
LU-TH 21-22
June 2021

Using Artificial Neural Networks

to optimize scattering probabilities

Erik Rustas

Department of Astronomy and Theoretical Physics, Lund University

Bachelor thesis supervised by Rikkert Frederix

Abstract

Monte Carlo event generators are used by theoretical particle physicists to
get a better understanding of the phenomena in particle physics. Given the
improvements in precision and accuracy of event generators, using these tools
can be very CPU intensive. A method of unweighting events using artificial
neural networks is presented to improve the efficiency of event generation.
An introduction to machine learning as well as an introduction to the un-
weighting procedure is given as a basis. Results are given by comparing the
“classical” and artificial neural network unweighting. The efficiency is ex-
pressed as factors of computing time for the matrix element and the model’s
predicted value.

Popular Science

For centuries humans believed that matter was made of indivisible small
particles called atoms (from the word atomos Greek for “indivisible”). We
now know that atoms are made of even smaller constituents of matter. These
are called fundamental particles such as the electron or the Higgs boson. How
these fundamental particles interact with each other is best explained by the
theory called the Standard Model. Further research in the field of particle
physics is still an ongoing subject even today.

One way of studying how particles interact is by colliding particles together
such as the Large Hadron Collider at CERN. The Large Hadron Collider
accelerates particles to nearly the speed of light in two different tubes that
run opposite each other in circular loops. When these tubes intersect, the
particles collide into each other creating extremely high energy collisions.
From these collisions one can analyze the data and find new particles. How-
ever one does not need a collider to extract useful information about particle
physics. Theorists use computer simulation programs called event genera-
tors. These event generators simulate high energy particle collisions by Monte
Carlo methods. The event generators are essential tools to theorists as they
allow for confirmation of theoretical predictions. Given their significance,
the search for higher precision composes a highly demanding computational
cost. Optimizing these event generators using machine learning techniques
will be this project’s main goal.

Machine learning is part of the field of artificial intelligence, which learns
by processing sample data. These types of artificial intelligence are used
in for example data filtering such as spam mail. This project will use an
artificial neural network, which is a branch of machine learning inspired by
the structural construct of the brain. The brain is amazing at remembering
and learning new things, so building a program inspired by how the brain
works is only natural.

One of the Monte Carlo methods that event generators use is called the “un-
weighting” method. The generated events from the event generator have
a value, or weight, mainly determined from the matrix element. Making
these weighted events have a more nature-like distribution, where the events
have an equal unit weight, is the process of unweighting. This process scales
rapidly with the amount of particles in a given interaction. Where the com-
plexity of the matrix element increases as well as the amount of times the
matrix element has to be evaluated. Machine learning unweighting will be
presented and tested in this project. This method will use mainly the artifi-
cial neural network’s prediction of the matrix element instead of the actual
matrix element. Machine learning and classical unweighting methods will be
tested where the break even point of efficiency will be found. This is the fac-
tor that compares the time to do one evaluation of the matrix element, and
the artificial neural networks prediction. The break-even point of efficiency
will be how much more computational time the matrix element has to be for
the machine learning unweighting to be a more favorable method.

Contents

1 Introduction 1

2 Introduction to Artificial Neural Network 2

2.1 Activation function . 3

2.2 Loss function . 4

2.3 Optimizer function . 5

2.4 Data scaling . 6

3 Event Generator 8

3.1 Monte Carlo Method . 8

3.2 Unweighting . 9

4 Method 12

5 Results 15

6 Conclusion 21

1 Introduction

The Standard Model is the most successful theory of particle physics de-
scribing all particles and the fundamental forces (except gravity) and how
they interact, but the theory of particle physics is not complete. There are
still things that need to be incorporated. For instance the existence of dark
matter or the theory of gravity is not explained by the Standard Model.
Many tests are being done to try to answer these questions. One of the
experiments that are being done is by particle colliders, which is a type of
particle accelerator. They work by accelerating several beams of particles to
extremely high kinetic energies, for which the beams collide into each other
in a head-on collision. Because of the highly kinetic energies and by the
mass–energy equivalence, heavy and unknown particles may be found. The
largest particle collider in the world is the Large Hadron Collider (LHC) at
CERN in Geneva [1], a 27 km long ring with the current world record of a
collision energy of 13 TeV.

Another approach other than the particle colliders is the use of event gener-
ators. These are computational frameworks that use Monte Carlo methods.
Event generators are useful since they simulate high energy particle collisions
where theoretical predictions can be tested. The Monte Carlo method that
we are looking into is the method of unweighting. The event generator esti-
mates the cross section by numerically solving an integral of a given process.
In such a process the given event has a weight depending mostly on the ma-
trix element, but also on the phase-space. In a nature-like distribution, each
event has a unit weight. Going from weighted events to unweighted events
is the process of unweighting.

The issue at hand is the evaluation of the high-dimensional matrix element
function. This function scales rapidly with the number of final state particles
in a given process such that there is a need for new unweighting methods.
The topic of this project is to build an Artificial Neural Network (ANN)
that can be used in what is known as ANN unweighting. We will focus on
a supervised regression type model that tries to make a “fit” for the three-
momenta in a given process to its corresponding matrix element. This fit or
prediction of the matrix element will then be used in the ANN unweighting.
Given the problem at hand, the evaluation of the matrix element, the ANN
unweighting will mostly use the predicted value instead and in such a way
maybe be more efficient.

This thesis will begin with a background of ANN: How it is structured and
the most important functions for an ANN. In section 3 the description of

1

how the classical unweighting works, as well as the ANN unweighting. After
the theoretical background, a method on how the ANN was built, as well
as how to code the unweighting methods will be presented in section 4. In
section 5, the result of how accurate our model is will be presented in the
form of a plot. The efficiency of comparing classical versus ANN unweighting
will be measured in terms of computing time and the physical validation will
be presented in different histograms.

2 Introduction to Artificial Neural Network

Looking at the recent decade, the increasing development of computer hard-
ware has led to an exciting topic of data handling. Machine learning (ML)
is a powerful tool to use when handling larger datasets. ML is a computer
algorithm that learns by itself by processing sample data. These are useful in
many applications, such as reading handwritten text, removing spam mails
or predicting weather forecasts. This project will look at a branch of machine
learning called Artificial Neural Network. They are inspired by how the brain
operates. Humans have an excellent capability of learning new things, and
machine learning techniques try to imitate these. An ANN is built using
two objects, nodes and synapses. These nodes are structured in layers, and
each node is what is known as a weighted sum of the nodes in the previous
layer. The synapses are these connections between the nodes, and they pass
information along with the network.

We can picture an ANN as several vertically layers with nodes, where the
first layer is the input layer and the last one the output layer. These two
layers have the dimensions (number of nodes) of what problems one wants
to solve. If one wants a model that tries to predict a 28 × 28 pixel image
of an integer between [0, 9]. Then that model would have a 28 × 28 = 784
dimensional input layer, that is one node for each pixel. The output layer
would be 10 dimensional, one node for each possible integer. This type of
model is what is known as a classification model, these are ANN models that
predict discrete values. Let’s take the same example as before but this time
the ANN tries to predict the pixel image but for a float between [0, 9]. We
would still have a 28×28 dimensional input layer but this time we don’t have
an integer with 10 possible discrete values, but a float between [0, 9] which
can take infinitely many values. It would be impossible to have an infinite
dimensional output layer such that for this type of problem the output layer
has one node which gives out a number of infinite range. This type of ANN
model is called a regression model.

2

Output

Input
x1

Bias
ω

b

Σx2

x3

1

ω 2

ω 3

0

Node

φ

Figure 1: Schematic representation of one node (artificial neuron) with
input x = (x1, x2, x3). Each input xk gets weighted by a factor ωk, summed
up and added a bias factor b0 such that a =

∑
k ωkxk + b0. Node a is passed

through an activation function: ϕ(a) = ϕ(
∑

k ωkxk + b0).

There exists a third type of layer called “hidden layer” of nodes that is
between the input and output layer. The hidden layer is commonly used
(employed) when one has more complex problems such as a nonlinear system.
There is no limit on how many hidden layers one can have and how many
nodes these hidden layers have.

2.1 Activation function

As mentioned earlier the artificial synapses pass on information between
nodes. If we consider just one node a we can define its input as a weighted
sum

a =
∑
k

ωkxk + b0 (2.1)

where xk denotes the nodes from the previous layer, ωk are the weights that
the synapses give for each connection between nodes and b0 is a bias factor of
the node a. The structure for this with 3 inputs is seen in figure 1. The output
of node a is then what gets passed on to the next layer of nodes. The output of
the node can be interpreted by a function called the activation function ϕ(a).
The activation function looks different depending on what type of problem
one wants to solve (classification or regression). The activation function is
often always differentiable, which is important as we will see later.

3

Some example of activation functions that are commonly used are

Linear function, ϕ(a) = a

Rectified function, ϕ(a) = max (0, a)

Sigmoid function, ϕ(a) =
1

1 + e−a

Tangent hyperbolic function, ϕ(a) =
ea − e−a
ea + e−a

(2.2)

For the output layer there is a clear distinction on what type of activation
function one may choose. If it is a classification model then you want the
nodes of the output layer to make discrete values, that is we want something
that works like a “switch” that turns on and off a node in the layer. For
this purpose the sigmoid activation function is great since it has a range of
(−∞,∞) → (0, 1). For a regression type model, linear or rectified linear
function (ReLU) is useful. That is because the output nodes have infinite
range and the activation function for these models should not categorize the
result. ReLU is the same as a linear function when a is positive, but sets all
negative values of a to 0. The choice of activation functions for the hidden
layers are more free.

2.2 Loss function

In this thesis we will use the ANN only as a regression model. A regression
model takes in x as input and performs an output function y(x), this is the
model’s prediction. The actual target value is called dn. During the training
phase, the model learns by processing sample data where the ANN is given
a target value dn for each input vector xn. The loss (or cost) function E
is a function that compares the output function y(x) and the given result
dn. This means that the loss function gives us a quantity that tells us how
accurate the prediction is. Let θ be all the changeable parameters (ω, b0)
that affect the output function y(x). The loss function E(θ) compares the
result dn with the output yn = y(θ,xn). An example of a loss function is the
mean squared error (MSE)

E(θ) =
1

N

N∑
n

(yn − dn)2 (2.3)

where N is the total number of outputs and the sum runs over all these. An
ideal prediction would make the loss function equal to zero and we would

4

have an ideal ANN model. If the loss function is non-zero we need a function
that interprets the result and tries to minimise it, namely, the optimizer
function.

2.3 Optimizer function

So far we have an ANN model that takes in an input xn and works itself
through the network by each node’s activation function, where finally the
model makes a prediction yn in the output layer. This is what’s known as
forward propagation. This prediction is then compared with the real value
dn via the loss function. The optimizer function’s job is to minimize the loss
function by updating the changeable parameters θ = (ω,b0) by an algorithm
called gradient descent (GD). GD works by taking the derivative of the loss
function w.r.t θi by using the chain rule

∂E

∂θi
=
∑
n

∂E

∂ϕn

∂ϕn
∂an

∂an
∂θi

. (2.4)

This signifies the importance that the activation functions and the loss func-
tions are C1-smooth functions. The GD algorithm for the θi’th changeable
parameter is then

θi ← θi − η
∂E

∂θi
, (2.5)

where η is the learning rate and controls the size of an update. The negative
sign is because we want to move closer to the minimum. This is applied to
all changeable parameters

θ ← θ − η∇θE(θ). (2.6)

The gradient descent starts at the output layer and works itself backwards
through the network and updates each parameter layer by layer. This is
what is known as backpropagation. It is important to note that θ starts at
random numbers and many updates are needed to find a minimum for the
loss function.

It is important to define an epoch, since they are essential to this topic.
Let us define a training set with N samples then we have N inputs xn and
results dn. One epoch would be using the entire training set one time, or
in other words, the ANN sees the entire training set one time. After each
epoch the GD will utilize the whole training set and averaging the desired
change making one carefully calculated step towards a local minimum. This

5

is not ideal for larger training sets with many weights and biases since it
is computational slow to do one huge update instead of smaller ones. It
is often smart to divide this epoch into smaller subsets or batches. One
minibatch is a smaller subset of the training set and every time we have used
one minibatch to update the parameters, we have performed one iteration.
Each epoch is then the number of iterations times the size of the minibatch:
epoch = iterations × minibatch. When the minibatch has the same size as
the epoch, meaning one iteration, then we have GD making one iteration of
update per epoch. Minibatch stochastic gradient descent (minibatch SGD)
instead uses random (stochastic) minibatches of the training set. Let the
whole training set be divided into i minibatches. The minibatch SGD are
defined as

θ ← θ − η∇θEi(θ). (2.7)

Which means that we sum up and average all the training points in one
minibatch and makes a small step towards the minimum by updating θ.
This means that minibatch SGD makes more updates to θ then GD and
makes an approximate solution but this is good to avoid overfitting. The
number of updates minibatch SGD does is the number of iterations defined
above.

In this project we will use the Adam optimization algorithm [2]. Adam stands
for adaptive moment estimation and is a more complex version of minibatch
SGD. In its most simple explanation Adam changes the learning rate η, which
would otherwise be a constant in minibatch SGD. Adam adapts/updates the
learning rate, during the training, based on previous iterations.

2.4 Data scaling

The weights and biases are initially randomly generated and the optimiza-
tion algorithm updates these via the loss function. This means that the scale
between the real and the prediction value matters. Scaling the data matters
in the optimization and implementing scaling transformation for the input
and output can help stabilize the training. Examples of scaling your data
are normalization, non-linear transformation or standardization. A normal-
ization is where the dataset is normalized to an interval, often [0, 1] such as
the min-max normalization

xn =
x− xmin

xmax − xmin

, (2.8)

where x is the dataset, xn is the normalized dataset and xmin/max is the min-
imum/maximum value of that dataset. To see that this normalization works

6

one can input the boundary points x = xmin/xmax in the equation for which
the output will be xn = 0/1. Any value of x that is between [xmin, xmax] will
then get a normalized value in the interval [0, 1]. This type of normalization
is good since it keeps the ratio between data points in the dataset after nor-
malization but it does not work as well if you have many potential outliers
(datapoints that differ immensely compared to the rest) since they can affect
the size of xmin/xmax and in so shift the whole distribution towards that out-
lier. Standardization on the other hand scales the dataset to a distribution
around 0. It is defined as

xs =
x− µ
σ

(2.9)

where xs is the standardized dataset, µ is the mean value and σ the standard
deviation. If x is the mean value then xs = 0, if x is larger than the mean
value then xs > 0, and if x is lower than the mean value then xs < 0. This
means that we have scaled the dataset into a distribution centered around
zero. The standard deviation looks like

σ =

√∑
(xi − µ)2

N
(2.10)

where again µ is the mean value and N is the amount of data points in the
dataset. The sum measures the difference of each datapoint to the mean and
squares it. Standardization also struggles with possible outliers but deals
with it better than normalization. The small probability of outliers does
not affect the mean values as much as the boundary points of min-max nor-
malization such that the overall standardized distribution is not as affected.
Standardization on the other hand does not have a constant interval. This
means that the output interval changes with the dataset.

Non-linear transformation such as the log transformation operates the log-
arithmic function on the dataset. This is useful when you have “skewed”
dataset, or a dataset with high variance. Log transformation is useful when
one wants to reduce the variance, but still account for the magnitude of
change. One could keep the non-linear transformation as the scaled dataset,
or use it in a normalization or standardization.

7

3 Event Generator

Event generators, or Monte Carlo event generators, are essential tools to
test theoretical predictions. They create simulated events of high energetic
particle collision, making it possible to compare the result to experimental
particle colliders. The event generator used to produce all the sample data
in this project is the MadGraph5 aMC@NLO [3]. The event generator
produces phase-space points. This is a point in the phase-space, for which all
possible states of momenta exist. The MadGraph5 aMC@NLO generator
allows us to slice this phase-space such that we can control the amount of
sample data we want to have for the ANN. MadGraph5 aMC@NLO also
gives the corresponding matrix element for each phase-space point, such that
we can use it for training the ANN.

3.1 Monte Carlo Method

The cross section or the probability that a process would occur is proportional
to

σ ∝
∫
|M|2 dΦ(n) dim [Φ(n)] ∼ 3n (3.11)

where M is the matrix element. This function is dependent on n, which
is the amount of final state particles in the process. This integral may be
extremely hard to solve and an exact analytic solution may not exist such
that there is a need for a numerical solution.

The basic idea of the Monte Carlo method is to approximate the integral I
by using a probabilistic way. The integral become

I =

∫ x2

x1

f(x) dx ≈ V

N

N∑
i=1

f(xi), (3.12)

where V is the integration volume, N the number of sample points and the
sum runs over random samplings of the function. The method of approxi-
mating the integral in such a way is called a Monte Carlo integration.

8

3.2 Unweighting

In this project we want to investigate how the ANN can help the efficiency
of an event generator. Given the complexity of the matrix element for many
final state particles, the computational cost of finding the cross section for
that interaction is expensive. An approach to reduce this computational cost
is by a method called unweighting. The event generator generates each event
with a given weight. This weight is given by the matrix element and the
phase-space weight. Having weighted events is undesirable from a view of
accuracy and efficiency. In a region where the cross section is small, there
would be a large sample of weighted events in that region such that the
desired statistical accuracy would be satisfied. This means that there would
be a need for a larger sample size to get the total physical distribution. It
is also undesirable since nature has unit weight distribution. In small cross
sectional regions the nature-like property means that there would be fewer
equal weighted events. Extending the previously mentioned Monte Carlo
integration where one goes from weighted events to unit equal weighted events
is the unweighting method.

The best way to illustrate the classical unweighting method is by look-
ing at the one-dimensional case. Let us try to approximate the integral
I =

∫ 1

0
f(x) dx numerically. The unweighting method works by extending

eq. (3.12) such that it will save events with unit weight but still approximate
the integral. The classical unweighting procedure can be found in table 1
and in figure 2. See Ref. [4] or [5] for more information about this. The clas-
sical unweighting method works by first taking a random point on the x-axis
and compute f(x) (black dots in figure 2). Next we take a random point y
that is between 0 < y < fmax. If f(x) > y is true, the point is inside the
area and is accepted, whereas if the statement is false we disregard the point
(representing the green and red dot, respectively in figure 2). The integral
becomes I = accepted/total events times the total surface of the figure, in
this case (xmax − xmin) · fmax = (1− 0) · 1 = 1.

9

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

f(x)

Figure 2: Example of an one-dimensional unweighting process.

Table 1: Procedure for classical unweighting.

Classic Unweighting

1. Pick x randomly.
2. Compute f(x).
3. Pick random y = [0, fmax].
4. If f(x) > y:
accept event with unit weight,
else reject.

The actual time consuming part of this process is the evaluation of the ma-
trix element f(x). In our example in table 1 we can notice that we still need
to compute f(x) for those points that are not ending up as our unweighted
events. These computations of f(x) is the factor we want to reduce by intro-
ducing machine learning into the process. The ANN prediction, that we call
g(x), is a much faster computation but an approximation of the matrix ele-
ment. Using the g(x) in the unweighting method would in theory be a faster
method but one cannot assume that the ANN model has a 100% accuracy
such that g(x) = f(x). This error or difference between the real function
and prediction has to be accounted for. Doing the unweighting method with
the prediction g(x), the unweighted events would still be partially weighted
and the physics would differ. Thus, the events that survive the unweighting

10

method would need a weight factor that takes into account this difference
between f(x) and g(x). The weight factor has to be w(x) = f(x)/g(x) and
to prove this consider the probability of an event surviving times the out-
come weight. For the classical unweighting using the matrix element f(x),
the probability for each event to survive the comparison of step 4 in ta-
ble 1 are P cl = f(x)/fmax. The outcome weight of that process is of course
unity. Consider instead using the prediction g(x). Comparing the sum of the
probability P times the outcome factor r we see that∑

i

P cl
i · rcl =

∑
i

f(xi)

fmax

· 1 =
∑
i

g(xi)

fmax

· f(xi)

g(xi)︸ ︷︷ ︸
w(xi)

=
∑
i

PANN
i · rANN

i (3.13)

where ri is the outcome weight factor, and Pi the probability for the classical
and ANN unweighting. We can also see from this comparison of sums that
the probability of each event to be accepted has to be g(xi)/fmax. It is
possible to use gmax instead since∑

i

g(xi)

fmax

· w(x) · gmax

gmax

=
∑
i

g(xi)

gmax

· w(x) · gmax

fmax

. (3.14)

Using gmax means that each event has to be multiplied by gmax/fmax to still be
correct. Whichever situation one may choose fmax stills needs to be defined.
The whole purpose of using the ANN prediction is to reduce the number
of times the evaluation of f(x) is computed. If all matrix elements had to
be generated such that an fmax can be found the whole process would be
redundant. This means that fmax has to be defined in some way outside the
actual machine learning unweighting.

Using the prediction g(x) leads to partially weighted events, but one can do
a second unweighting such that real unweighted events could be obtained.
Both the first and second ANN unweighting method can be seen in table 2
below. The first ANN unweighting works similar to classical unweighting,
that is a random x is generated. The prediction g(x) is computed for that
point. A random y is generated between 0 < y < fmax. Then a comparison
is being made where we check if g(x) > y. If that is the case then that point
x is being saved with the weight factor w(x) = f(x)/g(x), else the point is
rejected. These weight factors are still partially weighted such that they can
be sent through the second ANN unweighting. This method is the exact same
as the classical unweighting. This means for every weight factor w(x) there
is a randomly generated y between 0 < y < wmax. Since all weight factors
are already obtained from the first unweighting, finding wmax can be found

11

by iterating through all these weight factors. Having generated a random y,
the next step is to make the comparison w(x) > y. If this is true, that event
is saved with a unit weight and are the final unit unweighting events using
machine learning unweighting methods.

Table 2: Machine Learning Unweighting

First Unweighting

1. Pick x randomly.
2. Compute g(x).
3. Pick random y = [0, fmax].
4. If g(x) > y:

accept with weight w(x) = f(x)
g(x)

,

else reject it.

Second Unweighting

1. Pick random y = [0, wmax].
2. If w(x) > y:
accept event with unit weight,
else reject it.

4 Method

The underlying idea is to build a machine learning algorithm to fit matrix
elements from the 3-momenta. We will use this arbitrary interaction: e+e− →
uūggg with an centre-of-mass energy of 1 TeV but the setup is general and
can be applied to other processes as well. The phase-space points where
generated with the same cuts as used in Ref. [6]:

min(sij/ŝ) > 0.01 (4.1)

where sij = (pi+pj)
2 and ŝ is the centre-of-mass energy. That is the minimum

relative invariant mass squared of any two final state partons. We decided
to remove the energy component of the 4-momentum because of its relation
with 3-momenta1 to reduce redundant factors for the model. The ANN
will be built in Python [7] using Keras [8] with TensorFlow [9] backend.
As mentioned earlier we will use the MadGraph5 aMC@NLO [3] event
generator to generate the sample data for our process. The ANN model will
be trained on 100000 phase-space points where 80% are used for training and
20% are for testing. The training data has a validation split of 20% which
means that each epoch is training on 64000 points and validating on 16000
points. The input layer will be a 21-dimensional array (7 particles in the
interaction times 3 for the momentum in each direction) and output a scalar

1E2 = p2x + p2y + p2z, where m ≈ 0

12

(matrix element). There will be three hidden layers that contain 20-40-20
nodes inspired by Ref. [6]. The activation functions for the hidden layers
are either hyperbolic tangent or ReLU, and linear for the output layer. The
loss function will be a mean squared error as eq. (2.3) with Adam optimizer.
The learning phase will have 200 epochs with an early stop if there is no
improvement after 30 epochs. We will scale our dataset by applying the
non-linear log transformation on the matrix element (output dataset). The
problem with our dataset is that it covers over 5 orders of magnitude, its
quite small (∼ 10−15) and has a huge variance. Applying a logarithmic
function worked the best in our case. We did not scale our input data since
the momenta is already between the interval [−500 GeV, 500 GeV].

To check the accuracy of our ANN code we took inspiration by Ref. [6]. They
plot the accuracy by doing a histogram of the logarithmic difference between
the predicted and real value. Their histogram is also made by generating
several trained models all with the same setup and hyperparameters and
then taking the average accuracy of them. This is to ensure a more accurate
representation.

The second step of this project is to see if the unweighting method using the
trained ANN model is possible and what kind of efficiency we can get. To
start off we need a large sample dataset with many weighted events, such
that in the end we have at least some unweighted event that we can use to
check the accuracy and physical validation. For the classical unweighting
we also need the corresponding matrix element f(x) for each event. Once
again we use MadGraph5 aMC@NLO [3] to generate a list of 500000
weighted phase-space events for which it also supplies a corresponding matrix
element. From the list of matrix elements we can use Python’s max() function
to get fmax. To get the list of y-values we generate a 500000 long list of
random numbers between [0, 1] using numpy.random.uniform. The y list then
multiplies with the factor fmax such that the right interval is obtained. The
classical unweighting is then done by iterating through the matrix element
and comparing if f(x) > y and save these events that survive.

As was mentioned earlier in section 3.2 using the machine learning unweight-
ing there is a problem of acquiring fmax. Since we are comparing classical
and machine learning unweighting we already have defined fmax from the
classical method. In practice this is not how it should be done. fmax has to
be predefined in some other way. That could for example be by using several
smaller sample sizes and taking the average fmax of these. One could also use
the already generated phase-space points from the training set and find fmax,
but then it could not be guarantee that there would exist an event such that

13

f(xi) > fmax in the actual unweighting method, but that should be quite
rare. The process of machine learning unweighting is similar to the classical
approach. A list of 500000 prediction g(x) is processed for each generated x.
A list of y is defined as the previous method. Once again we iterate through
the prediction data and compare g(x) > y with random y values, these events
that survives gets saved with the weight factor w(x) = f(x)/g(x).

For the second machine learning unweighting we need to define wmax which
once again uses Python’s max() function. Furthermore, the same operator
as earlier is done to find the y values for the second ANN unweighting but
this time we only need to generate the same amount of points as the list of
weight factors. The process once again is to check the comparison w(x) > y
and these x values that survives is saved and is our final unweighted events
using ANN.

Doing the machine learning unweighting would be useless if the actual physics
would change compared to the classical approach such that a physical vali-
dation is needed. This will be done by three histograms with the unweighted
events for both the classical and ANN unweighting. They have to be normal-
ized as the amount of unweighted events will differ between the two methods.
The normalization will be done by matplotlib.pyplot.hist own normaliza-
tion function density=True. Our focus in this project was the interaction
e+e− → uuggg. These histograms will focus on the up-quark since that
particle will always be due to an interaction. The three physical validation
histograms are the transverse momentum of the up-quark w.r.t z-axis, in-
variant mass of the up and anti-up quark, and the pseudorapidity of the
up-quark. Eq. (4.2)-(4.4) shows these equations. The histograms are made
in Python using matplotlib.pyplot.hist [10].

pzT =
√
p2x + p2y (4.2)

muu =

√
(Eu + Eu)

2 − (pxu + pxu)
2 − (pyu + pyu)

2 − (pzu + pzu)
2 (4.3)

η = arctanh

(
pz
‖p‖

)
(4.4)

14

5 Results

The factors and functions of our ANN that we used for the unweighting can
be seen in table 3. As mentioned in section 4 the output was normalized
by taking the logarithmic function. The training was done with a generated
sample dataset of 100000 phase-space points.

Table 3: The implemented Hyperparameters for the ANN.

Hyperparameter Selected values

Hidden Layers 3
Nodes per Layer {20, 40, 20}
Activation Function Tangent Hyperbolic
Optimiser Function Adam
Loss Function Mean Squared Error
Epochs 200

In figure 3 the accuracy of this model is shown. Here ∆ = g(x)/f(x) that
is the predicted divided by the real matrix element. This distribution is an
average of 20 models. That is, we have run the training phase using the same
parameters above 20 times and calculate ∆ for each model, then taking the
average result. One can notice that this distribution is slightly shifted to the
right which means that the prediction g(x) is slightly larger than f(x).

15

−3 −2 −1 0 1 2 3

log(∆)

0

2000

4000

6000

8000

10000

12000

14000
F

re
q
u

en
cy

Figure 3: Representation of our models accuracy, where an average of 20
trained models are used. The output is taken as the logarithmic difference
between the real and predicted value.

For the classical unweighting procedure, the process to evaluate Ncl un-
weighted events are

Ncl = Nwεcl =⇒ Nw =
Ncl

εcl
(5.1)

where Ncl is the amount of events that survives the process, Nw is all the
weighted events and εcl is the classical unweighting coefficient i.e. the fraction
that survives. For the ANN unweighting efficiency, we define two coefficients
ε1 and ε2. The ANN unweighting was split up into two processes. For the
first ANN unweighting we used the prediction g(x), and these events that
survived this process are

N1 = Nwε1 (5.2)

where ε1 is the fraction that survives the first ANN unweighting. For the
second ANN unweighting these events that survived the first ANN unweight-
ing are used and the events that survives both unweighting methods we call
NANN

NANN = N1ε2 = Nwε1ε2 =⇒ Nw =
NANN

ε1ε2
. (5.3)

Setting these equation to equal we can find the fraction on survived events
comparing classical to ANN method

Ncl

εcl
=
NANN

ε1ε2
=⇒ Ncl =

εcl
ε1ε2

NANN. (5.4)

16

The coefficients can be seen in table 4 for a run of 500000 phase-space points
(Nw = 500000).

Table 4: Coefficient for 500000 weighted phase-space points.

Coefficient Value Survived events

εcl 0.0062 3100
ε1 0.003432 1716
ε2 0.08508 146

These coefficients were found by doing the classical and ANN unweighting,
counting all the survived events and then using the above equations. The
process of doing the unweighting with Nw = 500000 took around 2 days on
a normal laptop such that there was only one run at the process. Possible
improvement on how to get better results will be explained later on but
one can see the difference between εcl and ε2. They differ by approximately
0.08508/0.0062 ≈ 13.7. This means that comparing the unweighting with the
matrix element f(x) and weighted event w(x), it’s 13.7 times more efficient
to use w(x). This gives us a good indicator that the first ANN unweighting
gives us weighted events that have lower variance, and using these weighted
events in a second ANN unweighting is actually making an improvement.

By comparing the number of unweighted events we can notice that they differ
by 3100/146 = εcl/ε1ε2 ≈ 21.23. This means that we need to create approx-
imately 21.23 more weighted events for the ANN unweighting procedure to
have as many unweighted events as with the classical procedure.

So right now we have come up with the idea that the classical unweighting
produces 21.23 times more unweighting events than the ANN unweighting.
This is to be expected since ANN unweighting is doing two unweighting
methods. But we have not mentioned time yet. The whole idea of this
operation was to reduce the amount of evaluation of the matrix element f(x)
since this is the time consuming part. Let tf be the time it takes to do
one evaluation of f(x) and tg the time to do one ANN prediction. For the
classical unweighting we compute f(x) for each weighted event, such that
the time to do the unweighting method for Nw events are

tcl = Nwtf . (5.5)

This is the time to produce Ncl = 3100 unweighted events. We are interested
in finding how long it takes to do the ANN unweighting but still produce the

17

same amount of 3100 unweighted events. One process of ANN unweighting
usingNw = 500000 gave us 146 unweighted events such that we need to have a
dataset of weighted events that is 21.23 times larger. That is we need to have
21.23Nw weighted events such that we can get 3100 unweighted events using
ANN unweighting. We also compute g(x) for each weighted event and an
additional f(x) for each event that survives the first ANN unweighting when
doing the computation of the weight factor w(x) = f(x)/g(x). Accounting
for all of this the time it takes to produce the same amount of unweighted
events (3100) as the classical method is

tANN = 21.23(Nwtg +Nwε1tf) = 21.23Nw(tg + ε1tf). (5.6)

This time does not consider any contribution from the second ANN un-
weighting. That is because in that process no prediction or matrix element
are computed, only a comparison is made for precalculated weights and a
random generated list y. Inserting the value from table 4 we get

tcl = Nwtf = 5× 105tf

tANN = 21.23Nw(tg + ε1tf) ≈ 1.06× 107tg + 3.64× 104tf . (5.7)

We can see that the number of evaluations of f(x) is significantly higher
in the classical unweighting, this is comforting since this means that a time
improvement could be possible. Setting the eq. (5.7) equal to each other we
get the break-even point of efficiency

5× 105tf = 1.06× 107tg + 3.64× 104tf

tf = 22.9tg. (5.8)

This means that the ANN model is more efficient if the time to compute one
f(x) is 22.9 times longer than one prediction g(x). The ANN training time is
disregarded in these calculations since its time was significantly slower com-
pared to the time of the unweighting process. The break-even factor critically
depends on the scattering process under consideration and the accuracy of
the ANN prediction. Using only 5 final state particles it is not efficient to
use ANN unweighting, but the factor 22.9 might not be unreasonable. The
models prediction does not scale in times as much as the evaluation of the
matrix element, such there would be an interaction where ANN is useful.

18

The physical validation comparing both processes are presented in three dif-
ferent histograms. The amount of surviving points are 3100 and 146 for the
classical and ANN unweighting respectively from 500000 weighted events,
this means that the plots are normalized using matplotlib.pyplot.hist density
function. For the histogram of transverse momentum and the pseudorapidity
the up quark in the interaction e+e− → uuggg is used. The invariant mass is
however plotted using the sum of the up quark momentum and the anti-up
quark momentum.

In figure 4 the transverse momentum defined as eq. (4.2) are summed in each
bin with a total of 25 bins, they are then normalized such that we have an
arbitrary y-axis of frequency. This is the same for all three figures. The given
peaks of the ANN unweighting may be caused by possible outliers and are
probably statistical fluctuations. Within the large statistical fluctuations,
the classical and ANN unweighting agree; however, more unweighted events
are needed to confirm these findings at higher precision. This was not done
due to computation time of the unweighting process.

200 300 400 500 600 700 800 900
pzT [GeV]

0.000

0.001

0.002

0.003

0.004

0.005

F
re

q
u

en
cy

[a
rb
.u

n
it

s]

ANN unweighted events

Classical unweighted events

Figure 4: Histogram of transverse momentum of the up quark comparing
the Classical and ANN unweighting procedure.

19

In figure 5 the invariant masses muu are shown from up and anti-up quark
momentum, defined from eq. (4.3).

100 200 300 400 500 600 700 800

muu [GeV]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

F
re

q
u

en
cy

[a
rb
.u

n
it

s]

ANN unweighted events

Normal unweighted events

Figure 5: Histogram of invariant mass of the up and anti-up quark, com-
paring the Classical and ANN unweighting procedure.

In figure 6 the pseudorapidity is shown defined from eq. (4.4).

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
u

en
cy

[a
rb
.u

n
it

s]

ANN unweighted events

Normal unweighted events

Figure 6: Histogram of pseudorapidity of the up quark comparing the Clas-
sical and ANN unweighting procedure.

20

One possible improvement in the amount of unweighted events that one could
produce with the ANN unweighting is by changing the wmax. When doing
the ANN unweighting procedure, the first method is to use the predicted
values g(x) and those event that survives get accepted with a weight w(x) =
f(x)/g(x). wmax is then computed from this list of accepted events, but
wmax will most likely be an outlier. A much higher wmax than the rest of the
w(x) list would lead to fewer events surviving the second ANN unweighting
and thus producing less unweighted events. Another approach would be to
generate several datasets with random sequences and take the mean of wmax.
This approach does not guarantee that wmax is the absolute maximum value
of w, which means it would be partially weighted. To still achieve the same
statistical accuracy as unit weighted events, there may be a need to generate
more events. The time to do the classical and ANN unweighting for 500k
phase-space points took about two days to run on a standard laptop, so due
to lack of time this was not implemented for this project.

6 Conclusion

In theoretical particle physics event generators are essential tools to test
theories and predictions. These so-called event generators strive to be more
accurate and efficient. This leads to increasing CPU expense.

This thesis investigated the use of artificial neural networks to optimize an
event generator. A regression type artificial neural network was constructed
to evaluate the cross section for the interaction e−e+ → uuggg. The regres-
sion model used the 3-momenta of all particles in the interaction and made a
fit to the matrix element. This model could then be used to make predictions
on a new set of momenta.

The idea with the regression model was to use the predicted matrix element
g(x) to reduce the amount of times the evaluation of the real matrix element
f(x) was done, since computing the real matrix element is a time consuming
task. The implementation of the model was used in the process of going from
weighted to unweighted events called the ”unweighting” method. A classical
and ANN unweighting method was investigated and an efficiency in factors
of f(x) and g(x) was measured.

21

The break-even point of efficiency was measured to be a factor of 22.9, that is
for our interaction the computing time for the matrix element has to be 22.9
times longer than the model’s prediction for it to be more efficient to use the
ANN unweighting. Given the complexity of computing the matrix element
for more final state particles, we do not think this is a bad result but there
are ways of improvement, e.g. developing a more accurate model, using the
average of wmax or taking more sample data for the model’s training phase.

Implementing this into the MadGraph5 aMC@NLO [3] event generator is
an interesting future project. Other methods like importance sampling where
the ANN could be useful may also be an interesting addition. It would also
be interesting to see if using for example the pseudorapidity or invariant mass
for the models training would be more efficient instead of the 3-momenta.
One could also try out different ycut when generating phase-space points.

Acknowledgments

First of all thanks to my supervisor Rikkert Frederix for his patience and
inputs, I will always cherish our zoom coding sessions. I would also like
to thank my friends, especially my study group (z̊ango’) for always making
studying fun. A special thanks to my friend Oskar for all his mental support.
Thanks to my brother Simon for proof reading my popular science text.
Finally I would like to thank my parents for always being there.

References

[1] “LHC Machine.” In: JINST 3 (2008). Ed. by Lyndon Evans and Philip
Bryant, S08001. doi: 10.1088/1748-0221/3/08/S08001.

[2] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

[3] J. Alwall et al. “The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to par-
ton shower simulations.” In: JHEP 07 (2014), p. 079. doi: 10.1007/
JHEP07(2014)079. arXiv: 1405.0301 [hep-ph].

[4] Katharina Danziger. “Efficiency Improvements in Monte Carlo Algo-
rithms for High-Multiplicity Processes.” Presented 31 Mar 2020. 2020.
url: http://cds.cern.ch/record/2715727.

22

https://doi.org/10.1088/1748-0221/3/08/S08001
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
http://cds.cern.ch/record/2715727

[5] Johannes Krause. “Efficiency Improvements Using Machine Learning
in Event Generators for the LHC.” 2015. url: https://iktp.tu-
dresden.de/IKTP/pub/15/masterthesis- 2015- 10- johannes-

krause.pdf.

[6] Simon Badger and Joseph Bullock. “Using neural networks for effi-
cient evaluation of high multiplicity scattering amplitudes.” In: Jour-
nal of High Energy Physics 2020.6 (June 2020). issn: 1029-8479. doi:
10.1007/jhep06(2020)114. url: http://dx.doi.org/10.1007/
JHEP06(2020)114.

[7] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.
Scotts Valley, CA: CreateSpace, 2009. isbn: 1441412697.

[8] Francois Chollet et al. Keras. 2015. url: https : / / github . com /

fchollet/keras.

[9] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Distributed Systems. 2016. arXiv: 1603.04467 [cs.DC].

[10] J. D. Hunter. “Matplotlib: A 2D graphics environment.” In: Computing
in Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.
2007.55.

23

https://iktp.tu-dresden.de/IKTP/pub/15/masterthesis-2015-10-johannes-krause.pdf
https://iktp.tu-dresden.de/IKTP/pub/15/masterthesis-2015-10-johannes-krause.pdf
https://iktp.tu-dresden.de/IKTP/pub/15/masterthesis-2015-10-johannes-krause.pdf
https://doi.org/10.1007/jhep06(2020)114
http://dx.doi.org/10.1007/JHEP06(2020)114
http://dx.doi.org/10.1007/JHEP06(2020)114
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://arxiv.org/abs/1603.04467
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55

	Introduction
	Introduction to Artificial Neural Network
	Activation function
	Loss function
	Optimizer function
	Data scaling

	Event Generator
	Monte Carlo Method
	Unweighting

	Method
	Results
	Conclusion

