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Abstract

The quantity of biomarkers, which are proteins in this case, in ovarian cancer (OC)
tumor and immune tissue regions of interest (ROIs) were measured with the new
technology Digital Spatial Profiler (DSP). These measurements were used to con-
struct regression models on the biomarkers to predict for two clinical parameters;
tumor type (”Type 1” vs ”Type 2”) and the immune infiltration type (”Cavities”
vs ”Dispersed”). The dataset was divided into tumor and immune ROIs to analyze
separately. A total of three models were constructed: immune ROI with immune
infiltration type, immune ROI with tumor type, and tumor ROI with tumor type.
Since there were repeated measurements on the same patient but on different ROIs,
logistic linear mixed model with random intercept was used to account for the de-
pendency of ROIs and allow for the intercept to vary between patients. Since there
were too many biomarkers to regress on, Lasso was used in combination with mixed
model (GLMMLasso) for automatic variable selection. The tuning parameter λ in
Lasso was chosen using BIC with some supervision. The model of immune ROI
with immune infiltration level included four variables with coefficients that make
biological sense and has good fit with both the training and test data. The model of
immune ROI with tumor type had three variables that also makes biological sense
and fitted the training data well, but not too well for test data. The model of tumor
ROI with tumor type had a total of 12 variables but some of the variable coefficients
do not make sense biologically. It could probably be optimized by including fewer
variables in the model. For any certain conclusion to be made about the predictabil-
ity of the models, bigger sample size would be needed for refitting as well as testing
the models.
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Popular science summary

Predicting aspects of ovarian cancer with proteins

and machine learning

Ovarian cancer, like any other type of cancer, is a dangerous disease that we are still
learning how to fight off. For now, the 5-year survival rate of ovarian cancer patient
is only 38%, so more research still has to be done to improve this number. Fortu-
nately, the body is smart enough to defense against cancer by sending immune cells
into tumor areas. Therefore the immune infiltration level, indicating if the immune
cells are spread out or clustered together, is an important metric to learn about.
Moreover, the type of ovarian cancer, with type 2 being more aggressive than type
1, is also a factor that is important for patient survival.

Recent technology allows for the measurements of proteins in chosen areas to be
known. With this, scientists can choose specific areas on the autopsy samples of
cancer patient and know the amount of certain proteins, especially the ones that
characterize immune and tumor cells. There are many such proteins (over 40 of them
were measured), and it would be interesting to narrow down to the most important
proteins that can be predictive of the immune infiltration level and cancer type.
Regression is a popular supervised machine learning method that can do exactly
that. Like other machine learning methods, regression needs to be trained in order
to make accurate predictions. So in this paper, I report on the process of training a
specific type of regression to do these specific tasks.

The regression method that was chosen is special in two ways. Firstly, it takes into
account that some autopsy samples come from the same patient and are therefore
somewhat related, and this violates the independence assumptions that normal re-
gression has. Secondly, it can try out different combinations of proteins and choose
the ones that are most likely to be predictive, while trying to keep the number of
proteins included relatively small. There are a total of 3 predictive models produced
at the end and 2 of them work well with up to 70% accuracy, while the last one
still needs some more tuning and training to perform better. But it needs to be
noted that the number of samples in this study is quite small (around 70), so before
anything can be claimed with certainty, more samples would have to be studied in
the future.
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Chapter 1

Introduction

1.1 Research problem

Tumor mincroenvironment (TME) is a system of tumor cells, immune cells sur-
rounding them and their interactions. Profiling the TME is important as it can
give insights into the type of tumor as well as potential effective treatments, par-
ticularly given the recent emerge of immunotherapeutic drugs, which are directing
the immune cells of the TME to battle the tumor. Ovarian cancer (OC) is the 4th
most common cancer-associated cause of death in women, with few treatment op-
tions beyond surgery and chemotherapy, which in most cases is non-curative. The
heterogeneous immune response in OC requires characterization of the TME to de-
fine biomarker signatures that can subgroup patients and identify those that could
benefit from immunotherapy.

Recent technological breakthroughs have enabled parallel measurement of large
numbers of tumor and immune biomarkers in tumor tissue biopsies, enabling char-
acterization of the TME in much more detail than what was previously possible.
One such new technology is the Nanostring GeoMx Digital Spatial Profiler (DSP),
in which tissue biopsies are stained with large antibody panels enabling quantitation
of biomarkers in tumor and immune regions of interest (ROIs) [1]. A visualization
of tumor and immune ROIs can be seen in figure 1.1, where the pink parts are the
tumor cells and green parts are the immune cells.
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Figure 1.1: Tumor, immune and mixed regions of interest.

The purpose of this study was to construct a regression model on DSP data to iden-
tify predictive biomarkers. The dataset consisted of 44 biomarkers and was divided
into immune and tumor cell ROIs, which were analyzed separately as they were too
different in regard to e.g. number of cells and biomarker expression to be grouped
together. As the majority of proteins were immune biomarkers, the immune data
was deemed more clinically relevant to analyze. However, as not all tumor tissues
had high enough immune infiltration to define immune ROIs, the immune dataset
had a much smaller number of samples compared to the tumor dataset. Thus, re-
gression was conducted in both datasets separately.

Various sample annotations could be interesting parameters to base the model on,
such as disease outcome (overall survival time), OC histological subgroups, tumor
type, and immune infiltration type. Preliminary statistical analysis showed low cor-
relation to overall survival time. In addition, we opted for constructing the regression
model on a categorical variable first. The four histological subtypes were ruled out
as the sample groups unfortunately were too small to be divided into training and
test sets. Hence, we constructed regression models based on tumor type (type 1 vs
type 2) and immune infiltration type (‘cavities’ vs ‘dispersed’). The immune infil-
tration type can be seen from figure 1.2.
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Figure 1.2: Immune infiltration type with dispersed and cavities.

Type 1 OC corresponds to so called low grade tumors which typically grow slower
and metastasize late, while type 2 OC are so called high grade and more aggressive.
Identifying differences in the TME of type 1 and type 2 OC would be interesting
from a tumor biology perspective to understand the role of immune infiltration on
disease progression in the different types. Also, as Type 1 and Type 2 tumors are
relatively easily discriminated based on morphology (tumor cell appearance under
the microscope), it would be clinically relevant to find differences in immune infiltra-
tion (and thus treatment options) that are reflected in standard histological grading.

During the sampling process, it had become evident that the type of immune infil-
tration looked different, and thus the ROIs had been annotated by visual inspection
of the stained tissue into cavities (immune cells located in ‘cavities’ between tu-
mor cells), dispersed (immune cells spread in between tumor cells), and insignificant
(zero to low immune infiltration). With traditional methods such as imaging one or
a few markers in parallel, or multiplex bulk tissue analysis where the tissue has been
disrupted and the spatial information lost, this type of separation of different types
of immune segments has not been possible. Thus, identifying differences in immune
cells that are dispersed among the tumor cells versus those residing in cavities in
between the tumor structures, would be highly interesting for advancing the under-
standing of TME heterogeneity in OC, and for defining biomarkers for treatment
selection based on imaging.

The dataset included multiple (1-3) samples per patient, thus independency could
not be assumed from samples derived from the same patient. When there are more
than one sample, an average is usually taken, given that the variance between sam-
ples is not too large. However, this was not a valid strategy in this case since different
types of ROIs, i.e. reflecting different TME structures, had been intentionally sam-
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pled from the same patient. For example, ROIs of both the ‘cavities’ and ‘dispersed’
immune infiltration type could have been sampled from the same patient. Hence,
the variance within a patient was sometimes big, and using averages would result in
loss of information. The solution suggested by Nanostring is to use mixed model for
this type of data, which introduces an extra factor to account for the clustering of
samples coming from the same patient. That way we can regress with all available
samples without having to take an average.

When trying mixed model regression on the immune dataset, there was immediately
a problem with the number of variables being bigger than the number of samples for
the immune section. The number of biomarkers hence had to be reduced somehow.
One such method of feature reduction is Lasso regression. Thus, we decided to use a
general linear mixed model (GLMM) combined with Lasso regression (GLMMLasso)
to predict immune infiltration and tumor type.

1.2 Aim and Scope

The aim of this study was to evaluate the use of GLMMLasso regression to generate
prediction models in DSP data, which frequently includes multiple samples per pa-
tient. The models may serve to identify predictive combinations of TME biomarkers
related to various sample parameters, such as the location of immune cells in the
tumor, and tumor subtypes. A combination of Lasso and generalized linear mixed
model was applied with patient ID as a grouping variable, on measured protein
biomarkers to construct three models:

• Predicting immune infiltration level (”Cavities” and Dispersed”) for immune
ROIs

• Predicting tumor type (”Type 1” and ”Type 2”) for immune ROIs

• Predicting tumor type (”Type 1” and ”Type 2”) for tumor ROIs.
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Chapter 2

Theory

2.1 Least absolute shrinkage and selection opera-

tor (Lasso)

Lasso is a shrinkage method through L1 penalization. It maximizes the log-likelihood
l(β) while having constraint on the L1 norm of parameter vector β. The Lasso es-
timate is defined as:

β̂
lasso

= argmax
β

l(β), (2.1)

subject to ||β||1 ≤ s. With s ≥ 0 and ||.||1 being the L1 norm. The Lasso estimate
can also be derived from solving the optimization problem

β̂
lasso

= argmax
β

[l(β)− λ||β||1]. (2.2)

Both s and λ are tuning parameters and need to be determined by optimizing with
either cross-validation or information criteria.

2.2 Generalized linear mixed model (GLMM)

The details and notations of generalized linear mixed models are mainly from the
paper by Andreas Groll [2], with some minor differences.

Let yit be observation t in cluster i of the response variable, where i = 1, ...,m and
t = 1, ...., Ti. The yit’s are elements in the response vector yTi = (yi1, ..., yiTi). Note
that T on yTi is for the transposition of the vector. Denote xTit = (1, xit1, ..., xitp)
as the covariate vector of fixed effects, in this case they are the measurement of
different biomarkers of observation t in cluster i. Denote zTit = (1, zit1, ..., zitq) as the
covariate vector of random effect. Moreover, yit’s are assumed to be conditionally
independent with mean µit = E(yit|bi,xit, zit) and variance var(yit|bi) = φv(µit),
with φ being dispersion parameter.

When the response variable is assumed to have any distribution other than Gaussian,
specific link functions are used to allow for non-linear relationship between µit and
predictors. Let g be a link function, then g is a monotonic, continuous function that
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relates µ to the predictors as following:

g(µit) = xTitβ + zTitbi = ηparit + ηrandit , (2.3)

where ηparit = xTitβ is a linear term with respect to the parameters in βT = (β0, ...., βp),
including the intercepts. While ηrandit = zTitbi contains the cluster-specific effect
bi ∼ N(0,Q), with a q × q covariance matrix Q.
By collecting samples within cluster, equation (2.3) also has the form

g(µi) = Xiβ + Zibi, (2.4)

where XT
i = (xi1, ...,xiTi) and the design matrix ZT

i = (zi1, ..., ziTi). With all the
samples, one gets:

g(µ) = Xβ + Zb, (2.5)

with XT = [XT
1 , ...,X

T
m] and a block diagonal matrix Z = diag(Z1, ...,Zm). The

random effect vector bT = (bT1 , ...,b
T
m) is assumed to have normal distribution with

block diagonal covariance matrix Qb = diag(Q, ..., Q).

A method for optimizing GLMM is penalized quasi-likelihood (PQL) that is sug-
gested by Lin and Breslow [3]. It is assumed that the conditional density of yit,
given β and bi, belongs to a simple exponential family, which has the form

f(yit|xit,bi) = exp

{
yitθit − κ(θit)

φ
+ c(yit, φ)

}
, (2.6)

where
θit = θ(µit) is the natural parameter,
φ is dispersion parameter,
κ(.) and c(.) are specific functions corresponding to the type of exponential family [4].

Moreover, the covariance matrix Q of the random effect bi is dependent on an
unknown parameter vector σ. The penalized-based likelihood-function is specified
by γT = (φ,σT ) and δT = (β,bi). So the log-likelihood is:

l(δ,γ) =
m∑
i=1

log

(∫
f(yi|δ,γ)p(bi,γ)dbi

)
, (2.7)

where p(bi,γ) denotes the density of random effect.

The approximate log-likelihood is derived by Clayton and Breslow [5] as:

lapp(δ,γ) =
m∑
i=1

logf(yi|δ,γ)− 1

2
bTQ−1(δ)b. (2.8)

PQL distinguishes between the estimation of δ, given the plugged-in estimate γ̂,
and the estimation of γ.
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2.3 GLMMLasso

To combine GLMM and Lasso, the L1 penalty term is added to the likelihood
function (2.8) to yield the penalized log-likelihood

lpen(δ,γ) = lapp(δ,γ)− λ
p∑
i=1

|βi|. (2.9)

Given γ̂, the optimization problem becomes

δ̂ = argmax
δ

lpen(δ, γ̂) = argmax
δ

[
lapp(δ, γ̂)− λ

p∑
i=1

|βi|

]
. (2.10)

2.4 Bayesian information criterion (BIC)

The tuning number λ controls how much shrinkage one wants for the parameters.
Generally, the bigger the λ, the more shrinkage it is, thus the fewer parameters are
going to be included in the model. The number λ is not selected automatically, the
user therefore need to test and choose the λ that works best for the data. One way
to do this somewhat automatically is by using the Bayesian information criterion
(BIC), which allows for the comparison between models with different number of
parameters [4]. The BIC for GLMMLasso, depending on the selected λ, has the
form:

BICλ = −2 lpenλ (δ, γ) + pλ log(n), (2.11)

where pλ is the number of parameters included in the model and n is the number of
observations.

As seen from equation (2.11), BIC is the negative of log-likelihood with the addi-
tional penalty term for models with too many parameters. By choosing the model
with the lowest BIC, it is equivalent to choosing the model with highest likelihood
but also penalizes models that are too big, because likelihood always increases with
the addition of parameters.

2.5 Model details

Since the response variable yit is binary, the most obvious assumption for the dis-
tribution is yit ∈ Bin(1, µit). The natural link function for this is the log of odds,
also called logit:

g(µit) = ln

(
µit

1− µit

)
= ln

(
P (yit = 1)

P (yit = 0)

)
. (2.12)

Logit is used specifically for binary outcomes because it squeezes the probability of
the event between 0 and 1. It can be seen easily from (2.12) that:

P (yit = 1) =
1

1 + e−(ηparit +ηrand
it )

. (2.13)
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Furthermore, the dependency of observations is accounted for by adding an intercept
for the random effect. This is equivalent to assuming that the intercept is different
for different patient. Since the slope of random effect won’t be taken into account,
the covariance matrix Q for the mix model is just a 1× 1 matrix containg σ. This
means that the specific effect bi is just a random number with distribution N(0, σ).
While Z is a sparse matrix where each row is for an observation, and each column
is for a patient with 0 and 1 indicating which observation belongs to which patient.
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Chapter 3

Data and Methods

3.1 Data

All 44 biomarkers, which were proteins in this case, can be seen in Appendix A.
To predict for immune infiltration (”Cavities” and ”Dispersed”), only the immune
ROIs were used. For this model, there was a total of 52 samples, 23 of which were
”Cavities” and the other 29 were ”Dispersed”. To predict for tumor type (”Type 1”
and ”Type 2”), the immune and tumor ROIs were used separately. There were 55
samples/ROIs in the immune data, of which 26 were ”Type 1” and 29 were ”Type
2”. There were 91 samples/ROIs in the tumor data, with 43 of them being ”Type
1” and 48 ”Type 2”. For all of these three models, 80 % of the samples were used
for training and the remaining 20 % were used for testing.

Prior to the work described in this study, data had been normalized in two steps:
1. Scaling based on control probe spike-ins to adjust for technical variation in the
read-out/quantitation process.
2. Scaling based on geometric mean value of two house-keeper proteins (S6 and
GAPDH) to adjust for sample-based variation, including region size/number of cells
measured and background signal. Tumor and immune segments differed in regards
to number of cells captured (in general fewer immune cells than tumor cells) and
biomarker level of immune- and tumor-specific markers, respectively. Hence, data
was separated into tumor and immune sets prior to the second normalization step,
to avoid having to use disproportionately large scaling factors that may transform
the data so that biological variation is masked. After normalization, data was log2
transformed.

3.2 Model selection

All data analysis was done in R version 4.0.4 (2021-02-15) and Rstudio version
1.4.1106. Function glmmLasso() from R Package ”glmmLasso” [6] was used for
mixed model Lasso regression. This function requires the user to input a λ value.
The best λ is chosen by fitting the model with a range of λ values and choose the
model with the lowest BIC. The computational cost of this process is quite high so a
suitable range was determined first by screening a big range with poor ”resolution”,
for example from 0 to 100 with step size of 1, to get a decent λ. Then a smaller range
around this λ with better ”resolution” was used to get to a λ with more significant
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figures, for example from 0 to 10 with step size of 0.01.

Selecting a model completely based on BIC, sometimes resulted in ”overfitting”,
which is evident by the inclusion of excessive parameters to the point that the
standard errors for coefficient estimates is absurdly large and the p values of all
estimate are basically 1. Examples of this can be seen in Appendix B. To select a
model that does not suffer from this issue but still have one of the lowest BIC, the
range of λ was restricted to exclude λs that are too small. Since low λ corresponds to
bigger numbers of parameters, choosing the range of λ to be above certain number
means limiting the number of parameters being included in the model. To choose
the lower limit of the range of λ, it is helpful to look at the graph of BIC against λ.

3.3 Classifying threshold

Since this is a logistic model, the fitted value is the probability that a sample be-
longs to a category, or ”success”. Therefore it is necessary to decide on a cutoff
value, which is a threshold for classifying a sample as ”success”. Probability falls
between 0 to 1, so threshold is a number between 0 and 1. If the fitted value for a
sample is bigger than the threshold, the sample is classified as ”success” and if not,
it is classified as ”failure”. Intuitively, it makes sense for the cutoff value to be 0.5.
This is the default case if there is no additional information given. The number of
false positive and false negative depends on the cutoff value. And in some cases,
one may want to trade off false positive for false negative or vice versa, especially
when making one type of error results in significantly worse consequences than the
other. For example in the case of detecting tumor, it is detrimental to have a false
negative, but a false positive is corrected easily through more examining.

The ROC curve, which plots true positive rate against false positive rate, was used
to determine the optimal cutoff value to get the desired false positive and negative
rate. Using the function ROCInfo() found on Github [7], which calculates penalty
for errors depending on the costs of false positive and false negative that are input
by user, the best cutoff value was selected to minimize the penalty. In this case, the
costs of both are the same and are set to 100.

3.4 Model validation

The optimal cutoff value was chosen using the ROC curve of training data as men-
tioned above. The accuracy of the model with that specific cutoff value can be
presented in what is called a confusion matrix. Both the confusion matrix of the
training data as well as the test data were included for examining the accuracy of
the model.
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Chapter 4

Result

4.1 Model of immune segment with immune in-

filtration level as response variable

The range of λ was first chosen to go from 0 to 100 with step size of 1 for initial
screening. The BIC of glmmLasso models with the given λ’s is plotted against λ’s
in figure 4.1. It can be seen from the figure that once λ is bigger than around 10,
the BIC is constant as they are models without any parameter. The λ range was
therefore chosen again to go from 0 to 10 with step size of 0.01. With this choice
of λ range, the best model chosen with BIC resulted in an overfitted model which
can be seen in table B.2 in Appendix B. Looking at the plot of BIC against λ in
figure 4.2, the λ range was chosen again from 5 to 10 with step size of 0.01 since
there seemed to be some instability right before 5. The final model chosen within
this range of λ can be seen in table 4.1. Note that in this model, ”Dispersed” is 1
and ”Cavities” is 0. The ROC curve and the optimal cutoff value of the train data
is shown in figure 4.3. The confusion matrix of the train and test data using the
optimal cutoff value are shown respectively in table 4.2 and table 4.3.

Figure 4.1: Plot of BIC against λ for model of immune segment with immune infiltration
as response where λ ranges from 0 to 100.

16



Figure 4.2: Plot of BIC against λ for model of immune segment with immune infiltration
as response where λ ranges from 0 to 10.

Estimate StdErr z.value p.value
(Intercept) -11.3436662 0.60925654 -18.6188665 2.2595E-77
GZMB 1.28842474 0.80553665 1.59946136 0.10971813
X4.1BB 0.76448876 0.82047025 0.93176902 0.35145591
GITR 0.56180648 0.63402964 0.88608868 0.37556974
IDO1 0.81720263 0.44633831 1.83090407 0.06711486

λ 6.69
StdDev of Patients 1.790226

Table 4.1: Final model for immune segment with immune infiltration as response variable.

Figure 4.3: ROC curve and optimal cutoff value using train data for final model of immune
segment with immune infiltration response.
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Prediction
Reference
Cavities Dispersed

Cavities 19 1
Dispersed 0 23

Sensitivity 1.0000
Specificity 0.9583
Accuracy 0.9767

Table 4.2: Confusion matrix using training data for model of immune segment with im-
mune infiltration response.

Prediction
Reference
Cavities Dispersed

Cavities 3 1
Dispersed 1 4

Sensitivity 0.7500
Specificity 0.800
Accuracy 0.7778

Table 4.3: Confusion matrix using test data for model of immune segment with immune
infiltration response.

4.2 Model of immune segment with tumor type

as response variable

Similarly, λ range at first was set from 0 to 100, the BIC plot of which can be seen
in figure 4.4. The range of λ was then narrowed down to 0 to 20, the plot of which
is seen in figure 4.5. This range also resulted in an overfitted model with λ being
6.99. This model can be seen in table B.4 in Appendix B. The λ range was therefore
restricted from 7 to 20. This range resulted in the final model in table 4.4. Note
that in this model, ”Type 2” is 1 and ”Type 1” is 0. Its ROC curve and optimal
cutoff value for train data is seen in figure 4.9. The confusion matrices for the train
data and test data are shown in table 4.5 and table 4.6 .
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Figure 4.4: Plot of BIC against λ for model of immune segment with tumor type as
response where λ ranges from 0 to 100.

Figure 4.5: Plot of BIC against λ for model of immune segment with tumor type as
response where λ ranges from 0 to 20.

Estimate StdErr z.value p.value
(Intercept) -45.6676301 0.97419606 -46.877248 0
CD44 6.75053553 4.58727213 1.47157948 0.14113447
CD45RO -7.68681207 5.72766732 -1.34204933 0.17958
B7.H3 5.19858718 3.16918547 1.64035435 0.10093151

λ 7.33
StdDev of Patients 1.05507

Table 4.4: Final model for immune segment with tumor type as response variable.
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Figure 4.6: ROC curve and optimal cutoff value for final model of immune segment with
tumor type response.

Prediction
Reference
Type 1 Type 2

Type 1 20 0
Type 2 1 24

Sensitivity 0.9524
Specificity 1.0000
Accuracy 0.9778

Table 4.5: Confusion matrix using training data for model of immune segment with tumor
type response.

Prediction
Reference
Type 1 Type 2

Type 1 3 1
Type 2 2 4

Sensitivity 0.60
Specificity 0.80
Accuracy 0.70

Table 4.6: Confusion matrix using test data for model of immune segment with tumor type
response.

20



4.3 Model of tumor segment with tumor type as

response variable

Similarly to the previous models, a screening step with λ going from 0 to 100 with
step size of 1 was used. From the plot in figure 4.7, the λ range was narrowed
down to 0 to 20 with step size 0.1 to focus on the interesting range. Once again,
this resulted in a strange model that can be seen in table B.3 in Appendix B with
absurdly big coefficients, a small change in any parameter leads to an extremely
big change in the prediction. A model like this is too unstable so the range of λ
was chosen again for model selection. As seen in figure 4.8, the BIC seemed to be
unstable right before λ of 10. So the λ range was narrowed down to 10 to 20 with
step size of 0.1. The final model can be seen in table 4.7. Similar to the above
model, ”Type 2” is 1 and ”Type 1” is 0 for this model. The ROC curve and optimal
cutoff value of train data can be seen in figure 4.9. The confusion matrices of train
and test data are respectively in table 4.8 and table 4.9.

Figure 4.7: Plot of BIC against λ for model of tumor segment with tumor type as response
where λ ranges from 0 to 100.
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Figure 4.8: Plot of BIC against λ for model of tumor segment with tumor type as response
where λ ranges from 0 to 20.

Estimate StdErr z.value p.value
(Intercept) 2.63358529 0.43899663 5.99910134 1.9841E-09
CD56 0.61931942 0.58267606 1.06288805 0.28783272
CD4 -0.20652548 1.08904289 -0.18963944 0.84959168
PanCk -1.04171873 0.44926723 -2.31870621 0.02041097
Ki.67 1.07339272 0.44613494 2.40598221 0.01612905
Histone.H3 -1.396274 0.86318391 -1.61758576 0.1057519
CD3 0.33695207 0.67306295 0.50062489 0.61663514
CD11c 1.78662254 1.05953598 1.68623112 0.09175129
CD34 -2.00201903 0.79773991 -2.50961374 0.01208633
X4.1BB 0.91186451 0.5601158 1.62799284 0.1035264
ARG1 0.78913183 0.78118092 1.01017806 0.31240999
IDO1 -0.42418091 0.34385816 -1.23359268 0.21735472
B7.H3 1.06950008 0.65675991 1.6284491 0.10342969

λ 11.4
StdDev of Patients 0.3532506

Table 4.7: Final model for tumor segment with tumor type as response variable.
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Figure 4.9: ROC curve and optimal cutoff value for final model of tumor segment with
tumor type response.

Prediction
Reference
Type 1 Type 2

Type 1 35 10
Type 2 0 29

Sensitivity 1.0000
Specificity 0.7436
Accuracy 0.8649

Table 4.8: Confusion matrix using training data for model of tumor segment with tumor
type response.

Prediction
Reference
Type 1 Type 2

Type 1 6 3
Type 2 2 6

Sensitivity 0.7500
Specificity 0.6667
Accuracy 0.7059

Table 4.9: Confusion matrix using test data for model of tumor segment with tumor type
response.
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Chapter 5

Discussion

The final model for immune segment data with immune infiltration (dispersed vs
cavities) as a response variable included 4 biomarkers, all with higher levels in ”dis-
persed” (Table 4.1). The biomarkers were all functional molecules that indicated
a more active immune response in the dispersed type. GZMB (Granzyme B) is
released by immune cells and induces apoptosis (cell death) of tumor cells. 4-1BB
and GITR (glucocorticoid-induced TNFR-related protein) are costimulatory im-
mune checkpoint markers expressed by activated T-cells. IDO (Indoleamine-pyrrole
2,3-dioxygenase) has previously been demonstrated overexpressed in OC, and shown
to correlate with immune infiltration [8]. All the biomarkers included were proteins
expected to have higher expression in dispersed type of immune infiltration com-
pared to tumor excluded immune cells located in cavities, which supports the validity
of the model. The model also performed well in predicting the limited number (9)
of samples in the test data (Table 4.3) but will have to be validated in larger datasets.

The final model for immune segment data with OC type as a response variable,
included 3 biomarkers (Table 4.4). CD44 is among other things a marker that dis-
tinguishes active from näıve T-cells [9]. CD45RO is also expressed on several type of
(activated) immune cells but is primarily a marker of memory T-cells. The opposing
coefficients of CD44 (higher in Type 2) and CD45RO (higher in Type 1) in the model
could imply that Type 2 ovarian tumors have a higher ratio of effector T-cells, while
type 1 tumors have more memory T-cells. The third marker, B7-H3 and is known
to suppress immune response to tumors and has previously been correlated to high
grade (Type 2) OC [10], so the coefficient in the model for B7-H3 also makes sense.
The model, however, had relatively poor accuracy in predicting the limited number
(n=10) of test data samples, and will have to be further optimized in larger cohorts.

The final model for tumor segment data with OC type as a response variable, in-
cluded 12 biomarkers (Table 4.7). A higher expression of proliferation marker Ki67
in Type 2 was expected, as high grade tumors are more aggressive with a faster
proliferation rate. The higher expression of epithelial marker PanCK in Type 1
was also expected as low grade tumors are more differentiated and generally have
a higher levels of epithelial markers. Hence, the inclusion of Ki67 and panCK and
their relatively low individual p-values adds validity to the model. In contrast, the
overall expression level of Histone H3 was not expected to differ between Type 1 and
Type 2. In addition, its model coefficient indicated lower expression in Type 2, while
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the univariate comparison showed that the signal was higher in Type 2, both in the
complete data (including all ROIs) and for mean value per patient (Figure 5.1). The
remaining variables in the model were mainly biomarkers of immune phenotype or
function, and even though some of them (e.g. B7-H3 and IDO1) can be expressed
by tumor cells as well, their inclusion in the model may be a result from bleed-over
signal from the immune segments. Some markers, in particular CD4 and CD3, also
show high individual p-values, suggesting that the model could be overtrained. This
is also indicated by the relatively poor accuracy in both training (Table 4.8) and
test (Table 4.9) data. The prediction could be further optimized, likely using less
biomarkers, which can be done by once again increasing the lower bound of lambda
range.

Figure 5.1: Measurements of Histone H3 in tumor segments. Left panel includes data
from all ROIs. Right panel includes average values per patient

In the three final models above, it can be seen that the p-values of the coefficients
are are not significant. Some of the p-values are even as high as 0.8 such as the
one for CD4 in table 4.7. It is unclear how reliable the p-values are for the models
since there is an additional penalty term. A possible way to obtain better p-values
may be refitting the model with a mixed model method but using only the leftover
parameters obtained from GLMMLasso. This is equivalent of using GLMMLasso
only as a way to select out the most important parameters. Alternative method for
more significant parameter can be forward inclusion of parameter with significant
p-value until the addition of parameter does not improve the p-values. This method
can replace Lasso as a variable selection method.

When selecting λ and corresponding model automatically using BIC, the resulting
model tends to overfit the training data. This may be due to the fact that the num-
ber of samples is not big enough for BIC to punish big models properly. After all,
the probability of BIC working consistently approaches 1 as n → ∞, so the more
samples there are, the more reliable the BIC would be. Moreover, looking at figure
4.8, it can be seen that just changing λ slightly can result in big fluctuation of BIC.
This might just be due to the small number of samples as mentioned, or it might
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indicate that the method GLMMLasso is not very stable for the dataset.

By allowing the intercept to vary between patients, this mixed model takes into
account the fact that different patients have different probability of belonging in a
certain group even if all the measurements are the same. Which is an appropriate
assumption that also accounts for the dependency of observations on the patients. If
one wants more variation, one can also allow for the parameter coefficients to vary.
This would mean that the effect of changing biomarkers is different for different
patients. This is not done here but can potentially be added in future models if
deemed suitable.

Moreover, with the availability of more data, an evaluation set can be used to find
a better cutoff value from its ROC curve. This would potentially provide a better
cut-off value for the test data since both of these datasets are ”unseen” data. There-
fore, a more unbiased cutoff can be found using the evaluation data compared to
the training data.

In conclusion, the GLMMLasso method has some unstability that might or might
not be caused by the small sample size. Furthermore, the automatic way of selecting
λ and model using BIC without any supervision is proved to be unreliable for this
dataset. It is likely that this method works better with bigger sample size but super-
vision is still needed to make sure the models do not grossly overfit. Regardless, two
of the models produced by GLMMLasso with supervised λ selection make biological
sense and fit the training data well. For better assessment on test data, larger sam-
ple size would be needed as well as an evaluation dataset for finding cutoff value.
For the third model, some biomarkers that are included do not have the expected
coefficient signs. This is probably due to the fact that too many biomarkers were
included. So far, the analysis done in this study is quite preliminary. As this type
of data is still very new, more investigation needs to be done in order to conclude
the effects of the biomarkers with more certainty.
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Appendix A

Biomarkers

GZMB CTLA4 CD56 CD45 HLA.DR CD68
PanCk PD.1 Fibronectin CD20 SMA Ki.67
CD8 Beta.2.microglobulin CD11c CD44 CD40 CD80
CD25 ICOS CD27 CD163 FAP.alpha FOXP3
CD34 CD45RO X4.1BB LAG3 ARG1 VISTA

STING IDO1 B7.H3 Tim.3 CD4 PD.L1
Histone.H3 CD3 CD127 PD.L2 CD66b CD14

OX40L GITR

Table A.1: All proteins used as parameters for regression.
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Appendix B

Models with overfitting problems

The tables displayed in this Appendix are examples of bad models to show the signs
of overfitting. They are in no way meant to represent useful models.
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Estimate StdErr z.value p.value
(Intercept) -2437.14859 9132359.67 -0.00026687 0.99978707

GZMB -262.037679 104148569 -2.516E-06 0.99999799
CTLA4 85.0757482 30733820.5 2.7681E-06 0.99999779
CD56 -75.1177358 28672946.9 -2.6198E-06 0.99999791
CD45 -173.645797 48436545 -3.585E-06 0.99999714

HLA.DR -54.0087012 39313286.5 -1.3738E-06 0.9999989
CD68 2.88769521 38328445.3 7.5341E-08 0.99999994
PD.L1 27.9247636 20977582.6 1.3312E-06 0.99999894
PanCk -32.30393 21408999.5 -1.5089E-06 0.9999988
PD.1 67.3412654 34547308.8 1.9492E-06 0.99999844

Fibronectin 177.230166 21122060.7 8.3908E-06 0.99999331
CD20 53.6574807 34879961.1 1.5383E-06 0.99999877
SMA -99.5682113 19463507.7 -5.1156E-06 0.99999592
Ki.67 -38.548418 23899836.4 -1.6129E-06 0.99999871

Histone.H3 344.974821 72183256.5 4.7792E-06 0.99999619
CD3 222.796261 43315296.8 5.1436E-06 0.9999959
CD8 -68.9641152 34399008.1 -2.0048E-06 0.9999984

Beta.2.microglobulin -64.2026116 34248926 -1.8746E-06 0.9999985
CD11c 108.271944 66825001.1 1.6202E-06 0.99999871
CD44 -225.918002 31451613.9 -7.183E-06 0.99999427
CD40 15.9559193 31443105.7 5.0745E-07 0.9999996
CD80 20.9698071 25779308.8 8.1344E-07 0.99999935
CD127 148.576475 59554525.5 2.4948E-06 0.99999801
PD.L2 106.181472 29437082.1 3.6071E-06 0.99999712
CD25 95.575084 60355639.7 1.5835E-06 0.99999874
ICOS -5.78815966 42979553.4 -1.3467E-07 0.99999989
CD27 -58.9451021 21144543.4 -2.7877E-06 0.99999778
CD163 -26.931924 21095114.9 -1.2767E-06 0.99999898

FAP.alpha 73.9965425 29533521.3 2.5055E-06 0.999998
FOXP3 -49.9685677 21823338.2 -2.2897E-06 0.99999817
CD66b -67.0765295 17292600.7 -3.8789E-06 0.99999691
CD14 138.276757 64766572.1 2.135E-06 0.9999983
CD34 -114.146407 26453062.9 -4.3151E-06 0.99999656

CD45RO -19.333995 48009789.6 -4.0271E-07 0.99999968
X4.1BB -143.494154 24973021.2 -5.746E-06 0.99999542
LAG3 188.590872 36386915 5.1829E-06 0.99999586
ARG1 -26.9526558 29003501.4 -9.2929E-07 0.99999926
VISTA 65.7515697 47882378.6 1.3732E-06 0.9999989
OX40L -73.3212253 29282966.8 -2.5039E-06 0.999998
GITR -69.5311116 26627890.2 -2.6112E-06 0.99999792

STING -45.5671405 29699424.5 -1.5343E-06 0.99999878
IDO1 85.7183511 14963054.5 5.7287E-06 0.99999543
B7.H3 -78.0330857 26311461.8 -2.9657E-06 0.99999763
Tim.3 122.622093 29149904.4 4.2066E-06 0.99999664

Lambda 2.14
StdDev of Patients 0.5875498

Table B.1: Optimal glmmLasso model based on BIC for tumor segment with immune
inflitration as response variable. 30



Coefficients Estimate StdErr z.value p.value

(Intercept) 1.8740e+02 8.7660e+06 0 1
GZMB 2.5135e+02 1.5053e+07 0 1
CTLA4 8.9799e+01 1.0149e+07 0 1
PD.L1 1.7373e+02 1.4380e+07 0 1

Fibronectin -3.1461e-01 1.4583e+07 0 1
CD20 -1.9060e+02 1.0268e+07 0 1
SMA -1.0631e+02 1.4843e+07 0 1
CD3 3.1779e+01 1.7027e+07 0 1
CD8 2.4197e+01 1.2581e+07 0 1

CD11c -1.2762e+02 1.4597e+07 0 1
CD44 -6.4837e+01 8.1435e+06 0 1
CD163 -2.7763e+01 1.0345e+07 0 1

CD45RO 1.4072e+01 2.2178e+07 0 1
X4.1BB -1.6482e+01 1.6240e+07 0 1
VISTA 5.9707e+01 1.0228e+07 0 1
GITR 7.0934e+01 1.6078e+07 0 1
IDO1 9.2613e+01 8.5347e+06 0 1

Lambda 4.62
StdDev of Patients 0.5705323

Table B.2: Optimal glmmLasso model based on BIC for immune segment with immune
inflitration as response variable.
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Estimate StdErr z.value p.value
(Intercept) 9.7915E+15 4.5965E+14 21.302228 0
GZMB 7.5565E+14 63835415.5 11837479.6 0
CTLA4 -2.6387E+14 31186405.1 -8460902.74 0
CD56 -2.4221E+13 47132488.8 -513900.854 0
CD45 -1.6512E+15 68758311.9 -24014096.4 0
CD4 1.7437E+15 70005823.6 24907708.3 0
PD.L1 1.5006E+14 20867224 7191013.93 0
PanCk -1.1085E+15 32985219.2 -33606632 0
PD.1 -6.0578E+14 27276014.3 -22209218.7 0
Fibronectin -7.4287E+13 23775973 -3124447.17 0
CD20 -1.2352E+15 64274442.8 -19217789.7 0
SMA 4.265E+14 28154080.6 15148743.9 0
Ki.67 4.1428E+14 37506522 11045529.5 0
Histone.H3 -7.6543E+14 63802746.9 -11996888.6 0
CD3 1.4998E+15 44269781.9 33878065.7 0
CD11c -1.7114E+14 64987458.1 -2633375.5 0
CD44 -1.2157E+14 27905195.5 -4356588.27 0
CD163 2.798E+14 25684805.2 10893767.2 0
CD34 1.6164E+14 43062704.7 3753504.85 0
X4.1BB 3.7306E+14 25663664.5 14536604.1 0
ARG1 6.5233E+14 31200247.5 20907837.5 0
IDO1 -3.5013E+13 25650303.5 -1365029.26 0
B7.H3 -3.1735E+14 47303844.5 -6708703.9 0

Lambda 9.2
StdDev of Patients 2.73146e+15

Table B.3: Optimal glmmLasso model based on BIC for tumor segment with tumor type
as response variable.

Estimate StdErr z.value p.value
(Intercept) -2249.41776 10003998.8 -0.00022485 0.99982059
HLA.DR -53.5539263 12049842.1 -4.4444E-06 0.99999645
Beta.2.microglobulin 40.9280318 18800535.9 2.177E-06 0.99999826
CD44 284.452382 8885944.94 3.2011E-05 0.99997446
CD45RO -363.351474 14575303 -2.4929E-05 0.99998011
IDO1 75.9050896 6856951.83 1.107E-05 0.99999117
B7.H3 289.432234 12909211 2.2421E-05 0.99998211

Lambda 6.99
StdDev of Patients 0.8032166

Table B.4: Optimal glmmLasso model based on BIC for immune segment with tumor type
as response variable.
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