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Abstract District heating is a common means of space and hot water heating
in Sweden. However, the demand for heating is not the same at all times.
On a yearly basis more heat is required during winter, while next to none
is needed in summer. Since the demand for heat load varies throughout the
year, when trying to predict it, using a model that changes with the seasons
can give a more accurate prediction. In this study, a forecasting model was
tested to change its parameters either yearly, every three months (seasonal),
monthly or weekly. The goal was to see which way of partitioning the year
would give a more reliable prediction. Using statistical bootstrap to create
confidence and prediction bands for the heat load, an analysis was conducted.
The results show that a seasonal or monthly approach give a more accurate
prediction overall and that the summer was most difficult to predict, relative
to the produced heat, although transition seasons, for instance between spring
and summer were more prone to large variances overall.
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1 INTRODUCTION

1 Introduction
This sections aims to explain the structure of the report, give background information
and motivation for pursuing this project. It will also shed light on the purpose and
aim set and any delimitations for achieving the objectives.

1.1 Outline of the report

The first section will describe the background and aims of this project. Next up will
be the theory and method sections. These are separated into a district heating part -
which factors affect heating and the typical trends, and a statistical part - explaining
the how to apply the statistical bootstrap to regression and time series data and how
to create confidence and prediction bands for these. The theory section will explain
the basics of those concept, while the method section will delve deeper into how
these are used in this project. In the method section, the model and data used will
be explained as well. Finally, the results will be presented, followed by a discussion
of the results in regards to the objectives.

1.2 Background

District heating is a means of providing heating of home and water for many
individuals in a centralised way. Fredriksen and Werner writes in "Fjärrvärme: Teori,
teknik och funktion" [1] that district heating (DH) has many advantages regarding
economics and environmental impact. The authors explain that the idea of having
heating centralised is an effective way of reducing the total energy production as
there can be more larger production units, which usually are more efficient than
smaller ones. However, since the facilities are responsible for many households, it
is important that the production facilities produce the right amount of heat at the
right time to lower the environmental impact.

There are two main ways of making the heat production more effective. One way is
to design the parts of the energy producing cycle, i.e., an energy production plant,
storage and all connecting pipes etc, in a more efficient way, c.f. [2]. The other way,
which is the purpose of the Company that proposed this thesis, is to have better
prediction of the heat demand for the upcoming days. For this study, the focus is
going to be on the models used for forecasting heat production. Having a good forecast
is essential for optimising heat production and minimising environmental impact. By
having an accurate prediction, production companies will have a stronger basis when
deciding which units to operate, in both near and distant future. Johansson writes
in their doctoral dissertation about smart district heating, that it’s usually expensive
for production plants to start an extra unit, c.f. [3]. This is because all units have
a static cost for starting heat production, in addition to a variable cost depending
on the amount that is produced. Johansson also writes that the production plants
usually have environmentally friendly and cheap heat sources as a base, but when the
need is high, they would need to switch to more expensive sources, typically fossil
fuel. Thus, it would be more economically and environmentally beneficial if one can
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avoid using the expensive units as much as possible. To do that, the producers would
need to know when they do not have to use the dirty fuel. Since district heating
is the most common means of heating in Sweden, at around 50% of all heating
according to Euroheat [4], lowering the emissions from the district heat production
would likely help reduce the environmental impact.

A forecast for district heating could be considered to be good in different ways.
Regardless, it would be beneficial to know within which boundaries the heat load is
likely to stay within. This can be shown in the form of confidence and prediction
intervals. Now, to make these intervals, one would usually gather data from many
years, but by using the statistical bootstrapping technique, it is possible to generate
artificial data with approximately the same properties as the original with a smaller
sample set. Generating more bootstrap data then allows for statistical tests and
creation of confidence and prediction intervals, which could give a better picture of
the reliability for different prediction models. Bootstrapping is a powerful tool that
can be used for analysing how good an estimate is. The classical bootstrap does
require data to be independent, which data in a time series like heat load clearly is
not. There are a few alterations or extensions to the classical bootstrap that does
allow for the technique to be used for both regression analyses and time series data
in which data is dependent in some ways.

The heat load varies quite a bit depending on the time of the year. As shown in
Figure 1 below, the heat load is clearly higher during colder periods than the warmer
ones. Joakim Henriksson and Sophie Rudén were tasked with improving a model for
forecasting heat load for their master thesis and decided one way to do so was to
look at the seasonal differences [5]. They concluded that they could create models
with parameters better suited from each season, however, when applied to another
season they were not as accurate. A possible conclusion could be that a model that
changes its parameters throughout the year would be preferable.
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Figure 1: The heat load at a heat production plant in Sweden during 2019
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A question then appears: could the forecasting be improved by having even narrower
seasonal partitions? Henriksson and Rudén did find that their partitioning of four
seasons performed better than just using the same model for the whole year [5].
Would it then become even more precise by going down to a specific model for each
month, or even each week? This could possibly also depend on the time of the year.
As seen in Figure 1, the period between June and September does not vary as much
as April or October and perhaps those transitional periods between seasons could
benefit more from smaller partitions?

1.3 Aim and Objectives

The aim is to gain a better understanding of how the partitions of the year and
model parameters affect the reliability of the model. By using the current model
of the company as a starting point for analysis, different partitions of the model
parameters will be explored.

In order to arrive at an answer, the following objectives will be examined:

(i) Which partitions for the model are of interest?

(ii) Which partition gives the most reliable results for each season?

(iii) Which seasons are hardest to predict for the different partitions?

1.4 Delimitations

For this study, no proper distinction will be made between commercial and residential
areas connected to the heat network. There will be more focus on the overall heat
load for the heating network rather than individual housings.

There is a slight difference between produced and consumed heat as well, mostly
caused by loss of heat when transferring the heat to the subscribers. For this project,
however, only the heat production will be studied.

The model used by The Company have some real time updates of weather measure-
ments and corrections done. In this project, only the base prediction will be studied
and leave the add-ons out of the equation, as many of these functions are closely
integrated in the company’s software which I do not have access to make changes
in. The weather data used, even for prediction, will be fully known as well, which is
not the case when creating forecasts in reality, as the weather data also would carry
additional variance.

Another limitation when it comes to the model, is that it cannot be fully disclosed.
However, even if the exact model will not be shown here, its main properties and
anything needed to understand the results will be explained.
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2 THEORY

2 Theory
In this section some theory regarding district heating and the statistical method of
bootstrapping will be described. For district heating, its seasonal differences and
known factors affecting the demand for it will be explained. The statistics part will
explain the idea of bootstrapping, in general and for time series, and how to create
confidence and prediction bands with it.

2.1 District Heating

Heat usage can be divided into two main usages. These are heating of space and
domestic hot water usage. As its name suggest, the former alludes to the heat required
to keep the temperature of a space within a comfortable level. This is usually the
main source of heating a building, for instance radiators. The domestic hot water
usage includes most things a person would need heating for other than the room
temperature. These things could be hot water for a shower, washing machine or
washing your hands. It is up to the heat producing plants to plan for and distribute
the required heat for space heating and personal use.

There are two main factors which affect the heat load: weather and consumption pat-
tern. The weather outside affects the need for space heating, while the consumption
pattern provides mostly for hot water usage.

2.1.1 Weather factors

Weather influences the need for heat in many different ways. The strongest relation
is with that of the outdoor temperature, while other factors such as wind, global
influx and humidity are other, not quite as strongly connected. To better explain the
seasonal and daily heat load trends, some of these factors shall be explained more
thoroughly below.
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Figure 2: Energy production and outdoor temperature measured in 2019 at a plant
in Sweden, one point of data for every hour

First we discuss the outdoor temperature. It has been shown that the heat con-
sumption is closely tied to the temperature outside. From Figure 2, we see that the
heat production is seemingly strongly correlated to the outside temperature most of
the year. This is explained by Newton’s law of cooling, which states that an object
experiences heat loss linearly proportional to the difference of the object’s and the
surrounding’s temperature. Mathematically it can be expressed as

Q = k · A · (T (t)− Tout), (1)

where Q is the heat flow, A is the area of the object, T (t) is the temperature of
the object, in this case the indoor temperature of a building, at time t, Tout is the
outdoor temperature and k is a heat transmission constant, also depending on the
thickness of walls, insulation among other things in this case. Admittedly, when it
comes to heating of buildings, this relation is not always linear. Frederiksen and
Werner [1] writes that the walls have an inertness which allows for the walls to store
some amount of heat. Because of this, the temperature from a few days ago can still
affect the need for adding heat for the current day.

There is also a cut-off point for when the temperature affects the heat load. During
at least half of the year, the outdoor temperature is lower than the desired one for
housing. But there are a few months when heating definitely is not required and
most people would prefer an air conditioner or a cooler. After a certain threshold in
temperature outside, no space heating is required. Plotting a year’s worth of hourly
heat load measurements against the outdoor temperature, Figure 3 below shows how
there is a clear cut-off temperature when the relation is no longer linear. Instead,
after about 15°C the outdoor temperature doesn’t affect the heat load nearly as
much as before.
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Figure 3: Cut-off temperature for a typical heat producing plant. The produced heat
load is plotted against the outdoor temperature. The cut-off temperature can be found
at the intersection between the two lines.

Wind speed can also affect the heat consumption. Normally ventilation is needed
for exchanging stale air for fresh air, however, a greater wind speed can cause more
drafts in unintentional places if isolated badly. This leads to more air from the
outside to seep in, and if it is colder outside, even more heat would be required for
keeping the indoors temperature comfortable, according to Frederiksen and Werner
[1]. In the study conducted by Henriksson and Rudén [5] however, they found that
the wind speed did not always relate significantly to the heat load. They did find
that it had most effect during winter season, but could not draw any conclusion
regarding its effect during spring, summer and autumn.

Finally, the global irradiance can also affect the heat demand. Global or solar
irradiance refers to the added heat from direct sun light. Henriksson and Rudén
[5] also examined the significance of global irradiance, during the studied summer
period they found it to have a weak, negative effect on the accuracy of their model.
Nothing could be said about the other seasons however.

There are of course other aspects that could affect the heat load as well. For instance
humidity and wind direction, however, these will not be studied in this thesis.

2.1.2 Social Behaviours

Next we have consumption pattern, the social component which varies depending on
the time of the day and the year. Just like the temperature changes depending on
the time of the year, so does human behaviour. Not only does the sun heat up houses
more in summer, but people also tend to use less heat for personal use, such as hot
showers. This leads to an extra effect in general which makes the heat consumption
even more differentiated between the colder and warmer months.
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The personal usage creates a load pattern that differs throughout the day in accord-
ance to social behaviours. In general, less heating is required at night and then there
are two peaks, one in the morning, and one in the evening once people stop working.
This effect is generally easier to spot during summer, as the space heating part is
larger during colder temperature.
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Figure 4: Daily heat load for three days in January. There is a clear morning peak
in heat load at around 7-9 o’clock. The rightmost day is a Saturday and the afternoon
peak is practically not there at all

There is also a pattern that varies depending on the day of the week. Two distinct
categories that can be seen are those of weekdays and weekends. During weekdays,
the majority of people get up between 6-8 o’clocko to prepare for work and take a
shower or use hot water in other ways. In the same way, they return home around
16-18 to do washing or dishes etc. This leads to a pattern with a morning peak and
an after work peak in heat usage. During weekends, these peaks are usually not as
prominent as people distribute their hot water usage more spread out compared to
the weekdays.

To summarise, there are a few different trends and auto-correlations to be found in
district heating.

• Daily (24h): Morning peaks, not as much during night as most people are
sleeping

• Weekly (168h): Weekends differ a bit from work days.

• Yearly: Seasonal dependence, warmer season = less heat required and pro-
duced.
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2.2 Bootstrapping

2.2.1 Classic Bootstrapping

Ever heard of the paradox of pulling oneself up by ones bootstrap? This is it, but
statistics.

For almost any statistical problem, there is always some uncertainties when applying
statistical analysis on gathered data. For example, given a typical task of finding the
mean height of all people in Sweden, the only way of getting the true distribution, F ,
and true mean, would be to receive information of the height of the entire population.
That is usually not something that can be done without a great amount of resources
and time. So what is usually done? - Getting a sample! Decide on a sample set of
people, preferably as random as possible. Then perform a statistical analysis on the
sample data and get an estimate, Fn, for the distribution and mean. That is where
it could end. It may be a good estimate or it may be quite a bit off. Usually, for a
good data set, the more data used, the closer to the true mean the estimate gets,
but once again, it can be expensive to get that much data. And in the end, it’s still
just an estimate.

Enter Bootstrapping, a technique that can be used for determining how good an
estimation is. J.S Urban Hjorth writes that a bootstrap often is used for measuring
biases or uncertainties for estimated parameters [6]. They also mention that the
bootstrap technique has developed quite a bit since and can nowadays be used for
classification, regression, time series and other kinds of problems.

The original bootstrap method would require data points to be independent. Clearly,
the data points in heat load are dependent and have properties of auto correlation,
as it is a time series, however, the basic idea will be explained before going into more
detail on how to work with bootstrap on more dependent data. The main idea of the
traditional bootstrapping of individual data is to gather ”more” information from
ones sample by creating bootstrap data. Given a sample of n data points,

x = (x1, x2, . . . , xn), xi ∈ F,

where F is an unknown distribution, a first estimate θ̂ of the desired parameter θ
can be created. This θ̂ can be used to describe an estimated distribution Fn which
is known and from this more data can be ”generated”. It may sound preposterous,
however, it has been proven to have statistical ground. The way this is done, is by
resampling. Resampling is the process of creating alternate data sets by sampling
the elements from the original data set, x, with replacement and generating new
bootstrapped data sets, x∗. From each x∗, a bootstrap parameter, θ∗, can be
computed the same way θ̂ was estimated from x. A visualisation of resampling with
four data points is shown in Figure 5 below.
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Figure 5: Illustrating how bootstrap samples x∗
i and parameters θ∗i are created by

resampling

What is even more amazing, is the fact that by gaining more information about
θ̂, more information can be gained about the true parameter. This is because the
relation between θ and θ̂ is approximately the same as the one between θ∗ and θ̂
when a sufficient amount of bootstrap estimates have been created. The relation
looks as follows:

θ̂ − θ ≈ θ∗ − θ̂. (2)

This approximation gets closer, the more bootstrap samples that have been created.
This report will not delve further in why this is correct, you may read about it on
your own.

2.2.2 Bootstrap for regression - Residual sampling

When it comes to regression, the measurements alone are not what becomes boot-
strapped. Since the goal is to find a pattern between input and output data, it would
yield chaotic results if the measurements were scrambled at random. Instead, there
are two options: bootstrap pairs of (xi, yi) or perform bootstrap on the residuals, εi
[6]. For this study, residual resampling is going to be performed.

From here on, a bold symbol indicates a vector or a matrix. Assume we have n
points of data and p number of parameters. If using least squared estimation for
estimating the parameters, θ of size p× 1, the estimate, θ̂, is given by

θ̂ = (xTx)−1xTy, (3)

in which x is a matrix of size n× p consisting of input data corresponding to the
parameters, for instance current temperature and social components, and y is a
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vector of output data, the produced heat load, of size n× 1. This in turn means we
can express y as

y = xθ̂ + ε, (4)

where ε are the residuals.

Using the first estimation of the parameters, θ̂, and computing an estimated dimension
space for the data, ŷ, sample the residuals, ε between the true data and estimation
can be extracted. Then the residuals can be bootstrapped

εi = yi − ŷi, i = 1, . . . , n (5)

The bootstrapping of the residuals is done the same way as any other, pick out
a random residual, with replacement, for each data point, giving you ε∗. Then
bootstrap data, ỹi can be created by adding the residuals to the estimated data.

ỹi = ŷi + ε∗i (6)

After that, bootstrapped parameters, θ∗, can be estimated the same way θ̂ was,
however, ỹ is used instead of y.

θ∗ = (xTx)−1xT ỹ (7)

From the new θ∗, new bootstrap estimations, y∗ can be created from

y∗ = xTθ∗. (8)

By doing this many many times, a good approximation of the true parameters θ can
be found as through relation (2).

As a side note, most literature denote what I call ỹ as y∗. However, in this work,
some analysis is going to be preformed using the resulting heat load y∗ as I describe
it, which is why the notations may differ from others’ works.

2.2.3 Bootstrapping for Time Series

A time series, like the heat load, does not consist of independent data points. There
is auto-correlation within different time frames and when the data is sampled is an
important factor. This means resampling the residuals completely at random may
not replicate the time series aspect of the data particularly well.

It’s still possible to reuse much of the theory for regression by applying Block
Bootstrapping. Fanny Bergström wrote in their bachelor thesis about how to apply
this when using bootstrap on time series [7]. The difference, as the name suggests,
is that data is divided into blocks instead of being seen as isolated points. The
idea is to preserve some of the dependency withing the data set by resampling
in groups. Bergström describes a number of different ways to create these blocks:
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non-overlapping (NBB), moving (MBB), circular (CBB) and stationary (SB) block-
bootstrapping. They also found that while there’s still dependency loss regardless
of method used, MBB and CBB generally led to a smaller error, when applied to a
time series. In short, by dividing the data and computing the residuals ε in blocks,
some dependency can be retained.

Both MBB and CBB uses overlapping blocks. Both methods divides the data into
blocks of consistent size, though they may overlap. Assuming there are n points
of data, a block length l in chosen such that l|n for easier concatenation of blocks.
Then n− l + 1 blocks of size l are created, where each of them is shifted one step at
a time.

Figure 6: Moving Block Bootstrap with n data points and a block length of l = 3.

One downside to creating the blocks through MBB is that the samples near the edges
won’t be present in the same amount of blocks as those closer the middle. Bergström
explains that CBB circumvents this by connecting the first and last block to form
a cycle [7]. It is useful for when the data points loop back on their own in a sense,
for instance yearly temperature. However, each month or season does not loop back
into themselves, which means the residuals could be misleading.

2.2.4 Confidence and Prediction Bands

When studying how accurate the model within each parameter partition, a confidence
or prediction band can be utilised. Since we are dealing with regression, we will use
confidence bands as opposed to pointwise confidence intervals. A confidence band
consists of an upper and lower limit for in which the whole regression line is going to
stay between for a certain percentage of the time. To create this band, we need to
determine an upper and lower limit, f(x)upper and f(x)lower respectively, such that

P (f(x)lower < f(x) < f(x)upper,∀ x) = 1− α

In this case, f(x) represents the heat load y and 1− α is the confidence level. To
determine the bounds, a constant, d, can be computed and be added or subtracted
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to ŷ,
d∗i = sup

i
|y∗i − ŷi| (9)

in which i = 1, . . . , n and represents the heat load at hour i and n is the number of
hours in total. When doing these for bootstrapped data, the confidence band comes
from computing (9) for all N bootstrap estimations


d∗1 = supi |y

∗(1)
i − ŷi|

...
d∗N = supi |y

∗(N)
i − ŷi|

(10)

and then create a histogram of the supremum error for all bootstrap estimations d.
From the histogram, we can find dα as the value in the histogram such that it is
larger than (1− α) percent of all the d-values.

Figure 7: Histogram of 1000 d-values with a confidence level (1− α) = 0.95

The upper and lower limit are then created as the estimation with dα added and
subtracted respectively as follows:

[ŷ − dα, ŷ + dα]. (11)

The value of the true heat load y is then likely to be within these boundaries (1− α)
percent of the time. Since every partition is using their own parameter set and
model, we will need to compute dα for each partition. We can then use these values
to visualise the confidence band and give an estimation of how spread the district
heating is for each partition. To summarise the variance for each partition, we will
divide dα with the mean of the heat load for each partition, to get an idea of how
varied they are.

Utilising confidence bands gives a picture on how robust the model is, however,
for future values, we need prediction intervals or bands. The process of creating
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prediction intervals and bands are similar to those of confidence but it uses a different
error as residuals. Stine explains the process of creating prediction intervals for
regression using prediction errors [8].

Let xf be a matrix of future input data. Then the future prediction ŷf can be
computed as

ŷf = xT
f θ̂, (12)

while the true future heat load, yf would be

yf = xT
f θ + εf , (13)

where θ is the true parameter values, yet unknown to us, and εf is the future
residuals.

We want to construct a prediction interval such that the estimated value of yfi is
contained within the interval with a probability of β. Mathematically it can be
expressed as the following

Pyf (yf ∈ I(yf )) = Ey(1{yf ∈ I(yf )}) = β, (14)

where 1{yf ∈ I(yf ) is the probability that this is true.

Now, to construct an interval for the bootstrap, we are going to use the estimate ŷf
and add an upper and lower bound to it. Thus the interval would be created as

IB(yf ) = (ŷf ) + lBf , ŷf + uBf , (15)

where lBf and uBf respectively are the lower and upper bonds chosen such that the
expected value that the bootstrapped heat load

ỹi,f = xi,f θ̂ + εi,f ,

is contained within the bounds with a probability β. Mathematically expressed as

E∗(1{ỹf ∈ IB(ỹ∗f )}). (16)

To decide lBf and uBf , we need to take a look at the prediction error, rather than the
bootstrap residuals as we do for the confidence bands. In other words, instead of
studying ε∗, we use

D
∗(n)
f = ỹ

(n)
f − y∗(n)

f , (17)

in which y∗
f = xT

f θ
∗, (n) indicates the n : th bootstrap sample and D is a N × T

matrix. By computing D∗
f for every bootstrap sample, we get

D
∗(1)
f , ...,D

∗(1)
f , (18)

which we can use to analyse the distribution for every point in time, t, and create a
prediction interval for those by explicitly finding the values for which 1− β percent
of the values are contained within. Either we can keep them as pointwise intervals
or we can compute a prediction band for each partition, by the same principle as for
confidence bands, see equation (10).
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3 Method
In this section, the data used and choices made for bootstrapping and analysis will be
explained. First is a bit of data chosen and a description of how it was preprocessed.
Next will be a short overview of the model and then which parameter sets that were
chosen to be studied. Finally, the evaluation method will be described, along with
how the bootstrap was performed.

3.1 Data used in study

There has also been some amount of preprocessing made to both heat load and
weather data. Sometimes the measuring instruments for both heat load and weather
data get readings that are missing entirely or deemed to be outliers. For those points,
the data was adjusted or added manually. When it comes to temperature, as shown
in Figure 3, the temperature is not as important for the demand of heat load after a
certain threshold. As such, temperature values over that cut-off point are reduced to
a lower temperature.

The data used in this project has been collected by The Company and consists of
three customers. One of these are located in Sweden (S), one in Denmark (D) and
the last one in Switzerland (C). For all of these, hourly measurements of external
input and heat load production will be used. For these plants, data from two years
will be used, one for estimating the parameters and confidence analysis, and one for
prediction and prediction analysis.

Plant S only use outdoor temperature as external input and we have used data
points from two years, 2018 and 2019.
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Figure 8: Heat load at plant S during 2018 to the left and 2019 to the right.

Plant D use wind speed and global influx in addition to the outdoor temperature as
input. The data points used are from two years, 2019 and 2020.

Leo Einarsson 14 2 juni 2021



3 METHOD

jan feb mar apr may jun jul aug sep oct nov dec jan

month

0

100

200

300

400

500

600

700

800

900

[M
W

]

Plant D 2019

jan feb mar apr may jun jul aug sep oct nov dec jan

month

0

100

200

300

400

500

600

700

800

[M
W

]

Plant D 2020

Figure 9: Heat load at plant D during 2019 to the left, and 2020 to the right.

Plant C only uses outdoor temperature as input. We have access to data points from
the same two years as for plant D, e.g. 2019 and 2020.
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Figure 10: Heat load at plant C during 2019 to the left, and 2020 to the right.

To get a better overview of how the heat load varied from the year the model was
fitted to and the year that is to be predicted, Figure 11 below shows both preprocessed
heat load and temperature for both years plotted together. These can also be found
in greater resolution in Appendix A.
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Figure 11: This depicts the district heat load and temperature for both the year
used for fitting the model and for predicting. The graphs to the left illustrates the
data for plant S, the middle for plant D and the right one for plant C. The dark
blue graphs are the heat load the model is fitted to, while the green graph is the heat
load we try to predict. The deep red lines are last year’s temperature and the bright
orange is for the predicted year.

3.2 Overview of Model

The model is a combination of the two separate factors related to district heating.
One part of the model regards the weather data, i.e. outdoor temperature, optionally
adding wind and solar influx, as input. The other part models social behaviour
depending on the hour of the week. Linearly combining these two parts gives the
estimated heat load Q(t) for the time t,

Q(t) = θ1 · Inputweather(t) + θ2 · Inputsocial(t) (19)

in which Inputweather(t) and Inputsocial(t) contain terms that are multiplied with
different coefficients (parameters) θi = {θi,1, θi,2 . . . }. It is basically a combination
of two linear models with different input data. These parameters are recomputed for
each partition of the year to give the model better characteristics for the period they
are used for. This is done by fitting the model based using least squared estimation,
as seen in Section 2.2.2.

3.3 Parameter Sets to be analysed

Henriksson and Rudén discovered that the studied model seemed to benefit from being
more specialised depending on the current season [5]. They tested their model, using
different parameters for four consecutive weeks in January, April, July and October,
but by going for even greater resolution and have weekly or monthly parameter sets
instead, would the accuracy become even greater? The more narrow partitioning
could hypothetically help with the ”Transition Seasons”, the periods when winter
changes into spring and so on. During these periods, the temperature can change
quite a lot, which a model with few partitions is not always good at keeping up with.
Just think of a classic April month, usually the weather and temperature change
drastically from the first to the last day of the month.
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Just by trying out some different partitioning sets, visually getting a first impression
of how the intervals affected the model, some particular sets to investigate was
decided and follows in the table below:

Table 1: A table of all different parameter partitions to be analysed

Number of
Parameter
partitions

Days before parameter switching Description

1 [365] One parameter set
for the whole year.

4 [90, 91, 92, 92] One parameter set
per Season, starting
in Jan-Mar.

12 [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] One parameter set
per Month

52 [8, 7, 7, 7, . . . , 7] 8 days for first and 7
for the rest.

If there is a leap year, one day of data is removed. That day was chosen to a day
in July that was missing measured data for plant D, and the 31:st of December for
plant C. No data from plant S used occurred during a leap year, so no days were
removed.

3.4 Evaluation method

To analyse the reliability of the different partition models, the statistical bootstrap
will be applied. Once the bootstrap data is created, it will then be used to construct
confidence and prediction bands. With prediction, some pointwise intervals may also
be constructed to examine morning peaks in more detail.

To evaluate the predictions, we will be using root mean squared percentage error
(RMSPE). This is to get a better grasp at how large the error of the prediction is in
relation to the amount of heat load produced. The RMSPE is computed as√√√√ 1

n

n−1∑
i=0

(
yi,f − ŷi,f

yi,f
)2 · 100, (20)

in which yi,f is the heat load for the predicted year at hour i and ŷi,f the estimated
heat load from the model for the same point in time. This will be applied both for
the whole year, but also for shorter intervals.

When studying the confidence and prediction bands, a similar approach will be used.
By computing a value from the size of either band and divide it by the mean of the
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heat load produced for the corresponding interval, a relative size of the bands can be
gained and compared with bands for other intervals through the year.

The confidence and prediction levels chosen for the bands are 95% and 90% respect-
ively.

3.4.1 Bootstrapping

Since most of the partitions are periods that doesn’t necessary have the exact same
properties at the start and the end, the non-circular MBB will be used. When it
comes to block size, it’s not very easy to pick one. As mentioned in section 2, daily
variations are quite common in heat load and by picking a block length that covers
24 hours, some of that dependency should be preserved. It is worth to note that this
will probably mean a loss of information regarding weekdays and weekends, but in
order to combine the residual blocks, its advantageous if the block size is a divisor to
the number of hours in a partition. Which is always the case with a day (24h), but
not with a week (168h).

The Bootstrap Algorithm will have to be done separately for each partition, as they
use different parameters and looks as follows:

1. Compute the estimate of the parameters using LSE, θ̂ = (xTx)−1xTy.

2. Compute the estimated heat load ŷ using θ̂ according to the model, ŷ = xθ̂

3. Extract the residuals of every data point εi = yi − ŷi
4. Create Blocks of residuals of length l.

5. Create a bootstrapped heat load, ỹi = ŷi+εi, by resampling the residual blocks,
concatenate these and add to ŷ.

6. Compute new model parameters θ∗ by same method as for θ̂ but trying to fit
to ỹ: θ∗ = (xTx)−1xT ỹ.

7. Compute bootstrapped heat load y∗ by using θ∗ in the model: y∗ = xθ∗

8. Repeat step 5-7 N times

Once repeated, there will be N bootstrap samples that can be used for analysis via
testing and confidence and prediction bands. Using the bootstrap relation (2), by
creating histograms and computing d∗ = y∗i − ŷi and D = ỹ

(n)
f − y∗(n)

f to create
confidence and prediction bands respectively.

For this project, we have chosen to go with N = 1000.

Leo Einarsson 18 2 juni 2021



4 RESULTS

4 Results
Here follows the result from the different partitions and estimation methods. First
are the results from the confidence bands and fitting of the model to current year.
Next will be the results regarding prediction and prediction bands. For some of the
graphs in greater resolution, refer to the Appendix section.

4.1 Model fitting and prediction

In this section, the RMSPE will first be shown for the whole year for all plants both
for fitting and prediction. Next RMSPE will be shown separately for each plant on a
monthly basis.

Table 2: This table depicts the RMSPE between y and ŷ for the whole year. Note
that the more parameter sets used throughout the year, the closer the model is able to
fit to the true heat load.

Parameter set Plant S Plant D Plant C
Yearly 23.6152 18.3110 25.2945
Seasonal 16.9044 8.4952 12.9518
Monthly 12.3983 6.0301 8.5598
Weekly 8.8530 4.3346 6.8030

Table 3: This table depicts the RMSPE between yf and ŷf computed for the whole
year for all plants and all parameter sets tried.

Parameter set Plant S Plant D Plant C
Yearly 22.1592 20.0147 26.2690
Seasonal 17.7356 10.4363 15.5252
Monthly 16.6266 8.5739 14.4330
Weekly 32.0808 14.6482 22.3950

In Table 3 above, we note that the yearly and weekly parameter partitioning have the
lowest accuracy when looking at RMSPE. On the other hand, the monthly parameter
set have the least error in this regard for all plants. Additionally, plant D seems to
have the lowest relative error of the tested plants.

In the following tables, Table 4 - 6, the RMSPE for all parameter sets will be shown
on a monthly basis. Each table shows the results for the plants individually. The
green and red values mark the lowest and highest RMSPE respectively for each
parameter set, while the bold text represents which set had the lowest RMSPE for
that month.
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Table 4: This displays the RMSPE on monthly intervals for plant S for all different
parameter sets tested in the study. No specific parameter set had the lowest score for
all periods, however, the monthly set performed best for the middle of the year, while
the seasonal predicted more accurately in November and December. The yearly and
weekly version were worse for predicting during summer, but the yearly did better
during the winter months.

Yearly Season Monthly Weekly
Jan 5.0568 4.8413 5.1559 12.4005
Feb 6.3373 6.1795 6.3861 12.7895
Mar 9.9597 9.2222 7.6153 23.0580
Apr 19.4618 15.5138 15.5722 25.0310
Maj 32.0300 24.2810 23.5494 40.1231
Jun 38.3404 33.9816 27.8822 41.5085
Jul 37.8839 27.4392 28.2402 58.5034
Aug 26.2504 20.0405 14.5191 34.2045
Sep 22.5914 14.9536 13.8078 40.8262
Oct 11.3570 12.6045 10.2631 13.1541
Nov 6.2072 7.8355 12.7393 20.0930
Dec 4.5757 5.6052 11.6914 25.1324
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Figure 12: Prediction and true DH for plant S. Upper left is yearly parameter set,
upper right is seasonal, lower left is monthly and finally lower right is weekly.

To summarise the predictions for plant S, all of the estimations seem to have a lower
accuracy for May-July, but better results during winter. The yearly prediction in
Figure 12 does appear to be a bit low during the first part of the year and too
oscillating during summer. The weekly prediction seemingly have some odd peaks
and dips throughout the year.
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Table 5: This shows the RMSPE on monthly intervals for plant D for all different
parameter sets tested in the study. The monthly set performed the best in this regard
for almost all months, although the seasonal set did predict slightly better in May and
September. The weekly set predicted more accurately in July than June and August.

Yearly Season Monthly Weekly
Jan 7.7988 5.1775 5.0261 14.3579
Feb 8.0512 7.6448 8.0884 10.4875
Mar 6.9024 5.6604 6.0895 10.0616
Apr 10.1245 7.5936 8.3189 24.8056
Maj 14.4020 9.0137 10.4418 15.2228
Jun 40.0546 22.3983 12.1016 16.8112
Jul 21.4270 8.5042 7.0578 9.5872
Aug 40.1294 15.0456 10.6259 17.5737
Sep 22.2210 8.0257 8.2709 15.1002
Oct 9.3077 11.0318 8.2123 13.7483
Nov 5.9873 6.8844 6.7804 10.5369
Dec 4.6571 4.4293 3.8311 10.0542
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Figure 13: Prediction and true DH for plant D. Upper left is yearly parameter
set, upper right is seasonal, lower left is monthly and finally lower right is weekly.
Overall the predictions with seasonal and monthly parameter set seem to be predicting
closer overall, while the yearly seem a bit low in the first months and and a bit too
oscillating in summer.

In Figure 13 we see that the prediction with yearly parameters had trouble both
at the beginning of the year and during summer. It seems all of them have more
differing estimations during summer, especially June and August, though the model
with a monthly parameter set seems to be the most accurate one.
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Table 6: This shows the RMSPE on monthly intervals for plant C for all different
parameter sets tested in the study. Just as for plant D, the seasonal set performed
better during May and September, whereas the monthly set generally predicted better
at other times. Even here the yearly prediction is least accurate in the summer, but
performs admirably during winter.

Yearly Seasonal Monthly Weekly
Jan 8.0618 6.5662 7.2396 8.4893
Feb 10.3516 11.1265 11.7778 12.3991
Mar 8.7442 9.5823 7.8686 8.9748
Apr 21.1684 18.0928 18.6043 33.4647
Maj 25.0202 19.8049 22.0587 28.9231
Jun 30.0194 24.2276 15.5990 16.4639
Jul 43.0137 12.5992 10.0933 11.9356
Aug 48.8849 15.6765 13.5382 23.6896
Sep 39.4965 25.8835 25.8510 48.4595
Oct 9.9670 12.0314 9.8816 15.8143
Nov 7.7889 8.9522 9.8086 13.0413
Dec 6.8780 6.2432 5.7824 6.3372
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Figure 14: Prediction and true DH for plant C. Upper left is yearly parameter set,
upper right is seasonal, lower left is monthly and finally lower right is weekly. There
seem to be some spikes in heat load in September that none of the predictions hit,
except possibly the yearly model.

As with Plant D, the estimation with a yearly parameter set for Plant C differs more
than the others at the beginning of the year and the summer, as can be seen in
Figure 14. September have the largest RMSPE for the seasonal, monthly and weekly
model, and quite large for the yearly version as well.
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4.2 Confidence and prediction bands

To show the results regarding the created confidence bands, the absolute values are
not particularly telling. Since the plants are of different sizes and locations, the
magnitude of the produced heat load also differs. To get a better overview of the
relation between the heat load and confidence bands, let dα be the magnitude of
half the confidence band as in equation (11) and let ȳ be the mean of the heat load.
Then the numbers presented will be

dα
ȳ
,

which is how large the confidence band is in proportion to the mean heat load. This
is done for every partition. For all tables in this section, except for the one with
yearly parameter set, the relatively smallest confidence and prediction band will be
coloured in green and the largest in red. Do note that the size of both the confidence
and prediction bands have been divided with the mean of the predicted heat load for
respective period and plant.

All models will have additional graphs depicting the prediction and both bands for
an arbitrary week in June, September and December. For all figures illustrating the
bands, the following legend will apply:

Figure 15: The legend for all following graphs depicting the confidence and prediction
bands.

4.2.1 Yearly set

Here follows the results of the yearly predictions with and without confidence and
prediction bands. Since the bands are of same size, they are relatively large during
summer and oscillates more than the actual heat load which can be seen in Figure
16 and 17.
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Figure 16: Prediction and true heat load for all plants using yearly parameters
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Figure 17: Prediction and confidence bands added to the estimation and true DH
for yearly parameter for all plants

Table 7 shows the size of the bands relative to the heat produced. The confidence
bands are clearly narrower for plant D than the other two, however, the prediction
bands are of the same relative size.

Table 7: This table shows the size of the 95% confidence bands and 90% prediction
band in relation to the magnitude of the heat load for a single yearly set of parameters.

(a) Confidence 95%

Period \Plant S D C
Whole year 0.4293 0.1801 0.3346

(b) Prediction 90%

S D C
0.6542 0.6234 0.6343

In Figure 18, 19 and 20 we can see the head load and corresponding bands for a week
in June, September and December for all plants. The bands are of the same size all
year, however, the prediction appears to predict the shape of true heat load closer
in December than June. September has some mixed results while the prediction
oscillates too much in June.
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Figure 18: Predicted heat load with confidence and prediction bands for plant S
using yearly parameters. The periods shown are a week in June, September and
December. The prediction in June is slightly low and oscillates more than the true
heat load, the lower band is also almost constantly below 0 MW. The prediction is
closer in both September and December, yet the lower prediction bound is still below
0 MW for a few points in September.
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Figure 19: Predicted heat load with confidence and prediction bands for plant D
using yearly parameters. The periods shown are a week in June, September and
December. The prediction in June is oscillating stronger than the true heat load and
a over shoots a bit in September. The confidence band is much narrower than the
prediction band.
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Figure 20: Predicted heat load with confidence and prediction bands for plant C
using yearly parameters. The periods shown are a week in June, September and
December. The prediction in June and September is oscillating more than the true
heat load and both bands’ lower bound drops below 0 MW for some of the data points.
In December the prediction is more accurate.

4.2.2 Seasonal sets

Here follows the results of the seasonal predictions with and without confidence and
prediction bands. We see in Figure 22 that the bands seem to get narrower for the
July-September season. The prediction during summer in Figure 21 seems closer
than for the yearly parameter model.
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Figure 21: Prediction and true DH for the seasonal parameter model for all plants.
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Figure 22: Prediction and confidence bands added to the estimation and true DH
for the seasonal parameter model for all plants.

Table 8 below shows the size of the bands relative to the heat produced. The colder
seasons have relatively narrower bands during the colder seasons, while April to June
have the widest.

Table 8: This table shows the size of the 95% confidence bands and 90% prediction
bands in relation to the magnitude of the heat load for the seasonal partition models.

(a) Confidence level 95%

Period \Plant S D C
Jan-Mar 0.3096 0.1253 0.2056
Apr-Jun 0.3974 0.2320 0.5307
Jul-Sep 0.3610 0.1864 0.2619
Oct-Dec 0.2774 0.1956 0.3299

(b) Prediction level 90%

S D C
0.4054 0.2790 0.3798
0.7542 0.7127 0.8010
0.8220 0.6045 0.7751
0.4695 0.4109 0.3894

In Figure 23, 24 and 25 we can see the head load and corresponding bands for a
week in June, September and December for all plants. Mostly the much narrower
confidence bands seem to be able to contain the true hat load, however, not always
for September. The prediction bands does seem to be wide enough for the studied
weeks.
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Figure 23: Predicted heat load with confidence and prediction bands for plant S
using seasonal parameters. The periods shown are a week in June, September and
December.
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Prediction in September for Plant D using seasonal parameters
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Figure 24: Predicted heat load with confidence and prediction bands for plant D
using seasonal parameters. The periods shown are a week in June, September and
December.
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Prediction in September for Plant C using seasonal parameters
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Figure 25: Predicted heat load with confidence and prediction bands for plant C
using seasonal parameters. The periods shown are a week in June, September and
December.

4.2.3 Monthly sets

Here follows the results of the monthly predictions with and without confidence and
prediction bands. We see in Figure 27 that the bands seem to get narrower for the
summer months. The prediction during summer in Figure 26 seems closer than for
the yearly parameter model.
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Figure 26: Prediction and true heat load for all plants using monthly parameters.
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Prediction for the whole year for Plant S using monthly parameters
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Prediction for the whole year for Plant D using monthly parameters
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Figure 27: Prediction and confidence bands added to the estimation and true DH
for the monthly parameter set for all plants.

Table 9 below shows the size of the bands relative to the heat produced for each
month. January and December have relatively narrower bands, while months that
are likely to appear during transition seasons, like April, May, August, September
and October have wider bands. Remarkably, in contrast to the RMSPE scores, the
bands during summer months are relatively narrow.

Table 9: This table shows the size of the 95% confidence bands and 90% prediction
band in relation to the magnitude of the heat load for the monthly partitions.

(a) Confidence 95%

Period \Plant S D C
Jan 0.1322 0.1191 0.0593
Feb 0.2223 0.1758 0.3868
Mar 0.3584 0.1408 0.4007
Apr 0.3679 0.1871 0.5053
May 0.3137 0.1885 0.5840
Jun 0.2106 0.1493 0.2272
Jul 0.1669 0.0990 0.1377
Aug 0.3768 0.1161 0.1768
Sep 0.3637 0.1992 0.2554
Oct 0.2397 0.2509 0.3633
Nov 0.1951 0.1736 0.2168
Dec 0.1491 0.0965 0.1727

(b) prediction 90%

S D C
0.2367 0.1947 0.2476
0.3171 0.2394 0.5325
0.4579 0.2744 0.4689
0.5892 0.3886 0.6246
0.5661 0.4749 0.7410
0.4559 0.3193 0.7019
0.4544 0.3356 0.3830
0.7937 0.3099 0.6148
0.6632 0.4761 0.5739
0.3461 0.4031 0.3661
0.3429 0.2649 0.3190
0.3116 0.1686 0.2573

In Figure 28, 29 and 30 we can see the head load and corresponding bands for a
week in June, September and December for all plants. Mostly the much narrower
confidence bands seem to be able to contain the true hat load, however, not always
for June and September. Especially plant S have a prediction that is clearly lower
than the true heat load in June. The prediction bands does seem to be wide enough
for the studied weeks.
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Prediction in September for Plant S using monthly parameters
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Figure 28: Predicted heat load with confidence and prediction bands for plant S
using monthly parameters. The periods shown are a week in June, September and
December. The prediction in June is slightly low and almost go outside the prediction
band as well. In December it is the opposite, while September is more centred.
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Prediction in September for Plant D using monthly parameters

Mon Tue Wed Thu Fri Sat Sun Mon
250

300

350

400

450

500

550

600

650

700

[M
W

]
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Figure 29: Predicted heat load with confidence and prediction bands for plant D
using monthly parameters. The periods shown are a week in June, September and
December. The prediction in June misses some peaks, which go outside the confidence
band but is contained within the prediction band. September and December have more
narrow bands which still contain the model prediction within most of the confidence
band.
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Prediction in June for Plant C using monthly parameters
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Prediction in September for Plant C using monthly parameters
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Prediction in December for Plant C using monthly parameters

Figure 30: Predicted heat load with confidence and prediction bands for plant C
using monthly parameters. The periods shown are a week in June, September and
December. Overall the prediction looks good and the true heat load is even contained
within the confidence band for the most part. The confidence and prediction bands
seem to be similar in size for December, and greater in June.

4.2.4 Weekly sets

Here follows the results of the weekly predictions with and without confidence and
prediction bands. The predictions in Figure 31 seem to follow the general shape
of the heat load, but does have some odd spikes for some weeks. We see in Figure
32 that the bands seem to get narrower for the summer months for plant D and C.
For plant S, however, the bands are vary wide at some points. All plants have some
intervals that get much wider bands than the others’.
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Predicted Heat Load Plant D - Weekly Parameter Set
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Figure 31: Prediction and true heat load for the model with the weekly parameter
set for all plants
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Prediction for the whole year for Plant S using weekly parameters
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Prediction for the whole year for Plant D using weekly parameters
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Prediction for the whole year for Plant C using weekly parameters

Figure 32: Prediction and confidence bands added to the estimation and true DH
for the weekly parameter set for all plants. There are varying sizes of prediction
bands from week to week.

No table was made for every single week, but closer looks at a week in June, September
and August was made. As can be seen in Figure 33, the weekly prediction is way
off in both June and September for plant S, not even the prediction bands contain
the true heat load. While plant D and C, in Figure 34 and 35 respectively, seem to
have a better prediction than plant S, the confidence band does not contain the true
heat load all the time, but the prediction bands does. We can also see when the
parameters change and the bands changes a lot in size for June and December for
plant D, as seen in Figure 34.
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Figure 33: Predicted heat load with confidence and prediction bands for plant S
using weekly parameters. The periods shown are a week in June, September and
December.
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Prediction in September for Plant D using weekly parameters
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Figure 34: Predicted heat load with confidence and prediction bands for plant D
using weekly parameters. The periods shown are a week in June, September and
December.
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Figure 35: Predicted heat load with confidence and prediction bands for plant C
using weekly parameters. The periods shown are a week in June, September and
December.
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5 Discussion
For this sections, the results will be discussed and answers to the objectives sought
after. There will also follow a discussion about sources of errors and further studies
that could be conducted based on the results found here.

5.1 Analysing the results

Having some partitions, but not too many seems to be better for prediction. When
it comes to fitting the model, the more partitions used, the better the model fits to
the measured data as seen in Table 2. This adds up, as the model can fit better to
each part. More importantly however, is what happens when the parameters are
used for prediction. In Table 3 we can see that that the yearly and weekly parameter
sets performed worst for all three plants. These results indicate that a dividing the
year into shorter seasons, at least all the way down to a month is likely to perform
better that one that uses the same parameters throughout the whole year. On the
other hand, too small intervals may lead to the fitting being too specified and the
variability for that period may be larger than acceptable.

The yearly set could still be acceptable if one does not have the computational
means of using multiple sets. As long as one are aware that it probably will perform
poorly during warmer seasons. If it is possible to turn off the temperature affected
parameters completely for the warmer periods, it could possibly be perform acceptable
during summer as well.

A purely weekly parameter set is probably not the best solution for predicting,
however. Just looking at the graphs in Figure 32, the prediction bands are very
large for some weeks. The prediction itself seem to also vary quite a bit for when it
predicts well and when it does not. So even if it may have some accurate intervals,
the unpredictability is not desirable for a reliable prediction.

The difference in weather may also affect the accuracy of the model depending on
which parameter set is used. When looking at the prediction in a week in June for
plant S, we see in Figure 18,23, 28 and 33, the monthly set predicted less than the
actual heat load needed, while the weekly predicted even less and the seasonal and
yearly predicted closer to the true heat load, albeit with stronger oscillations. In
Figure 11 we can see that the heat load in 2018 was a bit lower during summer than
it was in 2019. So even if the temperature would be lower for the plotted week, if the
model has set a base line that is too far below the heat load of a predicted year, the
temperature might not be able to weigh up against it depending on the parameters
set for temperature values. The yearly and seasonal parameters are not as affected
by this offset for a period in the summer as they fit the model during a longer period
of time. The trade off here is then an offset versus oscillations.

The time of the year with largest RMSPE seem to be around summer and the
transition periods to and from summer. This is a bit surprising, as prediction during
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summer usually goes well from the experience of the Company. However, the plants
that had a low RMSPE for summer were plant S and D. Looking at June in Figure
28 and 29, the heat load is consistently higher than the prediction, especially for
Plant S. This is possibly because the heat load was lower the period before, which the
model then had a hard time adjusting for. Although, the confidence and prediction
bands during summer are not particularly wide, the prediction band contains the
true heat load, even if the confidence band does not. It might be that summer is
usually easy to fit the model to, which may lead to a worse prediction if there is an
offset for next year, either because the prediction oscillates with the temperature
more, or because it fit too closely to last year. In general when choosing a parameter
set in regards to summer, all three plants got the best RMSPE score when using
monthly parameters for June to August, with the exception of plant S in July, where
seasonal parameters had a slight edge.

The transition periods are more likely to vary more, however. Only plant C had the
highest RMSPE during a transition month, September. It may have been affected
by the strong oscillations occurring in the beginning of that month, as can be seen
in Figure 10. Regardless, looking at Table 9, the month with the largest confidence
and prediction bands all lie in a possible season transitional period. So while the
overall relative RMSPE may be lower, there is likely the highest variability in heat
load during those periods. The prediction bands turn large, but in return they do
seem to cover the unforeseen peaks as seen in the September graphs in Figure 29
and 23. As for choosing a parameter set for these periods, the monthly variant is not
always better than the seasonal. It is hard to tell when the weather is unpredictable
as well and perhaps going for the model with the smaller prediction band gives the
most reliable forecast.

Except for the weekly model, all models were able to produce a relatively accurate
model during the colder seasons. Both the RMSPE and relative size of the confidence
and prediction bands are quite low during November to February. Not only is the
heat load largest during this period, but looking at December in any figure using
yearly, seasonal or monthly parameters depicting it, the prediction does seem to
follow the true heat load quite closely. From the RMSPE values all three of those
partitions can work well during winter times.

All in all, the confidence and prediction bands seem to reliably contain the future
heat load. While the prediction bands do grow quite large, even peaks in transitions
seasons as mentioned above are contained within. Since the point of the prediction
bands are to contain the whole regression line for future values, they have to be
large for periods that have large variations in heat load demand. The bootstrapped
prediction bands also seem to be able to pick out when the input values are differing
between the years. Take the summer months as an example. In Table 9 is about two
to three times larger than the confidence bands for the summer months for all plants,
even larger for plant C. While growing in size, they do manage to cover the odd
peaks in summer that shows up. However, the confidence bands seem to be reliable
over all as well. There are some peaks in the transitions months that do get missed
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and there are intervals during summer that escape the confidence confinements, but
overall, the true heat load stays inside most of the time. In conclusion, the confidence
bands work well for prediction, but if the prediction bands turn out much larger,
there may be a large difference in input data compared to last year.

Weather aspects other than temperature may be helpful for a more robust prediction.
Looking both at the RMSPE in Table 5 and the the values for Plant D in Table 9 in
comparison for the corresponding tables, Table 4, 6 and values in Table 9 for plant S
and C, plant D in general have proportionally narrower bands and a lower RMSPE.
As plant D is the only one of the three to additionally use wind speed and solar influx
as input to the model, they could possibly affect the model in a positive way. On the
other hand, plant D is the plant with the largest production, so the sheer magnitude
of heat load produced may make it more robust against smaller differences between
the years in weather input. This is probably the more likely scenario, as an earlier
study and in the experience of the company, this extra input data usually does not
affect the prediction significantly [5]. Then again, the geographic location of the
plants may have some effect. Since plant D is located in Denmark, which is relatively
flat, the wind is likely to be stronger than in more rugged area.

5.2 Sources of Errors

In reality, the weather measurements are also estimated when doing prediction. We
do not know exactly what the temperature will be tomorrow and have to rely on
weather forecasts. In this study, we used already known data for prediction analysis
and with the more realistic scenario, the prediction would have an additional factor of
uncertainty added. This could potentially make the summer periods relatively easier
to predict, in the case that weather during the summer is more predictable. This
may also have affected the prediction during transition periods between seasons like
winter to spring, usually occurring in April, less reliable as we know from experience
how the April weather can be. In short, the RMSPE and size of the bands may shift
around more depending on uncertain weather data.

Some measurements both in weather data and heat load may have been wrongly
measured. It happens to most technical apparatuses that they sometimes get a
wrong reading or are turned off. Usually the company tries to manually adjust for
any missing or out of place measurements, however there may be some singularities
and if many days are missing, the data can be a bit misleading.

For Plant D, we removed a day in July that were missing data. This may pose a
bit of a misleading prediction as the weekdays for the rest of the years then got
shifted data-wise, but not model-wise. This means that the model might predict a
Saturday as if it were a Friday instead and since the model contain parts regarding
social patterns, that differs depending if it is a weekday or not, the results may be
somewhat shifted. I noted this a bit late and did not have time to adjust it.
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5.3 Further Studies

Choosing block length for the MBB could possibly have been performed better.
As mention in Section 2, choosing the length to be only 24 there may be loss in
information regarding the day of week and all that entails for the heat load. There
is also much more to read up on regarding choosing a suitable block length, which
was not done thoroughly for this project, as I simply picked one that would fit for
all interval lengths dealt with in this study. An idea could be to choose different
block lengths depending on the number of days in the interval, though it requires an
extra bit of programming and reasoning and may also become harder to compare
the results for each partition.

In this study, all partitions were of similar length throughout the year, but does not
necessary need to be the case. Perhaps it would also be wiser to let the seasonal
parameters represent the actual seasons, rather than strict quarters of the year.
Those could also be based on meteorological seasons, which would require weather
forecasts. Or in general base the chosen parameter set on weather forecast. Of course
this would put one at mercy of having a good weather forecast, but it could be worth
looking into.

For this study, linear regression with standard least squared error was used, however,
that may not be the optimal regression method for heat load. Since undershooting
in winter or over shooting in summer generally is seen as worse than the opposite,
it might have been better to use an asymmetric least squared (ALS). ALS gives
weights to the errors, so missing peaks in winter would be regarded as more wrong
than overshooting. It would be interesting to see if a monthly or seasonal approach
still would yield a better prediction when the errors are weighted differently.

This study focused more on the relative sizes of the bands and used RMSPE as a tool
for analysis. So even if the summer is shown to have the largest RSMPE for most
plants, the losses during summer might not matter particularly much compared to
the errors in winter, even if they are smaller relatively speaking. The results of this
study are not to be disregarded because of that, they are still of interest, however,
looking at more absolute values would also be worth examining.
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6 Conclusions
To summarise what was gained from this study, using a few partitions throughout
the year will yield a more accurate prediction. Using the same parameters all year
will especially be less reliable during summer, while using too many partitions, like
weekly, will result in the forecast having a greater variability. Whenever the input
data differs much between the fitted year and the predicted one, the variants with
smaller partitions are more susceptible to offsets, while those with larger might give
more oscillations.

For this data set, summer was generally the season with highest RMSPE for the
predictions, however, using monthly parameters seems to give the better forecast for
all plants. The transitions times between spring, summer and autumn seem to be
the time with most variability in the data, which the bootstrapped bands pick up on.
Both seasonal and monthly performed nicely during those times. All partitions but
the weekly can quite reliably predict the heat load during winter time.

In general, the bootstrapped bands keep the true future heat load within their
bounds, and even in periods where the confidence band fails, such as for offsets and
large peaks, the prediction band keeps up, although being relatively large. Either
some weather inputs additional to temperature, or having a larger heat production,
may help the stability of the forecast. All in all, using partitions somewhere between
one to three months seem to give a more reliable and accurate prediction.
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A HEAT LOAD AND TEMPERATURES

A Heat load and Temperatures
Here the heat load and temperature for both the fitting year and the prediction year
are plotted together in higher resolution.
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This depicts the district heat load and temperature for both the year used for fitting
the model and for predicting for Plant S.
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This depicts the district heat load and temperature for both the year used for fitting
the model and for predicting for Plant D.
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B MODEL PREDICTIONS
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This depicts the district heat load and temperature for both the year used for fitting
the model and for predicting for Plant C.

B Model Predictions
This part shows the model predictions in higher resolution. First all predictions for
plant S will be shown, then plant D and finally plant C
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Predicted Heat Load Plant S - Yearly Parameter Set

Prediction and true heat load for the model with the yearly parameter set for plant S
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B MODEL PREDICTIONS
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Predicted Heat Load Plant S - Seasonal Parameter Set

Prediction and true heat load for the model with the seasonal parameter set for plant
S
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Predicted Heat Load Plant S - Monthly Parameter Set

Prediction and true heat load for the model with the monthly parameter set for plant
S
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B MODEL PREDICTIONS
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Predicted Heat Load Plant S - Weekly Parameter Set

Prediction and true heat load for the model with the weekly parameter set for plant S
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Predicted Heat Load Plant D - Yearly Parameter Set

Prediction and true heat load for the model with the yearly parameter set for plant D

Leo Einarsson IV 2 juni 2021



B MODEL PREDICTIONS
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Predicted Heat Load Plant D - Seasonal Parameter Set

Prediction and true heat load for the model with the seasonal parameter set for plant
D
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Predicted Heat Load Plant D - Monthly Parameter Set

Prediction and true heat load for the model with the monthly parameter set for plant
D
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B MODEL PREDICTIONS
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Predicted Heat Load Plant D - Weekly Parameter Set

Prediction and true heat load for the model with the weekly parameter set for plant D
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Predicted Heat Load Plant C - Yearly Parameter Set

Prediction and true heat load for the model with the yearly parameter set for plant C
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B MODEL PREDICTIONS
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Predicted Heat Load Plant C - Seasonal Parameter Set

Prediction and true heat load for the model with the seasonal parameter set for plant
C
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Predicted Heat Load Plant C - Monthly Parameter Set

Prediction and true heat load for the model with the monthly parameter set for plant
C
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C CONFIDENCE AND PREDICTION BANDS
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Predicted Heat Load Plant C - Weekly Parameter Set

Prediction and true heat load for the model with the weekly parameter set for plant C

C Confidence and Prediction Bands
The confidence and prediction bands of the whole year are shown for all plants in
greater resolution. First plant S, then plant D and lastly plant C.
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Prediction for the whole year for Plant S using yearly parameters

Prediction and confidence bands added to the estimation and true DH for the yearly
parameter set for plant S.
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C CONFIDENCE AND PREDICTION BANDS
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Prediction for the whole year for Plant D using yearly parameters

Prediction and confidence bands added to the estimation and true DH for the yearly
parameter set for plant D.
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Prediction for the whole year for Plant C using yearly parameters

Prediction and confidence bands added to the estimation and true DH for the yearly
parameter set for plant C.
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C CONFIDENCE AND PREDICTION BANDS
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Prediction for the whole year for Plant S using seasonal parameters

Prediction and confidence bands added to the estimation and true DH for the seasonal
parameter set for plant S.
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Prediction for the whole year for Plant D using sesonal parameters

Prediction and confidence bands added to the estimation and true DH for the seasonal
parameter set for plant D.
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C CONFIDENCE AND PREDICTION BANDS
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Prediction for the whole year for Plant C using seasonal parameters

Prediction and confidence bands added to the estimation and true DH for the seasonal
parameter set for plant C.
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Prediction for the whole year for Plant S using monthly parameters

Prediction and confidence bands added to the estimation and true DH for the monthly
parameter set for plant S.
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C CONFIDENCE AND PREDICTION BANDS
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Prediction for the whole year for Plant D using monthly parameters

Prediction and confidence bands added to the estimation and true DH for the monthly
parameter set for plant D.
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Prediction for the whole year for Plant C using monthly parameters

Prediction and confidence bands added to the estimation and true DH for the monthly
parameter set for plant C.
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C CONFIDENCE AND PREDICTION BANDS
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Prediction for the whole year for Plant S using weekly parameters

Prediction and confidence bands added to the estimation and true DH for the weekly
parameter set for plant S.
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Prediction for the whole year for Plant D using weekly parameters

Prediction and confidence bands added to the estimation and true DH for the weekly
parameter set for plant D.

Leo Einarsson XIII 2 juni 2021



C CONFIDENCE AND PREDICTION BANDS
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Prediction for the whole year for Plant C using weekly parameters

Prediction and confidence bands added to the estimation and true DH for the weekly
parameter set for plant C.
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