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Abstract

Travel on railway in Sweden has increased steadily over the past three decades
and there are today twice as many passengers travelling by train as there were 30
years ago. The increasing awareness of environmental issues with other methods
of transportation is likely to favor railway travel, and so the number of passen-
gers is expected to continue to rise. As the number of passengers increase, so
do the requirements on keeping trains on time. Delayed trains do not only cost
money for train operators, but may also affect how likely we are to choose to
travel by train. Understanding where and why delay occurs as well as how this
delay might spread is therefore important not only from an economic point of
view but from an environmental one as well.

This thesis shows that behavior of delay occurrence and propagation of
delay in the Swedish railway network may be reproduced using an epidemic
Susceptible-Infected-Susceptible (SIS) model with satisfying results. By opti-
mizing the probability of a train carrying infection (delay) from an infected
station to a susceptible one, the simulation can reproduce the level of delay over
time as well as the geographic distribution of delay, thus capturing global as well
as local delay behavior. The thesis further shows the necessity of heterogeneous
delay propagation probabilities on edges in the network in order to reproduce
real-world behavior.

Furthermore, the results indicate that re-scaling the nodal self-infection rate
(spontaneous delay rate) improves the model and is needed when changing the
number of delayed departures needed to make an infected state, i.e. marking
a station as delayed. Simulations indicate that this nodal self-infection cannot
be expressed using a linear function but varies non-linearly with the number
of delayed departures. One explanation for this would be the possible depen-
dence between self-infection rates on trains, which could be explained by the
fact that some external factors giving rise to spontaneous delay might affect en-
tire stations rather than individual departures. However, the effect of re-scaling
the self-infection rate could also be obtained by increasing the recovery rate,
why further analysis is needed in order to determine which parameter should be
modified to what extent.

Lastly, results also indicate that the model may be used for estimating the
impact on certain delay preventive measures by manually changing parameters
for chosen stations or railway lines. This is valuable as it may give stakeholders
a way of prioritizing projects and resources.

Keywords— networks, graph theory, delay, delay propagation, railway
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1 Glossary

Definitions

• Spontaneous delay: refers to delay caused by external factors, such as bad
weather or personnel strike

• Propagated delay: refers to delay caused by other delay, i.e. a train might be
delayed due to propagated delay if it is delayed by another train arriving or
departing late

• Junctions: refers to stations connected by railway to more than two stations,
i.e. nodes with degree > 2

• Endpoints: refers to stations connected to only one other stations, i.e. nodes
with degree = 1

• Line stations: refers to stations connected to two other stations, i.e. nodes with
degree = 2

Notations

• N : denotes the set of nodes

• E : denotes the set of edges

• G: denotes the graph made up of the tuple (N , E), or triple (N , E , W )

• A: denotes the adjacency matrix connected to the graph G

• W : denotes the weight matrix connected to the graph G

• S: denotes the state matrix containing information about which states the node
set N is in for each time step

Parameters

• βi,j : the edge-specific rate of propagated delay

• εj : the train-node-specific rate of spontaneous delay

• δj : the node-specific rate of recovery
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2 Introduction

Travel on railway in Sweden has increased steadily over the past three decades, at the
rate of approx. 2-3% per year, and there are today twice as many passengers travelling
by train as there were 30 years ago. As the number of passengers has increased, so
have the requirements on keeping trains on time (Palmqvist, 2019). According to
the Swedish Transportation Authority, if defining a delay as a delayed departure or
arrival of more than 5 minutes, approximately 90% of all trains meet their timetable
(Trafikverket, 2020). This means that 10% of trains are delayed by more than 5
minutes.

These delays have an economic impact as well as an impact on the attractiveness of
traveling by train and hence pose a threat to the conversion to railway travel from
airway and road travel. Thus, the knowledge of how delays arise and propagate
throughout the system is of great importance in order to predict, recover and prevent
delays (Palmqvist, 2019).

Previous research indicate that this knowledge can be obtained through mathemat-
ical analysis as researchers have successfully characterized delay propagation in the
railway system. One example of such an analysis can be found in the paper Complex
delay dynamics on railway networks from universal laws to realistic modelling from
2018 by Monechi et al. (Monechi et al., 2018). In this study, the authors discuss
a delay propagation mechanism on railways and state that their model is capable
of reproducing the empirical distribution of delays measured in the data as well as
the emergence of large congested areas, which supports the proposition that delay
propagation can be successfully analyzed using mathematics.

Other attempts to model delay leverages the fact that transport systems can be math-
ematically represented using a graph. As it is not unnatural to assume (as this thesis
will show) that delay behavior is linked to the underlying structure of the transport
system (the graph), researchers have attempted to analyze this through applied net-
work science. One such example is the research submitted by Li et al. in the paper
A Spectral Approach Towards Analyzing Air Traffic Network Disruptions from 2019
(Li et al., 2019). In this paper, the authors apply Graph Signal Processing (GSP)
techniques to the analysis of delay in flight networks. In the underlying graph, Li
et al. define nodes as airports. Edges between nodes are thus represented by flights
between these airports, in a way similar to how railway connects railway stations
(which is leverages in this thesis). By assigning edges a weight equal to delay corre-
lation between airport-pairs, the authors compute the weight matrix and model the
graph representing the U.S. flight network.

In order to track propagated delay (over space and time), one might apply what is
commonly referred to as network epidemic models to transport systems. These models
are traditionally used to model the spread of infectious disease by assigning nodes
(typically representing individuals in the conventional case) states. One example of
such a model is the SIS (Susceptible-Infected-Susceptible) model, where nodes can
take on one of two states: Susceptible or Infected. This model is typically employed
to model a disease where an individual may be infected more than once, meaning
that the individual could catch the disease, recover from it and then be infected
anew.

This SIS model can provide original insights when applied to transport systems, as the
states Susceptible and Infected may then correspond to a vehicle being ”on time” or
”delayed”, according to some definition. In the paper A Network Modelling Approach
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to Flight Delay Propagation: Some Empirical Evidence from China from 2019 (Wu
et al., 2019), Wu et al. apply the SIS model to model delay propagation between
flights in China. In this study, nodes are defined as flights which are connected to
other flights by edges if they interact in space and time. The authors go on to argue
that flight delay propagation and epidemic spreading have common features, as delays
of upstream flights are the main cause for delays in downstream flights. Using the
SIS approach, Wu et al. classify flights as either Susceptible (to delay) or Infected
(delayed) and compute the edge-dependent probability of becoming infected (βi,j)
and the node-specific probability of recovering from delay (δi). The delay propagation
process is illustrated as per below.

Figure 1: Cyclical epidemic processes between SIS model components S and I ©
(Wu et al., 2019)

A similar analysis on the US flight network is conducted by Ceria et al. and presented
in the article Modeling airport congestion contagion by heterogeneous SIS epidemic
spreading on airline networks from 2021 (Ceria et al., 2021).

Ceria et al., similarly to Wu et al., model delay congestion in a flight network using
an SIS spreading process, but let nodes correspond to airports rather than individual
flights. As in the study by Wu et al., the authors apply an SIS model with heteroge-
neous infection rates and recovery rates. The rationale behind this is that different
airports may take different time to recover from delay congestion due to difference
in infrastructure, the assumption being that larger airports (with more links to other
airport) take less time to recover.

Whilst this analysis showed that delay propagation in airway systems could be ana-
lyzed through applied network science with the use of an SIS model, the model did not
account for exogenous delay defined by Monechi et al., which was considered a flaw. In
the SIS model, the exogenous delay would correspond to a nodal self-infection mech-
anism, allowing nodes to spontaneously alter their state from Susceptible to Infected.
Such a mechanism was introduced by Van Mieghem et al. in the paper Epidemics
in networks with nodal self-infection and the epidemic threshold from 2012. In this
paper, Van mieghem et al. discuss a modified SIS model, referred to as the ε-SIS
model, where the parameter ε refers to the rate of nodal self-infection. This model
reduces to the “classical” SIS model when ε = 0.

Having reviewed this previous research, this thesis committed to examining whether
a modified SIS model allowing nodal self-infection (an ε-SIS model) could be applied
to model the behavior and propagation of delay on the Swedish railway system. The
belief was that this, if successfully implemented, could provide valuable insights into
which parameters affect delay occurrence and propagation on both a global and local
scale. These insights could then be employed to derive well-targeted and efficient
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preventive and reactive measures, by simulating the results of such before-hand, to
reduce overall as well as local delay in the railway system. This would in turn improve
timetable accuracy and - over time - increase the attractiveness of and adaption to
train travel in Sweden.

The results obtained would also be viable for any (fully connected) railway system and
could be adapted to model delay behavior on other transport systems as well.

2.1 Thesis outline

In this thesis, the reader is first introduced to the glossary containing definitions and
notations frequently used in the text. Next, the reader is introduced to an introduction
of the thesis topic, including an introduction to the problem at hand and the proposed
methodology to solve it. This is followed by a background on preliminaries tied to the
methodology before moving on to research methodology, where data collection and
processing is discussed.

Following this, the reader is provided with a graph representation of the Swedish
railway and characteristics of it, before being introduced to the network epidemic
model used to simulate railway delay propagation. Following this, the thesis results
are presented, followed by a sensitivity analysis of the same and implications from
these results are discussed in section 9. Lastly, the reader is provided with a thesis
summary and an appendix containing additional information and results from initial
simulation attempts.



3 Preliminaries 10

3 Preliminaries

A network is defined as a set of interconnected objects (called nodes or vertices).
The nodes are connected by edges (also called links). Network science is the study
of networks as a representation of either symmetric relations or asymmetric relations
between objects (Wellman, 1983). The theory is widely applicable and has been used
to analyze topics including, but not limited to, social and social media networks,
electrical power systems and failures on these, airway travel networks and traffic
congestion (Barabási, 2013). A network may be represented mathematically by a
graph.

3.1 Graph theory

3.1.1 Introducing graph notations

When illustrating a system with a graph, the graph G is generally defined as a tuple
(N , E) or triple (N , E ,W ), where:

• N is a finite set of nodes,

• E ⊆ N × N is a set of links, where e = (i, j) ∈ E indicates the existence of a
link from node i to node j, and

• W ⊆ RN×N+ is a matrix describing the intensities, or weights, of each link.

3.1.2 Undirected/directed graph

A graph may be characterized in many different ways. For example, a graph may be
undirected or directed. This can be explained using a graph where nodes illustrate
traffic intersections and edges illustrate streets or roads connecting these intersections.
Such edges could be either undirected, e(i,j) = e(j,i) (traffic between two intersections
runs in both directions), or directed e(i,j) 6= e(j,i) (traffic between the two intersec-
tions is one-way only). A graph consisting entirely of undirected edges is called an
undirected graph, whereas a graph with at least one directed edge is called a directed
graph. More formally, a graph is undirected if and only if A(i,j) = A(j,i),∀i, j ∈ N .
Whether a graph is undirected or directed is important as it has implications on the
complexity of computations available on the graph.

3.1.3 Unweighted/weighted graph

A graph may also be unweighted or weighted. In an unweighted graph, the value
on the edge between two nodes is either 1 (if the two nodes are connected) or 0
(if they are not). In other words, the edge values are binary as are the entries in
the adjacency matrix. In a weighted graph however, the edge may carry a weight.
That is, the connection between two nodes may be given a weight connected to some
feature. For example, in the example where nodes are traffic intersections and edges
are roads connecting those intersections, the weight on a given edge might be the traffic
capacity of the road represented by the edge. A weighted graph may be represented
by a weighted adjacency matrix with non-binary entries.

3.1.4 Graph representation by adjacency matrix

Lastly, we introduce the concept of the adjacency matrix A. This matrix is of di-
mensions N ×N and contains the numeric characterization of the graph G, meaning
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that it holds information about whether or not two nodes are connected. For an un-
weighted graph, this matrix has binary entries. For a weighted graph, the adjacency
matrix is often called the weight matrix, W , with entries corresponding to the weights
of the edges. Hence, if node 1 and node 2 are connected by an unweighted, undirected
edge, the entry A(1,2) = A(2,1) in the adjacency matrix would be equal to 1. If the
two nodes are not connected, it would be equal to 0. Similarly, if the two nodes were
connected by a weighted, undirected edge, the entry W(i,j) = W(j,i) would be equal to
the weight on this edge. If the two nodes are not connected, the entry would again
be zero. The adjacency matrix of an undirected graph is always symmetric.

For a directed graph, W(i,j) is not necessarily equal to W(j,i), and even if one of these
entries is a non-zero value, the other could very well be zero. This is true for both
unweighted and weighted directed graphs. In other words, the edges may be one-way
links connecting node A to node B without also connecting node B to node A. This, in
turn, means that the weight matrix W of a directed graph is not symmetrical.

3.2 Network epidemic models

Network science has historically played a central part in the mathematical mod-
elling of disease transmission. When simulating such transmission, a common tool
is what is known network epidemic models. These are commonly known as SI,
SIR and SIS models. In these graphs, nodes are assigned a state. These states
may be Susceptible/Infected (SI), Susceptible/Infected/Recovered (SIR) or Suscepti-
ble/Infected/Susceptible (SIS) depending on the model used (in turn dependent on
the nature of the infectious disease). For example, the transmission of a disease that
can infect an individual only once would be modeled using an SIR graph, seeing that
once individuals have recovered they cannot return to being susceptible to the disease.
Similarly, a disease that may infect an individual more than once might be modeled
using an SIS graph (Barabási, 2013).

Figure 2: Basic models of epidemic spreading: SI, SIR and SIS © (Mei et al., 2017)

Each time step, the nodes change their states according to some pre-determined prob-
ability along with the state of the system. In a standard SIR model, β is the prob-
ability that an infected node will infect a neighbouring node at any given time step.
The probability of a susceptible node i being infected at a time step t is thus given
by:

P (Xj(t+ 1) = 1|Xj(t) = 0) = 1− (1− β)k (1)
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where k is the number of infected neighbours of i at time t. Additionally, the proba-
bility that an infected node will recover during a time step is given by δ;

P (Xj(t+ 1) = 0|Xj(t) = 1) = δ (2)

The SI/SIS/SIR graphs are known as pairwise interacting network systems and the
states assigned to nodes belong to the finite space A, with the dynamical process being
Markovian. In the three-state scenario, for a network with N nodes, the SIR model
is described by a 3N -dimensional Markov process (Nowzari et al., 2016). Similarly,
the SIS model presents a two-state scenario where the model is described by a 2N -
dimensional Markov process.
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4 Research methodology

4.1 Data description

As mentioned above, this study is based on data collected by the Swedish Trans-
port Administration. This data was in part passed to the authors of this thesis from
the Department of Civil Engineering at the Faculty of Engineering, Lund Univer-
sity.

The data includes all departures (excluding cancelled departures) from railway sta-
tions in Sweden during 2019. This traffic includes different kinds of railway transport
including commute trains, regional trains, long-distance trains, airport trains and
freight trains. For each departure (corresponding to a single row in the data), the
data includes date and scheduled time of departure as well as actual departure time.
It also includes station of departure, station of arrival, scheduled arrival time and
actual arrival time.

Adding to this data, the Department of Civil Engineering has classified delayed trains
and computed magnitude of delay, both at departure and at arrival, for each delayed
train. Note that delay in the data set may be negative in the instance of a train
departing or arriving before schedule.

Station data including geographical information such as coordinates was also re-
quested and received from the Swedish Transport Authority through the department
of Civil Engineering.

4.2 Data processing

Primarily, Python has been used to handle the data and building models. The ra-
tionale behind this is the vast selection of available libraries for everything from data
crunching to network analysis. Many of these also offer tools to increase computa-
tional performance, e.g. by doing critical operations in C code, which is helpful in
running simulations. Some of the Python libraries that have been used are Pandas
(for handling of the data sets), NumPy and SciPy (for mathematical operations, such
as those relating to vectors and matrices) and NetworkX (for building and visualizing
graphs). Pure visualizations on maps included in the thesis are made in Tableau,
with data pre-processed in Python.

The main scripts used for processing the data and running the simulations can be
found on GitHub 1. Note that these scripts do not contain all the code that was
run during the project, but all code that was run used some variations of these
scripts.

1https://github.com/JacobLandelius/Master-Thesis-Raw-Code
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5 Graph representation of Swedish railway

The graph consists of two main components: nodes, which are objects in the network,
and edges, which describe how these nodes are connected. In this paper, railway
stations are viewed as nodes and railway lines are viewed as edges connecting these
nodes. Hence, two nodes are connected by an edge if there exists railway infras-
tructure allowing for trains to travel between these stations. If one were to look at
the Stockholm C-Södertälje-Norrköping part of the SJ express line, for example, the
nodes Stockholm C and Södertälje would be connected by an edge whereas Stockholm
C and Norrköping would not, as the stations are not directly connected.

When representing the Swedish railway network as a graph, the following notations
were used:

• the set of nodes, N , represents the set of Swedish railway stations

• the set of edges, E , represents the railway connecting stations to one another2

In an early simulation set-up (see A), the graph was modelled as undirected and hence
the weight matrix W symmetric. In the final simulation presented under section 7 the
graph was directed, i.e. Wi,j was not necessarily equal to Wj,i (see section 6).

5.1 Assumptions and approximations

This thesis make several assumptions of and approximations to the Swedish railway
network. The most important ones are listed below.

5.1.1 Reduced network

In order to simplify computations and achieve a network that more accurately rep-
resents the dynamics behind delay propagation, the railway network is in this thesis
reduced to a more compact network consisting only of nodes that are either ”junc-
tions” or ”end stations”. Since the model developed in this thesis treats infections on
a station level, i.e. treats stations as infected entities that can infect other stations,
this reduction of the network seems reasonable.

Junctions are defined as train stations with trains arriving and departing from more
than two adjacent stations. End stations are defined as stations where trains arrive
from and depart to only one other station, meaning that it is the final station on a
railway line. In the reduced network, all other stations are excluded. This means that
all stations, along with the railway binding them together, in between junctions and
end stations will be represented as one single edge (one long railway).

More formally, the reduced network excludes all stations with a degree deg(j) = 2,
but includes all others.

The reduction is illustrated by the line between the major stations Malmö C - Lund
C. This line contains one additional stop (Hjärup station), which is a minor station
(see figure 3).

2these edges are directed in the simulation set-up presented under section 6, but were undirected
in an initial attempt included in section A.
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Figure 3: Original graph Malmö C - Lund C line

Since not all trains on the line actually stop at Hjärup, and given that the ones who
do only stop there briefly, it seems intuitive that the station should have a much lower
impact on the propagation of delay than the much larger hubs of Lund C and Malmö
C. Thus, Hjärup station will, in the reduced network, not be treated as a station of
its own, but rather be a part of the link between Malmö C and Lund C (see figure
4).

Figure 4: Reduced graph Malmö C - Lund C line

One important thing to note is that, while the reduced network excludes all nodes
with deg(j) = 2 in the original network, there are a few nodes with deg(j) = 2 in the
reduced network as well. This phenomenon occurs due to the presence of triangles in
the original network, where one of the nodes in the triangle has deg(j) = 2 but the
others have not. This is illustrated in figure 5 below.
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Figure 5: Original graph around Stockholm C

In the above graph, both Stockholm C and Hallsberg have the degree deg(StockholmC) =
deg(Hallsberg) = 3. However, as Norra Bantorget has deg(NorraBantorget) = 2, it
will be excluded in the reduced network, as illustrated in figure 6 below.

Figure 6: Reduced graph around Stockholm C

In this reduced graph, Stockholm C and Hallsberg have deg(StockholmC) =
deg(Hallsberg) = 2.

One characteristic of the reduced network is that it increases the physical distance
between the nodes in the network. The model simulates delay propagation in dis-
crete time, and larger distances between stations allow for a larger time step to be
used in the simulation, which in turn lowers the computational cost of certain algo-
rithms.

A visualization of the reduced network containing only junctions and end stations
(green circles) and edges (railway and minor stations) between them (black lines) in
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comparison to the network including all stations (green circles) and railway (black
lines) is included below3.

Figure 7: Visualization of reduced network

The non-reduced network, to the left in figure 7 above, contains 1246 nodes. The
reduced network, to the right in the figure, contains 183 nodes. In other words, the
reduced network is a reduction of 85% in size (measured as number of nodes).

One can also examine the implications on the network diameter when reducing the
network to contain only junctions and end stations. The diameter, meaning the
greatest distance between any node-pair in the network, for the initial network is 260.
In comparison, the diameter of the reduced network is measured to 34. This implies
a diameter reduction of 87%. The reader is reminded that the reduced network is
a reduction of 85% in size (measured as number of nodes). Hence, the reduction in
diameter seems proportional to the reduction in size. This suggests that the reduced
graph respects the size-diameter relationship of the non-reduced graph.

There are other network characteristics, aside from size, that can be compared for
the two networks. This sections treats two such characteristics for the two networks:
connectivity andtendency to cluster.

If one examines the connectivity of both networks, one finds that both networks
consists of only one connected component (there are no isolated sub-networks in the

3Note that in the data set some stations lacked geographic information, why the visualization
is not entirely accurate. For example, the reduced network appears to consist of more than one
connected component. It does not.
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network) and thus both networks are strongly connected. This means that all nodes
are connected via edges and hence one can reach any node in the network by starting
at a random node and walking along a path of edges to the destination node. This is
perhaps intuitive, as one can assume that all stations included in the data set (from
which a train has departed from or arrived to) are connected via railway to at least
one other station.

Although there is only one connected component in the two networks, nodes in the two
networks may still have different tendencies to cluster as nodes can be connected to
a different number of neighbor nodes within the connected component. The network
tendency to cluster can be measured as the average clustering coefficient. For the
initial network, the average clustering coefficient is 1.3%. For the reduced network,
it is 8.7%. This indicates that the nodes in the reduced graph are more inclined to
be part of a cluster, which is reasonable given that the average degree of nodes in the
reduced network is higher (2.7) than for the non-reduced network (2.2) due to the
fact that the proportion of junctions (high-degree nodes) is higher. A higher tendency
to cluster would imply delay-dense areas where congestion is high when simulating
delay propagation in the network. However, congested areas in the reduced network
represents delay on many more stations, and propagation along many more edges, in
the initial areas, why the increased tendency for delay to ”cluster” is not considered
to impact conclusions that can be drawn from simulation results.

The assumption is that simulation on the reduced network will maintain the delay
mechanism of the initial network, which means that one can make computational cost
savings whilst arriving at the same conclusions if running simulations on the reduced
network rather than the initial one.

5.1.2 Restrictions on delay propagation

Another assumption affecting the results of the simulations in this study is the fact
that delay can only propagate along railway. This means that a delayed station
can only propagate its delay to adjacent stations. It cannot be excluded that a
delayed railway station might propagate its delay in other ways as well. For example,
there might exist a scenario where a traveller has the option of travelling either by
regional or commute train to his or her destination. Perhaps these two trains depart
from different stations, but account for a similar total travel time for the passenger.
Should one of these stations then be delayed according to this thesis’ definitions, it
seems reasonable that the traveller might opt for departing from the non-delayed
station. Should many travellers use this logic, it is impossible to exclude a scenario
where delay does in fact propagate from one railway station to another one close-by,
without the two being connected by railway.

The paragraph above describes how the model prevents delay from propagating be-
tween stations that are not connected via railway. On the other hand, however, the
model also gives some liberty to delay propagation that may not match reality. In the
model, a train departing from an infected station might infect a susceptible neigh-
boring station during that specific time step. This is not always logical, seeing that
travel time between stations may exceed that of a time step (30 min). For the sake
of computations, however, this approximation was deemed necessary and the overall
impact on results considered negligible. Also, the number of departures during a time
step (30 min) was approximated as the number of hourly departures (for the specific
hour) divided by two. These assumptions also have an impact on how the model
allows for delay propagation.
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5.1.3 Independence

Lastly, this thesis frequently makes assumptions regarding independence in terms of
probability of delay occurrence. When omitting individual train departures from the
analysis, this assumption is mostly in play when not taking into consideration the
fact that the probability of spontaneous delay in many cases depends on geography.
By this we mean that close-by stations might not be independently susceptible to
spontaneous delay. Instead a spontaneous delay cause, such as extreme weather or a
power failure, will affect the network regionally rather than just locally at one single
stations. Hence, treating the probability of spontaneous delay as independent for all
stations is a perhaps rather rough approximation that will affect results.

In the scenario where individual train departures affect the value of the βi,j-parameter,
this too is an assumption of independence that might not hold up. For trains depart-
ing from the same station at the same time step, these have the same probability of
being spontaneously delayed. Again, some reasons for spontaneous delay affect en-
tire stations and the assumption that some trains departing might be spontaneously
infected whereas other might not is not entirely intuitive. A cause for spontaneous
delay, such as a lasting signalling error for example, might affect an entire station, why
all trains departing from that station during that time step should be spontaneously
delayed (given that the signalling error is not solved within the time step). However,
there are also causes for spontaneous delay that affect individual trains (e.g. a per-
sonnel issue), why the assumption of independent spontaneous delay is not always
unreasonable. It is however important to note that this assumption does not always
hold up and that it will affect simulations and may cause simulated results to differ
from real ones.

Lastly, this thesis does not treat different types of trains differently in terms of how
likely they are to be susceptible to delay. That is, all trains travelling on an edge
between an infected and a susceptible node have the same probability of transmitting
infection between the two nodes (stations). This is due to infection stemming from
infected stations, not from infected (delayed) trains.
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6 Epidemic model for railway delay propagation

The model of delay propagation described in this thesis is a modified epidemic model
that applies the previously introduced SIS model theory with some modifications,
such as nodal self-infection, inspired by preliminary research mentioned in section
2.

Some of the research papers previously presented use an SIS model to analyze delay
propagation, but for airway traffic rather than railway traffic. Although there are a
number of important differences between airway and railway travel, the SIS model
can be applied to railway travel if slightly modified compared to the models used for
airway travel. This is done by defining train stations as Susceptible or Infected
depending on the level of delay at a station during a given time step.

6.1 Definition of states

One problem that arises when using railway stations as nodes is how to define a de-
layed station, as the notion of a delayed railway station is counter-intuitive. Naturally,
delays arise on trains rather than stations. For the purpose of this network analysis,
however, a definition of a delayed station (node) is needed. Note that the SIS model
used is a 2N -dimensional Markov process, with Xi(t) ∈ 0, 1 : Xi(t) = 0 if the node is
susceptible (not delayed) and Xi(t) = 1 if the station is infected (delayed).

The use of stations as nodes, and the defined states stations can venture into, is
somewhat strengthened by the work of Carl-William Palmqvist with Transport and
Roads at Lund University (Palmqvist, 2019). In his PhD thesis, Palmqvist found that
“the average delay for a train on a line section between two stations is very close to
zero, while at stations almost half of all stops take longer than scheduled, and the
delays that do occur also tend to be greater at station stops than on line sections.”
He goes on to argue that “more than 90% of all delay time occurred at stations”
(Palmqvist, 2019). Even though this of course relates to delayed trains, it supports
the assumption on delay being able to propagate between adjacent stations as well as
this thesis’ focus on delay on stations, rather than edges.

In this study, an infected railway station is defined as a station for which the per-
centage of departing trains that are delayed exceeds Y%. Consequently, a station is
susceptible (not delayed) if the percentage of departing trains that are delayed (by
more than five minutes) does not exceed Y%.

The conventional definition of a delayed train is a train which departs more than five
minutes late. Using that definition, public data shows that the overall punctuality in
the railway network is 91% during 2019 (meaning 91% of trains departed on time)
(Trafikverket, 2020). Approximating this threshold to 90%, this value is used as a
baseline for the number of trains that can be delayed at departure from a station
during a time step before it is considered delayed. In other words, any station in
which the percentage of delayed trains in a given time step exceeds Y = 10% is
considered delayed (infected) during that time step. As part of the thesis in general
and the sensitivity analysis in particular, the model will be evaluated for other values
of this threshold.

6.2 Definition of parameters

In the general SIS model, the network dynamics are defined by two homogenous
parameters: β and δ, where β is the parameter controlling the rate of infection and δ
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is the parameter controlling the rate of recovery. This paper, inspired by Monechi et
al, introduces a third parameter, ε, which corresponds to spontaneous (or exogenous)
delay.

In the context of a railway network, there are two ways in which delays can occur:
endogenous (propagated), and exogenous (spontaneous) as mentioned in the paper
by Monechi et al. Endogenous, or propagated, delay, corresponds to the spread of
disease in a regular SIS model and is controlled by the βi,j parameter. In this paper,
βi,j is not a global variable, but is an edge-specific, heterogeneous variable. To make
this characteristic clear, it is consistently referred to as βi,j , which refers to the rate
of infection on the link between the connected nodes i and j.

Spontaneous delay, however, is not controlled by the βi,j parameter. In a traditional
epidemic model, contagious disease does not spontaneously occur but requires a con-
taminator. Exogenous, or spontaneous, delay can occur at any time and does not
require contact with an infected node to take place. This relates to delay caused
by external factors, such as trains breaking down, trees falling over the rails, or bad
weather. In order to capture this behavior in the model, the third parameter ε is
introduced. Since it is a train-specific variable for a certain node j, it is consistently
referred to as εj , which is the rate of spontaneous infection on a train departing from
node (station) j.

This means that for this thesis’ model, some characteristics of the classical SIS model
does not apply. For instance, a classic SIS model would reach an absorbing state:
either all nodes would become susceptible over time (and the disease dies out) or all
node become infected, which is called the endemic state (i.e. the disease never dies
out) (Nowzari et al., 2016). This is not true for a model such as the one in this article
which uses a third parameter (εj) which constantly erupts the convergence towards
an absorbing state.

Below follows a more detailed definition of the three parameters and their ratio-
nale.

6.2.1 Defining recovery rate (δj)

Delta is a node-specific value defined as the probability of a node recovering during
a time step. In other words, if a station j is infected at time t, it will again be
susceptible at time t+ 1 with probability δj . More formally:

P (Xj(t+ 1) = 0|Xj(t) = 1) = δj (3)

where Xj(t) is the state of node j at time t, Sj(t) = 0 denotes a susceptible state and
Sj(t) = 1 denotes an infected state.

6.2.2 Defining self-infection rate (εj)

As stated, ε is a node-specific value relating to the probability of a self-infection
(or spontaneous infection). In this thesis, individual train departures are taken into
account when determining the effective probability of self-infection at a certain time.
More precisely, the value εj corresponds to the probability that a single train leaving
from station j at any time t is delayed. It is reminded that the definition of a
delayed node is that more than Y% of departures during a time step are delayed.



6.2.3 Defining edge-specific infection rate (βi,j) 22

The probability of station j, susceptible at time t, being self-infected at time t is
then:

P (Xj(t+ 1) = 1|Xj(t) = 0)self = P (Fj(t) > Lj(t)) (4)

where Fj(t) is the number of trains that are delayed at departure at time t. In other
words, the probability of a station becoming delayed can be seen as the probability
of Lj(t) successes in dj(t) draws, where the probability of success is εj . Here, dj(t) is
the number of trains departing from station j at time t, and Lj(t) = Y ∗ dj(t) where
Y is the minimum share of trains that are required to depart delayed in order for the
station to be considered infected. More formally, the probability of self-infection is
drawn from the hypergeometric distribution:

P (Xj(t+ 1) = 1|Xj(t) = 0)self = 1−
Lj(t)∑
k=0

(
dj(t)

k

)
εkj (1− εj)dj(t)−k (5)

where Xj(t) is the state of node j at time t, Xj(t) = 0 denotes a susceptible state
and Xj(t) = 1 denotes an infected state.

6.2.3 Defining edge-specific infection rate (βi,j)

As stated, the edge infection rates are heterogeneous, meaning each link has an indi-
vidual probability of infection, β(i,j).

The probability of a node j being infected at time step t then depends on the value
of βi,j on its adjacent edges as well as the number of trains travelling on those edges
during the specific time step. For the susceptible node j with N infected neighbors
belonging to the set of infected nodes I, where Dj,i(t) is the number of trains travelling
on the edge between an infected neighbor i and the susceptible node j at time step t,
the specific probability of propagated infection for this node was computed as:

P (Xj(t+ 1) = 1|Xj(t) = 0)propagation = 1−
∏
i∈I

(1− βi,j)di,j(t) (6)

where Xj(t) is the state of node j at time t, Xj(t) = 0 denotes a susceptible state
and Xj(t) = 1 denotes an infected state.

The value βi,j can thus be defined as: the probability of a single train, leaving from
the infected node i to the susceptible node j, carrying that infection from node i to
node j.

The di,j(t) values were extracted from the data. They contain the average number of
trains departing from station i during weekday d ∈ (0, 6) and hour h ∈ (0, 23). Since
the time step size is 30 minutes, the number of trains travelling between node i and
node j at time t is then approximated as the number of trains leaving from node j
during the weekday and hour at time t, divided by 2, divided by the degree of node
i:

di,j(t) = (d(i, d(t), h(t))/2)/deg(i) (7)
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As an example, one can consider the time step where the weekday and hour at time t
is Friday (d = 4) and 11, respectively. During this specific hour there are, on average,
30 trains leaving from node i, which has deg(i) = 3 edges. The number of trains
leaving from i to any of its adjacent stations j during time t is then approximated
as:

di,j(t) = (d(i, 4, 11)/2)/3 = 30/2/3 = 5 (8)

The rationale behind this definition of the edge-specific probability of infection is
presented below.

If a station j is in a state in which it has a high level of delay, there is a certain
probability of that state spreading to neighbouring stations. Not only would delayed
departures end up delayed at arrival (and subsequently at departure) at neighbouring
stations as well, but there are other factors which might add to this propagation. For
example, delayed arrivals might cause train to have to wait for passengers who are
changing trains on the specific station, etc.

By including the number of departures from infected neighboring stations to the
susceptible station when modelling the βi,j-values, the simulation takes individual
train departures, and subsequently traffic levels, into account. Specifically, each train
departing from an infected neighbor i to a susceptible node j during a time step t
may infect the susceptible node j with a probability (βi,j). The overall probability
of a susceptible node becoming infected is then increased with the number of trains
travelling to this node during the specific time step. This is logical, as an infected
station from which very few trains leave will likely not have as big of an impact on
surrounding stations as one from which a large number of trains is leaving.

Additionally, there is a variance in the level of delay with respect to the weekday and
hour of the day. More specifically, delays (as a portion of total departures) are less
common during nighttime and during weekends. This can in large be attributed to
the lessened traffic during these time periods. Thus, including traffic levels in the
model makes it possible to capture some of the seasonality of delays that is present
in the real railway network.

6.3 Estimation of parameters from data

6.3.1 Estimating recovery rate (δj)

The value of δj was, like εj , extracted from the data sets provided.

For the relevant simulation time period, the data was re-sampled into 30-minute
intervals (same as the ones used in the simulation). For each of these intervals,
the state of each station (susceptible or infected) was computed. If a station got
infected, it was given a station-specific timer. Once the station had recovered, this
timer indicated how many time steps the station had spent being infected before
recovering. This yielded, for every station, a sequence of integers describing the
duration of infection. For each station, the average of this sequence was used as an
approximation of the number of time steps needed for a station j to recover (λj),
and thus the probability of recovery for a node during a single time step, δj , was
calculated as:

δj = 1/λj (9)



6.3.2 Estimating self-infection rate (εj) 24

6.3.2 Estimating self-infection rate (εj)

The εj-value is, as stated, the node-specific probability of spontaneous delay (for a
train departing from the specific station), and was extracted from data supplied by
the Swedish Transport Authority.

The Swedish Transportation Authority attributes codes to each delayed train, en-
coding the (probable) reason for that train being delayed. One of these codes is
”Disturbed by other train”, which is the only delay code relating to propagated delay
rather than exogenous delay.

In calculating εj , this data was used to calculate the station-specific incidence of
delays occurring without the aforementioned delay code. In other words, the share
of delayed trains at a certain station which did not have the delay code “Disturbed
by other train” was calculated. This was then divided by the total number of trains
(delayed and non-delayed) leaving from that station. The resulting value was then
interpreted as the probability of a train leaving from station j being delayed, without
that delay being caused by other trains, or more relevantly, εj .

6.3.3 Estimating edge-specific infection rate (βi,j)

Since there is no feasible way to derive the βi,j values directly from the data, these were
treated as an unknown variable that needed to be solved for using an optimization
algorithm, which is described below.

The value of βi,j , for all edges i, j ∈ E , started off with a generic start value (βi,j =
0.2). 20 simulations were then run, using these generic start values along with the
static values of εj and δj . For these simulation, the average fraction of total delay
(called the delay score, or Rj) that each station accounted for was calculated:

R̂j =

∑t=T
t=0 Xj(t)∑t=T

t=0

∑
k∈N Xk(t)

(10)

where Xj(t) denotes the state of node j at time t.

If the delay score of node j was higher in the simulations than the real delay score
extracted from the data set, Rj , (R̂j > Rj) all βi,j values on links going in to node
j were reduced by a certain increment. If the delay score of node j was lower, the
in-bound βi,j values were increased with the same amount. This was done for all
nodes. More formally, the optimization problem can be stated as:

min
βi,j

∑t=T
t=0 Xj(t)∑t=T

t=0

∑
k∈N Xk(t)

(11a)

s.t. βki ∈ (0, 1) (11b)

If the sign of the difference between R̂j and Rj was different after iteration i than it
was during iteration i− 1 (meaning the algorithms ”overshoots”), the increment was
halved. Thus, the algorithm was a node-specific, simple, bisection method.

Some things are worth noting with this approach. Firstly, since the values on the
nodes going in to node j are optimized separately from the nodes going out of it, the
resulting matrix is asymmetrical, thus making the graph undirected.
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Secondly, the algorithm is very slow, and since no analysis was made beforehand on
the convexity of the problem, is not guaranteed to converge. However, the trials
conducted showed the algorithm actually did converge, albeit slowly. More details on
the result of the optimization is presented under results(7).

Lastly, the reader should know that the way in which βi,j was computed was one sig-
nificant alteration made during the research process. The results of previous attempts
can be found in Appendix, together with the reason for computing βi,j as described
in this section.

6.3.4 Summary

To summarize, this paper uses the following parameters:

• δj : Corresponds to the probability of recovery of node j during a time step

• εj : Corresponds to the probability of self-infection for a train departing from
node j

• βi,j : Corresponds to the probability of infection, i.e. the rate of infection on the
edge between node i and node j

The total probability of a node j, susceptible at time t, becoming infected at time
t+ 1 is then:

P (Xj(t+ 1) = 1|Xj(t) = 0) = 1− (1− εj)
∏
i∈I

(1− βi,j)di,j(t) (12)

where Xj(t) is the state of node j at time t, Xj(t) = 0 denotes a susceptible state
and Xj(t) = 1 denotes an infected state.
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7 Results

7.1 Section outline

As this section is quite lengthy, the reader is provided with a brief overview of how
results will presented in order to improve the reading experience. In this section, the
reader is first introduced to the evaluation metrics with which the simulation perfor-
mance is evaluated. The model is evaluated on its ability to reproduce both global as
well as local delay behavior, why metrics for both are introduced. Following this, the
convergence on the optimization algorithm previously introduced is discussed.

The reader is then introduced to the simulation results. The idea here is for the reader
to understand the rationale behind changes in the parameters going into the model,
why these sub-section are presented in chronological order. In each section, a table
describing the simulation set-up is included, which is there to guide the reader as to
which parameters are altered in each simulation.

In the section, the results from running the simulation using the already introduced
parameters are introduced first. Then, for reasons given in detail in the text, the
spontaneous delay rate parameter εj is examined in detail and results from running
the simulation using a re-scaled version of this parameter are presented. This is
considered the final simulation set-ups, and an analysis of the simulation implications
follows next.

Following the presentation of the final simulation and potential implications (which
are discussed in detail in section 9), a sensitivity analysis of the model and simulation
set-up is included. This sections discussess how the model performs under different
circumstances than the ones it is built on.

Last in the section the reader will find a brief paragraph relating to the issue of over-
fitting as well as a paragraph on how suitable the model is for predicting future delay.
All sub-sections may be found in the table of contents on page 4.

7.2 Evaluation metrics

In the context of this thesis, it was deemed important that the model could replicate
both the global and the local behaviour of the system. Global behaviour refers to
the overall level of delay in the system, while local behaviour refers to station-specific
levels of delay.

7.2.1 Metrics with regards to global behaviour

Performance with regard to global behaviour was evaluated using two main metrics:
the mean portion of stations in a delayed state over the entire simulation period, Ȳ ,
compared to the same value from the real data, as well as the Mean Absolute Scaled
Error (MASEY ). The Mean Absolute Scaled Error, first proposed by Hyndman and
Koehler in 2006, has many advantages to other forecasting measures. In the context
of this thesis, there are three main advantages worth noting:

• It is scale invariant, meaning it can be meaningful to compare the MASEY -
scores of model prediction on processes with different means.

• Predictable behaviour as y(t)→ 0
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• Interpretability. A MASEY score < 1 means that the model performs better in-
sample than the naive predictor: y(t) = y(t-m) where m is the seasonal period.
A score > 1 means it performs worse than the naive predictor.

To more formally introduce these measures and their formulas, we first define the
portion of stations delayed at a given time step t as:

Y (t) =

∑
i∈N Xi(t)

|N |
(13)

where |N | is the number of nodes in the graph.

The two primary global performance metrics are then:

Ȳ =

∑T
t=0 Ŷ (t)

T
(14)

and:

MASEY =
1
T

∑T
t=0 |Y (t)− Ŷ (t)|

1
T−m

∑T
t=m+1 |Y (t)− Y (t−m)|

(15)

where Ŷ (t) denotes the simulated value and Y (t) denotes the real value, T is the
total number of time periods in the simulation set, and m is the seasonal period of
the data.

7.2.2 Metrics with regards to local behaviour

Performance with regards to local behaviour was evaluated by comparing the delay
score obtained from the simulation, Rj , described in 6. More precisely, the mean of

the absolute difference between the simulated R̂j values and the real ones, Rj , was
calculated:

MAER =

∑
j∈N |Rj − R̂j |
|N |

(16)

In addition, the ranking of the R̂j values were compared to the real ranking. This
was done using two measurements used for comparing rankings: Kendall’s tau and
the Spearman’s rank-order correlation coefficient. Kendall’s tau was calculated using
the SciPy implementation (SciPy, 2021a), based on the idea presented by Kendall
(Kendall, 1938):

τ =
P −Q√

(P +Q+ T )(P +Q+ U)
(17)

where P is the number of concordant pairs, Q the number of discordant pairs, T the
number of ties only in the simulated ranking, and U the number of ties only in the
real ranking. If a tie occurs for the same pair in both the simulated ranking and the
real one, it is not added to either T or U.
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Spearman’s rank-order correlation coefficient, rs, was calculated using the SciPy im-
plementation (SciPy, 2021b), based on literature by Zwillinger and Kokoska (Zwill-
inger and Kokoska, 1999):

rs =
cov(rgX , rgY )

σrgXσrgY
(18)

where rgX and rgY denotes the raw scores of simulated R̂j values and real Rj values,
respectively, converted to ranks.

For both Kendall’s tau and Spearman’s r, a value of 1 indicates perfect agreement
between the two rankings, a value of 0 indicates no correlation, and a value of -1
indicates perfect disagreement.

7.3 Convergence of optimization algorithm

The optimization algorithm used for finding the edge-specific rates of infection (de-
scribed in 6) performed adequately and, given enough iterations, showed convergence.
Since the algorithm optimized every βi,j , i, j ∈ E separately (6), a global metric was
used to measure the convergence. This metric was denoted MAER and is described
in the previous subsection. As a reminder, it was calculated by taking the mean of
the absolute value of all of the differences between the simulated delay score, R̂j , and
the real delay score, Rj , for every node j ∈ N :

MAER =

∑
j∈N |R̂j −Rj |
|N |

(19)

where |N | is the total number of nodes. The convergence of the algorithm with respect
to the MAER-value is shown below:

Figure 8: Convergence of optimization algorithm

While the graph indicates that the algorithm was still converging after 30 iterations,
various trials concluded that it did so very slowly, and thus running it for more
iterations was not considered worth the extra running time. Since, for each iteration,
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the simulation is run 20 times (and then averaged), the simulation was run a total of
600 times, which was already time-consuming.

7.4 Simulation using optimized βi,j-values

For the purpose of orientation amongst the different simulations, the simulation set-up
is summarized in table 1 below.

Name Parameter used
Rate of recovery δj

Rate of spontaneous delay εj
Rate of propagated delay βi,j

Time step 30 min
Time period March 2019

Table 1: Initial simulation set-up

The first optimization attempt yielded the following distribution of βi,j values:

Figure 9: Distribution of βi,j values after 30 iterations

Mean Std. deviation Max Min
0.108 0.109 0.270 0.00

Table 2: Measures of the βi,j values

Using these values of βi,j , 20 simulations were run and then averaged. When visual-
izing the delay level over time, the following plot was obtained.
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Figure 10: Delay level over time for initial simulation with 20 simulations

In the figure above, Y (t) is, as is described under Evaluation metrics (7), the share
of stations in a delayed state at time step t. Looking at the figure, there is a clear
discrepancy between the simulation and the real data, indicating that the simulation
does not reproduce global delay behavior with very satisfying results.

If one zooms in on figure 10 above, the 95% confidence interval is visual as the light
blue area surrounding the dark blue line (the average of 20 simulations). As is clear
from figure 11, the variance in-between simulations is not very large.

Figure 11: Figure 10 zoomed in, showing confidence interval

Looking at the quantified goodness-of-fit, found in table 27 below, the previously
mentioned discrepancy between simulation and real data is obvious, given the too
high mean. It is also evident from the MASEY that the model performs poorly, as a
measure of 3.153 > 1 means it performs much worse than the naive predictor.
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Real mean Simulated mean MASEY

0.130 0.175 1.270

Table 3: Global performance metrics

When visualizing local performance (ranking of delay scores), the following graph is
obtained.

Figure 12: R values, simulated vs real data

In figure 12 above, the blue line illustrates the real MAER scores whereas red dots
indicate the same values for the simulation, all multiplied by a factor 100. The lo-
cal performance evaluation metric MAER can be interpreted as the average vertical
distance from the blue line to the red dots. The graph indicates a very small discrep-
ancy and overall satisfying result. The goodness-of-fit is quantified using previously
introduced measures and may be found in table 12 below.

Spearman’s r Kendall’s tau MAER

0.976 0.901 0.0410

Table 4: Local performance metrics

Table 12 shows high values for both Spearman’s R Correlation Coefficient as well as
Kendall’s Tau Distance. Adding to this, the Mean Absolute Error is small, strength-
ening the conclusion that the simulation of geographical distribution of delay was
satisfactory.

When looking at both global and local metrics, it was evident that the simulation,
whilst reproducing local delay behavior with satisfying results, was unable to do so
for global delay behavior.

7.5 Simulation with βi,j = 0

In order to investigate whether the too high level of delay was a result of an issue with
the probabilities of propagating delay, the simulation was re-run with all βi,j-values
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set to 0. The hypothesis was that, this simulation would determine the extent to
which the delay propagation probabilities were responsible for the poor performance
of the previous model.

The results of this new simulation follow upon table 5 includes information on this
simulation set-up.

Name Parameter used
Rate of recovery δj

Rate of spontaneous delay εj
Rate of propagated delay βi,j = 0

Time step 30 min
Time period March 2019

Table 5: Simulation using βi,j = 0

Figure 13 shows the level of delay over time, when excluding the probability of delay
propagating in-between stations.

Figure 13: Delay level over time when simulating with βi,j = 0

As indicated by the figure above, there is still a visible discrepancy between the
simulation and the real data, indicating that the global performance is not greatly
enhanced by setting βi,j-values to 0. The goodness-of-fit is quantified in the table
below.

Real mean Simulated mean MASEY

0.130 0.160 1.092

Table 6: Global performance metrics, βi,j = 0

Although table 6 indicates that the new simulation performs better, the level of delay
is still too high. This instead indicated that the problem might lie with the node-
specific self-infection rate, rather than in the edge-specific infection rate. In other
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words, the new hypothesis was that εj parameters were too large4.

Under this hypothesis, and under the assumption that this error affects all station
equally, i.e. the size of the error being equal for the entire data set, a re-scaling of
the εj-values would produce the correct value and result in an accurate simulation of
delay behavior and propagation.

In order to investigate whether a down-scaled value of εj might be appropriate, i.e.
a smaller ratio of spontaneous delay versus propagated delay, the εj-parameter was
re-scaled globally using different values, denoted µ. In other words, new values of εj ,
ε∗j , were constructed by:

ε∗j = εj ∗ µ, µ ∈ (0, 1) (20)

The optimization algorithm was then run in the same way as before, yielding distinct
βi,j-values for each re-scaling value. The results of each of these re-scaling attempts
are found in the next section.

7.6 Re-scaled rate of nodal self-infection rate (εj)

When attempting to re-scale εj , the simulation set-up was as follows, where µ takes
on different values in the interval µ ∈ (0, 1):

Name Parameter used
Rate of recovery δj

Rate of spontaneous delay ε∗j = µ ∗ εj
Rate of propagated delay βi,j

Time step t = 30 min
Time period March 2019

Table 7: Simulation using ε∗j = µ ∗ εj

Firstly, the global performance of the model for different values of µ was investigated.
In 14 it is shown that the real average level of delay lies around 13%, and that this
measure is re-produced for µ = 0.65, i.e a re-scaling of εj to 65% to its original
value.

4Potential reasons for this are discussed in the Sensitivity analysis in section 7 and in the Dis-
cussion (section 9).
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Figure 14: Mean level of delay for different levels of re-scaling of εj

This result is further visualized in the figures 15 and 16, showing the delay level over
time for different values of µ:

Figure 15: Real vs simulated level of delay over time for different values of µ
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Figure 16: Real vs simulated level of delay over time for different values of µ

When looking at the Mean Absolute Scale Error (MASEY ) for different vaues of µ,
the plot indicates that µ = 0.6 yields the best fit. This is slightly lower than the value
suggested by figure 14, but very close. See figure 17 below.

Figure 17: Mean Absolute Scaled Error for different choices of µ

Secondly, the local performance of the model for different values of µ was investigated.
Figure 18 shows the performance with regards to the Spearman’s r and Kendall’s tau
ranking coefficients along with the Mean Absolute Error (MAER).
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Figure 18: Local performance metrics for different values of µ

While these metrics do not strongly suggest a value of µ = 0.6 to be the optimal, the
difference in local performance for the different values of µ was very small:

µ Spearman’s r Kendall’s tau MAER

µ = 0.6 0.978 0.907 0.038
Best (µ) 0.978 (0.40) 0.908 (0.55) 0.037 (0.85)

Worst (µ) 0.974 (0.10) 0.885 (0.10) 0.063 (0.05)

Table 8: Local performance metrics

As can be seen in the table above, local performance with µ = 0.6 was close to
the optimum. With these results, µ = 0.6 was considered the optimal value when
considering both global and local behaviour.

The re-scaled ε, using the re-scaling parameter µ = 0.6, will be referred to as ε∗,
where

ε∗j = εj ∗ 0.6 (21)

7.7 Simulation using optimal ε∗j

Following the estimation of an optimal value of εj , ε
∗
j , the resulting model was run

for 20 simulation, averaged, and evaluated with the following set-up:

Name Parameter used
Rate of recovery δj

Rate of spontaneous delay ε∗j = 0.6 ∗ εj
Rate of propagated delay βi,j

Time step t = 30 min
Time period March 2019

Table 9: Simulation using ε∗j = 0.6 ∗ εj
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Figure 19 and table 10 show the distribution and measures, respectively, of βi,j values
yielded from the optimization algorithm.

Figure 19: Distribution of βi,j values

Mean Std. deviation Max Min
0.089 0.102 0.270 0.00

Table 10: Measures of the βi,j values

Both the mean of the βi,j values and the standard deviation are lower than in the origi-
nal model, while both the maximum and minimum βi,j values remain the same.

Figure 20 and table 11 show the level of delay over time and the evaluation metrics
for the simulations.

Figure 20: Level of delay over the simulation period



7.7 Simulation using optimal ε∗j 38

Real mean Simulated mean MASEY

0.130 0.123 0.908

Table 11: Global performance metrics when simulating with ε∗j = 0.6 ∗ εj

Figure 20 shows that model seems to be good at capturing the seasonality and overall
level of delay of the process, while table 11 shows that global behaviour is greatly
improved when running the simulation with the re-scaled εj-values. The fact that the
model does not capture some of the high peaks of the real process might be due to the
fact that the simulation plot in figure 20 is the average of 20 simulations, while the
real line represents just one simulation period. A better fit might have been obtained
had the real data been an average over a number of time periods as well.

The local performance of the model is visualized in figure 21:

Figure 21: R values, simulated vs real data

The local performance was also improved, and the goodness-of-fit is quantified as
before and is found in table 12 below:

Spearman’s Rank Corr. Coeff. Kendall Tau Rank Distance MAER

0.977 0.906 0.0397

Table 12: Local performance metrics

These results further support the conclusion that the model can reproduce both local
and global behaviour of the system when using the re-scaled εj value, ε∗j .

The geographic distribution of frequently delayed stations is illustrated in figure 22
below. Note that the darkest circles correspond to the most frequently delayed sta-
tions.
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Figure 22: Real and simulated delay scores visualized

Looking at figure 22, the two maps are practically identical to the eye. This indicates
that the simulated delay score is close to the real delay score. One can also note
that there does not seem to exist an apparent geographical cluster of heavily delayed
stations, although one could argue that there exists ”micro clusters” in the graph as
some stations with higher delay scores are adjacent.

Looking at the delay score of individual stations, one can derive the ”top list” for
delay in Sweden. The 10 most delayed station, including each station’s individual
delay score, according to both simulation and reality, are shown below:
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Real ranking Real score Simulated ranking Simulated score
Hallsbergs Pbg 1.77 Hallsbergs Pbg 1.77

Eslöv 1.56 Eslöv 1.63
Hallsbergs Rbg 1.48 Hallsbergs Rbg 1.56
Hässleholm C 1.45 Hässleholm C 1.46

Lund C 1.41 Tälle 1.38
Tälle 1.38 Hovsta 1.38

Hovsta 1.37 Lund C 1.35

Älmhult 1.34 Älmhult 1.35
Lernacken 1.34 Göteborg Sävenäs 1.33

Osby 1.31 Lernacken 1.30

Table 13: 10 most delayed stations according to delay score

As indicated by the figure 22 above, the two lists are similar. Although ranking for
some stations differ, only one station included in the real top list (Osby) is missing
from the simulated top list.

It is also shown in the table above that although the ranking of stations differs a
bit, the difference in real and simulated delay score for the top 10 station is quite
small.

When looking at the optimized βi,j-values, figure 23 shows these as a heat map, where
dark edges symbolize a higher probability of delay propagation (a higher βi,j-value) on
these lines. The value on each edge in the figure below is the optimized βi,j-value for
that edge, multiplied with the average number of departures per time step.
This is for traffic intensity to have an impact on the visualized delay propagation
probability, as infection will spread more easily on edges where a larger number of
trains travel each time step. The reader should note that in the figure below, the
edges appear to be undirected. In the simulation, these edges would in fact have
different propagation probabilities depending on the direction of the edge, why this
is an over-simplification and is purely for the sake of making the visualization more
easy on the eye.



7.8 Predictive power of model 41

Figure 23: Geographic delay propagation probability

The figure above seems to show a slight inclination for propagated delay probability
(times the number of average departures on an edge) to be higher on edges in the
northern region. This is not entirely unexpected as freight traffic is more dense in the
area, and freight trains are themselves more often delayed than other trains.

7.8 Predictive power of model

One potential use of the model is to predict both the global and local behaviour of the
system, i.e. predict where and to what extent delays will occur in the future.

As the parameters of the model are estimated on data from March 2019, it would
seem intuitive to use the model to predict delays for March 2020. However, due to the
Covid-19 pandemic, March 2020 is not a ”normal” month but rather deeply affected
by the reduced travelling during that time, and so the outcome of this prediction was
not expected to be valuable. Instead, the model was used for predicting delays for the
four weeks following the March 2019, i.e. the first four weeks of April 2019.

As is described under Evaluation Metrics, the Mean Absolute Scaled Error (MASEY )
compares the performance of the model to that of a naive predictor, and is thus a
good measure of the predictive power of the model.

Figure 24 below is the predicted level of delay vs the real one for April 2019.
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Figure 24: Delay level over time, April 2019

The goodness-of-fit of the simulation visualized in figure 24 is quantified as before
by computing the mean delay as well as the Mean Absolute Scaled Error, see table
below.

Real mean Predicted mean MASEY

0.122 0.124 0.827

Table 14: Global performance metrics

When looking at the visualized performance of the model’s ability to predict local
delay behavior, the following figure is obtained.

Figure 25: Rj values for the prediction

Quantitatively, the goodness-of-fit can be expressed using the previously introduced
Spearman’s R Correlation Coefficient and Kendall’s Tau Distance, as well as the Mean
Absolute Error. The values can be found in table 15.
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Spearman’s r Kendall’s tau MAE (MAER)
0.944 0.823 0.0860

Table 15: Local performance metrics

As seen in the figures and tables above, the model performs adequately on the predic-
tion time period. On a global scale, it still performs better than the naive predictor
(as indicated by the fact that MASEY < 1). The local performance on the predic-
tion time period is not as good as in the training time period (March 2019), but still
largely replicates the geographical distribution of delay. Overall, the prediction power
of the model was deemed good, and it was hypothesised that it would perform even
better had the ideal prediction time period (March 2020) been usable.

7.9 Analyzing effect of preventive measures

The following subsection discusses the potential of the model to determine the theo-
retical effects of targeted preventive measures on critical points in the network.

7.9.1 On stations

One potential use of the model is to analyze the effect of preventive measures on
stations, i.e. what effect a change in the station-specific parameter εj has on those
stations and the systems as a whole. One hypothesis is that reducing the spontaneous
delay rate, εj , on the nodes that are delayed most often, i.e. has the highest delay
score, would have a large effect on the network as a whole. To investigate this, the
top 10 stations in terms of delay score were reduced by 50%. This was done in order
for the station to have a lower percentage of late departures. The top 10 stations
according to the simulation were:

Station Simulated score
Hallsbergs Pbg 1.77

Eslöv 1.63
Hallsbergs Rbg 1.56
Hässleholm C 1.46

Tälle 1.38
Hovsta 1.38
Lund C 1.35

Älmhult 1.35
Göteborg Sävenäs 1.33

Lernacken 1.30

Table 16: Top 10 delayed stations according to simulation

The simulation set-up, when altering the rate of sponaneous delay on these stations,
is summarized below.
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Name Parameter used
Rate of recovery δj

Rate of spontaneous delay -50% for for critical stations
Rate of propagated delay βi,j

Time step t = 30 min
Time period March 2019

Table 17: Simulation with preventive delay measures on critical stations

When running the simulation with these settings, the probability of spontaneous delay
for trains departing from critical stations was, as mentioned, reduced with 50%. The
overall delay was then decreased for both critical stations as well as for the system at
large. This is summarized in the table below. Note that εj is only reduced for critical
stations.

Reduction of εj 50.0%
Decreased delay on critical stations 37.1%

Decrease of overall delay 5.01%
Decrease of delay on non-critical stations 0.37 %

Table 18: Results of preventive measures on critical stations

The table above shows that a reduction of 50% of the spontaneous delay rate reduces
delay on these stations with approx. 37%, whereas the overall system delay is de-
creased by approx. 5% and unaltered (non-critical) stations by approx. 0.4%. This
means that the leverage on the overall system is 0.4%, which seems moderate but may
still be significant on a larger scale. The reader should also note that this simulation
only alters the spontaneous rate of infection, whereas the rate of propagated delay is
left untouched.

In order to analyze how the choice of stations affect the result, the simulation was
carried out once again, this time reducing the rate of spontaneous delay for 10 ”aver-
age” stations, i.e. 10 stations with a delay score close to the average5. The simulation
set-up is summarized below.

Name Parameter used
Rate of recovery δj

Rate of spontaneous delay -50% for average stations
Rate of propagated delay βi,j

Time step t = 30 min
Time period March 2019

Table 19: Simulation with preventive delay measures on average stations

The subsequent results are found in the table below. Note that εj is only reduced for
average stations.

5see Apendix for table
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Reduction of εj 50%
Decreased delay on average stations 39.5%

Decrease of overall delay 2.06%
Decrease of delay on unaltered stations 0.06%

Table 20: Results of preventive measures on average stations

The results above indicate that the effect on overall delay when decreasing the rate of
spontaneous delay on average stations is about as large as when decreasing the rate
on the stations with the highest delay scores. One reason for this may be that this
simulation does not alter the probability of propagating delay on edges, why stations
that are often delayed themselves may not always propagate delay onto other stations.
This would in turn mean that preventive measures on these stations do not have a
great impact on the overall system.

Given the results from this analysis it may be stated that delay score may not be the
best indicator of which stations to focus on when allocating preventive measures to
reduce overall delay.

7.9.2 On lines

The above analysis treats the effects of changing variables tied to stations. Another
interesting analysis would be to investigate how line-specific variables, i.e. the spread
of delay βi,j , affects the system.

One hypothesis would be that lines with a high βi,j value and high traffic levels could
be important to the delay of the network as a whole. To investigate this, the 10
lines with the highest delay propagation probabilities were extracted from the model.
Again, these were computed as the lines with the highest values looking at the edge-
specific βi,j-values multiplied by the average number of trains travelling on the line.
The relevant lines are presented in the table below.

Line βi,j * average departures
Ulriksdal - Helenelund 3.33

Älvsjö - Flemingsberg 2.50

Älvsjö - Årstaberg 2.50

Flemingsberg - Södertälje Syd Övre 1.55
Flemingsberg - Södertälje Hamn 1.55

Malmö C - Hyllie 1.50

Tomteboda Övre - Stockholm Södra 1.37
Hyllie - Malmö C 1.27
Hyllie - Lernacken 1.27
Hyllie - Sv̊agertorp 1.27

Table 21: Top 10 congested lines with high risk of delay propagation

In order to analyze the effect of preventive measures, the βi,j-values for these 10 lines
were reduced by 50%. The simulation set-up is found below.
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Name Parameter used
Rate of recovery δj

Rate of spontaneous delay 0.6*εj
Rate of propagated delay -50% on critical lines

Time step t = 30 min
Time period March 2019

Table 22: Simulation with preventive delay measures on critical lines

When running the simulation with this new set of βi,j-values, the overall delay in
the system was decreased by 53%. This is summarized in the table below. Note
that by adjacent stations, what is referred to is the destination station of the altered
edge.

Reduction of critical βi,j 50%
Decrease on adjacent stations 1.04%

Decrease on non-adjacent stations -0.054%
Decrease of overall delay 0.038%

Table 23: Results of preventive measures on critical lines

The results above indicate that by reducing the βi,j-values on the 10 edges with the
highest probability of delay propagation multiplied with average number of depar-
tures, the overall delay is diminished by 0.038%. This change does not indicate a
tremendous leverage on the entire system. However, it is possible that the amount
of traffic, i.e. the average number of departures, is not an interesting factor when
identifying critical lines.

In order to measure the effect of targeting high-risk lines, the same simulation was
run when the probability of delay propagation on 10 lines with βi,j-values close to
the average (0.0717)6 was decreased by the same percentage. The simulation set-up
is summarized as:

Name Parameter used
Rate of recovery δj

Rate of spontaneous delay 0.6*εj
Rate of propagated delay -50% on average lines

Time step t = 30 min
Time period March 2019

Table 24: Simulation with preventive delay measures on average lines

The table below indicates the system results for this simulation. Note that the change
in delay on non-adjacent stations is positive, meaning that delay increases.

6see Apendix for table
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Reduction of average βi,j 50%
Decrease on adjacent stations 2.29%

Decrease on non-adjacent stations -0.144%
Decrease of overall delay -0.01%

Table 25: Results of preventive measures on average lines

The results above indicate that preventive measures on edges with high values of
the product of delay propagation probability and average number of departures are
much more effective than measures on edges with average values for the same prod-
uct.

However, as with preventive measures on stations in the previous sub-section, the
effect on overall delay does not seem very large even when targeting critical lines.
Three things are however worth noting with this simulation and its results: firstly,
there are 494 edges in the reduced system why this simulation only adjusts values
on roughly 2% of edges. Secondly, this simulation only adjusts values on edges with
a high value of the product of delay propagation probability and average number of
departures. This means that this simulation may alter the value on an edge with a
very low βi,j but a very high number of departures. On the other hand, however,
should departures not be taken into account the simulation would run the risk of
adjusting values on edges with barely any traffic, which would indicate an even smaller
leverage on the overall system. Thirdly, the effect on adjacent stations is a lot higher.
This could indicate that if more strategic edges were targeted, the effect on adjacent
stations could be vital in lowering the overall delay. In summary, further analysis is
needed to identify which edges are the most important when allocating preventive
measures.

8 Sensitivity analysis

The following section discusses the simulation performance when changing certain
variables of the model. Such an analysis not only provides a good basis for gauging
the robustness of the model with regards to changes in the underlying definitions
and assumptions, but also serves to give a better understanding of the relationship
between the input and output variables of the model.

In this section, the model performance is investigated when changing variables such
as the definition of an infected state, the size of the time step and the time period on
which the simulation takes place.

8.1 Reducing number of variables

To investigate how the different variables used in the model affect the results, the
model was run several times, changing one variable at a time. More precisely, the
model was run replacing the heterogeneous βi,j , εj , and δj variables with a homoge-
neous variable, β̄, ε̄, and δ̄, respectively (the average of the heterogeneous variable).
The simulation set-ups were then:
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Average βi,j model Average εj model Average δj model
Parameters Parameters Parameters

δj δj δj = δ̄
ε∗j = 0.6 ∗ εj ε∗j = ε̄∗ ε∗j = 0.6 ∗ εj

β̄ βi,j βi,j
t = 30 min t = 30 min t = 30 min
March 2019 March 2019 March 2019

Table 26: Simulation set-ups

Figure 26 visualizes delay level over time for these simulations.

Figure 26: Delay level over time, different models

Model Real mean Simulated mean MASEY

β 0.130 0.257 2.732
ε 0.130 0.158 1.011
δ 0.130 0.121 0.856

Table 27: Global performance metrics

From the above plot and table, it can be concluded that the heterogeneity of βi,j
seems to have the strongest impact on the global performance of the model, whilst
that of δj seems to have the lowest.

Figure 27 and table 28 shows the local performance, i.e. the geographic distribution
of delay for the three modified models.
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Figure 27: Geographic distribution of delay

Model Spearman’s r Kendall’s tau MAER

β 0.875 0.705 0.164
ε 0.831 0.649 0.188
δ 0.783 0.598 0.208

Table 28: Local performance metrics

While the heterogeneity of all parameters is important in order for the model to
reproduce local behaviour, the δj parameter seems to be the most influential, which
is unexpected. This may indicate that δj should be modified rather than εj in the
initial attempt.

8.2 Re-defining states

The first part of the sensitivity analysis consists of determining how the simulation
performed when re-defining the definition of an infected state. As a reminder, the
original definition of an infected state was a station where more than 10% of departures
were delayed (departed more than five minutes after their scheduled time) during
a time step. In the sensitivity analysis, this threshold was increased from 10% to
20%, 50%, 80%, and 100%. Since the value of the node-specific recovery rate, δj , is
extracted from the data using the specific definition of an infected state, new values
for δj were calculated for each threshold. The values of εj are not extracted using
the definition threshold, and therefore remained unchanged. For each threshold, the
values of βi,j were determined using the same optimization algorithm as in previous
sections.

In figures 28 and 31, along with tables 29 and 30 below, one can see how the perfor-
mance of the model changes with the threshold.
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Figure 28: Level of delay over time for different thresholds of infection

Threshold Real mean Simulated mean MASEY

20% 0.103 0.090 0.975
50% 0.041 0.037 0.983
80% 0.034 0.019 1.126
100% 0.034 0.015 1.233

Table 29: Global performance metrics with different thresholds

Figure 29: Geographic distribution of delay for different thresholds of infection
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Threshold Spearman’s r Kendall’s tau MAER

20% 0.967 0.879 0.057
50% 0.906 0.783 0.125
80% 0.835 0.702 0.188
100% 0.832 0.699 0.194

Table 30: Local performance metrics with different thresholds

As the figures and tables above show, the performance of the model is markedly
worse when using a higher threshold. Although the model still performs fairly well
both globally and locally, the potential reasons for the worsened performance with a
higher threshold carry important implications.

Firstly, it is noted that the re-produced delay level is too low. Since the δj values
are extracted from the data using the individual thresholds, and the βi,j values, as
seen previously, doesn’t have as much impact on the overall delay level as εj , this
might indicate that the issue is with the εj values. It is reminded that the effective
probability of a node getting self-infected (spontaneously delayed) at a given time is
a function of the εj and the departures from station j at time t, dj(t).

One possible explanation is thus that the assumption that the εj value is independent
for all trains leaving from station j. This assumption is not reasonable under all
circumstances, which is discussed in more detail in section 9.

8.3 Model performance on different season

Another important part of evaluating the model robustness was to run the simulation
on a data set from a different season (in this case September 2019) and evaluate the
performance. The only information collected from the September data is the train
schedule, i.e. the average number of departures between stations for each time step,
the rest of the variables are estimated from the March 2019 data. Thus, the model
set-up can be summarized as:

he simulation can be summarized as:

Name Parameter used
Rate of recovery δj

Rate of spontaneous delay ε∗j = 0.6 ∗ εj
Rate of propagated delay βi,j

Time step t = 30 min
Time period September 2019

Table 31: Simulation using September departures

Figure 30 and table 32 below show global performance of the model:
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Figure 30: Delay level over time, simulation of September 2019

Real mean Predicted mean MASEY

0.128 0.126 0.946

Table 32: Global performance metrics

The above results show that the model captures the mean of the process well and still
outperforms the naive predictor, albeit with less than when predicting April 2019
(which is to be expected).

Figure 31 and table 33 below show the local performance of the model:

Figure 31: Geographic distribution of delay, simulation of September 2019

Spearman’s r Kendall’s tau MAER

0.956 0.837 0.0922

Table 33: Local performance metrics
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Once again, the performance is not as good as on April 2019, which is to be expected.
However, as with the global performance, the local performance of the model is still
robust on the September 2019 data. This indicates that the model captures some
underlying characteristics of the system well.

8.4 Changing size of time step

Another important aspect was to determine how sensitive the model was to the size in
time step. The reader is reminded that the original time step was 30 minutes. In this
section, the simulation was run with a time step of 15 and 60 minutes respectively,
i.e. smaller and larger than the original time step. As all variables needed to be
extracted anew from the data in order to run the model with a different time step,
this analysis focuses on the viability on the underlying structure of the model rather
than the performance of the variables previously extracted from the data.

8.4.1 Smaller time step

For the smaller, 15-minute time step, the model was fitted for its βi,j values and
the best choices of the re-scaling parameter of µ was determined. While the optimal
value of µ with regards to global behaviour was equal to the one in the original model
(µ = 0.6)7, its discrepancy with the optimal µ with regards to local behaviour was
greater than before (optimal MAER was obtained at µ = 1.0)8. The reason for this
discrepancy is not fully understood, and is discussed in more detail under section
9.

To visualize the model performance with the 15 min time step size, simulations were
run with µ = 0.6, yielding the following simulation set-up:

Name Parameter used
Rate of recovery δ15j

Rate of spontaneous delay ε∗j = 0.6 ∗ εj
Rate of propagated delay βi,j

Time step t = 15 min
Time period March 2019

Table 34: Simulation using time step of 15 min

Figures 32 and 33, as well as tables 35 and 36 below the global and local performance
of the model.

7see Appendix for figure
8see Appendix for figure
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Figure 32: Delay level over time with time step = 15 min

Real mean Predicted mean MASEY

0.08 0.065 1.0287

Table 35: Global performance metrics

Figure 32 and table 35 above indicate that the reproduction of global delay behavior
is not as accurate when simulating on a smaller time step. The MASEY is increased
from 0.886 to 1.008 compared to the final simulation on a 30 min time step. The
predicted mean is also slightly off.

Figure 33: Geographic distribution of delay with time step = 15 min

Spearman’s r Kendall’s tau MAER

0.947 0.832 0.104

Table 36: Local performance metrics
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The reproduction of local delay behavior is not as accurate as the original model
either, according to figure 33 and table 36.

8.4.2 Larger time step

For the 60-minute time step, the model was again fitted for its βi,j values and the best
choices of the re-scaling parameter of µ was determined. For this time step, µ = 0.6
again seems a reasonable choice, in agreement with the original model9. The model
thus was run using the following set-up:

Name Parameter used
Rate of recovery δ60j

Rate of spontaneous delay ε∗j = 0.6 ∗ εj
Rate of propagated delay βi,j

Time step t = 60 min
Time period March 2019

Table 37: Simulation using time step of 60 min

Figures 34 and 35, as well as tables 38 and 39 below the global and local performance
of the model.

Figure 34: Delay level over time, time step = 60 min

Real mean Predicted mean MASEY

0.193 0.212 0.852

Table 38: Global performance metrics

Figure 34 and table 38 indicate that the simulation of global delay behavior with
the larger time step is not as good as with the original simulation, seeing that the
predicted mean is somewhat higher than the real mean. However, this is not a great

9see Appendix for figure
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difference and the overall look of the plot indicates that the simulation with the larger
time step captures seasonality in the data.

Figure 35: Geographic distribution of delay, time step = 60 min

Spearman’s r Kendall’s tau MAER

0.977 0.905 0.0462

Table 39: Local performance metrics

According to the figure 35 and table 39, the model still performs very well in repro-
ducing local delay behavior with just a slightly larger MAER. The visible discrepancy
in the figure above is much less than for the simulation with the smaller time step.
Overall, the simulation with a larger time step seems to perform well.

When looking at the simulation with both a smaller and larger time step, it seems
the model performance remains strong when increasing the time step size from 30
to 60 minutes, but are negatively impacted by a decrease in time step size from 30
to 15 minutes. One hypothesis is that this would depend on the average travel time
in-between stations in the reduced network (approx. 30 min) and that 15 minutes is
a too short amount of time for the simulation to perform well as distances are greater
in the reduced network compared to the initial one. This needs to be investigated
further in order to determine the true cause for the difference in performance on the
different time steps.
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9 Discussion

9.1 Successful simulation using epidemic model

Figure 20 and figure 21 indicate that, using the chosen set of parameters and sim-
ulation set-up, an ε-SIS model can in an effective way reproduce the occurrence of
delay over time as well as the geographic distribution of delay (measured as ranking
of stations in terms of delay). In other words, the SIS model captures both global
and local delay behavior and the simulation attempt can be considered successful.
One should note, however, that the results depend on the approximations made to
the mechanisms controlling delay occurrence and that these may not hold up un-
der all circumstances. One such assumption is the definition of a delayed station,
as the notion of a delayed station may be considered counter-intuitive and an over-
simplification of reality.

Under these assumptions, however, the simulation does produce results similar to the
ones produced by the real data. The reader is reminded of the purpose of this thesis,
and the authors believe the results are strong enough to suggest that a modified SIS
model can in fact be used to model some characteristics of delay and delay propagation
in the Swedish railway system.

In order for the reader to get a general feel for the simulation, a visualization of the
infection process over four time steps (each time step is 30min) is shown in figure 36
below. Note that green nodes indicate susceptible nodes whereas red nodes indicate
infected nodes.

Figure 36: A visualization of the infection of stations over time



9.2 The necessary down-sizing of self-infection rate 58

9.2 The necessary down-sizing of self-infection rate

Initially, the necessary down-sizing of ε (spontaneous delay rate/self-infection rate)
in order to re-produce the overall delay level was interpreted as an implication that
the problem might lie with the data from the Swedish Transport Authority. In this
data, many fields are inserted manually. One of the activity codes used for marking
the cause for delay is ”delayed by another train”, which would indicate propagated
delay. In a scenario where this activity code is used too few times, the bulk of the
delay would be considered to have arisen spontaneously and this would in turn result
in a higher value of the ε-parameter. This is not hard to imagine as propagated
delay may sometimes be very hard to distinguish. For example, a power failure on a
single line may delay a train. When other trains are then delayed due to this, it is
difficult to determine whether the cause for their delay is the power failure or if they
are disturbed by the first delayed trains, which would indicated that they are delayed
due to propagated delay. One should also note that many delays that are not assigned
an activity code, meaning that the reason for their delay is not classified.

However, should an error in the marking of activity codes (reasons for delay) be the
only explanation for why the re-scaling of ε is necessary, it is expected that this down-
sizing should be global and independent of things such as the size of the time step. As
suggested by the sensitivity analysis presented under section ??, this is not true as the
simulation performance is worsened when the size of the time step is reduced.

Further, by the look of the plots in figure 28, the model performs worse when the
definition of a delayed station is changed. According to these plots, a more accurate
level of delay would potentially be obtained by a lower down-sizing of ε for higher
percentages of delayed departures required to make a station infected. One hypothesis
for this phenomenon is that the εj values are not independent of each other.

In this thesis, the εj-value for station j is considered an independent variable for all
departures, meaning that all departures during a time step run the same risk of being
spontaneously infected independently of one another. This assumption only holds up
in a scenario where external factors are train-specific, such as involving a personnel
issue or a malfunction with a specific train. In all scenarios where the entire station
is affected by external factors, the train-specific probability of being spontaneously
delayed should no longer be independent. This would in turn explain the downsizing
required of the εj in order to produce satisfying results when raising the threshold for
the definition of a delayed station.

This down-sizing of ε and whether it does in fact follow a non-linear curve requires
further investigation before it can be properly proven. It is however a hypothesis which
would explain the somewhat poor performance of the model when re-defining states
(and perhaps also when changing the time-step), why the initial results presented in
section 7 still seem promising and are not over-shadowed by issues presented in the
sensitivity analysis.

9.3 Practical use of model

A model that in an accurate way reproduces delay behavior on the Swedish railway
network can be used for several things. Firstly, it can be a valuable tool in identifying
target points for preventive measures aiming to reduce delay in the system, whether
globally or locally. The potentially efficient targeting of stations with a heavy load
of freight traffic is an example of how the model may be used to identify critical
points.
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The model may also be used to stress test the system. By manually reducing or
increasing the amount of delay on specific stations, stakeholders may learn how this
will affect overall delay levels. This is similar to the analysis presented under section
7, where preventive measures on certain stations and lines are investigated.

Furthermore, the model may be used to predict delay occurrences. Using only the
set schedule as an input, one could predict where and to what extent delays will
occur in the future. The best usage of this would likely be on a year-to-year basis,
such as using March 2019 to predict March 2020. Unfortunately, as discussed in 7,
the training data in this thesis was from 2019, and the Covid-19 pandemic in 2020
and 2021 reduced the possibilities for determining the performance of the model on
a year-to-year basis. However, the results in predicting both one month ahead (April
2019) and 6 months ahead (September 2019) showed promising results.

Finally, the model developed in this thesis is a mechanistic one. Granted, when
using a mechanistic model the initial effort to program a simulation tool is quite
high. Luckily, the authors of this thesis has dedicated that time. Once the simulation
tool is developed, the cost of ownership is low, as is the effort needed for model
calibration.

9.4 Potential issues with the model

As with all models, this one is not perfect. While capturing what is believed to be
central aspects of delay behavior on the Swedish Railway Network, there are many
things the model does not capture. Some of these things the authors are aware of,
whereas others they are not. Before discussing specific issues with the model, it is
worth mentioning that the authors’ prior expertise on train traffic was limited. Whilst
experts in the field have been consulted for this thesis, there are still many specifics
of train traffic and delay management that presumably are not taken into account in
the model set-up nor treated in the report.

In this thesis, the main concern is that approximations and assumptions made are
over-simplistic and do not hold up on a greater scale. This is a balancing act between
making necessary approximations and assumptions in order to be able to run the
simulation at all, but at the same time tending to the integrity of the real mechanism
in order for the model to be valuable.

9.4.1 Choice of data

One limitation to the model is the data which the model was built on. While data for
all of 2019 was made available, the simulation was built and optimized using about
one month worth of data (2019-02-28 through 2019-04-01), comprised of 2659405
departures (rows of data). The reason for this was that some of the algorithms
performed in this thesis would be too computationally heavy to perform on a full
year’s worth of data. In addition, the amount and quality of the data for the month
used led to the conclusion that one month was more than enough to achieve significant
results. In retrospect, however, the graph should have been constructed from the
yearly data. When the junctions and end stations was determined from the March
2019 data, there were 183 of them. When the March 2019 data was replaced with
September 2019 data to perform the sensitivity analysis, it was revealed that there
was a handful of stations which had arrivals and departures in the September data
set but not in the March data set. This in turn meant that there were stations in the
entire 2019 data set that should be included in the reduced network but that were not
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included due to the fact that they were not represented amongst ”active” stations in
March. This affected the overall network and thereby results. Had there been more
time, simulations would have been re-run on the updated network.

Adding to this, the 2019 data is believed to be representative for any other year. As
the year of 2020 was affected by the Covid-19 pandemic, 2019 is considered the most
recent ”normal” year and hence the it was deemed reasonable to use data from this
year for simulations. One should also note that the data set does not include cancelled
departures. If there exist delays large enough to cause cancellations (or cancellations
for other reasons), this implication cannot be drawn from the analysis.

9.4.2 Potential overfitting

Lastly, as discussed in the sensitivity analysis, a potential issue with the model, given
the number of variables, is that of overfitting. As the recovery rate, self-infection
rate and rate of propagating delay are all determined on a station based and edge
based level respectively, this means that the number of variables in the model is
equal to the number of stations * 2 + the number of edges * 1 + µ, in this case
183 ∗ 2 + 494 ∗ 1 + 1 = 861. Granted, it can be argued that the rate of recovery and
the self-infection rate are all extracted from data and hence should not negatively
impact the credibility of the model. This reasoning would argue that the model thus
contains ”only” 495 variables (the optimized βi,j-values and µ).

However, the performance of the model on the prediction data indicated that over-
fitting was not a pressing issue. The issue with overfitting is usually that the model
performs well on the training data but poorly on the testing data. Since the ε-SIS
model used in this thesis performs similarly both on the testing data (September
2019) and the prediction data (April 2019) compared to the training data (March
2019), this was not an issue.

9.5 Further work

In order to improve this model, there are several things that may be done, many
of them mentioned in the previous section. As an example, the simulation would
presumably be more accurate if run on the entire network instead of the reduced one,
preferably with a smaller time step.

Further, investigations into the dependency of the εj variable could yield improved
performance. As mentioned previously, it is hypothesised that the reason for the
model not performing as well with a different definition of a delayed station and a
different time step could be down to this characteristic in the εj variable. However,
as mentioned this poor performance could also be an outcome of too low δj-values,
why this should be analyzed further before drawing any conclusions.

Another, potentially interesting, addition to the method would be to replace the
binary state space (infected, susceptible) with the actual level of delay. In other
words, the state space would not be either 0 or 1, but rather all values between 0 and
1. This would potentially yield a more dynamic and detailed model.

Should these changes be implemented, it seems likely that the model’s predictive
power would be improved, making the model a more valuable tool for the Swedish
Transport Authority, train operators as well as other stakeholders.

Lastly, with further work the model could presumably be altered in order to investi-
gate the effects on temporarily closing stations or lines for infrastructure work. This
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could be a valuable tool for project management and re-routing of traffic.
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10 Summary

This purpose of this thesis was to examine whether a modified SIS model, traditionally
used to model the spread of disease, could be used to model delay behavior and delay
propagation in the Swedish railway system.

With the use of data from the Swedish Transport Authority, pre-processed by the
Department for Civil Engineering at Lund University, a model was constructed and
simulations using different simulation set-up were run.

The results obtained show that, when using an optimization algorithm to determine
values of edge weights in the graph, as well as re-scaling the frequency of spontaneous
delay in the model, the modified SIS model re-produces real-world delay behavior on
both a global and a local scale. This is shown by the results indicating a re-produced
level of delay over time close to that of the real data, as well as an accurate ranking
of which stations were the most, and the least, delayed.

Furthermore, the results indicate that re-scaling the nodal self-infection rate (spon-
taneous delay rate) improves the model and is needed when changing the number
of delayed departures needed to make an infected state, i.e. marking a station as
delayed. Simulations indicate that this nodal self-infection cannot be expressed using
a linear function but varies non-linearly with the number of delayed departures. One
explanation for this would be the possible dependence between self-infection rates on
trains, which could be explained by the fact that some external factors giving rise
to spontaneous delay might affect entire stations rather than individual departures.
However, the effect of re-scaling the self-infection rate could also be obtained by in-
creasing the recovery rate, why further analysis is needed in order to determine which
parameter should be modified and to what extent.

Results also indicate that the model may be used for estimating the impact on certain
delay preventive measures by manually changing parameters for chosen stations or
lines. This is valuable as it may give stakeholders a way of prioritizing projects and
resources. Presumably, the method could also be tweaked to estimate the effects of
infrastructure projects resulting in temporary closing of stations or lines, which could
be a valuable tool when planning work or re-routing traffic.

Further analysis is needed in order to determine whether the SIS model is a valuable
tool not only to re-produce delay behavior but to predict when and where delays will
occur. Possibly, one could explore a spectral analysis similar to that of Li et al. to
identify and predict unexpected delay patterns.
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A Appendix

Initial simulation set-up

In an early attempt, inspired by Li et al. (see Introduction), the weights on edges
in the network (the βi,j-values) were given as the correlation between the delays
at different stations. Time series over the simulation period containing whether a
station was delayed or not during the time steps were created, and the correlation
coefficients (Pearson’s r) was calculated between the time series of adjacent stations.
The resulting network with correlation values as weights on edges is visualized in
figure 37 below.

Figure 37: Visualization of network with correlation as edge weights

The node-specific probabilities of infection via propagation were then computed from
these weights (which were assumed to be the edge-dependent βi,j-values), as per
below. Note that I denotes the set of infected nodes.

P (Sj
t+1 = 1|Sj

t = 0)propagation = 1−
∏
i∈I

(βi,j) = 1−
∏
i∈I

(1−Wi,j) (22)

When assigning edge weights this way, the resulting graph was undirected as delay
correlation does not differ depending on direction.

The rate of spontaneous delay, ε was harder to compute for this trial as individual
train departures were not taken into consideration. Instead, the parameter ε was
approximated, saying that the percentage of train departures that were late due to
spontaneous delay should be proportional to the percentage of stations that can be
assumed to be ”delayed” due to spontaneous delay. In other words, a station’s epsilon
value is the same as that of a train’s epsilon value. This is a very rough approximation
and may be the main reason for the poor performance of the simulation set-up, why
this attempt was later disregarded. However, the simulation was carried out under
this assumption and initially the ε parameter was not re-scaled.
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Furthermore, as the number of departures were not taken into account, the difference
in train activity was estimated using static parameters. These parameters shifted the
probability of propagated depending on weekday and hour of day. Based on data
from the Swedish Transport Authority, Monday-Friday were treated equally whereas
the probability of weekend delay propagation was down-scaled to 80% of that of
weekdays. Similarly, all hours of the day were treated equally apart from 1AM-4AM
where traffic, and thereby the probability of delay propagation, was assumed to be
0.

The following graph was obtained when comparing the percentage of delayed sta-
tions in each time step for real versus simulated data, using parameters as described
above.

Figure 38: Percentage of stations that are delayed, simulation vs real data

The figure indicates that although the model captures periodicity of delay per time
step, the average level of infected nodes (delayed stations) per time step is greater fro
the simulated data than for the real data. This suggests an issue with the choice of
βi,j or ε.

When looking at the geographic distribution of delay, by looking at the ranking of
stations in terms of delay frequency, the following graph was obtained. This shows a
discrepancy between the two data sets. This indicates that the simulation using this
particular set-up does not re-produce delay behavior at a local level, as it does not
infect the ”right” stations. This means that the level of delayed stations follows a
pattern similar to that of the real world (albeit the level of delay is increased), but that
it is not the same stations that are delayed when comparing model and reality.
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Figure 39: Ranking of stations in terms of delay frequency per station, simulation vs
real data

As an issue with ε was later discovered and the parameter was re-scaled (see 6, this
simulation was also run with a re-scaled version (using re-scaling parameter µ = 0.6)
of ε. The reader is reminded that for this attempt, ε for a station is still approximated
to ε of a train, i.e. the probability that a stations is infected by spontaneous delay
is equal to that of a train being delayed spontaneously. The simulation using the
re-scaled ε produced the following graphs.

Figure 40 shows the percentage of delayed stations over time.

Figure 40: Ranking of stations in terms of delay frequency per station with re-scaled
ε, simulation vs real data

Figure 41 shows the geographic distribution of delay as a ranking of stations in terms
of delay frequency when using the re-scaled ε.
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Figure 41: Ranking of stations in terms of delay frequency per station with re-scaled
ε, simulation vs real data

The discrepancy in all figures led to the conclusion that the set-up using delay correla-
tion as edge weights was not satisfactory neither in re-producing the ratio of infected
nodes over time nor in re-producing the geographic distribution of delay.

A fault that was found in this set-up, that accounted for the re-computation of βi,j as
described in the thesis, was the lack of consideration for the number of departing trains
from infected (delayed) neighboring stations to the susceptible one. That, in combi-
nation with the realization that edge weights were not easily computed, sparked the
idea of optimizing the probability that a train departing from a delayed station trans-
fers this delay to the next station, i.e. the edge weights. By then considering the total
number of departing trains from an infected neighboring station, the total probability
of the infection spreading from an infected node to a susceptible neighboring node
was computed.
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Additional figures and tables

10 average stations

Station Delay score
Malmö C 0.566

R̊atsi 0.553

Landskrona Östra 0.541
Teckomatorp 0.532
Jädersbruk 0.520

Grängesberg 0.518
Gimonäs 0.516
Huvudsta 0.514
Ställdalen 0.504
Strömtorp 0.501

Table 40: 10 average stations according to delay score

10 average lines

Line Delay score
Hällnäs - Vännäs 0.151

Karlberg - Stockholm C 0.152
Kalmar Södra - Blomsterm̊ala 0.152

Ånge - Sundsvalls Västra 0.153

Ånge - Ångebyn 0.153
Snyten - Avesta Krylbo 0.154

Södertälje Syd Övre - Flemingsberg 0.162

Nynäshamn - Älvsjö 0.163
Frövi - Ställdalen 0.164

Helsingborg Gbg - Teckomatorp 0.164

Table 41: 10 average lines according to βi,j-values

Figures for changing time step to 15 min

Mean Absolute Scaled Error for delay level over time:
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Figure 42: Mean Absolute Scaled Error for different re-scaling of µ, time step = 15
min

Mean Absolute Error for geographic distribution:

Figure 43: Mean Absolute Error for different values of µ, time step = 15 min

Figures for changing time step to 60 min

Mean Absolute Scaled Error for delay level over time:
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Figure 44: Mean Absolute Scaled Error for different re-scaling of µ, time step = 60
min

Mean Absolute Error for geographic distribution:

Figure 45: Mean Absolute Error for different values of µ, time step = 60 min
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