users, that are
new to the Homebase API. How acquainted you are with the API obviously a�ects how you
use the documentation, and users that are new to an API, or new to API:s in general, may
have very di�erent needs from the developers consulted in the previous phase, which was
made evident by the interviews held. Consequently, inexperienced users will be considered
to a larger extent in this phase of the design process, than in the Understand phase.

Prioritization of Characteristics
In order to structure the outcomes and takeaways from the Understand phase, discovered char-
acteristics (from all parts of the process) were summarized and divided into smaller parts and
prioritized according to the MoSCoW method [12]. The MoSCoW method is based on four dif-
ferent priorities; Must have, Should have, Could have and Won’t have. Must have should be seen
as a requirement directly tied to the success or failure of the end product. Should have should
instead indicate something that the user wants, but is not necessarily seen as a crucial re-
quirement. Could have is an opportunity that could positively a�ect the end result, and is
commonly referred to as a nice-to-have. Finally, Won’t have is something that, for some reason,
should not be included in the final product.

This prioritization was based on the frequency of how often a characteristic was men-
tioned, or found, together with the perceived severity mentioned by the interview partici-
pants. The di�erent characteristics and their priority are presented in Table 4.4. It is worth
noting that these priorities are solely based on five users specifically tied to the Homebase
API, along with the heuristic analysis, and should therefore not be seen as general conclusions
on priority for all users.

49

4. Design Process

Table 4.4: Prioritization of characteristics.

Area # Characteristic Priority
Technical API
Fundamentals C1 Endpoints and URLs MUST

C2 Attributes and datatypes MUST
C3 Complete examples of responses and requests MUST
C4 Error message information MUST
C5 Validation information COULD

Introduction C6 Authorization information MUST

C7 General API information (regarding data format, pagination,
sorting, etc.) MUST

C8 Domain specific information MUST
C9 Architectural overview SHOULD

Structure C10 Clear mapping between related concepts (What belongs to
what?) MUST

C11 Clear separation of code and text MUST
C12 Atomicity and redundancy SHOULD
C13 Sorting after relevancy SHOULD
C14 Avoidance of information overload SHOULD
C15 Responsive design SHOULD
C16 User adaptability COULD

Navigation C17 Consistent means of navigation MUST
C18 Single page SHOULD
C19 Search functionality COULD
C20 Favorite functionality WON’T

Try out func-
tionality C21 Code examples SHOULD

C22 Quick execution of endpoints COULD
C23 Editable examples COULD
C24 Sandbox environment COULD
C25 Listed executable endpoints in the sandbox environment COULD

Other C26 Clear addressing of changes in significant functionality SHOULD
C27 Clear section for generation of API tokens COULD
C28 Easy to copy + paste MUST
C29 Get up and running example COULD
C30 HTTP status codes SHOULD
C31 Login free COULD
C32 Concise code SHOULD
C33 Inline comments COULD
C34 FAQ and Common use cases WON’T
C35 Licensing conditions WON’T
C36 Crowd sourced examples WON’T

4.3.1 MidFi Prototyping
After deciding on the characteristics that should be taken into consideration for future work,
work on a MidFi prototype was initiated. This prototype would be used as a platform for
basic evaluation of the general layout and basic functionality of the documentation, in very
broad strokes. However, more importantly, the prototype was mostly used to concretize ideas
and theory, that then could be used as a reference point for subsequent development. The

50

4.3 Explore Phase

prototype was implemented in Figma2, which is a prototyping tool that can be used to create
designs with basic functionality. This allowed for quick iterations where feedback could
be given quickly, while still providing high enough fidelity to properly illustrate layout and
functionality. Compared to sketching by hand, Figma was more convenient in the context of
documentation, since excerpts from the current documentation could be included easily in
the prototype using copy paste.

As previously mentioned, the goal of the prototype was to concretize and evaluate the
general layout of the documentation, and well as investigating what information should be
included in the final prototype. All applicable, and feasible characteristics from Table 4.4
were implemented in some manner using Figma, but not for the entire documentation. It
would require large amounts of repetitive work due to the naturally repetitive nature of API
documentation. Therefore, the prototype contained documentation for the general, concep-
tual information and one resource in the API, which was deemed enough to evaluate the core
aspects of the documentation.

Selected parts of the MidFi prototype, with the implemented characteristics, can be seen
in Figure 4.4, 4.5, 4.6, 4.7, 4.8.

Figure 4.4: MidFi Prototype: About the API.

2https://www.figma.com/

51

4. Design Process

Figure 4.5: MidFi Prototype: Errors.

Figure 4.6: MidFi Prototype: Query Parameters.

52

4.3 Explore Phase

Figure 4.7: MidFi Prototype: Building.

Figure 4.8: MidFi Prototype: Get Buildings.

MidFi Prototype Evaluation
The MidFi prototype was evaluated with the help of the Homepal developer team. This
process was informal, and only consisted of conducting a meeting with all Homepal team
members, where a discussion around various aspects of the prototype. All input was noted

53

4. Design Process

and considered in subsequent stages. Despite being very informal, this stage served as a sanity
check to ensure that the prototype was progressing in a manner that Homepal were comfort-
able with, since they had not taken part in the process leading up to this stage. The results
from this stage are presented in Table 4.6.

Table 4.5: A compilation of inputs from the developer team talk.

Input

I1

The developer team liked the idea of having a short introduction with the most fundamental
information about the API:s technicalities and standards. They highlighted that a lot of API:s
often missed out on presenting the base URL early on, and liked the fact that this was placed in
this section.

I2 The developer team would like to add a short text in the introductory section about were to find
the endpoints, since this is what a lot of developers want to find right away.

I3 The developer team would like to add a short summary about what type of data one can get from
the API.

I4 The developer team thinks that having deprecation notices on the first page can be a bit to much.

I5 The developer team liked the idea of having a conceptual overview, and the way that it was
designed. They all agreed on keeping it on a high abstraction level and avoiding details.

I6
The developer team liked the idea of having the exact same structure on every resource/endpoint
in order to avoid confusion. However, they agree that there is still a problem to solve when it
comes to classes that are a bit di�erent – i.e. break the structure.

I7
The developer team liked the idea of having a test mode, with a test key for authorization, within
the reference documentation. Test modes within documentation are always missing according
to the team.

I8 The developer team liked the fact that there actually was a section about how to authenticate
against the API, and get a token. Often, one has to contact the API provider and request a token.

I9
The developer team liked the idea of having a test mode, with a test key for authentication,
within the reference documentation. Test modes within documentation are almost always miss-
ing, according to the team.

I10

The developer team agrees with not having error codes listed for every single endpoint, but
keeping them in one single section. They liked the fact of presenting the error codes early on
in the documentation, thus making them quick and easy to find. The chances are higher that a
developer writes fallback for every error if a complete general list is provided.

I11 The developer team agrees that listing enumerated values is hard to do due to its extent in the
API. Further, they express a need for a neat way of explaining them to the user.

I12
The developer team highlighted the importance of having 100% full example bodies within the
documentation, in order for it to be ready for usage. Therefore, include object attributes such as
"Links" and "Meta" as well – not just visual placeholders for them.

I13 The developer team expressed a strong need for having an example request body (for every end-
point where a body is included).

Summarized, it was concluded that the developer team was overall very satisfied with
the first prototype. Apart from the more specific inputs from Table 4.6, the team did not
have any negative critique when it came to the prototype. Their feedback was very positive
as they thought that everything was heading the right direction and that the prototype was a
great upgrade compared to their current documentation, especially in regards to the overall
structure.

The following were interesting inputs that were taken into consideration:

• I2, I4 and I13 were inputs that were corrected/implemented right away. The most no-

54

4.3 Explore Phase

ticeable and important input was I13, that gave the documentation request body ex-
amples at every request of an endpoint – which was something that had been missed.

• I12 should have been fixed if it was applicable – that is include correct and complete
"Links" and "Meta" attributes in body examples. However, since the mock API created
for this thesis does not include these attributes they were not included.

• I6 and I11 are problems that have not been handled, and as an API provider one should
investigate these further. However, once again, due to the structure of the mock API
created for this thesis, these problems are considered out of scope and will not be
discussed further.

4.3.2 HiFi Prototyping
After the brief evaluation of the MidFi prototype, a prototype with higher fidelity was de-
veloped. In this stage, the requirements for functionality were much higher, since the general
layout had already been evaluated in previous steps. Focus was placed on evaluation of the
features that had previously been chosen for inclusion in the final prototype, and how these
features could be designed in order to provide value to the developers using the documenta-
tion. The end goal with this process was to have a polished prototype that could be evaluated
with real users in a usability study at a later stage.

Technology
First, the decision to move away from Figma was made, simply due to the lack of certain func-
tionality within the tool that was seen as crucial for the HiFi prototype. There are multiple
tools and libraries constructed for the sole purpose of creating documentation, but these were
discarded due to being di�cult to customize, which in turn would make it hard to fit the es-
tablished requirements. Since large amounts of freedom was needed, as well as a high ceiling
for potential functionality, the decision to develop a web application was made. Modern web
applications are performant, while being relatively quick to develop. React3, was used as the
main library for constructing the components that make up the documentation. SASS4 was
then used to ensure that the components adhered to the graphical profile that had previously
been specified by Homepal.

Furthermore, a subset of the Homebase API was developed, with the purpose of providing
a platform that could be used for the usability testing, since it would be di�cult for test
participants to comprehend and understand a larger API, more complex API. Furthermore,
due to the limited size of this API it was possible to write the documentational content for the
entirety of the API, without leaving out any information, which would have been very time-
consuming for the entire Homebase API, especially considering the limitations presented in
Section 1.3. This subset of the Homebase API was developed as a REST API in .NET 5.05.

3https://reactjs.org/
4https://sass-lang.com/
5https://dotnet.microsoft.com/

55

4. Design Process

Design

Due to the positive feedback on the MidFi prototype, the main conceptual design and general
layout was kept at this stage as well. In this section, some of the most prominent design
decisions and features in the HiFi prototype will be described. To get a feeling of how the
overall prototype looked like at the current stage, an example of the introductory chapter
’About the API’ can be seen in Figure 4.9.

Figure 4.9: HiFi Prototype: About the API.

A core feature is the multiple column layout, described in Section 3.13.1. This provides
separation of di�erent types of content, that may be suited best for di�erent contexts or
tasks, and also for di�erent developers. Depending on what the user is looking to accomplish,
di�erent columns can be used to accomplish said task in di�erent ways. The prototype is
essentially divided into three columns, with the left column being used for navigation, the
middle column is used for descriptive content, and in the rightmost column, is used for
examples. This separates the concerns of the di�erent parts of the prototype, and makes it
easy to distinguish code from text. To further amplify the separation between code and text,
when code or examples are included in the descriptive content they have di�erent formatting
relative to normal text, in order to indicate the semantic meaning behind the text or a word
(see Figure 4.10).

56

4.3 Explore Phase

Figure 4.10: HiFi Prototype: Code and text formatting.

In order to further distinguish di�erent types of content from each other, the prototype is
divided into several, reoccurring components with di�erent purposes. The goal with this is to
clearly illustrate di�erences between di�erent types of documentational units, so that a user
can find what they are looking for at a glance. However, there is some overlap between certain
components, in terms of the type of content placed in them. For example, a component used
to give examples on an object structure displays almost the same content as a table describing
the same object, but they are best suited for di�erent tasks, contexts or developers.

By dividing the documentational content into distinct components, it is possible to cre-
ate a very consistent layout and structure that is carried out through the documentation. For
every resource, the component depicting a certain type of content is placed in the same lo-
cation, so that a user will always find certain information in the same place (see Figure 4.11
and 4.12). The goal is to allow users to quickly realize and reflect on what parts of the docu-
mentation are relevant to them, so that instead of scanning the entire documentation, they
can look at the same part of the documentation continuously while solving the task at hand.
Even when a type of content is not applicable for a given section, for example a Request Body
Example for a GET endpoint, an empty component is still placed in the same location of the
documentation unit, as seen in Figure 4.13.

57

4. Design Process

Figure 4.11: HiFi Prototype: Building.

Figure 4.12: HiFi Prototype: Get Buildings.

58

4.3 Explore Phase

Figure 4.13: HiFi Prototype: Empty component.

Another key characteristic is the single page layout, as proposed by Meng, see Section
3.13.1. By placing all content on a single, scrollable page, users can use the search functionality
native to their browser (Ctrl/Cmd + F) to find parts of the documentation quickly. However,
placing all content on the same page may demand more from the navigation than a more
traditional approach where documentation units are placed on discrete pages. When a user
is allowed to scroll freely, it is possible to get lost, especially since the structure and content is
nearly identical throughout the prototype. Therefore, a lot of e�ort was put into making the
navigation as fluent and flexible as possible. The navigation sidebar consists of links that can
be clicked, that instantly scroll you to the requested section. Furthermore, when scrolling
in the documentational content, the links in the navigation bar are highlighted to indicate
which section the user is currently on. This allows for two main usage scenarios; either you
scroll through the entire documentation, with the navigation bar simply acting as a reference
point for your current position, or you use the navigation bar links as a means of navigation
where you can update your current position by pressing the requested section, as seen in
Figure 4.14. Furthermore, links are added to the descriptive content when relevant to the
context. If certain sections are related to each other, users may want to read up on parts of
a di�erent section, and providing a link in the documentational content to the appropriate
section encourages this behavior.

Figure 4.14: HiFi Prototype: Navigation.

In order to further alleviate the risk of users feeling lost, e�ort was placed on dividing the
sections with lines between sections and subsections, to indicate what belongs together. It

59

4. Design Process

also serves as a means of indicating the relationship between the right and middle columns,
so that users understand what parts of the documentational content are mutually relevant.

Authorization was generally a large issue that users had with the previous Homebase
API documentation, as was seen in Section 3.7. In order to make this process as easy to
understand as possible, a Test Mode Environment was added to the prototype, see Figure 4.15.
This essentially means that users can generate a key in the documentation, that then can be
used to access the API. After the key has been generated, the key is injected into all examples
so that they are authorized and work out of the box. The goal was to illustrate the usage of
the authorization key initially in the documentation, so that users then understand how the
key should be used in their own environment, since it is used in the same manner.

Figure 4.15: HiFi Prototype: Test mode key.

Another key feature that arose during the interviews (Section 3.7) was the need for a
Conceptual Overview. The idea was to quickly illustrate the structure of the API so that expe-
rienced users could get to work quickly, without having to go through large amounts of text.
The end result at this stage was a high-level/simplified ER diagram6, that depicts the relations
between resources. Furthermore, all resources in the overview link to the section where the
given resource is described, for quick navigation. See Figure 4.16.

Figure 4.16: HiFi Prototype: Conceptual Overview.

6https://www.guru99.com/er-diagram-tutorial-dbms.html

60

4.4 Materialize Phase

4.4 Materialize Phase
Finally, the Materialize phase is the last phase in the iterative process described by Gibbons [11].
This phase consists of the Test and Implement steps. Here, you give the prototypes created in
the previous phase, and use these to obtain feedback from actual users in order to evaluate the
overall suitability of the design, and how it a�ects how the users perform the tasks associated
with the product. Finally, once all requested changes are accounted for, you can implement
the design.

UNDERSTAND

DEFINE EMPATHIZE IDEATE PROTOTYPE TEST IMPLEMENT

EXPLORE MATERIALIZE

Figure 4.17: Materialize Phase of the Design Process.

At this stage a usability study was held, in which the HiFi prototype was subject for evalua-
tion by potential end-users. This study was planned in accordance with the methodology as
defined in Section 3.9.1. The results from this usability were then considered and applied to
a new iteration of the prototype, which is the final version of the prototype presented in this
thesis. The usability study and its results also serve as the foundation for a general evaluation
of the final prototype in relation to the goals in Section 1.4.

4.4.1 Usability Testing
When considering how to conduct the usability tests for this stage, the goals were used as a
starting point for what to investigate. There were two main factors to consider in the tests,
both how the test participants perceived the usability, but also how well the test partici-
pants are able to understand the conceptual information about the API itself. Therefore,
an approach where the test participants received tasks to accomplish within the API, with
the documentation as aid. By doing this, test participants are coerced into an, at least some-
what, natural usage scenario where the content and features can be evaluated. In order to
find potential errors and inconsistencies, a pilot study was performed with the employees at
Homepal before conducting the tests with actual participants.

Each test participant was given the same brief, despite varying experience levels. In this
briefing the purpose of the usability study was explained, along with a tutorial on how to use
the external tools required to solve the tasks using the prototype. The goal was to eliminate
all concerns from factors that do not directly a�ect the prototype. Participants were also
encouraged to ask questions regarding the external tools, if anything bothered them. It was
also pointed out by the test leader that despite having to answer questions, the usability study
was not a test of their skills, but only a test of the prototype, and how well it supported the
participants in solving the task at hand. They were encouraged to take all the time that they
needed to finish the tasks, and to solve them in a manner that they would solve a similar

61

4. Design Process

task in an educational or work context. Participants were timed, but this was not revealed to
them, in order to keep the levels of time pressure as low as possible.

Before the test, the participants were asked to sign a form of consent, which is included in
Appendix B.2, where they were informed about how the study would be conducted, and how
the results would be handled after the completion of the thesis. During the test, a test leader
provided the instructions and guidance, and another person was responsible for taking notes
and observing the usage patterns of the prototype. Test participants were encouraged to think
aloud, both in regards to the task and the usage of the prototype, to help facilitate this process.
Furthermore, the screen that the prototype was shown on was recorded, so that it was possible
to go back and study the usage patterns. Before starting the test, participants also filled out a
form where they estimated their previous experience with REST API:s, documentation and
the external tools used during the tests.

The test participants were given eight tasks, summarized in Table 4.6 and presented in its
full form in Appendix B.1. These tasks were oriented around creating, updating, deleting and
retrieving data from the API, as well as questions regarding specific details concerning the
API. The tasks were selected so that the test participants would have to traverse large parts
of the documentation to build a fundamental understanding of the conceptual information
regarding the specifics of the API. This ensured that the participants got acquainted with the
majority of the prototype, and that they used the prototype in roughly the same way. Some
tasks had interdependencies, in order to monitor if the participants understood some of the
inner workings of the API, and how di�erent concept relate to each other.

Table 4.6: A summary of the tasks given at the usability test session.

Task description

T1 Familiarize yourself with the documentation, and extract fundamental general information
about the API.

T2 Authorize yourself against the API.
T3 Get information about two specific Agents.
T4 Create an Owner.
T5 Create a RealEstate with a specific name and a specific owner.
T6 Get information about all RealEstates and sort them by name.
T7 Change the name of an existing RealEstate.
T8 Find the Leasable with the highest rent and remove it.

Test participants were instructed to answer each task when they felt that the answer was
correct, but the test leaders would not give any hints to whether the answer was correct or
not. This was done in order to encourage the participants to validate their result once more,
without asking for help from the test leader. This would also accommodate for participants
that applied a trial-and-error approach for solving the tasks.

After the participants had finished, they were asked to fill out a survey that consisted
of two parts. First, a System Usability Scale survey was filled out, as described in Section
3.9.2. The reasoning for using this metric, was partly to be able to contrast the observations
made during the tests with how the participants perceived the prototype from a usability
standpoint, without considering the documentational content. The SUS score reflects how
the participants personally felt about using the prototype, which then can be compared to
other metrics and observations.

62

4.4 Materialize Phase

The second part of the survey focused on obtaining qualitative data, in which the respon-
dents were asked in-depth questions about their opinions on using the prototype, especially
regarding the parts that were important to evaluate in further detail. The questions can be
found in Appendix B.3. In contrast to the SUS survey, this part also focused on the docu-
mentational content, in order to find potential issues related to this.

Participants
Usability tests were conducted with 10 test subjects, that were senior students (or newly
graduated) from a program that in some way has a relation to software development (at some
level). The test subjects were briefly profiled, of which the results are presented in Table 4.7.
10 was an appropriate number of test subjects at this stage, since the goal was to carry out
extensive usability tests in order to find both quantitative and qualitative data for evaluation,
which is time-consuming to extract and draw conclusions from.

Table 4.7: Participant Characteristics. The column REST API usage
experience refers to self-estimated answers on participants REST API
usage experience on a scale from 0-10.

Sex Age Occupation REST API famil-
iarity

REST API usage
experience

Postman/cURL
experience

P1 M 25 M.Sc. ICT Eng. Student Yes 0 Yes
P2 W 24 M.Sc. ICT Eng. Student Some 3 No
P3 W 24 M.Sc. CS Eng. Student Yes 10 Yes
P4 M 26 M.Sc. ICT Eng. Student Yes 5 Yes
P5 M 24 M.Sc. ICT Eng. Student Yes 6 Yes
P6 M 26 M.Sc. ICT Eng. Student Yes 4 Yes
P7 M 26 M.Sc. Math. Eng. Student Yes 3 Yes
P8 M 28 Jr. Web Developer Yes 7 Yes
P9 W 24 B.Sc. System Dev. Student No 0 No
P10 W 25 M.Sc. Electrical Eng. Student No 0 No

The most relevant characteristic to consider and bear in mind is the self-estimated REST
API usage experience, and is therefore concluded visually in Figure 4.18 in order to overlook
the distribution of experience between the participants.

0P1
3P2

10P3
5P4

6P5
4P6

3P7
7P8

0P9
0P10

0 1 2 3 4 5 6 7 8 9 10
Self-estimated REST API usage experience

Figure 4.18: Self-estimated REST API usage experience.

63

4. Design Process

Results
The result data from the user tests were divided into four parts;

1. Task success

2. SUS score

3. Observed di�culties

4. Feedback

1. Task success
The calculated task success for every test subject were based solely on how well a task was
completed. The grades were set according to the task success score seen in Table 4.8. The
result can be seen in Table 4.9, where the maximum number of points that could be given
was eight.

Table 4.8: Task success score.

Points Reason

1 if the task was completed without any di�culties
and guidance regarding the system.

0.5 if the user completed a task with some guidance re-
garding the system.

0
if the task was completed in a wrongful way, or if the
user was in need of a lot of guidance regarding the
system.

Table 4.9: Task success.

Score (p) Time spent (m:s)
P1 6.5 24:31
P2 6 27:33
P3 8 15:23
P4 6 22:05
P5 8 22:53
P6 7 17:06
P7 7.5 31:13
P8 7 23:19
P9 5.5 20:33
P10 6.5 28:26

Generally, the task success results were very positive, and were much higher than ex-
pected. The preconception was that the participants with large amounts of experience from
REST API:s would perform well, but people with less experience would struggle. While this
was true to some extent, the participants with no experience were still able to get a final score
of well above 50 percent.

64

4.4 Materialize Phase

2. SUS Score
The calculated SUS score (as described in Section 3.9.2) for every test subject can be seen in
Figure 4.19. The total, average SUS score for the final prototype was 95 (standard deviation
σ = 5,68).

95P1

82.5P2

100P3

95P4

87.5P5

100P6

90P7

97.5P8

97.5P9

95P10

0 10 20 30 40 50 60 70 80 90 100
SUS score

Figure 4.19: SUS score per participant.

In order to evaluate and interpret the individual, and average, SUS score(s) an adjective
rating scale [2] have been used. This scale is seen in Figure 3.2, Section 3.9.2, and further
includes ranges and scales of acceptability and grades. The purpose of using this scale(s) is to
aid in explaining the results to non-human factors professionals.

When looking at the average SUS score of the usability test sessions, 95, it can be con-
cluded that this score corresponds to grade "A" and that the closest corresponding adjective
is "Best imaginable".

The individual SUS scores, with the lowest at 82.5 (P2) and the highest at 100 (P3, P6),
provide further information. It is concluded that the least satisfied participant (out of 10
test subjects) thought that the prototype was "Excellent" and assigned it with a grade "B".
Likewise, the most satisfied participants thought that the prototype was "Best imaginable"
and assigned it with a grade "A+".

Both the average, and all individual, SUS score(s) lies high above the acceptability margin.

3. Observed di�culties
The observed di�culties noted, while monitoring the test subjects carrying out their given
tasks, were compiled and labeled in Table 4.10. The frequency of how many users that were
involved in an observation was also included. It can be concluded that only seven noticeable
di�culties were observed over all test subjects.

4. Feedback
Feedback from the test subjects was collected as qualitative data after the interview, and the
aspects that regarded improvement of the prototype were later quantified and compiled in
Table 4.11. As with the observed di�culties, the frequency of how how many users involved
in a feedback aspect was also included. It can clearly be seen that a more obvious indication of

65

4. Design Process

Table 4.10: Observed di�culties. The column f refers to how often
the di�culty arose for the 10 participants.

Observed di�culty f
O1 The users tended not to look at, and read in, the rightmost column. 2
O2 The users tend to be a bit confused over when a section ended. 2

O3 The users tend to be a bit confused over whether "{ }" from the path examples should be
included or not. 2

O4 The users tend to click next to/outside of the link text in the sidebar, and expect the
whole area to act as a link. 1

O5 The users tend to believe that the headers in the sidebar (Introduction, Resources) are
links. 1

O6 The users tend to miss the "-s" at the end of the endpoints. E.g. "/agent" instead of
"/agents". 3

O7 The users tend to be a bit confused over Body- and Path Schema, and what the di�erence
is between them. 2

the documentation being singled paged (F3), a more visible separation/distinction between
sections (F10), and a shorter collapsed side bar (F20) are the most requested improvements
suggested as feedback.

When it came to positive feedback it can be concluded that:

• When being asked what the test subjects appreciated the most in Homebase API Docs,
the majority all included the navigation, the structure and the code examples in their
answers. P1 expresses it as "Clear, simple and concrete examples makes it easy to under-
stand." where P7 adds the fact that there were "Clear examples for every single request.".
P2 summarizes the considered easy navigation by saying that "It had a simple structure
and was easy to find your way in with the navigation menu in the form of a ’table of content’.
The consistent design and structure made it easy to know where to look for information when
encountering a similar problem to one you just solved, but with another goal.".

• When being asked if the conceptual overview gave the user enough conceptual infor-
mation about the API to solve the tasks, all test subjects answered with a "Yes." or
"Absolutely!". Two of the test subjects adds that the test API’s structure was not really
complicated enough to need a conceptual overview, but they both agreed that it would
have been very useful in a more extensive API.

• When being asked if information was easy to find and if the structure was logical,
not a single test subject answers ’No’. P2 summarizes this well by saying that "Aided
by the simple structure, I could solve the tasks in an easy way. As I mentioned before, the
documentation had a very consistent structure – which made it easy to navigate and find
information in. I liked the redundant structure.". P3 adds that "[. . .] it was nice to have an
overview and general information in the beginning of each section (and the documentation as
a whole) before deep diving in to details about each resource and request.".

• When being asked about the information and the content in itself, all test subjects
agreed on that there were no obvious missing parts within the documentation. Neither
did they think that it was superfluous.

66

4.4 Materialize Phase

Table 4.11: Feedback for improvement. The column f refers to how
often the di�culty arose for the 10 participants.

Feedback f
F1 The users express a wish for line-breaking cURL examples. 2

F2 The users express a wish for CRUD-order when it comes to the requests of an end-
point/resource due to intuitiveness. 1

F3 The users express a wish for a clearer indication and explanation of the documentation
being a single page. 3

F4 The users express a wish for a search functionality. 2

F5 The users express a wish for removing unnecessary complicated terminology. E.g.
"U+002D Hyphen minus". 2

F6 The users express a wish for an explanation of the di�erence between Body- and Path
Schema. 2

F7 The users express a wish for a functionality to collapse repetitive informa-
tion/components. 2

F8 The users express a wish for more thorough (and varying) descriptions about prerequisites
on resources. 1

F9 The users express a wish for more clear distinctions between sections. 3
F10 The users express a wish for more clear distinction between titles and subtitles. 1

F11 The users express a wish for a clearer indication on whether placeholders such as { } or "
" should be included or not in a path or body. 2

F12 The users express a wish for an explanation why some tables are disabled. 1

F13 The users express a wish for changing the order of the elements Body schema, Returns,
Path schema to Body schema, Path schema, Returns due to intuitiveness. 2

F14 The users express a wish for a possibility of using the browser’s back arrow for navigation
to the last visited hash-location. 1

F15 The users express a wish for a more visible Generate Key button. 2
F16 The users express a wish for empty strings instead of placeholders in the examples. 1
F17 The users express a wish for more clear explanations of what is auto-generated or not. 1
F18 The users express a wish for an explanatory text of the conceptual overview (*, 1, <, etc.) 1
F19 The users express a wish for having a shorter navigation bar with collapsing items. 5

• When being asked about the code examples in the documentaion, and if they helped the
user to solve the tasks given, all test subjects answered ’Yes.’, ’Absolutely!’ or "Defini-
tively!’. P2 added that "[. . .] it was a good way of getting the syntax right.". P8 said that
"They were very helpful. It would not have been as clear and as easy without the examples.".

• When being asked about final, or additional, comments, the majority of the test sub-
jects focused on the visual design and style, and expressed that the developed prototype
was very good looking from an aesthetical perspective. P1 expresses this as "Really neat
page. Stylish and well-balanced when it comes to the amount of text. Terrific work!". P7 uses
his final word to summarize the documentation as "A clear overview with examples which
makes all processes simple. Nicely done!".

4.4.2 Final Prototype
Overall, the usability tests yielded very positive results for the prototype, but some minor
changes were made in some areas to further improve the documentation. These changes are

67

4. Design Process

based on observations and feedback from the usability tests, presented in Table 4.10 and
4.11. Frequently occurring issues have been assigned higher precedence in potential changes,
whereas some remarks made less frequently have only been implemented if the feedback was
valid and agreed upon by the authors. As previously mentioned, the changes made after the
usability testing were almost exclusively very small, but this section will account for the larger
changes made. See Appendix C.1 for a complete list of the changes made, as well as changes
that were, for some reason, not included in the final prototype.

The most frequent concern was the navigation sidebar. Test participants generally thought
that it was too lengthy, which made it di�cult to find what they were looking for. This was
probably made even more di�cult since the entirety of the sidebar was not visible, due to
overflowing the vertical space of the screen. To remedy these issues, the decision to collapse
sidebar items with a submenu was made. When a menu item with a submenu is clicked,
or scrolled to in the documentational content, the submenu is expanded so that the items
present in the submenu are visible. This makes the sidebar much shorter, and easier to get an
overview of. However, it still provides the same core functionality, since submenus are open
and closed as you click and scroll through the documentation. This is illustrated in Figure
4.14.

Figure 4.20: Final Prototype: Navigation.

Despite e�orts to make sections as distinct as possible using lines to indicate beginning
and end of a section, test participants were sometimes confused on what section they were
currently on. In order to aid this, lines were made more noticeable, by assigning them darker
colors, and the di�erence between section titles and subtitles was made larger.

Some test participants had troubles noticing the rightmost column, since they placed
their focus on reading the middle column to a large extent. Since a lot of useful information
is present in the right column, it was important to make it stand out more clearly to the
user. Therefore, a text explaining the existence and purpose of the right column was placed
in the introductory section. Furthermore, a text explaining the same thing was placed in the
rightmost column as well.

A feature that has been discussed throughout the course of this thesis is some form of
search functionality, and if this could help users find information, or if placing the infor-
mation on a single page in order to facilitate use of the native search functionality in the
users’ browser will be su�cient. Ultimately, partly due to time constraints, it was decided
that developing and implementing a dedicated search functionality would not provide large

68

4.4 Materialize Phase

advantages to using the browser search functionality. However, during testing it was noted
that most test participants did not use the search functionality, but rather, manually found
what they were looking for. Using the search functionality could be more e�cient in some
scenarios, which resulted in an added button to the navigation bar that resembles a search
button. When pressed, an informative text is displayed, letting the users know that using the
browser search functionality is supported and encouraged.

Images of the final prototype, and a few of its key features, can be seen in Figure 4.21,
4.22 and 4.23.

Figure 4.21: Final Prototype: About the API.

69

4. Design Process

Figure 4.22: Final Prototype: Building.

Figure 4.23: Final Prototype: Get buildings.

70

Chapter 5

Discussion

This chapter will discuss each phase of the design process, along with the activities performed during
each phase. The goal is to find strong points, as well as limitations with this thesis, and its results.
Furthermore, this chapter includes evaluations of the obtained results, along with suggestions on future
work. Some remarks evaluating the viability of the activities and their results, have already been made
in the corresponding section in Chapter 4. However, in this section, the goal is to further expand on
these remarks, as well as bring up positive and negative aspects of the activities.

5.1 Understand Phase
The overall goal of this phase was to gain a solid foundation in theory, and understanding
of the users, that could act as building blocks in subsequent phases. In order to achieve
this, a literature study, revolving around both REST API technology and documentation,
and interaction design theory was conducted. Furthermore, an heuristic evaluation of the
current Homebase API documentation, along with competitors and other examples from
the industry, was performed. Finally, interviews were held with developers currently using
the Homebase API and its documentation.

5.1.1 Literature Study
Large amounts of time was spent on making the literature study as extensive as possible. This
was time well spent, since it yielded a detailed picture of the landscape in areas that intersect
with the thesis. Most of the e�orts were placed on understanding areas related to API:s, and
their documentation in particular, and how documentational content relates to UX. Some
time was spent on researching interaction design theory, in the more general sense, but it
was not prioritized, since documentation has some unique properties that di�erentiates it
from more conventional applications. Furthermore, more conventional interaction design

71

5. Discussion

theory is considered in the final prototype, but it is not explicitly mentioned, due to space
constraints in the thesis report.

A frequently occurring issue was finding literature that was actively concerned with
REST API reference documentation, not just API documentation in general. Local API:s
are fundamentally di�erent from REST API:s, and this a�ects the way they are documented.
Furthermore, some authors did not clearly specify what type of documentation was consid-
ered in their research, which made takeaways di�cult to apply in the context of this thesis.

5.1.2 Heuristic Evaluation
As mentioned in Section 4.2.2, the process of the heuristic analysis was valuable, since it
provided both good and bad examples of documentation, along with ideas on potential so-
lutions. Since each example was evaluated using the same heuristics, it was very systematic,
which made it easy to compare examples of documentation to each other, in order to define
what properties a�ected the quality of the documentation. If you wish to place more empha-
sis on the results, rather than the process, it might be beneficial to conduct a more thorough
study, using several sets of heuristics from multiple sources, in order to further contrast the
chosen examples of documentation. Also, using a larger number of evaluators may yield a
more complete set of results.

5.1.3 User Interviews
The interview sessions with users of the current Homebase API documentation were very
rewarding. The fact that these took place early in the process was an advantage in certain
aspects, and a disadvantage in other aspects. It provided early insight into what real users
prioritize, and how the documentation has been used historically, as well as the general expe-
rience level of the developers using the documentation. The interviews provided qualitative
data, but in general, the data was speculative, and a lot of information regarded perceived
usage. This is generally advised against in literature (see Section 3.9.1), but it was accounted
for when compiling the results, since their opinions on perceived usage were only used as
inspiration for what aspects to consider in subsequent stages, and were not seen as hard facts
on what to include or how to solve certain issues. The reason for not eliminating the specu-
lative aspect of the questions asked was in order to find new ideas and approaches that could
provide value to the users. Including these new solutions and ideas would also not be an issue,
since it had already been decided that an entirely new documentation would be developed
during the process of this thesis.

However, due to the interviews taking place this early on in the design process made
certain parts of the interviews irrelevant, since the scope of the thesis was frequently altered
during the process, especially in the earlier stages. More relevant data could potentially have
been generated if the interviews were held at a later stage. Furthermore, postponing the
interviews would have given the authors more time to get acquainted with API:s and their
documentation, which could have resulted in more detailed questions, and hopefully, more
detailed answers.

72

5.2 Explore Phase

5.2 Explore Phase
During this phase, the goal was to explore ideas and solutions that fit the needs of the end
user. In order to categorize what was learned during the previous phase, potential features
were first selected and prioritized. The features that were given high priority were brought
to the next step, where a MidFi prototype was constructed. This prototype was evaluated in
a discussion held with the Homepal developer team. In order to further evaluate potential
ideas and solutions, a HiFi prototype was constructed, where focus was placed on providing
an experience as similar as possible to a potential end product.

5.2.1 Feature Prioritization
The prioritization of features was based on every single interesting feature or aspect found
in the understand phase, and was thus a great way to stop and think about the work so far.
When listing every single feature, it was obvious that some had been lost in the crowd, and
now came out in the light again due to this activity. To stop and quantize gathered data and
insights (when it is not explicitly quantitative) is something that should be done frequently
throughout a process in order to keep the discoveries alive.

However, when it comes to the actual prioritization of features, the fact that it was largely
based upon the perceived usage, and needs, of five single API users can be discussed. The
opinions of these played a major role in how the features were labeled (in combination with
what the theory said). It is, on the other hand, hard to do this in any other way – except
increase the number of users interviewed.

5.2.2 MidFi Prototyping
As described in the design process, the MidFi level was chosen as a starting point for the
prototype due to the fact that LoFi was considered as a too basic and superfluous level of
prototype for the purpose and the investigated features. In retrospect, this was considered the
right choice to make since it hastened the process and saved the e�ort put into prototyping
and usability testing for later, more suitable, levels of prototypes.

Starting of with a MidFi Prototype was a great way to put together the basic structure
of, and lay the foundation for, the documentation and to make sure that all the prioritized
features fit well together. However, it was di�cult to create something useful (that could be
tested) as an API documentation is based on a huge amount of repetitive components and
pages, which is not optimal to create in Figma.

5.2.3 Developer Team Talk
In order to evaluate and iterate the MidFi prototype, the developer team was used as a sound-
ing board in order to include new eyes and a new perspective – as well as to provide inputs, as
they are people that work with API:s and API documentation on an every day basis. This was
something that worked very well despite the informal form of "show-and-tell" talks, where
the developers came with inputs (on what was good and on what was missing).

73

5. Discussion

These talks gave both the authors of this thesis, and the developers, a chance to reflect
over what had been done since every single piece of the prototype had to be explained and
motivated. A bonus was to actually include the developers in the usability process and to
make them engaged and committed to the cause.

However, the awareness of the developer team not being an optimal evaluation group
was something always in mind throughout this process. Since this is a group that know the
documentation and the domain by heart, everything is obvious for them, and their inputs
should be taken with a pinch of salt. On the other hand, this was the only group that always
was available in person (due to the ongoing pandemic at the time of writing).

5.2.4 HiFi Prototyping
The HiFi prototype was programmed, together with an associated API, in order to include
functionality that enabled useful user testing and meaningful evaluation. However, this had
its downsides due to the fact that every single change in design required change in code.
The changes in code were sometimes complex, and required a lot of work – thus giving less
incentive to actually make a change. This was something that the authors were fully aware of,
but it was also a trade-o� that had to be done in order to test the investigated functionality.

The fact that the size, and complexity, of the API and its documentation had to be re-
duced (a lot) – due to the limited amount of time and the experience level of the user test
group – was something that had impact on certain features and functionality. Features that
was considered as interesting and important from the understand phase (such as e.g. the
conceptual overview) did not really have a purpose when using a fundamental and basic API.
Likewise were sections such as ’Validations’ and ’Versioning’ included, but did not really hold
any useful information due to the lack of this functionality within the API. However, despite
the fundamental API, all of the prioritized features were included and given a place within
the documentation, in order to mediate their actual importance.

5.3 Materialize Phase
In the final phase of the design process, the primary goal was to evaluate the HiFi prototype
from the previous phase, through usability testing. Several factors of the prototype were
evaluated, and all feedback and observations made during the study were collected, and used
to further improve the prototype.

5.3.1 Usability Testing
Usability testing is a great tool for evaluating the general usability of a prototype, and the
methodology provided a lot of insight for this thesis. However, there are always aspects of
how the study was conducted that should be considered before drawing conclusions on the
result. First and foremost, the group of participants were a very homogeneous group, where
almost all participants were students from a technical background. This was intentional,
since it was deemed that they had su�cient knowledge to understand the purpose of the
prototype, while being able to complete the tasks. Despite having similar backgrounds, the

74

5.3 Materialize Phase

experience levels between the participants varied enough to draw conclusions on how expe-
rience a�ects usage. The reason for not using developers with several years of experience,
was the concern that they would be able to solve the tasks without using the documentation
extensively, just based on knowledge alone, which obviously would make it di�cult to draw
conclusions on how the prototype was used.

Another reason for selecting the participants in the aforementioned manner was con-
venience, especially when related to concerns with the pandemic. The participants were
exclusively fellow students and colleagues of the authors, which may have a�ected the results
negatively, since acquaintances probably are less likely to give negative feedback. In order to
remedy this issue, participants were instructed to be as honest as possible, and that negative
feedback was the most beneficial for the end product, but it is not clear how much this fac-
tor a�ected the results of the study. Conducting a study with more participants, from a less
homogeneous group would probably have given di�erent results, but due to the pandemic,
it was not possible to follow through with plans of this nature.

The usability tests revolved around the participants solving a fixed number of tasks using
the documentation prototype. This made it possible to observe how the participants used the
documentation, and it also provided a tangible metric to use when evaluating how well the
participants solved the tasks. However, it made the usability study feel like slightly like an
exam, despite e�orts in ensuring the participants that they were not evaluated based on their
performance. This may have placed unwanted stress on the participants, which may have af-
fected the results negatively. Furthermore, the participants sometimes may have experienced
some time pressure, despite being explicitly told that time was unlimited. This probably has
to do with being observed, while solving the tasks at hand. In a work or educational con-
text, you tend to solve tasks alone, and are therefore more likely to feel stressed when being
observed. This stress and time pressure could probably have been remedied by leaving the
participants to solve the tasks alone, and instead, observing them through screen recording
or teleconferencing software. However, this would remove some of the natural interaction
between the test leader and participant, which could provide less qualitative data, due to a
lack of real-time communication. But still, it is a solution, with clear trade-o�s that could be
considered when conducting similar studies.

Another concern with the usability study was evaluating the prototype in isolation. The
documentation has a direct dependency to the mock API that was written for the usability
study. This is clearly impossible to avoid, since the documentation always has to document
something to fulfill its purpose. However, in order to test the functionality of the API, some
external tool had to be used. As previously mentioned, Postman and/or the terminal was
recommended in the briefing before each usability test. Using these tools may have colored
the perception of the prototype, and may have subsequently a�ected the final results.

5.3.2 Result Evaluation
One of the main goals when planning the usability study was to obtain results of several types,
from various angles of approach. This is why a task based approach was used, since it made it
possible to measure success in task completion. The System Usability Scale was then used to
collect the opinions on the overall usability of the prototype. These two approaches provided
quantitative data. In order to provide qualitative data, participants were asked to fill out a
survey of more detailed questions. Observations on how the documentation was used by the

75

5. Discussion

participants were also collected during the tests, in order to not exclusively include how the
participants themselves perceived the prototype, but rather, how it was actually used. Con-
clusively, the study provided both qualitative and quantitative data, from the perspective of
the participants, but also from the perspective of the test leader. Furthermore, the results
could be used to evaluate the overall usability of the prototype, as well as how well the doc-
umentation supported the participants in solving the tasks given, in relation to the API and
its functionality.

The task success of the results was higher than expected, especially among the partici-
pants with less experience. Participants with more experience still performed better, both
in relation to time spent and task success, but some participants with very little experience
performed significantly better than expected. Hopefully, this is a testimony to the quality
of the documentation, but external factors may have a�ected the results as well. A lot of
e�ort was put on correctly assessing the di�culty of the given tasks, since it could a�ect
how the documentation was used. It is possible that the tasks given were too simple, which
may have contributed to the high general task success. However, if the tasks would be been
made significantly more di�cult, it could have been hard to draw conclusions on experience
levels, since the tasks may have been too hard for less experienced participants to complete.
Furthermore, due to the nature of API:s, and the small size and limited functionality of the
mock API created, it would have been almost impossible to create significantly more di�cult
tasks.

The average score for the System Usability Scale was 95, which is a high score, that lies
much above the acceptability limit. Once again, this is hopefully a sign that the documen-
tation has good usability, but there are external factors that may have contributed to the
good average score. As previously mentioned, the participants were all acquaintances of the
authors, which may have resulted in them giving a higher score. Furthermore, a lot of e�ort
was spent on making the prototype aesthetically pleasing, which is a common pitfall when
making HiFi prototypes. Participants may be more likely to comment positively on a more
polished product, and may also be more likely to glance over negative aspects of the proto-
type. Since a lot of the participants commented that the prototype looked polished and nice,
it is possible that this may have ballooned the SUS score.

The observations made by the test leader are inherently subjective, since the test leader
may misinterpret the actions of the test participant. In order to ensure that the observa-
tions made were correct, the participants were asked about the validity of the observation.
However, this may still have introduced some bias, since the participants were actively asked
about the way that the used the product, similar to the query e�ect described in Section 3.7.

5.3.3 Final Prototype
After having carried out usability tests, all di�culties discovered and the feedback received
were discussed and prioritized before, if necessary, being implemented in the final prototype.

At this stage in the design process, the authors had learned enough about theoretical as-
pects and developer needs, in order to prioritize from knowledge. However, there were three
questionable omissions that can be discussed further. First of all, all suggested improvements
that opposed the industry standard were removed, even though they might have been more
intuitive. The motivation behind this was simply to avoid confusion for users, especially users
with more experience, that are used to certain standards.

76

5.3 Materialize Phase

Second of all, refinements that involved basic development knowledge were not priori-
tized. The fact that this was done is something that, in a way, opposes concepts of UX and
usability, but is, by the authors, motivated as a way to avoid bloat and superfluous text sec-
tions. Some things are not in the scope of the documentation for an API, and is better learned
elsewhere.

Lastly, upgrades that were time consuming, due to complexity of implementation, were
disregarded. Unfortunately, this is one of the downsides with HiFi prototyping, especially
when writing code, but it is a trade-o� that must be made, in order to carry out useful us-
ability tests. If more time had been available, these changes would naturally have been inves-
tigated further.

Something that has been discussed throughout the process is concept of bloat, which in
this context means inclusion of irrelevant or redundant information. Initially, it was consid-
ered in relation to how experience levels a�ects the needs of the users. Fairly early, it was
made evident that more experienced developers are less focused on textual content, and fo-
cus more on examples and endpoints. Developers with less experience seemed to need the
support of the textual content to make use of the other documentational content, at least
when first getting acquainted with the API. Therefore, including too much textual content
may disrupt the usage patterns of experienced developers, and vice versa. Since support for
di�erent developers was one of the goals of this thesis, this resulted in a trade-o� problem,
where the needs of the two users clashed. Bloating the documentation was not only an issue
in regards to textual content, but also in relation to maintaining the deliberately consistent
layout, which sometimes resulted in empty components, which, in a sense, also bloats the
documentation. This is a very interesting subject, since it can be applied to all forms of user
interfaces, not only in relation to API documentation.

Another aspect that was considered, was the single page with infinite scroll. At first
glance, it appeared to confuse users, but after getting acquainted to the system, it was ap-
preciated. The main reason for choosing this layout, was the possibility of using the native
search functionality of the browser, as well as avoiding using pages of several depths, which
could result in users getting lost. The confusions of the users were related to the fact that
they experienced di�culties understanding when a specific section ended. The final design
decision was to keep this single page, and instead try to highlight and amplify the division
between sections. Furthermore, as previously mentioned, much e�ort was put into making
the navigation as transparent as possible, to aid users in finding what they were looking for.

In addition, a dedicated, integrated search functionality was discussed back-and-forth
throughout the process, due to the fact that it was encouraged by certain users and theory.
On the contrary, other users and theory both expressed the feature as superfluous due to
the (earlier mentioned) fact of the documentation being single paged, and can therefore be
searched with the search functionality of the browser. Furthermore, users also brought up fact
that searching in documentation sometimes is di�cult, since naming is unique to each API.
However, due to limited use of the browser search functionality in the user tests, a search field
was added at this stage. When pressed, the search field gives the user an encouraging message
of using the browser’s search functionality. Hopefully, this could be an easy way of reminding
users of the browser native search functionality, and the fact of the documentation being
searchable. However, this feature has not been user tested, which it should when considering
taking the prototype and the design further.

Usage examples was a feature that had been in focus ever since the beginning of the design

77

5. Discussion

process. It was interesting, and fascinating, to see the wide usage of this feature in the user
tests, where every single participant used the feature to some extent. Thus, the feature of
usage examples was kept in the final prototype, unfortunately with a flaw, however. The
usage examples do not have any line breaks due to technical complications and time limit,
and is therefore presented on a single line with a horizontal scroll. This is clearly not ideal,
due to the fact that the majority of the example code is hidden at first glance and that it
requires precise scrolling in order to view a desired section of it. If taking the prototype and
the design further, the improvement of this feature should be considered as a must.

Another aspect that had high priority throughout the development of the prototype,
was the feature of giving all types of developers documentation suitable for their specific
needs. Di�erent developers have di�erent approaches and experience, and thus have di�er-
ent needs. Two approaches that were discussed was either letting users Customize aspects of
the documentation, or attempting to design for all types through Universal documentation.
The latter was chosen, mainly due to a lower technical complexity level, and kept in the fi-
nal prototype. In order to fulfill the needs of di�erent developers and creating a universal
documentation, the characteristics of finding information fast as well as being able to read
detailed information at the same time were both prioritized. This was the main reason be-
hind the two columned layout, with one column containing pure descriptive information
and the second column containing fundamental, usage information. During the user tests,
di�erent types of developers were identified, which agreed with the theory as described in
Section 3.11. The usage of the di�erent columns were confirmed; some spent a lot of time in
the descriptive column, while others where satisfied with the concrete and concise usage ex-
amples in the usage column. Some test subject read the entire documentation before starting
their tasks, while some found an appropriate example in the rightmost column and began
experimenting. More experienced developers were more likely to start experimenting, using
the examples for a given endpoint, while developers with less experience were more thorough
in their approach to solving the task at hand. It was rewarding to see the prototype being
used in di�erent ways, and that di�erent developers with varying levels of experience could
find parts of the documentation useful to them.

Worth noting, is that the final prototype has not been evaluated extensively in any way,
with the reason being time constraints. However, since the changes made to the final pro-
totype were generally very small, chances are that the result would have been very similar.
However, the main purpose for this final prototype is to illustrate all the learnings that have
been collected during the process of this thesis. The idea is that Homepal can use this proto-
type as a single point of entry for inspiration, and through this, choose what properties and
features to integrate into their current documentation, in order to improve it further.

5.4 Future Work
This section presents ideas for future work, discovered in the design process of this work, in
regards to the API documentation.

FW1: The impact of deviation from industry standards: In several cases, both the authors
and the users considered themselves having a better and more intuitive way of present-
ing information or usage examples, than the general industry do. An interesting future
work would be to investigate the impact of deviating from the industry standard when

78

5.4 Future Work

considered having a more intuitive way of doing something. Does the deviation cause
more confusion than the proposed alternative improve the intuitiveness?

FW2: User customization of documentation: This thesis had a focus on creating one doc-
umentation that was suitable for all types of developers with all levels of experience.
However, an alternative way is to create a documentation that can be customized, and
toggled, between di�erent needs – thus avoiding trade-o�s. An interesting future work
would be to investigate this alternative method and/or compare them.

FW3: Optimization of the symbiosis between external developer tools and API documenta-
tion: The fact that developers tend to stick with their developer tools, and not use the
integrated tools in a documentation (such as sandboxes, etc.) creates a gap between the
two. An interesting future work would be to investigate further how one can decrease
the gap and stronger the cooperation. Is an optimal merge possible, or is there a reason
behind the separation of the two?

FW4: Inclusion of deviating features within a consistent structured documentation: An as-
pect that was discovered in this thesis (but not investigated further) was that fact that
there are features of certain resources (e.g. enumerated values) that need the possibil-
ity of deviating from the (otherwise) consistent and structured format. An interesting
future work would be to investigate how this can be done in the most optimal way –
without confusing the user.

FW5: Integration of features that are relevant but considered out of scope within a docu-
mentation: A feature such as authorization considered central and fundamental when
it comes to API. However, they are almost never present within API documentation.
An interesting future work would be to investigate if there is a reason behind this or if
there is possibility of strengthen the usability by integrating this functionality within
the documentation.

FW6: Documenting validations: An aspect discovered, and expressed by the interviewed
everyday API users, is the need for more information regarding the validations within
an API. The users are all excusing its absence by claiming that it is a hard task to
accomplish, yet they express a great need for it. An interesting future work would be
to investigate if, and how, this can be included within a documentation.

79

5. Discussion

80

Chapter 6

Conclusion

As mentioned in Section 1.4, the purpose of this thesis was to investigate what factors posi-
tively impact REST API reference documentation, and how the needs of di�erent developers
can be supported in the Homebase API documentation. This purpose was defined early on in
the process, and aims to pertain to the the scope defined in Section 1.3. Four goals were for-
mulated in order to summarize the purpose, and were used as guidelines for what was focused
on during the thesis. These goals are listed below, together with a summarized overview of
the findings in relation to the goal.

Goal 1: Understand what features and properties should be included in an REST API refer-
ence documentation to support the needs of the developers.
During work on this thesis, several key factors have crystallized themselves as important for
the overall usability, with most of them revolving around finding and understanding certain
information quickly. A tool that enables this is di�erentiation of content, where content
of di�erent types that have been separated in separate columns with di�erent general for-
matting in order to aid users in finding the information they need. Providing transparent
navigation has also been beneficial for users in finding the information that they want at a
given time. Furthermore, allowing for users to use the native search functionality in their
browser by placing all content on a single page proved to be useful in certain cases. By main-
taining a very consistent layout, the same information type can be found in the same manner
every time, which also facilitates certain usage patterns.

Goal 2: Understand how di�erent types of developers use documentation di�erently, and
how the documentation accommodates for the needs of di�erent developers.
No user is the other alike, and this applies to developers as well. It was found that usage pat-
terns varied between developers, both based on experience level, and other potential factors
such as background and personality. Why developers behave di�erently has not been re-
searched further, but during usability testing it was made evident that developers had their

81

6. Conclusion

own approaches to solving the problem at hand. By constantly weighing options against each
other, and reflecting on how design decisions would a�ect di�erent developers, the proto-
type seems to be able to handle di�erent developers well. The key to achieving this seems to
be providing content and functionality that fit di�erent usage patterns and scenarios.

Goal 3: Apply what was learned in relation to previous goals in order to create a prototype
that performs well in evaluation.
A prototype was created, that illustrates the learnings from this thesis. The prototype was
highly and widely appreciated in the conducted usability study, with an average System Us-
ability Scale score of 95, which corresponds to "Best Imaginable", according to the scale in
Figure 3.2. The study was conducted with users that have di�erent levels of experience, and
generally performed well for all users, both in terms of usability, but also in terms of their
understanding of the REST API.

82

References

[1] B. Ahmady and T.M. Nguyen. Developer experience as a product. https://www.
youtube.com/watch?v=FscA-gsIQgs, 2020. [Accessed: 2020-02-15].

[2] A. Bangor, P. Kortumand, and J. Miller. Determining what individual sus scores mean:
Adding an adjective rating scale. Journal of usability studies, 4(3):114–123, 2009.

[3] L. Bellamy, M. Carey, and J. Schlotfeldt. DITA best practices: A roadmap for writing, editing,
and architecting in DITA, page 80. IBM Press, 2011.

[4] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259,
December 2017.

[5] J. Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind., 189, 11 1995.

[6] S. Clarke. What is an End User Software Engineer? In End-User Software Engineer-
ing, number 07081 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[7] R. Fielding et al. RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, 1999.

[8] J. Etcovitch. Playing with interactive documentation. https://www.youtube.com/
watch?v=fJb2bpmrguw, 2020. [Accessed: 2020-02-15].

[9] P. C. Evans and R. C. Basole. Revealing the API Ecosystem and Enterprise Strategy via
Visual Analytics. Communications of the ACM, 59(02):26–28, 2016.

[10] R. Fielding. Architectural styles and the design of network-based software architectures. Pub-
lication, University of California, Irvine, 2000.

[11] S. Gibbons. Design thinking 101, 2016. https://www.nngroup.com/articles/
design-thinking/.

[12] Interaction Design Foundation. Making your ux life easier with the
moscow. https://www.interaction-design.org/literature/article/

83

https://www.youtube.com/watch?v=FscA-gsIQgs
https://www.youtube.com/watch?v=FscA-gsIQgs
https://www.youtube.com/watch?v=fJb2bpmrguw
https://www.youtube.com/watch?v=fJb2bpmrguw
https://www.nngroup.com/articles/design-thinking/
https://www.nngroup.com/articles/design-thinking/
https://www.interaction-design.org/literature/article/making-your-ux-life-easier-with-the-moscow/
https://www.interaction-design.org/literature/article/making-your-ux-life-easier-with-the-moscow/
https://www.interaction-design.org/literature/article/making-your-ux-life-easier-with-the-moscow/

REFERENCES

making-your-ux-life-easier-with-the-moscow/, 2015. [Accessed: 2020-03-
11].

[13] T. C. Lethbridge, J. Singer, and A. Forward. How software engineers use documentation:
The state of the practice. IEEE software, 20(6):35–39, 2003.

[14] J. Lewis. Usability testing. Handbook of Human Factors and Ergonomics, pages 1275 – 1316,
2006.

[15] H. Loranger. Checklist for planning usability studies, 2016. https://www.nngroup.
com/articles/usability-test-checklist/. [Accessed: 2020-02-15].

[16] W. Maalej and M. P. Robillard. Patterns of Knowledge in API Reference Documentation.
IEEE Transactions on Software Engineering, 39(9):1264–1282, 2013.

[17] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. On the comprehension of program
comprehension. ACM Transactions on Software Engineering and Methodology (TOSEM),
23(4):1–37, 2014.

[18] S. Marvin. What is API documentation. Intercom, 61(8):6–8, 2014.

[19] John McCarthy and Peter Wright. Technology as experience. interactions, 11(5):42–43,
2004.

[20] M. Meng, S. Steinhardt, and A. Schubert. Application Programming Interface Docu-
mentation: What do Software Developers want? Journal of Technical Writing and Com-
munication, 48(3):295–330, 2018.

[21] M. Meng, S. Steinhardt, and A. Schubert. How Developers Use API Documentation:
An Observation Study. Commun. Des. Q. Rev, 7(2):40–49, August 2019.

[22] M. Meng, S. Steinhardt, and A. Schubert. Optimizing API Documentation: Some
Guidelines and E�ects. In Proceedings of the 38th ACM International Conference on Design
of Communication, SIGDOC ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[23] L. Mitchell. Beyond the api reference: Developer experience for apis. https://www.
youtube.com/watch?v=fRLIQgjkn-g, 2020. [Accessed: 2020-02-15].

[24] M. Naggaga. Beyond copy + paste: Creating interactive documentation. https://www.
youtube.com/watch?v=XWetRp1f5xg, 2020. [Accessed: 2020-02-15].

[25] S.M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code example?: A
study of programming q&a in stackoverflow. In 2012 28th IEEE International Conference
on Software Maintenance (ICSM), pages 25–34. IEEE, 2012.

[26] J. Nielsen. How to conduct a heuristic evaluation. https://www.nngroup.com/
articles/how-to-conduct-a-heuristic-evaluation/, 1994. [Accessed: 2020-
05-12].

84

https://www.interaction-design.org/literature/article/making-your-ux-life-easier-with-the-moscow/
https://www.interaction-design.org/literature/article/making-your-ux-life-easier-with-the-moscow/
https://www.interaction-design.org/literature/article/making-your-ux-life-easier-with-the-moscow/
https://www.nngroup.com/articles/usability-test-checklist/
https://www.nngroup.com/articles/usability-test-checklist/
https://www.youtube.com/watch?v=fRLIQgjkn-g
https://www.youtube.com/watch?v=fRLIQgjkn-g
https://www.youtube.com/watch?v=XWetRp1f5xg
https://www.youtube.com/watch?v=XWetRp1f5xg
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/

REFERENCES

[27] J. Nielsen. Why you only need to test with 5 users, 2000. https://www.nngroup.com/
articles/why-you-only-need-to-test-with-5-users/. [Accessed: 2020-02-
15].

[28] J. Nielsen. Interviewing users. https://www.nngroup.com/articles/
interviewing-users/, 2010. [Accessed: 2020-02-24].

[29] D. Norman and J. Nielsen. The definition of user experience, 2014. https://
www.nngroup.com/articles/definition-user-experience/. [Accessed: 2020-
02-15].

[30] D. A. Norman. The design of everyday things. Basic Books, [New York], 2013.

[31] R. Paul. Documentation as an application: enabling interactive content tailored to the
user. https://www.youtube.com/watch?v=aLVvSyenA6s, 2020. [Accessed: 2020-
02-22].

[32] T. Pluskiewicz. REST Misconceptions Part 0 - Do You Really Understand the REST?,
2016. https://t-code.pl/blog/2016/02/rest-misconceptions-0/.

[33] Postman. 2020 State of the API Report. https://www.postman.com/
state-of-api-report-2020.pdf.

[34] J. Preece, Y. Rogers, and H. Sharp. Interaktionsdesign: Bortom Människa-Dator-Interaktion.
Studentlitteratur, 1 edition, 2016.

[35] RapidAPI. RapidAPI Developer Survey and Insights 2019 - 2020. https://
rapidapi.com/blog/wp-content/uploads/2020/02/rapidapi-dev-survey.
pdf.

[36] M. P. Robillard. What Makes APIs Hard to Learn? Answers from Developers. IEEE
Software, 26(6):27–34, 2009.

[37] M. P. Robillard and R. DeLine. A field study of API learning obstacles. Empirical Software
Engineering, 16:703–732, 2011.

[38] S. M. Sohan, F. Maurer, C. Anslow, and M. P. Robillard. A study of the e�ectiveness of
usage examples in REST API documentation. In 2017 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 53–61. IEEE, 2017.

[39] G. Uddin and M. P. Robillard. How API Documentation Fails. IEEE Software, 32(4):68–
75, 2015.

85

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/interviewing-users/
https://www.nngroup.com/articles/interviewing-users/
https://www.nngroup.com/articles/definition-user-experience/
https://www.nngroup.com/articles/definition-user-experience/
https://www.youtube.com/watch?v=aLVvSyenA6s
https://t-code.pl/blog/2016/02/rest-misconceptions-0/
https://www.postman.com/state-of-api-report-2020.pdf
https://www.postman.com/state-of-api-report-2020.pdf
https://rapidapi.com/blog/wp-content/uploads/2020/02/rapidapi-dev-survey.pdf
https://rapidapi.com/blog/wp-content/uploads/2020/02/rapidapi-dev-survey.pdf
https://rapidapi.com/blog/wp-content/uploads/2020/02/rapidapi-dev-survey.pdf

REFERENCES

86

Appendices

87

Appendix A

User Interviews

A.1 Interview Questions
• Tell us a little bit about your company.

– What is your business?

– What do you use Homebase API for?

• Tell us a little bit about you and your work.

– How experienced are you in working with REST API:s?

– How long have you been working with the Homebase API?

– How often do you setup/integrate with Homebase API?

• Describe how you use the documentation.

– How frequently do you use it?

– What parts do you look at?

– What do you find most/least useful?

• Describe your first integration.

– Do you remember it?

– What was easy/hard?

• Describe your thoughts on the conceptual information.

– Have you had trouble in understanding concepts related to the domain of the
real estate industry? E.g. understand what a Leasable is?

89

A. User Interviews

– Would you appreciate more/less conceptual information?

– Would you like an architectural overview of the API included in the documen-
tation?

• Describe your thoughts on code examples.

– Do you think that the API documentation could benefit from code examples?

• Describe your thoughts on the structure and distribution of content.

– Do you think that the documentation is structured well in regards to the content?

• Describe your thoughts on missing features.

– If you could add one feature to the documentation, what would you add?

– Would you use a search functionality?

– Would you use a favorite functionality?

– Would you use a function where you could test the functionality of the API
within the documentation? (Or do you like the external sandbox solution more?)

• Final thoughts.

– Do you have any additional inputs on Homepal’s API documentation?

– Do you have any certain thoughts on API documentation overall?

90

A.2 Form of Consent

A.2 Form of Consent
Consent to take part in research

I voluntarily agree to participate in this research study.

I understand that even if I agree to participate now, I can withdraw at any time or
refuse to answer any question without any consequences of any kind.

I agree to my interview being audio-recorded.

I understand that the audio-recording will be destroyed after the transcription of it
has been finished.

I understand that in any report on the results of this research my identity will remain
anonymous. This will be done by changing my name and disguising any details of my
interview which may reveal my identity or the identity of people I speak about.

I understand that disguised extracts from my interview may be quoted in a published
Master’s thesis.

I understand that under freedom of information legalisation I am entitled to access
the information I have provided at any time while it is in storage as specified above.

I hereby give my consent, through an oral agreement, to the above stated information.

Contact details of thesis students:

Axel Holmqvist David Jungermann
axel@homepal.se david@homepal.se
tfr14ah2@student.lu.se dic15dju@student.lu.se

91

A. User Interviews

92

Appendix B

Usability Tests

B.1 User Tasks

Setting
You are working your first day as an administrator for a real estate company. In order to
make yourself familiar with the system (which is called Hombase API), you have been given
a group of basic tasks from your colleague. The goal is to solve these tasks, and return short
answers for every task to your colleague.

Task 1
First of all, it is important to make yourself familiar with the documentation for the Hombase
API. Read through the introductory chapters and try to get a feeling for how the API works
on a basic level.

After this, your colleague would like to know:

• What data format is used in the API?

• What is the base-URL of the API?

• What query parameters exist?

• What error codes are used?

Answer:

93

B. Usability Tests

Task 2
Your colleague would like you to authorize yourself against the Homebase API in order to
start using it. Write the five first characters of your key.
Answer:

Task 3
Now, your colleague wants you to retrieve several Agents from the API. Answer with name
and id for the first two Agents.
Answer:

Task 4
Your real estate company has a new owner. Your colleague wants you to create an Owner.
Answer with id for the Owner you just created.
Answer:

Task 5
Now, your colleague wants you to create a RealEstate with the name "Center South". "Center
South" is situated in the Region of "Scania" and is, by pure chance, owned by the Owner you
just created. Answer with a complete object structure for this RealEstate.
Answer:

Task 6
Your colleague wants to control that the RealEstate "Center South" was created correctly.
Therefore, he/she wants you to get all ReaEstates, and that you sort those by name in order
to find it easily. Answer with the name of the RealEstates that comes before "Center South"
in your result.
Answer:

Task 7
The name "Center South" feels a bit old fashion. Therefore, the board have decided to change
the name of the mall to "Eclipse Center South". Your colleague wants you to update the name
in the API. Answer with the updated, full object structure.
Answer:

Task 8
The real estate company that you are working for is accused for being too expensive. There-
fore, your colleague wants you to remove the Leasable with the highest rent. Answer with
the id for the now removed Leasable.

94

B.1 User Tasks

Answer:

95

B. Usability Tests

B.2 Form of Consent
Consent to take part in research

I voluntarily agree to participate in this research study.

I understand that even if I agree to participate now, I can withdraw at any time or
refuse to answer any question without any consequences of any kind.

I agree to my session being screen captured.

I understand that all screen captures will be destroyed after the analysis of them has
been finished.

I understand that in any report on the results of this research my identity will remain
anonymous. This will be done by changing my name and disguising any details of my
interview which may reveal my identity or the identity of people I speak about.

I understand that disguised extracts from the interview part of my session may be
quoted in a published Master’s thesis.

I understand that under freedom of information legalisation I am entitled to access
the information I have provided at any time while it is in storage as specified above.

I hereby give my consent to the above stated information:

Full name

Date and place

Signature

Contact details of thesis students:

Axel Holmqvist David Jungermann
axel@homepal.se david@homepal.se
tfr14ah2@student.lu.se dic15dju@student.lu.se

96

B.3 User Feedback Questions

B.3 User Feedback Questions
Questions about the system

• What did you appreciate the most in Homebase API Docs?

• What disruptions did you experience in Homebase API Docs?

• Did you think that the conceptual overview gave you enough information in order to
solve the tasks?

• How did you feel about finding the information you were looking for in Homebase
API Docs? Did you feel that the structure was logical? Was the right information in
the right place?

• Did you find that the information available helped you to solve the problems in a good
way? Was there information that was superfluous? Was information missing?

• Did you find that the usage examples in Homebase API Docs helped you solve the
tasks?

• Do you have any other comments?

97

B. Usability Tests

98

Appendix C

Implementation

C.1 Selected Implementations

Table C.1: Prioritization of improvements, part 1.

Aspect Priority Note

Line-breaked cURL examples. Agrees,
but won’t.

Time consuming due to linebreaks not working well
in curl.

CRUD-order when it comes to the requests of an
endpoint/resource (due to intuitiveness).

Disagrees,
so won’t.

Hard to understand the CRUD order if you haven’t
heard of the concept before.

A clearer indication and explanation of the docu-
mentation being a single page.

Disagrees,
so won’t.

Maybe smooth scroll can help, but it feels like this
is a very small issue that solves itself after using the
documentation for two seconds.

A search field/functionality. Agrees,
and will.

Maybe not through a search bar, since they can be
di�cult to implement well. But, since the docs are
single page, we can encourage use of ctrl + f.

The users express a wish for removing unnecessary
complicated terminology. E.g. "U+002D Hyphen
minus".

Agrees,
but won’t. Already been fixed.

More information about what the API could be used
for.

Agrees,
but won’t.

Due to the narrow API, this would not be good. Not
in scope of thesis.

Explain both body- and path schema, and the di�er-
ence.

Disagrees,
so won’t.

This will contribute to bloat, and is something that
a developer should know. Superfluous.

Collapse repetitive information/components. Disagrees,
so won’t.

Can’t search. Easy to miss collapsed stu�. Disagrees
with theory.

More thorough (and varying) descriptions about
prerequisites on resources.

Agrees,
but won’t.

Not in scope, we have written as much technical
documentation that is needed to understand and use
the prototype. Building on top of this is not in the
scope for this thesis.

99

C. Implementation

Table C.2: Prioritization of improvements, part 2

Aspect Priority Note

Make the Usage column more noticeable. Agrees,
and will.

We will add a little text in the column that explains
its purpose.

A more clear distinctions between sections. Agrees,
and will. Thicker lines between sections

A more clear distinction between titles and subti-
tles.

Agrees,
and will. Fixed!

A clearer indication on whether placeholders such
as { } or " " should be included or not in a path or
body.

Disagrees,
so won’t.

Not in scope. Can add a text that explains it, but it
bloats the docs. Better that you make the error once,
and then remembers it.

Remove or explain disabled tables. Disagrees,
so won’t.

They are placed there for consistent layout, so you
always find the same information and the same
place. Could be confusing if tables switched places
based on endpoints

Change the order of the elements Body schema, Re-
turns, Path schema to Body schema, Path schema,
Returns (due to intuitiveness).

Agrees
and will. It is a more intuitive order.

Explain query parameters a bit more. Agrees
and will. More fundamental information.

Remove "$ curl" when an example is not actually a
usage example.

Agrees
and will. Path examples?

Expand link hit area in the side bar. Agrees
and will. Link the whole element.

Fix misclicks on headers in the side bar. Disagrees,
so won’t.

The headers in the side bar does not in any way in-
dicate being a link.

A possibility of using the browser’s back arrow for
navigation to the last visited hash-location.

Agrees,
but won’t. Technical implementation. Out of scope.

A more visible Generate Key button.

Agrees
and will.
/ Agrees,
but won’t.

Will be fixed if there is time, but not very important.

Fix the issue of users missing "-s" on endpoint URLs. Disagrees,
so won’t.

This is a REST staple, and is something you have to
have. Its a thing you probably learn in two minutes,
and then never think about again. Hard to clarify
without being ambiguous

Empty strings instead of placeholders in the exam-
ples.

Disagrees,
so won’t.

The example attributes provide knowledge on the
type data associated to the given attribute, an empty
string does not do that.

More clear explanations of what is auto-generated
or not.

Agrees
and will. Will clarify a bit in the introduction.

An explanatory text of the conceptual overview (*,
1, <, etc.)

Disagrees,
so won’t.

It will only be useful for people who already know
UML syntax. Out of scope.

Collapse navigation items in the side bar. Agrees
and will.

This has to be done. It was going to be implemented
before the user tests, but we did not make it in time.

100

	Introduction
	Background
	Homepal

	Related Work
	Scope
	Purpose and Goals

	Technical Background
	Application Programming Interfaces
	Local API:s
	Web API:s
	Open API:s
	RESTful API:s

	Theoretical Background
	User-Centered Design
	Design Process
	Usability
	User Experience
	Universal Design
	Heuristic Analysis
	Interviews
	Prototyping
	Usability Testing
	Planning Usability Studies
	System Usability Scale

	API Reference Documentation
	Supplementary Documentation

	Types of Developers
	Concerns with API Usage
	API Documentation Guidelines
	Former Research
	Insights from the Private Sector

	Usage Examples

	Design Process
	Timeline of Key Activities
	Understand Phase
	Literature Study
	Heuristic Evaluation
	User Interviews
	Summarized Results

	Explore Phase
	MidFi Prototyping
	HiFi Prototyping

	Materialize Phase
	Usability Testing
	Final Prototype

	Discussion
	Understand Phase
	Literature Study
	Heuristic Evaluation
	User Interviews

	Explore Phase
	Feature Prioritization
	MidFi Prototyping
	Developer Team Talk
	HiFi Prototyping

	Materialize Phase
	Usability Testing
	Result Evaluation
	Final Prototype

	Future Work

	Conclusion
	References
	Appendix User Interviews
	Interview Questions
	Form of Consent

	Appendix Usability Tests
	User Tasks
	Form of Consent
	User Feedback Questions

	Appendix Implementation
	Selected Implementations

