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Abstract

Previously recorded data of electron tunneling in and out of a quantum dot (QD) is used

to extract knowledge of the state of the system. Using the detailed balance of the system,

it is shown that information about the electron temperature in the lead Te, as well as

knowledge about the degeneracies of the states in a quantum dot can be obtained from

measurements of the tunneling rates in and out of the QD. Combining the measurements

of the tunneling rates with temperature measurements of the surrounding environment

Td, the lever arm of the system is determined. It is shown that knowing the lever arm Te

can be directly measured. A dependence of the lever arm on the filling of the quantum

dot N is also observed.
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1 Introduction

Using the concept of microstates it can be shown that a thermodynamic system out of

equilibrium will evolve so that the system takes on the macro state which has the most

amount of corresponding microstates, giving the well-known second law of thermodynam-

ics. This holds true as far as the system is sufficiently large, if this is the case small

fluctuations are shown to be inconsequential.[1] For a long time this has proved sufficient,

but as devices have started to take on sizes on the mesoscopic scale the limit for where

classical thermodynamics is able to describe the system has been reached. To properly

describe these systems, thermodynamic theory needs to be reformulated to take into ac-

count fluctuations. It has been shown both in theory and experiment that for systems

sufficiently localised in space and time the second law of thermodynamics does no longer

necessarily hold.[2–5]

In order use classical thermodynamics the system has to be larger than the thermody-

namic limit.[1] The system considered in this thesis is on the other end of the scale only

consisting of two possible microstates. A central idea in classical thermodynamics is that

no knowledge about the specific microstate of the system is needed and that the system is

instead described by its macrostate. The aim in this thesis is instead the opposite, to use

precise knowledge of the microstate of part of the system as a function of time to derive

knowledge about the macrostate of the system.

The system analysed in the thesis consists of a quantum dot (QD), coupled to a single

lead that acts as a reservoir, supplying electrons that tunnel in to the QD, as well as

empty states in the lead that electrons from the QD can tunnel to. Similarly to atoms

QDs have quantised energy states that the electrons are allowed to occupy, leading some

to call them artificial atoms.[6] For this thesis the discrete energy levels are used to sample

electrons depending on their energy. It has been suggested that quantum dots could be

used as qubits for quantum computing.[7] This would be achieved by using two electron

levels in the QD, giving a two level system, where one of the levels correspond to 0 and

the other level corresponds to a 1.[7]

1.1 Quantum dots

QDs are potential wells where electrons are confined in all directions.[8] In order for the

electrons to be confined their wavelength has to be comparable to the width of the well.

To construct a QD, an electron gas is confined within a semiconductor. Confinement

in a direction is achieved either by varying the material leading to discontinuities in the

band structure, or by patterning gates close to the electron gas.[9] The confinement of

the electrons in all directions gives a discrete energy spectrum, and only electrons with a

specific energy can enter the QD.[8] If the QD is approximated as a rectangular box with
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infinite potential on the edges the energy of electrons in the dot is given by [8]

E(kz) =
~2k2

z

2m∗
e

+ Exy (1)

Here m∗
e is the effective mass of electrons in the semiconductor and kz the wave vector

of the electron along the nanowire. Exy is the energy contribution from the transverse

confinement. The wave vector kz is quantised meaning the allowed energy states in the

dot will be as well. Due to the Pauli principle only one electron is allowed per state. As

there is a spin degree of freedom two electrons will be allowed per energy state in the QD.

Id
Vbias

Figure 1: A schematic of a single electron transistor (SET). The middle section is a QD.

If the energy level is in either of the positions marked by dotted lines no current will flow,

while if it is in the middle current is allowed to flow.

If the QD is coupled to two leads a single electron transistor (SET) can be formed,

allowing only one electron to pass at a time. This is done by applying a voltage over the

QD creating a small bias window. The voltage over the QD creates a small bias window

where electrons can tunnel between the leads allowing a current to flow. However, this

only happens if at least one of the QD energy levels is within the bias window. An electron

tunneling onto the QD will repel other electrons from tunneling in before that electron

has tunnelled out, this is referred to as coulomb blockade.[10] A plunger gate located close

to the QD can be used to shift the position of the energy levels by changing the potential

in the QD. If the bias window is smaller than the spacing between energy levels and the

plunger gate voltage is swept, this will give rise to oscillations in the current through the

SET known as coulomb oscillations.[10] When the voltage applied to a plunger gate is

changed by an amount ∆V the amount that the energy level of the corresponding QD

changes E with respect to the applied voltage is given by the lever arm

α =
E

∆V
(2)
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2 The device

Γin

Γout

LeadQD

500nm

To detector

VPG2

Id

Coupler

PG1 PG2
PG3

Figure 2: A scanning electron microscope (SEM) image of the device used. Parts marked

PG denote plunger gates. The square to the right is a schematic over the system as used

in this thesis. Adapted from a SEM image by David Barker.

The device consists of a nanowire with three QDs (red, blue and green in Figure 2) grown

into it, each one with a corresponding plunger gate. To construct the device a nanowire

with QDs grown into it is placed on a wafer and using epitaxial markers on the nanowire

for positioning, the gates and leads are patterned and deposited.[9] The nanowire is an

epitaxially grown InAs nanowire. Tunneling barriers are constructed in the nanowire by

varying the crystal phase between the zincblende (ZB) polytype and the wurtzite (WZ)

polytype. With the barriers being of WZ type and the dots as well as the leads being of

ZB type.[9] The plunger gates allow for tuning the energy level within each QD. Dots 1

and 2 (red and blue) are capacitively coupled to the third QD (green), this QD is used to

detect changes in occupation of the other two dots. The yellow parts are the leads and

purple denotes tunnel barriers.

For the measurements used in this thesis only QD 2 is used (marked in blue). If

voltages are applied to plunger gates 1-3 VPG1,2,3 each dot can be tuned by displacing the

energy levels of the QDs. By putting QD 1 in coulomb blockade, any measured tunneling

will be between QD 2 and the middle lead. This means that the system analysed will

be a QD coupled to a single lead, a schematic of this is shown in the zoom-in in Figure

2. Using a single energy level in QD 2 the energy distribution of the electrons in the

middle lead can be probed. As the QDs have discrete energy levels, only electrons in the

lead matching the energy level of QD will be able to tunnel into the QD. Conversely, any

electrons tunneling from the QD to the lead will have the same energy as the energy level

of the QD.

The middle lead acts as a reservoir supplying electrons that tunnel between the QD

and the lead. If an electron tunnels into the QD the dot will be placed in coulomb
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blockade, stopping further tunneling into the dot until this electron tunnels out of the

QD. So the dot will alternate between having N and N + 1, where the first situation is

referred to as the electron being out of the QD, while in the second case it is referred to

the electron being in the QD.

4.23 4.235 4.24 4.245 4.25 4.255 4.26 4.265 4.27 4.275 4.28
0

0.5

1

1.5

2

2.5

3

3.5

Figure 3: A coulomb oscillation of the SET. The red dot denotes the positioning of the

energy level within the SET.

2.1 The detector

To measure the occupancy of QD 2 the third dot is used as a detector, with a capacitive

coupler between dots 2 and 3. The third dot is tunnel coupled to two leads. If a small

voltage is applied over QD 3 it will act as a single electron transistor, and if VPG3 is swept

the current through dot Id will display coulomb oscillations. It is this change in detector

current Id that is used to determine when there is an extra electron in QD 2. For Id to be

as sensitive as possible to changes in the potential, the differential current dId
dVPG3

should

be maximised. In order to maximise the differential current VPG3 is adjusted so that it

corresponds to the edge of a coulomb oscillation (see Figure 3). In turn this makes Id

very sensitive to changes in the VPG3, and thus to charges nearby the detector such as

those in the coupler. This allows for detecting a single electron difference in occupancy.

Due to the closer proximity between the dot and the coupler QD 2 will be more coupled,

yielding a larger displacement of the SET energy level, which can be used to differentiate

between a change in occupation of either dot.
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3 Theory

Electrons tunnel between the QD and the reservoir at rates described by [2, 11].

Γin = dinΓ0f(E, Te) (3)

Γout = doutΓ0(1− f(E, Te)) (4)

Here Γ0 accounts for the tunnel-coupling as well as the density of states (DOS). While

the DOS should ideally be that of a 1D system it can be approximated as constant over

a small range ∆E. The plunger gate voltage not only alters the position of the energy

level within the QD but also has an effect on the tunneling barrier. However, this effect

is negligible over a small range ∆E. f(E, Te) is the FD distribution. The factors din(out)

accounts for any degeneracies in the states the electron can tunnel to(from).

Assuming that the system satisfies Ech � kBTe where Ech is the charging energy when

an electron is added, then there will at most be one level that electrons can tunnel to

and from.[12] An electron tunneling onto the dot will put the QD in coulomb blockade,

stopping further tunneling into the dot. This means that once an electron has tunneled

into the dot, an electron has to tunnel out of the QD before any tunneling in can happen.

There are then two possible states for the system, the first with the electron in the QD

and the second one with the electron out of the QD. For such a system the rate equation

is then [
ṗin

ṗout

]
=

[
−Γout Γin

Γout −Γin

][
pin

pout

]
(5)

Where pin is the probability of finding the electron in the QD and pout the probability of

it being out of the QD. For a system at equilibrium ṗin = ṗout = 0, by inserting this into

equation (5) the detailed balance condition is obtained

pinΓout = poutΓin (6)

Using the detailed balance of the system along with equations (3) and (4) it is concluded

that
pin

pout

=
Γin

Γout

=
din

dout

f(E, Te)

1− f(E, Te)
=

din

dout

e−E/kTe (7)

which is just the Boltzmann factor times a constant. It is this form of the detailed balance

that allows for determining the lever arm of the system without knowing Γ0.
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Figure 4: To the left the degeneracies for an even N is shown, to the right N is odd.

Depending on if N is odd or even either Γin or Γout will be two fold degenerate. Choosing

the E = 0 when Γin = Γout leads to Ef being offset by ± ln(2).

3.1 The effect of degeneracies

As mentioned earlier each one of the energy levels has a degeneracy of 2. Therefore, if

a QD is filled with an even number of electrons N (see left part of Figure 4), there will

be two unoccupied states on the lowest unfilled energy level that an electron can tunnel

to, meaning that din = 2. If an electron tunnels onto the dot the coulomb blockade stops

any further tunneling in, and as there is only one electron that can tunnel out from the

highest occupied level dout = 1. If instead N is odd (see left part of Figure 4), there will

only be one unoccupied state on the lowest unfilled level, meaning that din = 1. Once

an electron tunnels into the empty state there will then be two electrons on the highest

occupied level that can tunnel out, meaning that dout = 2.

By using equation (7) the energy E where the in and out rates are equal is found to

be.
Γin

Γout

=
Γin

Γin

=
din

dout

e−E/kTe = 1 (8)

this implies that if Γin = Γout then

e−E/kTe =
dout

din

= eln(dout/din) (9)

So if the energy is chosen so that E = 0 when Γin = Γout the Fermi energy of the reservoir

Ef will be placed at E = kTe ln(dout/din). For a system with din = 2 and dout = 1 the

6



Fermi energy will then occur at E = −kTe ln(2), if the degeneracies are instead reversed

the Fermi energy will instead occur at E = kTe ln(2).

4 Measurements

In total four data sets are analysed, the data sets are recorded at different device tem-

peratures Td and filling of the QD N . This allows for analysing how the detailed balance

varies with Td and N by using equation (7). By varying VPG2 the energy level of the QD is

tuned to a specific energy, as the level is discrete this allows for probing the rates at that

specific energy. Each data set consists of time traces, with each time trace corresponding

measuring either the in or out rate at a specific energy.

To determine the degeneracies the tunneling rates need to be measured far from the

Fermi energy. This presents a problem as either Γin or Γout will tend to 0 as the energy

level moves further from Ef , negatively affecting the statistics of the measurement. As a

tunneling in event has to be followed by an out, and vice versa, the one with the lower

rate will limit the accuracy of both rates. While the tunneling rate one way goes to 0

the other one approaches its maximum value, by using a feedback technique the high rate

can be measured with good accuracy without being limited by the slower process.[12]

For example, if we want to measure the tunneling out rate, the energy is first lowered

to a position where the tunneling in rate is high, and it is kept there until an electron

tunnels in, then the level is quickly raised to where the out rate is to be measured. This

is repeated every time the electron tunnels out. By allowing it to tunnel in where Γin is

high, good statistics for the measurement of Γout can be achieved.

To implement the feedback technique an Arduino microcontroller was used to monitor

the detector current. If Id was above a certain threshold the microcontroller would then

send a voltage signal to the voltage source used to supply VPG2. The detector current was

also sent via a digital acquisition system onto a computer used to record the time traces.

The measurements were performed in a dilution refrigerator, the temperature of which

was monitored using a thermal probe.
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τinτout
τinτout

Figure 5: Above: Part of a time trace. The detector current varies depending on if there

are N or N + 1 electrons in the QD. τin(out) is the time the electron spends in(out of) the

quantum dot. Below: The feedback applied during the same time as the time trace.

Figure 5 shows part of a time trace along with the corresponding applied feedback.

The waiting times are extracted from the time traces. In the time trace of Figure 5 the

waiting times have been marked as τin(out) for the time the electron spends in(out of) the

dot. The events are independent [12, 13], thus the tunneling the rates can be extracted

from the average of the waiting times
〈
τin(out)

〉
[11]

Γin =
1

〈τout〉
, Γout =

1

〈τin〉
(10)

To determine the degeneracies of the system equations (3) and (4) are fitted to the

data, with

E = α∆VPG2 ± kBTe ln(2) (11)

where ± ln(2) offsets the Fermi energy so that ∆VPG2 = 0 when Γin = Γout.
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4.1 Extracting the lever arm

According to equation (7) the ratios between Γin and Γout depend exponentially on E.

Hence, the ratios are fitted to the function

C1e
C2∆VPG2 (12)

Where C1 and C2 are fitting constants. Comparing (7) and (12) it is seen that

C1 =
din

dout

(13)

C2∆VPG2 = − E

kBTe
(14)

From (14) it can be observed that C−1
2 depends linearly on Te

C−1
2 = − 1

α
kBTe = λTe (15)

By performing a linear fit of C−1
2 against Te the lever arm can then be extracted as

α = −kB
λ

(16)

5 Results

The four data sets differ in filling of the QD N , and cryostat temperature Td. Measure-

ments c and d (see Table 1) have the same N , the other two sets have different N with

any other data set. The temperatures at which the data sets are recorded are listed in

the Table 1.

Table 1: The temperatures the measurements were recorded at.

Measurement Td[mK]

a 10

b 100

c 100

d 200

For data sets a and b the voltage offset ∆VPG2 of the PG voltage goes in a range

∆VPG2 = ±0.35 mV, while for c and d the voltage steps are twice as big, and the range

is instead ∆VPG2 = ±0.70 mV.
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Td=10K

(a)

Td=100K

(b)

Td=100K

(c)

Td=200K

(d)

Figure 6: The experimentally determined tunneling rates Γin(out) along with fits of equa-

tions (3) and (4) to the data. The x-axis is chosen so that E = 0 when Γin = Γout.

From the fits of equations (3) and (4) to the data seen in Figure 6 it is observed that

for most of the data sets the distribution of the electrons in the lead follows a Fermi-

Dirac (FD) distribution, in agreement with what is expected from an electron gas.[1] For

measurement d the data and model Γout differ significantly, there are also many outliers

in the data for Γout. Data set d is the one with the highest Td of the measurements, the

increased noise of the data could be due to a higher signal-to-noise ratio at the higher

temperature. Another effect that could decrease the resolution of the data in d is that

the temperature increase leads to a broadening of the FD distribution, possibly leading

to excited states becoming available. Comparing kbTe to the charging energy for similar

QDs it is found that at Te = 200 mK, The width of the Fermi function kbTe ≈ 0.02 meV

while Ech ≈ 2 meV [9], so only one extra electron should be allowed on the QD at any

time.
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Figure 7: Part of a time trace from data set d. The detector current (blue) is overlayed

with VPG2. The the black black horizontal line in the middle is the threshold for when

the electron is considered to be in the QD. The dotted lines is where the detector current

should lay when the electron is either in or out of the dot.

When looking at the time traces for data set d, it was observed that Id had a depen-

dence on VPG2 (see Figure 7). This leads to steps forming in the time trace, and it is not

until VPG2 has switched that the detector current reaches the correct value. In Figure 7 a

step has formed right below the threshold for switching VPG2 (the threshold for switching

is not displayed in the figure). While the electron tunnels in at t = 10.76 s it is not until

t = 10.81 s, meaning that the tunneling out rate is not measured at the expected energy.

Thus, Γout will be too low in this case.
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τinτout
τinτout

a)

b)

Figure 8: a) The detector current overlayed with the feedback voltage. The horizontal

lines above and below is where the detector current should lay when the electron is in

or out of the dot respectively, the middle line is the threshold for when the electron is

considered in or out of the dot. b) The digitised time trace used to determine the waiting

times.

To the left in Figure 8 the green vertical bars denote a good tunneling in event followed

by a good tunneling out event. In the right part Figure 8 an electron tunnels in but the

plunger voltage does not switch (denoted by the red vertical bars). This again leads to

Γout not being measured at the correct E. However, in this case the detector current ends

up in the middle of the threshold used for considering an electron in or out of the dot.

So instead the noise of the measurement is measured, leading to the value determined

for Γout being too high. Both these effects in combination gives the distribution of Γout

observed in Figure 6d.

Looking at both figures 7 and 8 it can be noted that the signal is still significantly

greater than the noise and so it should still be possible to get good data at these increased

temperatures. The main problem seems to lay in that Id has a dependence on VPG2. The

dependence probably occurs because of the close proximity between plunger gate 2 and
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QD 3. By applying a compensating feedback to VPG3 simultaneously as VPG2 is switched

this effect should disappear. While this does not seem to be a problem over the smaller

range of ∆VPG2 used for data sets a and b, it could be useful if measurements over a

larger range of ∆VPG2 is required. This could be useful for determining the degeneracies

at higher Te, where the FD distribution is broadened, requiring a larger range of ∆VPG2

to determine the rates where the FD distribution plateaus.

Below the determined ratios din/dout for the data sets are presented

Table 2: The ratio din/dout of the measurements.

Measurement din/dout

a 1.82

b 0.58

c 1.55

d 1.21

For a QD with an even number of electrons N when the QD is in the out configuration

the degeneracies of the system is din = 2, dout = 1, while for an odd number N it would

be the opposite. Using this din/dout should be 2 in the first case while it should be 0.5

in the second. Using Table 2 it can then be deduced that N is even for measurements

a and c while for measurement b it is odd. As discussed earlier data set d has a lot of

problems with the measurement for Γout. This means the degeneracies can not be reliably

determined for d. However, as d was recorded with the same amount of filling N it should

have the same degeneracies.

13



(a) (b)

(c) (d)

Figure 9: The ratio between the rates against the displacement of the QD energy level

plotted in a semilogarithmic plot.

Plotting the ratio Γin

Γout
in a semilogarithmic plot (see Figure 9) b and c seems to have

an exponential dependence on E, in agreement with equation (7). For measurement a the

data appears to saturate as E gets further from 0. This happens because, as displacement

goes further from E = 0, either Γin or Γout tends to zero, eventually getting so small that

it becomes limited to by the time of a time trace. As E becomes big Γin becomes limited

meaning that the ratio will become too large, while for small E the rate out Γout becomes

limited so that the ratio becomes to small. This leads to the fitted slope not being

steep enough (see Figure 9a). To make sure this does not affect the later results for the

temperature the data sets are truncated so that only data corresponding to a plunger

gate voltage of at most ∆VPG2 = ±0.15 mV is used for the fit.
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Figure 10: For each set of rates measured at a temperature cryostat temperature Td lines

are fitted to the logarithm of the ratio Γin/Γout. In the figure above the reciprocal of the

slopes have been plotted as a function of the cryostat temperature Td where that set of

rates where recorded.

Looking at the data for c and d in Figure 10 it appears that C−1
2 has a dependence on

the cryostat temperature Td. For higher temperatures the electron and device temperature

follow each other Te = Td.[14] This then implies that C−1
2 depends on Te as in agreement

with (15). Using equation (16) and setting Te = Td the lever arm of the device was

determined to be that listed in table 3

Table 3: The experimentally determined values for α.

Measurement α

b −0.132(6) eV/V

c and d −0.149 eV/V

A previous study using similar devices found a lever arm of α ≈ −0.1 eV/V.[9] At

Td = 100 mK there are two measurements recorded corresponding to different filling of

the QD N , with N referring to the amount of electrons in the QD when it is in the out

state. Comparing the two different measurements at Td = 100 mK it can be seen that C−1
2

differs by approximately 0.04 mV. This happens because the lever arm changes depending

on the filling of the quantum dot N .[9]. To confirm that this is the case further studies

could be conducted where the data sets are recorded both as a function of temperature

and filling of the QD. The fit to C−1
2 for data set a gives a very steep slope, yielding

α = −0.036 eV/V. This very low, however for lower temperatures it has been found that

the electron temperature saturates, and Te = Td can thus not be used. This happens
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because at low temperatures the electron-phonon coupling becomes very weak.[15–18].

6 Conclusions and outlook

A model for the tunneling rates as a function of E and Te was successfully applied to

find the degeneracies of a quantum dot system coupled to a reservoir, both for differ-

ent amounts of filling of the QD N and for different temperatures of the surrounding

environment. As expected from an electron gas the electrons are observed to follow a

FD distribution. A decrease in accuracy of the rate measurements was observed when

the range of ∆VPG2 was increased. Suggestions are made that by applying a compensat-

ing feedback to the plunger gate of the detector the accuracy may be maintained over a

larger range of ∆VPG2. By combining tunneling rate measurements with device tempera-

ture measurements a method for determining the lever arm of a device using the detailed

balance was demonstrated, and it was found that the ratio of the tunneling rates can

be described by the Boltzmann factor. The analysed data was shown to agree with this

theory in a neighbourhood of E = 0, further away from E = 0 a saturation was observed

due to limitations in the data. Finally the dependence of the detailed balance on both Te

and N was explored. Indications of a difference in lever arm depending on N is observed,

this is in agreement with what has been found in previous studies. Future work could

focus on determining the accuracy of the methods used in the thesis, as well as confirming

some of the observations. To examine the accuracy of the extracted lever arm, more data

points of C−1
2 as a function of temperature would be needed, this could then be compared

with alternative methods of determining the lever arm. Altering the filling of the QD the

dependence on α could be explored further. Once the lever arm has been determined the

device would then be able to function as an electron thermometer, the accuracy of which

could be investigated. In conclusion then the models used in the thesis was shown to be

viable for determining both the degeneracies and the lever arm of a quantum dot.
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