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Populärvetenskaplig sammanfattning

Heart rate variability (HRV) mäts fr̊an tidsintervallet mellan tv̊a hjärtslag.
Tidsintervallet benämns oftast som variation i hjärtslagen. Med hjälp av HRV
g̊ar det att beskriva vissa av kroppens olika tillst̊and. Det finns en naturlig vari-
ation i HRV som associeras med ett friskt eller neutralt kroppstillst̊and. Ibland
när det uppst̊ar en abnormal variation, d̊a kan det innebära att kroppen är i ett
stresstillst̊and. Det är skillnaden mellan dessa tillst̊and som är av intresse. För
att beräkna HRV, används oftast ett elektrokardiogram (EKG).

I rapporten kommer data fr̊an en studie i Kristianstad att användas. Sam-
manlagt var det 53 personer som deltog. Deltagarna fick först ha sin hand i
kallt vatten, sedan gjorde en kontrollset där de istället fick ha handen i ljummet
vatten. Detta gjordes för att kallt vatten var känt för att f̊a ig̊ang stress stimu-
lus, allts̊a, f̊a deltagaren i stresstillst̊and. I de tv̊a tillst̊anden producerades tv̊a
olika HRV.

Baserat p̊a det givna HRV vill vi veta i vilket av de tv̊a tillst̊anden perso-
nen är i. Vi kommer att utföra en binär klassificering, där HRV data antingen
klassas som positiv eller negativ. I detta fall innebär positiv att fr̊an testet med
kallt vatten klassas som kallt, medan negativ innebär att data fr̊an testet med
ljummet vatten klassas som varm. Syftet med rapporten är att använda oss
av frekvensanalys för att kunna utföra binär klassificering. Beroende p̊a kon-
centration av energi vid viss frekvens domän kan vi d̊a bestämma vad för HRV
det är. I denna rapport kommer vi att använda oss av Thomson-metoden och
Welch-methoden för v̊ar frekvensanalys.

Det bästa och mest tillförlitliga klassificeringsresultatet i den här rapporten
är 69%. Det uppmättes när vi använde Thomson-metoden och antagandet att
det finns en skillnad i energidistribution i tidsdomänen.
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Abstract

Heart rate variability (HRV) is the variation between two consecutive heart-
beats. The irregular variability in this interval can indicate different health
issues such as stress. The goal of this project is to correctly classify if a HRV
signal comes from a resting state or a state which is affected by stress related
stimuli. The analysis will be conducted using non-parametric multitaper spec-
trum analysis in the frequency bandwidth, 0.12-0.4 Hz. Two different multita-
per methods will be tried; Welch method and Thomson method. For the binary
classification of the HRV signal, it was assumed that there was a difference in
energy distribution. In the pair-wise classification the assumption was instead
that there was a difference in total energy. The highest and most trustwor-
thy binary classification of the methods was 65% for Welch and 69% Thomson,
with the assumption of there being difference in energy distribution. For the
pair-wise classification, it was 74% and 77%, respectively.
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1 Introduction

Now more than ever, technologies are dominating our daily life. It is becoming
easier and easier to gather large information about yourself. It is now possible
to keep track on our weight, blood pressure, number of steps, calories, heart
rate, and blood sugar. Researchers have found heart rate variability (HRV) can
also be used for assessment of your health. Heart rate variability is the time
interval between two consecutive heartbeats [1]. Figure 1. shows data obtained
from a electrocardiogram (ECG) signal, where the heartbeats are shown as the
peaks, often referred to as R-peak, with the corresponding RR-interval between
the peaks. The HRV is the variance between the heartbeats.

Figure 1: The plot shows a RR-interval between two R-peaks.

The HRV has also been shown to be a good qualitative marker of autonomic
activity relevant to autonomic nervous system and cardiovascular mortality,
including cardiac death. The HRV provides good measures of the health and
has provided simple tool for researchers to use, hence, why it is of interests
[2]. In the analysis of HRV, there are several different methods that can be
used. The domain that the methods uses are either the time- or frequency
domain. The frequency domain is usually of more interest than the time domain
since it often provides more information of the HRV signal. The most common
frequency range for adults used in analysis of the signal is the low frequency
(LF: 0.04−0.12 Hz) and the high frequency (HF: 0.12−0.4 Hz). The frequency
range that will be used for the analysis will be the HF domain. The HF domain
has often been related to the parasympathetic activity, which describes the
body’s resting state. In the same frequency interval, it has been noticed in
previous studies that exposing body to cold stimuli affects the HRV.
In this thesis, data from a ”Cold Pressure Test” conducted in Kristianstad,
Sweden, was used. The test lets its subject place a hand in ice-cold water for
three minutes, and it also includes a control set, where the subjects places their
hand in luke-warm water instead. The goal of this thesis is to be able to decide
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whether the subject has its hand in cold or warm water based on the HRV data
obtained from the test.
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2 Spectrum Analysis

In the first part of this section some basic theory about the power spectrum will
first be mentioned. Thereafter, the methods that will be used for the spectrum
analysis such as the Welch method and Thomson method will be introduced.
The different methods have proven to be good spectral estimates, however, there
is a problem with trade-off between bias and leakage which will be mentioned.

2.1 Power spectrum

Given the zero-mean stationary process x(t), for t = ±0,±1, .... We want con-
duct analysis of the process in the frequency domain. Assuming that the process
has a covariance function, r(τ), and applying the Fourier transform on the func-
tion results in the spectral density forming. Thus, we can now conduct analysis
in the frequency domain.

The discrete-time Fourier transform of the data sequence is:

X(f) =

∞∑
−∞

x(t)e−i2πft, f ∈ [−1/2, 1/2]

Then, the inverse discrete-time Fourier transform is defined as:

x(t) =
1

2π

∫ 1/2

−1/2
X(f)ei2πftdf

Given that r(τ) is the covariance function of x(t), then

R(f) =

∞∑
−∞

e−i2πfτr(τ)

is the spectral density function where f is the frequency. The spectral density,
R(f), is assumed to be symmetric, integrable and positive. A method that is
known to give a good spectrum estimate is windowing or tapering of the data.
It is also sometimes called the modified periodogram and given by

R̂w(f) =
1

n

∣∣∣∣∣
n−1∑
t=0

x(t)w(t)e−i2πft

∣∣∣∣∣
2

where R̂w(f) is the estimated spectral density and w(t) is the taper or window
[3].

2.2 Non-parametric multiple window methods

The spectral density mentioned previously will now be used for the following
multitaper methods: the Welch- and the Thomson methods. A typical taper
that is used for the Welch method is the Hanning window with 50% overlap.
For the Thomson method, Slepian and Hermite functions are usually used as
windows for the method. In this section, all the methods and tapers will be
introduced.
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2.2.1 Welch Method

Given n data points, these are divided into K segments of equal length,
L = n/K, with an overlap of p percent. The spectral density then becomes
an average of K spectral estimates. Let R̂av be the averaged spectral estimate,
then it is given by,

R̂av =
1

K

K∑
k=1

R̂x,k(f)

where R̂x,k(f) is the kth estimated spectral density, for k = 1, ...,K. The kth

spectral density is estimated using the modified periodogram with a given win-
dow that is the same length as the data segment. For the Welch method to be
able to reduce the variance, the spectral estimates Rx,k(f) has to be approxi-
mately uncorrelated. This is where the trade-off between the bias and variance
occur. It has been shown that the Welch method with K tapers gives K times
lower variance then only using one taper. Furthermore, the Hanning window
with a 50% overlap has been known to give a good trade-off between variance
and bias. This is because the segments with a 50% overlap are longer and leads
to lower bias, since it now uses more data. The reason one wouldn’t increase
and use longer segments with 100% overlap to lower the bias even more is be-
cause the Rx,k(f) will become more similar. When the spectral estimates are
too similar, we will get a high and positive correlation. Averaging over corre-
lated Rx,k(f), will not decrease the variance efficiently [3]. Hence, the Hanning
window with a 50% overlap will be used for the Welch method in this report.

The number of windows determined how smooth the spectral estimate eventu-
ally would be. The maximum of the optimal number of windows was computed
as,

Kmax =
2n

L
− 1

where Kmax is the maximum number of windows, n the length of the data and
L being the number of data points in two periods.

2.2.2 Hanning Window

The Hanning window is given by,

w(t) =
1

2
− 1

2
cos

(
2πt

n− 1

)
.

The Hanning window reduces the bias compared to the periodogram without a
window. In this thesis, a different number of Hanning windows was used for the
Welch method. Figure 2 shows five Hanning windows with an overlap of 50% in
the left plot and the window spectra for one Hanning window in the right plot.
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Figure 2: Representation of five Hanning windows with 50% overlap to the left
and the corresponding window spectra to the right.

2.2.3 Thomson Method

Another multitaper method is the Thomson method. Its advantages compared
to the Welch method is that instead of averaging over segments of the data, it
averages over the whole data set.
Let x(t) be the data sequence of length n, the multitaper spectral estimater is
computed as,

S(f) =
1

K

K∑
k=1

Sk(f) =
1

K

K∑
k=1

∣∣∣∣∣
n−1∑
t=0

x(t)wk(t)e−i2πfn

∣∣∣∣∣
2

where K is the number of windows, Sk(f) is the modified periodogram with
the kth window function wk(t). The variance is reduced because the spectral
densities Sk(f) are uncorrelated. To achieve uncorrelated spectral estimates, the
tapers should be pairwise orthogonal [4]. The tapers that are often mentioned
and have proven to give good results are the DPSS sequences and Hermite
functions, which will be described in the following sections.

2.2.4 Slepian sequences

To protect the data from leakage a set of K data tapers are needed such that
each eigenspectra are nearly uncorrelated. This condition can be fulfilled if the
windows are approximately orthogonal, such that

∑N
t=1 wi(t)wj(t) = 0, ∀i 6= j.

The Slepian sequences, also called the discrete prolate spheriodal sequences
(DPSS), are a set of orthogonal tapers. The sequences are defined as

wk(t) ≡

{
vk(t− 1;n, b), t = 1, ..., n

0, otherwise

where {vk(t;n, b)} is denoted the kth order DPSS, while {wk(t)} is the kth order
DPSS data taper. Here b is the half-time bandwidth. The order of the data
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taper is from k = 1 to K, if K < 2nb∆t [5]. In this project the number of
windows will be chosen as K = 2nb− 2 [4]. The DPSS, with the corresponding
spectra window can be seen in Figure 3. It can be noticed that the main lobe
in the spectra windows are narrower than the main lobe given by the spectra
window of Hanning in Figure 2, although, the leakage increases with increasing
k. The DPSS has been known to have a better trade-off between bias and
variance compared to the Hanning window.

Figure 3: The left plot shows the DPSS sequences, for k = 1, 2, 3, with the
corresponding windows spectra in the right plot.

2.2.5 Hermite Functions

The normalized Hermite functions of degree k, for k ≥ 0 is defined by,

Hk(t) =
1√
2kk!

e−t
2/2hk(t)

where hk(t) is the Hermite polynomial and t ∈ R. The sequences {Hk}k≥0 form
an orthonormal system in L2(R), i.e.,∫ +∞

−∞
Hm(t)Hk(t)dt =

√
πδmk

For k ≥ 1 the recurrence relationships are given by,

Hk+1(t) = t

√
2

k + 1
Hk(t)−

√
k

k + 1
Hk−1(t)

where the initial values H0(t) = e−t
2/2 and H1(t) =

√
2te−t

2/2 [6]. The {Hk(t)}
denotes the kth order Hermite functions data taper. Therefore, we have that
wk(t) = Hk+1(t). The functions can be seen in Figure 4. Observing the Her-
mite function, the sidelobes are noticeable lower than the DPSS. Although, the
resolution is a bit worse.
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Figure 4: Hermite Functions over the domain t ∈ [0, 720] for k = 1, 2, 3.

2.3 Classification

To be able to assess the quality of the classification, Matthews correlation co-
efficient was used. The ratio of the number of correct classifications over the
total number of classifications will also be used for indication of the quality of
classifications. In the ”Evaluation” section, one of the classification methods
will be based on implementing the line of best fit on two different data sets and
then compare the coefficient. Thus, the interest in the line of best fit.

2.3.1 Matthews correlation coefficient

For the regular classification there are four possible states; true positive (TP),
false positive (FP), true negative (TN) and false negative (FN). True positive
and false negative is when data is correctly predicted as ”positive” when it in
fact is, and predicted false positive if the data belongs to ”negative”. The same
goes for true negative and false negative, if data is correctly classified as ”nega-
tive” and falsely classified as ”negative” respectively. These values will then be
displayed i a confusion matrix.
Matthews correlation coefficient was used in the classifying of the data. This is
to be able to measure how ”good” the algorithm is able to predict the data. The
Matthews correlation coefficient uses the values in the confusion matrix and is
defined as follows

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

for MC defined in [-1,1]. If the coefficient assumes 0, it means that there was
a random classification. While 1 indicates perfect classification and -1 indicates
worst classification.
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2.3.2 Line of best fit

Let y1, ..., yp be the response variable and x1, ..., xp be the explanatory variables,
then 

y1
y2
...
yp

 =


1 x1
1 x2
...

...
1 xp


(
β0
β1

)

is the line of best fit with the coefficient vector β = (β0, β1)T .

Confidence intervals for the parameters β0 and β1 can also be computed. If β̂0
and β̂1 are the estimation of the parameters, and let the average ȳ be estimated
by

ȳ = β̂0 + β̂1x

then the confidence intervals, Iβ1
and Iβ0

can be computed as,

Iβ0 = (β̂0 −
1√
m
λα/2, β̂0 +

1√
m
λα/2)

and

Iβ1 = (β̂1 −
1√
m
λα/2, β̂1 +

1√
m
λα/2)

where m denotes the number of subjects [7].
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3 Evaluation

In Kristianstad, a study called ’Cold Pressure Test’ was conducted. The test is
about having a hand placed into ice-cold water for three minutes, corresponding
to 180 s. Samples of the HRV was taken continuously during the time period,
with a sampling frequency of 4 Hz. The number of samples amount to n = 720.
In total, there were 90 participants between the ages 19 and 31 years old. How-
ever, only the data of 53 people were used due to people not finishing the test.
The mean age of these people is 23.23 years, with variance 7.4. Except for the
ice-cold water test (cold signal), there was also a control set where the partic-
ipant instead had their hand in lukewarm water (warm signal). To construct
the data set each participant took an ECG test, while at the same time the
respiration data was measured. Note that, for the respiration data there was
no guidelines given. However, the respiration data was not used in this thesis
since it didn’t provide better results. The HRV signal of the cold- and the warm
signal were now used for classification. In this section different classification
methods will be introduced. The data was sampled discretely over time, hence,
the energies was computed as,

ei =

n∑
j=1

R̂iav(fj)

where fj is the frequency vector containing n entries and R̂iav is the spectral
estimate of the ith set, which is estimated with either the Welch method or the
Thomson method. For both method and for different number of sets, different
number of windows was used.

3.1 Pre-processed data

In non-parametric spectrum estimation the data is assumed to be a zero-mean
stationary stochastic process. To obtain a zero-mean process the mean was
removed from the data and to compare the subjects to each other the data was
also normalized. Let X be an n×m matrix of all the data with the mean, X̄,
then we have,

Z =
X − X̄√

(X − X̄)T (X − X̄)

where Z is the normalized matrix. The normalized data will be used for all the
methods mentioned throughout the thesis.

3.2 Classification measures

In this section, three different classification methods was tested on the data
sets. The methods that will be tested are differences in energy distribution, the
line of best fit and absolute comparison of energy. The two first methods will
assume that there is a change in the energy distribution over time that uniquely
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distinguishes the cold- and warm signal. The last method is about pair-wise
classification, where the assessment is based on comparing two signals from the
same person, and determining which signal is from the cold-pressure test. In all
the methods the energy of the sets of the signals was computed. Analyzing the
signal, the biggest difference between the cold- and warm signal could be seen
in the frequency band 0.12 − 0.4 Hz. This frequency band will be used for all
three methods.

3.2.1 Energy distribution

The classification in this method was based on there being a difference in the
energy distribution in the signal. Observing the energy of the cold signal in the
time domain, the energy seems to be increasing. The cold- and warm signal was
then divided into two 90 s sets, and transformed into the frequency domain.
To compute the energies an algorithm was implemented to find the optimal
windows. For this method the optimal window was chosen such that the results
lead to the highest correct classification of the cold signal, i.e., the window that
resulted in most of the last 90 s having higher total energy than the first 90 s
of the cold signal.
Let ec1 and ec2 denote the energy of the first 90 s and last 90 s of a cold signal,
respectively. The optimal number of windows was chosen as,

kopt = max
k

n∑
i=1

1{ec1≤ec2}

where kopt is the optimal number of windows. The optimal windows were then
used to compute the energies to classify the signal. Given a signal, if e1 ≤ e2,
then the signal was classified as ”cold”. Otherwise, the signal was classified
as ”warm”. The computed sets of the cold- and warm energies can be seen in
Figure 5. The plot to the left uses the data from the cold signal and is correctly
classified since the energy is higher at the end compared to the beginning, and
the plot to the right uses the warm data and is also correctly classified since, on
the other hand, the energy is higher at the beginning compared to the end.
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Figure 5: The plots shows the energies of subject 50 divided into two sets. The
plot to the left uses data from a cold signal and plot to the right uses data from
the warm signal. Both signals are correctly classified.

3.2.2 Line of best fit

In this method the classification is still based on there being a difference in
the energy distribution of the signal. However, the signals is now divided 2, 4
or 10 times. A linear model will be implemented for the sets. Different from
before the optimal window is now based on both the cold- and warm signal.
It is the one that leads to the most correctly classified cold- and warm signals.
Let ec1 ,...,ecp and ew1 ,...,ewp , for p = 2, 4, 10, be the computed energies of the
sets of the cold- and warm signal, respectively. Implementing the line of best fit
for both signals, let βc1 and βw1

be the slopes for each data set. The optimal
number of windows will be computed as,

kopt = max
k

n∑
i=1

1{βc1
≥0,βw1

<0}

where kopt is the optimal number of windows. In the classification of the cold-
and warm signal, a linear model was implemented. As before the optimal win-
dow will be used to compute the energies in the classification of the cold- and
warm signal. For an unknown signal, if its slope is β ≥ 0, the signal will be
classified as ”cold”, and if β < 0 the signal will be classified as ”warm”.
Figure 6. shows plots using data from the cold signal to the left and data from
the warm signal to the right. The data is divided into 4 sets. It can easily be
seen that the slope in the plot to the left is positive, while the slope in the right
plot is negative, indicating that both signals are correctly classified.
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Figure 6: The plots shows data obtain from subject 50. The energies are com-
puted with Welch using Hanning window with 50% overlap. The left shows
values from the cold HRV signal and the right shows the values from the warm
HRV signal. Observing the slopes of both the graphs, it can easily be seen that
both signals are correcly classified.

3.2.3 Absolute Energy Comparison

For the absolute energy comparison method the classification will instead be
about pair-wise classification. Given the cold- and warm signals, the classifi-
cation is made based on comparison of energies of the signals. Based on the
chosen frequency the total energy of both will be computed and then compared.
Recall that the signals’ energies are normalised, and this energy comparison is
done in the frequency band 0.12− 0.4 Hz (which is also true for the two previ-
ous methods). Let ec and ew be the total energy of the cold- and warm signal,
respectively. If ec < ew, then the signals are correctly classified as ”cold” and
”warm”, else they will be falsely classified. For the absolute energy comparison,
the whole data was used, as well as only the first 90 s of the sequence.

16



4 Results

In this section the results of the different classification methods will be shown.
The tables show the number of sets that the signals are divided into. After the
number of sets, the table shows the predicted value and the confusion matrix.
These values are used for the MCC and the classification value. The number of
sequences indicate the optimal number of windows that was used for generating
the values for the classification. The tables for the Welch method using Hanning
window shows the amount of overlap of the windows, while Thomson method
instead shows the type of window that was used.

4.1 Energy distribution

The results for the energy distribution are shown below. The Welch method is
shown in Table 1. and the values for the Thomson method is displayed in Table
2.

Table 1: Energy distribution of Welch using Hanning window.

Overlap # Sets Pred. P N MCC Class. # Seq

50% 2
P 40 24

0.3086 0.6509 9
N 13 29

Comparing the different results, it can be noticed that Thomson method gen-
erated better results than Welch method. The Thomson method using Slepian
sequences improved by about 3% and with the Hermite by 2% compared to
Welch method.

Table 2: Energy distribution of Thomson with different windows.

Window # Sets Pred P N MCC Class. # Seq

DPSS 2
P 41 21

0.3829 0.6887 11
N 12 32

Hermite 2
P 39 21

0.3426 0.6698 11
N 14 32

4.2 Line of best fit

A linear model was implemented for the signal over the HF. The results are
shown in the following tables. For Welch method the optimal number of sets is
4, since that had the highest MCC as well as the highest number of classification.
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For the Thomson method the optimal number of sets is 2 for both the Slepian
and Hermite.

Table 3: Line of best fit with Welch using Hanning Window.

Overlap # Sets Pred P N MCC Class. # Seq

50%

2
P 37 17

0.3774 0.6887 2
N 16 36

4
P 44 21

0.4455 0.7170 4
N 9 32

10
P 39 26

0.2518 0.6226 2
N 15 27

In this method Welch performed slightly better, with the correct classifica-
tion being approximately 72% compared to Thomson method where the best
classification being approximately 70%.

Table 4: Line of best fit with Thomson method using different windows.

Window # Sets Pred P N MCC Class. # Seq

DPSS

2
P 40 19

0.3988 0.6981 7
N 13 34

4
P 39 20

0.3608 0.6792 2
N 14 33

10
P 39 29

0.1967 0.5943 1
N 14 24

Hermite

2
P 39 19

0.3790 0.6887 8
N 14 34

4
P 40 21

0.3626 0.6792 3
N 13 32

10
P 27 26

0.2113 0.6038 2
N 26 37

After the classification the confidence interval was computed for the β̂1 of the
cold and warm data. The confidence intervals of both multitaper methods are
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displayed in Table 5 and Table 6. Observing the mean of the coefficients, overall
it had the expected sign, with the exception of the coefficient when dividing the
cold data into 10 sets and using Thomson with Hermite window. All of the
lower bounds had negative signs and the upper bound had positive sign, which
is not really what we wanted. For the cold signal we expected the lower bound
to also have nonnegative sign and for the warm signal we expected the upper
bound to have negative sign.

Table 5: Confidence interval for Welch method
# Sets HRV β̂1 LB UB

2
cold 0.1058 -0.1634 0.3751

warm -0.1722 -0.4415 0.0970

4
cold 0.0558 -0.2134 0.3251

warm -0.0258 -0.2951 0.2434

10
cold 0.0151 -0.2541 0.2843

warm -0.0031 -0.2723 0.2662

Table 6: Confidence interval for Thomson method using different windows
Window # Sets HRV β̂1 LB UB

DPSS

2
cold 0.0885 -0.1808 0.3577

warm -0.1263 -0.3955 0.1430

4
cold 0.0852 -0.1840 0.3545

warm -0.0209 -0.2901 0.2484

10
cold 0.0036 -0.2657 0.2728

warm -0.0065 -0.2758 0.2627

Hermite

2
cold 0.0817 -0.1876 0.3509

warm -0.1445 -0.4137 0.1247

4
cold 0.0971 -0.1722 0.3663

warm -0.0169 -0.2862 0.2523

10
cold -0.0074 -0.2766 0.2619

warm -0.0395 -0.3088 0.2297
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4.3 Absolute Energy Comparison

The method of absolute energy comparison deals with pair-wise classification.
For the tables in this section, instead of dividing the signal into sets, we now
instead looked at the part of the signal that was used. The optimal length
for this method can be noticed is the whole HRV signal with 180 s for both
methods.

Table 7: Absolute energy comparison with Welch using Hanning Window.

Overlap Length Pred P N MCC Class. # Seq

50%

180s
P 39 14

0.4717 0.7358 5
N 14 39

90s
P 36 17

0.3585 0.6792 3
N 17 36

For this method, Thomson with Slepian performed the best with 77% correct
classification, as can be seen in Table 8. Overall, it can be noticed that Thomson
method performed better when comparing the sets when comparing Table 8 with
Table 7. The best result by Welch is 74% correct classification.

Table 8: Absolute energy comparison with Thomson method using different
windows.

Window Length Pred P N MCC Class. # Seq

DPSS

180s
P 41 12

0.5472 0.7736 15
N 12 41

90s
P 36 17

0.3585 0.6792 3
N 17 36

Hermite

180s
P 40 13

0.5094 0.7547 11
N 13 40

90s
P 37 16

0.3962 0.6981 9
N 16 37
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5 Discussion

All the results that was used in this thesis is generated by the Welch method
using Hanning window with 50% overlap and the Thomson method using Slepian
window or Hermite functions. The number of windows for both data sets was
chosen carefully. Having too many windows for the Welch method and for the
Thomson method, while having a small data set, could result in in a far too
smooth spectral estimate, implying that necessary information could be lost.
Therefore, the number of windows was adjusted according to the length of each
set. The limitation of this restriction could be seen when dividing the data set
into 10 sets. All sets could only use one or two windows. Since there was only one
or two alternative for the optimal number window, this indicated that one would
not optimize the method. Comparing the classification using different number of
sets for both methods, there was not much differences. When classifying based
on difference in energy distribution between the cold- and warm signal the best
result for the Welch method was 65% and 69% for the Thomson method using
DPSS.

In the classification assuming there is differences in energy distribution over
time using line of best fit, the best results for the Welch method was approx-
imately 72% and for the Thomson method approximately 70%. The Welch
method was slightly better, even though, one would expect the Thomson method
to perform much better than the Welch method since each window uses the
whole data set. A possible reason for this, is that the bell-shaped curve of the
Hanning window in the Welch method was better at capturing the prominent
features of the data when it is divided. For the line of best fit method, one
could also use confidence intervals to asses the accurateness. It could be seen
that the confidence intervals overlapped. This means that under the significant
level 5%, for the parameter β, there is not a statistically significant difference
between being ”cold” or ”warm”. Hence, the results from the line of best fit
might not be trustworthy.

For the pair-wise classification, the Thomson method performed better, with
best result being 77% correct classification compared to the Welch method 74%
classification. The possible reason that the Thomson method performed better
in the pair-wise classification could be because the energy concentration of the
method was more suited for the whole data sequence.

The spectrum analysis was only conducted over the the frequency band-
width 0.12 − 0.4 Hz. It has been known that finding an individual frequency
band through the respiratory signals could improve the results significantly,
however, the reason for not using the respiratory signal is because the results
that was produced was much worse than not using it.
Additionally, it can be noted that the higher frequency band, 0.48 - 1.6 Hz, was
also tested. However, it was decided to not be included in the thesis, since there
was not enough information to support the choice of frequency interval. Al-
though, the choice of frequency band is an interesting topic for further analysis.
It could be noticed that the data was not divided into a test and validation set,
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due to the data set being too small in combination with large variances between
the subjects.
Furthermore, a different normalization technique can also be of interest for the
data set. Different from how the data was normalized in the thesis, we also tried
to normalize the data according to,

Z =
X − X̄
‖X‖2

where ‖X‖2 is the 2-norm of matrix X. The 2-norm is computed as,

‖X‖2 =
n

max
i=1

λ
1/2
i

where λi denotes the eigenvalues of XTX [8]. The normalized data using the
2-norm improved the results for the absolute energy comparison considerably.
Some of the results even lead to perfect classification. The reason for the excep-
tional improvement could be due to the normalization technique using all the
data that was available. However, since the normalizing method uses informa-
tion that is not available when conducting the classification of a single HRV the
results was, therefore, not included. Even though the result is not included, it is
still interesting since it indicates that a different normalizing techniques might
improve the classifications.
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6 Conclusion

In conclusion, it is possible to classify the cold- and warm HRV signal using
different multitaper spectral methods on this specific HRV data set. There does
seem to be an difference in energy distribution over time, as well as, difference
in total energy over the high frequency between the two HRV signals. In gen-
eral, the line of best fit method had better results than the energy distribution
method. However, since the results was not trustworthy we thus would refrain
from using it. The best method for this data set was therefore when using
the Thomson method with the DPSS window. For the pair-wise classification,
the Thomson method still performed a bit better than the Welch method and,
therefore, also more preferable. All in all, the Thomson method was most opti-
mal for this data set. However, whether the results will be the same on a similar
data set is still unknown and the methods still need to be evaluated. Since the
results between both the methods were so close to each other, it is therefore
still best to try out both methods when dealing with another data set. Different
method can be better suited for different data sets.
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